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Preface

Most good texts arise from the desire to leave one's stamp on a discipline by training

future generations of students, coupled with the recognition that existing texts are inadequate in

various respects.  My motivation is no different.

There is a real need for a concise and  modern introductory forecasting text.  A number of

features distinguish this book.  First, although it uses only elementary mathematics, it conveys a

strong feel for the important advances made since the work of Box and Jenkins more than thirty

years ago.  In addition to standard models of trend, seasonality, and cycles, it touches –

sometimes extensively – upon topics such as:

data mining and in-sample overfitting

statistical graphics and exploratory data analysis

model selection criteria

recursive techniques for diagnosing structural change

nonlinear models, including neural networks

regime-switching models

unit roots and stochastic trends

smoothing techniques in their relation to stochastic-trend unobserved-components models

vector autoregressions

cointegration and error correction

predictive causality

forecast evaluation and combination
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simulation and simulation-based methods

volatility measurement, modeling and forecasting.

Much of that material appears in the "Exercises, Problems and Complements" following each

chapter, which form an integral part of the book.  The Exercises, Problems and Complements are

organized so that instructors and students can pick and choose according to their backgrounds

and interests.

Second, the book does not attempt to be exhaustive in coverage.  In fact, the coverage is

intentionally selective, focusing on the core techniques with the widest applicability.  The book is

designed so that it can be covered realistically in a one-semester course.  Core material appears in

the main text, and additional material that expands on the depth and breadth of coverage is

provided in the Exercises, Problems and Complements, as well as the Bibliographical and

Computational Notes, at the end of each chapter.

Third, the book is applications-oriented.  It illustrates all methods with detailed real-world

applications designed to mimic typical forecasting situations.  In many chapters, the application is

the centerpiece of the presentation.  In various places, it uses applications not simply to illustrate

the methods but also to drive home an important lesson, the limitations of forecasting, by

presenting truly realistic examples in which not everything works perfectly!

Fourth, the book is in touch with modern modeling and forecasting software.  It  uses

Eviews, which is a good modern computing environment for forecasting, throughout.  Many of

the data and Eviews programs used in the book are provided on the book’s web page.  At the

same time, I am not a software salesman, so the discussion is not wed to any particular software. 
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Students and instructors can use whatever computing environment they like best. 

The book has found wide use among students in a variety of fields, including business,

finance, economics, public policy, statistics, and even engineering.  The book is directly accessible

at the undergraduate and master's levels; the only prerequisite is an introductory statistics course

that includes linear regression.  To help refresh students’ memories, Chapter 2 reviews linear

regression from a forecasting perspective.  The book is also of interest to those with more

advanced preparation, because of the hard-to-find direct focus on forecasting (as opposed, for

example, to general statistics, econometrics, or time series analysis).  I have used it successfully

for many years as the primary text in my undergraduate forecasting course, as a background text

for various other undergraduate and graduate courses, and as the primary text for master's-level

Executive Education courses given to professionals in business, finance, economics and

government.

Many people have contributed to the development of this book -- some explicitly, some

without knowing it.  One way or another, all of the following deserve thanks:

Joan B. Anderon University of San Diego

Scott Armstrong University of Pennsylvania

Alan Auerbach University of California, Berkeley

David Bivin Indiana University - Purdue University at Indianapolis

Gregory A. Charles Oregon Health & Science University

Chris Chatfield University of Bath

Jen-Chi Cheng Wichita State University
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Farzad Farsio Montana State University, Billings

Robert Fildes University of Lancaster

Antonio Garcia-Ferrer Universidad Autonoma de Madrid

Jean-Marie DuFour University of Montreal

Jessica Gamburg Heitman

Patrick A. Gaughan Farleigh-Dickenson University

Clive Granger University of California, San Diego

Craig Hakkio Federal Reserve Bank of Kansas City

Eric Hillebrand Louisiana State University

Eric C. Howe University of Saskatchewan

Der An Hsu University of Wisconsin, Milwaukee

Lawrence R. Klein University of Pennsylvania
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James Kozik SPSS, Inc.
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Jose Lopez Federal Reserve Bank of New York
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I am especially grateful to all members of the South-Western team, past and present, including

Jennifer Baker, Jack Calhoun, Dennis Hanseman, Leslie Kauffman and Michael Worls, without

whose encouragement and guidance this book would not have been written.  I am similarly

grateful to the many energetic undergraduate and graduate student assistants that I have had over

the years, who read and improved much of the manuscript, including Boragan Aruoba, Adam

Buresh, Morris Davis, Atsushi Inoue, John Schindler, Chiara Scotti, Eric Schwartz, Georg

Strasser, Anthony Tay, Karen Toll and Ginger Wu.

Finally, I apologize and accept full responsibility for the many errors and shortcomings

that undoubtedly remain – minor and major – despite ongoing efforts to eliminate them.
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Notes to the Fourth Edition

The fourth edition maintains the emphasis of earlier editions on providing an intuitive

building-block approach to the development of modern and practical methods for producing,

evaluating and combining forecasts.  Within that framework, several improvements have been

implemented, including:

(1) Enhanced and extended discussion of the elements of probability and statistics of

maximal relevance to forecasting, now included as a separate Chapter 2,

(2)  Many new exercises, problems and complements, which emphasize practical

implementation of the methods developed in the text, including simple drills to

check understanding,

(3)  Selectively reworked and/or rearranged material, to maximize clarity and pedagogical

effectiveness.

Throughout, my intent has been to insert and delete where needed, sparingly, avoiding the

temptation to fix parts “that ain’t broke.”  Hopefully I have moved forward.

F.X.D.

August 2006
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Chapter 1

Introduction to Forecasting:
Applications, Methods, Books, Journals and Software

 

Forecasting is important – forecasts are constantly made in business, finance, economics,

government, and many other fields, and much depends upon them.  As with anything else, there

are good and bad ways to forecast.  This book is about the good ways – modern, quantitative,

statistical/econometric methods of producing and evaluating forecasts.

1.  Forecasting in Action

Forecasts are made to guide decisions in a variety of fields.  To develop a feel for the

tremendous diversity of forecasting applications, let’s sketch some of the areas where forecasts

are used, and the corresponding diversity of decisions aided by forecasts.

a.  Operations planning and control.  Firms routinely forecast sales to help guide decisions in

inventory management, sales force management, and production planning, as well as

strategic planning regarding product lines, new market entry, and so on.  Firms use

forecasts to decide what to produce (What product or mix of products should be

produced?), when to produce (Should we build up inventories now in anticipation of high

future demand?  How many shifts should be run?), how much to produce and how much

capacity to build (What are the trends in market size and market share?  Are there cyclical

or seasonal effects?  How quickly and with what pattern will a newly-built plant or a

newly-installed technology depreciate?), and where to produce (Should we have one plant

or many?  If many, where should we locate them?).  Firms also use forecasts of future

prices and availability of inputs to guide production decisions. 
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b.  Marketing.  Forecasting plays a key role in many marketing decisions.  Pricing decisions,

distribution path decisions, and advertising expenditure decisions all rely heavily on

forecasts of responses of sales to different marketing schemes.

c.  Economics.  Governments, policy organizations, and private forecasting firms around the

world routinely forecast the major economic variables, such as gross domestic product

(GDP), unemployment, consumption, investment, the price level, and interest rates. 

Governments use such forecasts to guide monetary and fiscal policy, and private firms use

them for strategic planning, because economy-wide economic fluctuations typically have

industry-level and firm-level effects.  In addition to forecasting “standard” variables such

as GDP, economists sometimes make more exotic forecasts, such as the stage of the

business cycle that we'll be in six months from now (expansion or contraction), the state of

future stock market activity (bull or bear), or the state of future foreign exchange market

activity (appreciation or depreciation).  Again, such forecasts are of obvious use to both

governments and firms -- if they’re accurate!

d.  Financial asset management.  Portfolio managers have an interest in forecasting asset returns

(stock returns, interest rates, exchange rates, and commodity prices) and such forecasts

are made routinely.  There is endless debate about the success of forecasts of asset returns. 

On the one hand, asset returns should be very hard to forecast; if they were easy to

forecast, you could make a fortune easily, and any such “get rich quick” opportunities

should already have been exploited.  On the other hand, those who exploited them along

the way may well have gotten rich!  Thus, we expect that simple, widely-available
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methods for forecasting should have little success in financial markets, but there may well

be profits to be made from using new and sophisticated techniques to uncover and exploit

previously-unnoticed patterns in financial data (at least for a short time, until other market

participants catch on or your own trading moves the market).

e.  Financial risk management.  The forecasting of asset return volatility is related to the

forecasting of asset returns.  In the last ten years, practical methods for volatility

forecasting have been developed and widely applied.  Volatility forecasts are crucial for

evaluating and insuring risks associated with asset portfolios.  Volatility forecasts are also

crucial for firms and investors who need to price assets such as options and other

derivatives.

f.  Business and government budgeting.  Businesses and governments of all sorts must constantly

plan and justify their expenditures.  A major component of the budgeting process is the

revenue forecast.  Large parts of firms’ revenues typically come from sales, and large parts

of governments’ revenues typically come from tax receipts, both of which exhibit cyclical

and long-term variation.

g.  Demography.  Demographers routinely forecast the populations of countries and regions all

over the world, often in disaggregated form, such as by age, sex, and race.  Population

forecasts are crucial for planning government expenditure on health care, infrastructure,

social insurance, anti-poverty programs, and so forth.  Many private-sector decisions, such

as strategic product line decisions by businesses, are guided by demographic forecasts of

particular targeted population subgroups.  Population in turn depends on births, deaths,



Fcst4-01-4

Copyright © F.X. Diebold.  All rights reserved.

immigration and emigration, which are also forecasted routinely. 

h.  Crisis management.  A variety of events corresponding to crises of various sorts are frequently

forecast.  Such forecasts are routinely issued as probabilities.  For example, in both

consumer and commercial lending, banks generate default probability forecasts and refuse

loans if the probability is deemed too high.  Similarly, international investors of various

sorts are concerned with probabilities of default, currency devaluations, military coups,

etc., and use forecasts of such events to inform their portfolio allocation decisions.

The variety of forecasting tasks that we've just sketched was selected to help you begin to

get a feel for the depth and breadth of the field.  Surely you can think of many more situations in

which forecasts are made and used to guide decisions.

With so many different forecasting applications, you might think that a huge variety of

forecasting techniques exists, and that you’ll have to master all of them.  Fortunately, that's not

the case.  Instead, a relatively small number of tools form the common core of almost all

forecasting methods.  Needless to say, the details differ if one is forecasting Intel’s stock price one

day and the population of Scotland the next, but the principles underlying the forecasts are

identical.  Thus we’ll focus on the underlying core principles, which drive all applications.

2.  Forecasting Methods:  An Overview of the Book

To give you a broad overview of the forecasting landscape, let’s sketch what’s to follow

in the chapters ahead.  If some of the terms and concepts seem unfamiliar, rest assured that we’ll

be studying them in depth in later chapters.

Forecasting is inextricably linked to the building of statistical models.  Before we can
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of the meanings of “univariate” and “multivariate.”
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forecast a variable of interest, we must build a model for it and estimate the model’s parameters

using observed historical data.  Typically, the estimated model summarizes dynamic patterns in

the data; that is, the estimated model provides a statistical characterization of the links between

the present and the past.  More formally, an estimated forecasting model provides a

characterization of what we expect in the present, conditional upon the past, from which we infer

what to expect in the future, conditional upon the present and past.  Quite simply, we use the

estimated forecasting model to extrapolate the observed historical data.

In this book we focus on core modeling and forecasting methods that are very widely

applicable; variations on them can be applied in almost any forecasting situation.  The book is

divided into two parts.  The first provides background and introduces various fundamental issues

relevant to any forecasting exercise.  The second treats the construction, use, and evaluation of

modern forecasting models.  We give special attention to basic methods of forecasting trend,

seasonality and cycles, in both univariate and multivariate contexts.   We also discuss special1

topics in forecasting with regression models, as well as forecast evaluation and combination. 

Along the way, we introduce a number of modern developments, sometimes in the text and

sometimes in the Exercises, Problems and Complements that follow each chapter.  These  include

model selection criteria, recursive estimation and analysis, ARMA and ARIMA models, unit roots

and cointegration, volatility models, simulation, vector autoregressions, and nonlinear forecasting

models.  Every chapter contains a detailed application; examples include forecasting retail sales,
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  We’ll define the idea of a time series more precisely in subsequent chapters, but for now2

just think of a time series as a variable of interest that has been recorded over time.  For example,
the annual rainfall in Brazil from 1950-2006, a string of 57 numbers, is a time series.  On the basis
of that historical data, one might want to forecast Brazilian rainfall for the years 2007-2010.
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housing starts, employment, liquor sales, exchange rates, and shipping volume.

In this chapter, we provide a broad overview of the forecasting landscape.  In Chapter 2

we review probability, statistics and regression from a forecasting perspective.  In Chapter 3, we

highlight six considerations relevant to all forecasting tasks:  the decision-making environment,

the nature of the object to be forecast, the way the forecast will be stated, the forecast horizon,

the information on which the forecast will be based, and the choice of forecasting method.

In Chapter 4, we introduce certain aspects of statistical graphics relevant for forecasting. 

Graphing data is a useful first step in any forecasting project, as it can often reveal features of the

data relevant for modeling and forecasting.  We discuss a variety of graphical techniques of use in

modeling and forecasting, and we conclude with a discussion of the elements of graphical style --

what makes good graphics good, and bad graphics bad.

After Chapter 4 the chapters proceed differently -- each treats a specific set of tools

applicable in a specific and important forecasting situation.  We exploit the fact that a useful

approach to forecasting consists of separate modeling of the unobserved components underlying

an observed time series -- trend components, seasonal components, and cyclical components.  2

Trend is that part of a series’ movement that corresponds to long-term, slow evolution. 

Seasonality is that part of a series’ movement that repeats each year.  Cycle is a catch-all phrase

for various forms of dynamic behavior that link the present to the past and hence the future to the
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present.

In Chapter 5 we discuss trend -- what it is, where it comes from, why it’s important, how

to model it, and how to forecast it.  In Chapter 6 we do the same for seasonality.  Next we

provide an extensive discussion of cycles; indeed, cycles are so important that we split the

discussion into three parts.  In Chapter 7 we introduce the idea of a cycle in the context of

analysis of covariance stationary time series, and we discuss methods for the quantitative

characterization of cyclical dynamics.  In Chapter 8, we introduce explicit models for cyclical

series, focusing on autoregressive (AR), moving average (MA), and mixed (ARMA) processes. 

In Chapter 9, relying heavily on the foundation built in Chapters 7 and 8, we explicitly treat the

model-based forecasting of cyclical series.  Finally, in Chapter 10, we assemble what we learned in

earlier chapters, modeling and forecasting series with trend, seasonality and cycles simultaneously

present.

In Chapter 11 we consider multiple regression models in greater detail, focusing on

nuances of particular relevance for forecasting.  In particular, we make the distinction between

"conditional" forecasting models, useful for answering “what if” questions (e.g., What will happen

to my sales if I lower my price by ten percent?) but not directly useful for forecasting, and

"unconditional" forecasting models, which are directly useful for forecasting.  We also treat issues

concerning the proper dynamic specification of such models, including distributed lags, lagged

dependent variables, and serially-correlated errors, and we study and apply vector autoregressive

models in detail.

In Chapter 12, in contrast to our earlier development of methods for constructing and
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 The word “stochastic” simply means “involving randomness.”  A process is called3

“deterministic” if it is not stochastic.
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using various forecasting models, we consider the evaluation of forecasting performance once a

track record of forecasts and realizations has been established.  That is, we show how to assess

the accuracy of forecasts and how to determine whether a forecast can be improved.  We also

show how to combine a set of forecasts to produce a potentially superior composite forecast.

Chapters 1-12 form a coherent whole, and some courses may end with Chapter 12,

depending on time constraints and course emphasis.  For those so inclined to proceed to more

advanced material, we include two such chapters.

First, in Chapter 13 we introduce the idea of “stochastic trend,” meaning that the trend can

be affected by random disturbances.   We show how to forecast in models with stochastic trends3

and highlight the differences between forecasts from stochastic-trend and deterministic-trend

models.  Finally, we discuss “smoothing” methods for producing forecasts, which turn out to be

optimal for forecasting series with certain types of stochastic trend.

Second, in Chapter 14 we introduce models of time-varying volatility, which have found

wide application, especially in financial asset management and risk management.  We focus on the

so-called ARCH family of volatility models, including several important variations and extensions.

3.  Useful Books, Journals, Software, and Online Information

As you begin your study of forecasting, it’s important that you begin to develop an

awareness of a variety of useful and well-known forecasting textbooks, professional forecasting

journals where original forecasting research is published, and forecasting software.
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 You’ll also want to Chapter 2, which provides a concise review of the regression model4

as relevant for forecasting.

 Most forecasting methods are concerned with forecasting time series.  The modeling and5

forecasting of time series are so important that an entire field called “time series analysis” has
arisen.  Although the origins of the field go back hundreds of years, major advances have
occurred in the last fifty years.  Time series analysis is intimately related to forecasting, because
quantitative time series forecasting techniques require that quantitative time series models first be
fit to the series of interest.  Thus, forecasting requires knowledge of time series modeling
techniques.  A substantial portion of this book is therefore devoted to time series modeling.

Copyright © F.X. Diebold.  All rights reserved.

Books

A number of good books exist that complement this one; some are broader, some are

more advanced, and some are more specialized.  Here we'll discuss a few that are more broad or

more advanced, in order to give you a feel for the relevant literature.  More specialized books will

be discussed in subsequent chapters when appropriate.

Wonnacott and Wonnacott (1990) is a well-written and popular statistics book, which you

may wish to consult to refresh your memory on statistical distributions, estimation and hypothesis

testing.  It also contains a thorough and very accessible discussion of linear regression, which we

use extensively throughout this book.   Another good source is Anderson et al. (2006)4

Pindyck and Rubinfeld (1997) is a well-written general statistics and econometrics text,

and you’ll find it a very useful refresher for basic statistical topics, as well as a good introduction

to more advanced econometric models.  Similarly useful books include Maddala (2001) and

Kennedy (1998).

As a student of forecasting, you’ll want to familiarize yourself with the broader time series

analysis literature.   Chatfield (1996) is a good introductory book, which you’ll find useful as a5
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background reference.  More advanced books, which you may want to consult later, include

Granger and Newbold (1986) and Harvey (1993).  Granger and Newbold, in particular, is packed

with fine insights and  explicitly oriented toward those areas of time series analysis that are

relevant for forecasting.  Hamilton (1994) is a more advanced book suitable for Ph.D.-level study.

A number of specialized books are also of interest.  Makridakis and Wheelwright (1997)

and Bails and Peppers (1997) display good business sense, with interesting discussions, for

example, of the different forecasting needs of the subunits of a typical business firm, and of

communicating forecasts to higher management.  Taylor (1996) provides a nice introduction to 

modeling and forecasting techniques of particular relevance in finance.

Finally, Makridakis and Wheelwright (1987), Armstrong (2001), Clements and Hendry

(2002) and Elliott et al. (2005) are informative and well-written collections of articles, written by

different experts in various sub-fields of forecasting, dealing with both forecasting applications

and methods.  They provide a nice complement to this book, with detailed descriptions of

forecasting in action in various business, economic, financial and governmental settings.

Journals

A number of journals cater to the forecasting community.  The leading academic

forecasting journals, which contain a mixture of newly-proposed methods, evaluation of existing

methods, practical applications, and book and software reviews, are Journal of Forecasting and 

International Journal of Forecasting.  In addition, Journal of Business Forecasting is a good

source for case studies of forecasting in various corporate and government environments.

Although there are a number of journals devoted to forecasting, its interdisciplinary nature
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 Rycroft (1993) provides a thorough comparison of several forecasting software6

environments.

 The Eviews web page is at www.eviews.com.7

 A number of other good software packages are reviewed by Kim and Trivedi (1995).8
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results in a rather ironic outcome:  a substantial fraction of the best forecasting research is

published not in the forecasting journals, but rather in the broader applied econometrics and

statistics journals, such as Journal of Business and Economic Statistics, Review of Economics

and Statistics, and Journal of Applied Econometrics, among many others.  Several recent journal

symposia have focused on forecasting; see for example Diebold and Watson (1996), Diebold and

West (1998), Diebold, Stock and West (1999), Diebold and West (2001) and Diebold et al.

(2005).

Software

Just as some journals specialize exclusively in forecasting, so too do some software

packages.  But just as important forecasting articles appear regularly in journals much broader

than the specialized forecasting journals, so too are forecasting tools scattered throughout

econometric / statistical software packages with capabilities much broader than forecasting alone.6

One of the best such packages is Eviews, a modern Windows environment with extensive

time series, modeling and forecasting capabilities.   Eviews can implement almost all of the7

methods described in this book (and many more).  Most of the examples in this book are done in

Eviews, which reflects a balance of generality and specialization that makes it ideal for the sorts of

tasks that will concern us.   If you feel more comfortable with another package, however, that’s8
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  S+ also deserves mention as a fine computing environment with special strengths in9

graphical data analysis and modern statistical methods.  See Hallman (1993) for a review.

 Matlab maintains a web page that contains material on product availability, user-written10

add-ons, etc., at www.mathworks.com.

 Rust (1993) provides a comparative review of Matlab and one of its competitors, Gauss.11

 For a review of Stata, see Ferrall (1994).  The Stata web page is at www.stata.com. 12

The page has product information, user-supplied routines, course information, etc., as well as
links to other statistical software products, many of which are useful for forecasting.
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fine – none of our discussion is wed to Eviews in any way, and most of our techniques can be

implemented in a variety of packages, including Minitab, SAS and many others.9

If you go on to more advanced modeling and forecasting, you’ll probably want to have

available an open-ended high-level computing environment in which you can quickly program,

evaluate and apply new tools and techniques.  Matlab is one very good such environment.  10

Matlab is particularly well-suited for time-series modeling and forecasting.11

Although most forecasting is done in time series environments, some is done in “cross

sections,” which refers to examination of a population at one point in time.  Stata is an

outstanding package for cross-section modeling, with strengths in areas such as qualitative

response modeling, Poisson regression, quantile regression, and survival analysis.12

Before proceeding, and at the risk of belaboring the obvious, it is important to note that

no software is perfect.  In fact, all software is highly imperfect!  The results obtained when

modeling or forecasting in different software environments may differ – sometimes a little and

sometimes a lot – for a variety of reasons.  The details of implementation may differ across

packages, for example, and small differences in details can sometimes produce large differences in
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results.  Hence, it is important that you understand precisely what your software is doing (insofar

as possible, as some software documentation is more complete than others).  And of course, quite

apart from correctly-implemented differences in details, always remember that deficient

implementations occur:  there is no such thing as bug-free software.

Online Information

A variety of information of interest to forecasters is available on the web.  The best way to

learn about what’s out there in cyberspace is to spend a few hours searching the web for whatever

interests you.  However, any list of good web sites for forecasters is likely to be outdated shortly

after its compilation.  Hence we mention just one, which is regularly updated and tremendously

authoritative:  Resources for Economists, at www.rfe.org.  It contains hundreds of links to data

sources, journals, professional organizations, and so on.  Frankly, the Resources for Economists

page is all you need to start on your way.

4.  Looking Ahead

A forecast is little more than a guess about the future.  Because forecasts guide decisions,

good forecasts help to produce good decisions.  In the remainder of this book, we’ll motivate,

describe, and compare modern forecasting methods.  You’ll learn how to build and evaluate

forecasts and forecasting models, and you’ll be able to use them to improve your decisions. 

Enjoy!
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Exercises, Problems and Complements

1.  (Forecasting in daily life:  we all forecast, all the time)

a.  Sketch in detail three forecasts that you make routinely, and probably informally, in

your daily life.  What makes you believe that the forecast object is predictable? 

What factors might introduce error into your forecasts?

b.  What decisions are aided by your three forecasts?  How might the degree of

predictability of the forecast object affect your decisions?

c.  How might you measure the "goodness" of your three forecasts?

d.  For each of your forecasts, what is the value to you of a "good" as opposed to a "bad"

forecast?

2.  (Forecasting in business, finance, economics, and government)  What sorts of forecasts would

be useful in the following decision-making situations?  Why?  What sorts of data might you need

to produce such forecasts?

a.  Shop-All-The-Time Network (SATTN) needs to schedule operators to receive

incoming calls.  The volume of calls varies depending on the time of day, the

quality of the TV advertisement, and the price of the good being sold.  SATTN

must schedule staff to minimize the loss of sales (too few operators leads to long

hold times, and people hang up if put on hold) while also considering the loss

associated with hiring excess employees.

b.  You’re a U.S. investor holding a portfolio of Japanese, British, French and German

stocks and government bonds.  You’re considering broadening your portfolio to
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include corporate stocks of Tambia, a developing economy with a risky emerging

stock market.  You’re only willing to do so if the Tambian stocks produce higher

portfolio returns sufficient to compensate you for the higher risk.  There are

rumors of an impending military coup, in which case your Tambian stocks would

likely become worthless.  There is also a chance of a major Tambian currency

depreciation, in which case the dollar value of your Tambian stock returns would

be greatly reduced.

c.  You are an executive with Grainworld, a huge corporate farming conglomerate with

grain sales both domestically and abroad.  You have no control over the price of

your grain, which is determined in the competitive market, but you must decide

what to plant and how much, over the next two years.  You are paid in foreign

currency for all grain sold abroad, which you subsequently convert to dollars. 

Until now the government has bought all unsold grain to keep the price you

receive stable, but the agricultural lobby is weakening, and you are concerned that

the government subsidy may be reduced or eliminated in the next decade. 

Meanwhile, the price of fertilizer has risen because the government has restricted

production of ammonium nitrate, a key ingredient in both fertilizer and terrorist

bombs.

d.  You run BUCO, a British utility supplying electricity to the London metropolitan area. 

You need to decide how much capacity to have on line, and two conflicting goals

must be resolved in order to make an appropriate decision.  You obviously want to
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have enough capacity to meet average demand, but that's not enough, because

demand is uneven throughout the year.  In particular, demand skyrockets during

summer heat waves -- which occur randomly -- as more and more people run their

air conditioners constantly.  If you don't have sufficient capacity to meet peak

demand, you get bad press.  On the other hand, if you have a large amount of

excess capacity over most of the year, you also get bad press.

3.  (The basic forecasting framework)  True or false (explain your answers):

a.  The underlying principles of time-series forecasting differ radically depending on the

time series being forecast.

b.  Ongoing improvements in forecasting methods will eventually enable perfect

prediction.

c.  There is no way to learn from a forecast’s historical performance whether and how it

could be improved. 

4.  (Degrees of forecastability)  Which of the following can be forecast perfectly?  Which can not

be forecast at all?  Which are somewhere in between?  Explain your answers, and be careful!

a.  The direction of change tomorrow in a country’s stock market; 

b.  The eventual lifetime sales of a newly-introduced automobile model;

c.  The outcome of a coin flip; 

d.  The date of the next full moon;

e.  The outcome of a (fair) lottery.

5.  (Data on the web)  A huge amount of data of all sorts are available on the web.  Frumkin
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(2004) and Baumohl (2005) provide useful and concise introductions to the construction,

accuracy and interpretation of a variety of economic and financial indicators, many of which are

available on the web.  Search the web for information on U.S. retail sales, U.K. stock prices,

German GDP, and Japanese federal government expenditures.  (The Resources for Economists

page is a fine place to start:  www.rfe.org)  Using graphical methods, compare and contrast the

movements of each series and speculate about the relationships that may be present.

6.  (Univariate and multivariate forecasting models)  In this book we consider both “univariate”

and “multivariate” forecasting models.  In a univariate model, a single variable is modeled and

forecast solely on the basis of its own past.  Univariate approaches to forecasting may seem

simplistic, and in some situations they are, but they are tremendously important and worth

studying for at least two reasons.  First, although they are simple, they are not necessarily

simplistic, and a large amount of accumulated experience suggests that they often perform

admirably.  Second, it’s necessary to understand univariate forecasting models before tackling

more complicated multivariate models.

In a multivariate model, a variable (or each member of a set of variables) is modeled on

the basis of its own past, as well as the past of other variables, thereby accounting for and

exploiting cross-variable interactions.  Multivariate models have the potential to produce forecast

improvements relative to univariate models, because they exploit more information to produce

forecasts.

a.  Determine which of the following are examples of univariate or multivariate

forecasting:
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C Using a stock’s price history to forecast its price over the next week;

C Using a stock’s price history and volatility history to forecast its price over the

next week;

C Using a stock’s price history and volatility history to forecast its price and

volatility over the next week.

b.  Keeping in mind the distinction between univariate and multivariate models, consider a

wine merchant seeking to forecast the price per case at which 1990 Chateau

Latour, one of the greatest Bordeaux wines ever produced, will sell in the year

2015, at which time it will be fully mature.

C What sorts of univariate forecasting approaches can you imagine that

might be relevant?

C What sorts of multivariate forecasting approaches can you imagine that

might be relevant?  What other variables might be used to predict

the Latour price?

C What are the comparative costs and benefits of the univariate and

multivariate approaches to forecasting the Latour price? 

C Would you adopt a univariate or multivariate approach to forecasting the

Latour price?  Why?
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Concepts for Review

Forecasting

Forecasting model

Statistical model

Econometric model

Univariate model

Multivariate model

Time series

Deterministic

Stochastic

Time series analysis
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 Be warned, however:  this chapter is no substitute for a full-course introduction to1

probability and statistics.  If the bulk of it looks unfamiliar to you, you’re in trouble and should
speak with your instructor immediately.
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Chapter 2

A Brief Review of Probability, Statistics, and Regression for Forecasting

1.  Why this Chapter?

The role of this chapter is three-fold.  First, it reviews some familiar material.  You’ve

already studied some probability and statistics, but chances are that you could use a bit of review,

so this chapter supplies it.1

Second, although this chapter largely reviews familiar material, it does so from a new

perspective.  That is, it begins developing the material from the explicit perspective of forecasting,

which involves special considerations and nuances.  For example, we motivate the regression

model as a model of a conditional expectation, which turns out to be an intuitive and appealing

forecast.

Third, the chapter foreshadows new material subsequently developed in greater detail.  It

begins to introduce tools that are new, but that are related to things you learned earlier and very

important for building forecasting models, such as information criteria for model selection.  Hence

you should not worry if some of the material looks unfamiliar!

2.  Random Variables, Distributions and Moments

Consider an experiment with a set O of possible of possible outcomes.  A random variable 
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 Note that we use capitals for random variables (Y) and small letters for their realizations2

(y).  We will often neglect this formalism, however, as the meaning will be clear from context.

 In addition, the total area under f(y) must be 1.3
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Y is simply a mapping from O to the real numbers.  For example, the experiment might be flipping

a coin twice, in which case O = { (Heads, Heads), (Tails, Tails), (Heads, Tails), (Tails, Heads)}. 

We might define a random variable Y to be the number of heads observed in the two flips, in

which case Y could assume three values, y=0, y=1 and y=2.2

Discrete random variables, that is, random variables with discrete probability distributions,

can assume only a countable number of values , i = 1, 2, ..., each with positive probability 

such that .  The probability distribution f(y) assigns a probability  to each such value

.  In the example at hand, Y is a discrete random variable, and f(y)=0.25 for y=0, f(y)=0.50 for

y=1, f(y)=0.25 for y=2, and f(y)=0 otherwise.

In contrast, continuous random variables can assume a continuum of values, and the

probability density function f(y) is a non-negative continuous function such that the area under

f(y) between any points a and b is the probability that Y assumes a value between a and b.3

In what follows we will simply speak of a “distribution” f(y).  It will be clear from context

whether we are in fact speaking of a discrete random variable with probability distribution f(y) or

a continuous random variable with probability density f(y).

Moments provide important summaries of various aspects of distributions.  Roughly

speaking, moments are simply expectations of powers of random variables, and expectations of

different powers convey different sorts of information.  You are already familiar with two
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 In principle, we could of course consider moments beyond the fourth, but in practice4

only the first four are typically examined.

 A similar formula holds in the continuous case.5
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crucially important moments, the mean and variance.  In what follows we shall consider the first

four moments:  mean, variance, skewness and kurtosis.4

The mean, or expected value, of a discrete random variable is a probability-weighted

average of the values it can assume,5

 Often we use the Greek letter  to denote the mean.  The mean measures the location, or central

tendency, of y.

The variance of y is its expected squared deviation from its mean,

It measures the dispersion, or scale, of y around its mean.  

Often we assess dispersion using the square root of the variance, which is called the

standard deviation,

.

The standard deviation is more easily interpreted than the variance, because it has the same units

of measurement as y.  That is, if y is measured in dollars (say), then var(y) is in dollars squared,

but std(y) is again in dollars.

The skewness of y is its expected cubed deviation from its mean (scaled by  for technical
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 We could of course consider more than two variables, but for pedagogical reasons we6

presently limit ourselves to two.
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reasons),

Skewness measures the amount of asymmetry in a distribution.  The larger the absolute size of the

skewness, the more asymmetric is the distribution.  A large positive value indicates a long right

tail, and a large negative value indicates a long left tail.  A zero value indicates symmetry around

the mean. 

The kurtosis of y is the expected fourth power of the deviation of y from its mean (scaled

by ),

Kurtosis measures the thickness of the tails of a distribution.  A kurtosis above three indicates “fat

tails” or leptokurtosis, relative to the normal, or Gaussian, distribution that you studied in earlier

course work.  Hence a kurtosis above three indicates that extreme events are more likely to occur

than would be the case under normality.

3.  Multivariate Random Variables

Suppose now that instead of a single random variable Y, we have two random variables Y

and X.   We can examine the distributions of Y or X in isolation, which are called marginal6
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distributions.  This is effectively what we’ve already studied.  But now there’s more:  Y and X

may be related and therefore move together in various ways, characterization of which requires a

joint distribution.  In the discrete case the joint distribution f(y,x) gives the probability associated

with each possible pair of y and x values, and in the continuous case the joint density f(y,x) is such

that the area under it in any region is the probability of a (y,x) realization in that region.

We can examine the moments of y or x in isolation, such as mean, variance, skewness and

kurtosis.  But again, now there’s more:  to help assess the dependence between y and x, we often

examine a key moment of relevance in multivariate environments, the covariance.  The covariance

between y and x is simply the expected product of the deviations of y and x from their respective

means,

.

A positive covariance means that y and x are positively related; that is, when y is above its mean x

tends to be above its mean, and when y is below its mean x tends to be below its mean. 

Conversely, a negative covariance means that y and x are inversely related:  when y is below its

mean x tends to be above its mean, and vice versa.  The covariance can take any value in the real

numbers.

Frequently we convert the covariance to a correlation by standardizing by the product of

 and ,
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The correlation takes values in [-1, 1].  Note that covariance depends on units of measurement

(e.g., dollars, cents, billions of dollars), but correlation does not.  Hence correlation is more

immediately interpretable, which is the reason for its popularity.

Note also that covariance and correlation measure only linear dependence; in particular, a

zero covariance or correlation between y and x does not necessarily imply that y and x are

independent.  That is, they may be non-linearly related.  If, however, two random variables are

jointly normally distributed with zero covariance, then they are independent.

Our multivariate discussion has focused on the joint distribution f(y,x).  In later chapters

we will also make heavy use of the conditional distribution , that is, the distribution of the

random variable Y conditional upon X=x.  Conditional distributions are tremendously important

for forecasting, in which a central concern is the distribution of future values of a series

conditional upon past values.  Conditional moments are similarly important.  In particular, the

conditional mean and conditional variance play key roles in forecasting, in which attention often

centers on the mean or variance of a series conditional upon its past values.

4.  Statistics

Thus far we’ve reviewed aspects of known population distributions of random variables. 

Often, however, we have a sample of data drawn from an unknown population distribution f,

,

and we want to learn from the sample about various aspects of f, such as its moments.  To do so
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 An estimator is an example of a statistic, or sample statistic, which is simply a function of7

the sample observations.
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we use various estimators.   We can obtain estimators by replacing population expectations with7

sample averages, because the arithmetic average is the sample analog of the population

expectation.  Such “analog estimators” turn out to have good properties quite generally.

The sample mean is simply the arithmetic average,

It provides an empirical measure of the location of y.

The sample variance is the average squared deviation from the sample mean,

It provides an empirical measure of the dispersion of y around its mean.  

We commonly use a slightly different version of , which corrects for the one degree of

freedom used in the estimation of , thereby producing an unbiased estimator of ,
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Similarly, the sample standard deviation is defined either as  

or

It provides an empirical measure of dispersion in the same units as y.

The sample skewness is

It provides an empirical measure of the amount of asymmetry in the distribution of y.

The sample kurtosis is

It provides an empirical measure of the fatness of the tails of the distribution of y relative to a
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 Other tests of conformity to the normal distribution exist and may of course be used,8

such as the Kolmogorov-Smirnov test.  We use the Jarque-Bera test in this book because of its
simplicity and because of its convenient and intuitive decomposition into skewness and
leptokurtosis components.
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normal distribution.

Many of the most famous and important statistical sampling distributions arise in the

context of sample moments, and the normal distribution is the father of them all.  In particular, the

celebrated central limit theorem establishes that under quite general conditions the sample mean 

will have a normal distribution as the sample size gets large.  The  distribution arises from

squared normal random variables, the t distribution arises from ratios of normal and  variables,

and the F distribution arises from ratios of  variables.

Because of the fundamental nature of the normal distribution as established by the central

limit theorem, it has been studied intensively, a great deal is known about it, and a variety of

powerful tools have been developed for use in conjunction with it.  Hence it is often of interest to

assess whether the normal distribution governs a given sample of data.  A simple strategy is to

check various implications of normality, such as  and , via informal examination of  

and .  Alternatively and more formally, the Jarque-Bera test (JB) effectively aggregates the

information in the data about both skewness and kurtosis to produce an overall test of the

hypothesis that  and , based upon  and .   The test statistic is8
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 The formula given is for an observed time series.  If the series being tested for normality9

is the residual from a model, then T should be replaced with T-k, where k is the number of
parameters estimated.
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where T is the number of observations.   Under the null hypothesis of independent normally-9

distributed observations, the Jarque-Bera statistic is distributed in large samples as a  random

variable with two degrees of freedom.  We will use the Jarque-Bera test in various places

throughout this book.

5.  Regression Analysis

Ideas that fall under the general heading of “regression analysis” are crucial for building

forecasting models, using them to produce forecasts, and evaluating those forecasts.  Here we

provide a brief review of linear regression to refresh your memory and provide motivation from a

forecasting perspective.

Suppose that we have data on two variables, y and x, as in Figure 1, and suppose that we

want to find the linear function of x that gives the best forecast of y, where "best forecast" means

that the sum of squared forecast errors, for the sample of data at hand, is as small as possible. 

This amounts to finding the line that best fits the data points, in the sense that the sum of squared

vertical distances of the data points from the fitted line is minimized.  When we "run a regression,"

or "fit a regression line," that's what we do.  The estimation strategy is called least squares.  The

least squares estimator has a well-known mathematical formula.  We won’t reproduce it here;

suffice it to say that we simply use the computer to evaluate the formula. 

In Figure 2, we illustrate graphically the results of regressing y on x.  The best-fitting line

slopes upward, reflecting the positive correlation between y and x.  Note that the data points don't
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 We speak of the regression intercept and the regression slope.10
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satisfy the fitted linear relationship exactly; rather, they satisfy it on average.  To forecast y for

any given value of x, we use the fitted line to find the value of y that corresponds to the given

value of x.

Thus far we haven't postulated a probabilistic model that relates y and x; instead, we

simply ran a mechanical regression of y on x to find the best forecast of y formed as a linear

function of x.  It's easy, however, to construct a probabilistic framework that lets us make

statistical assessments about the properties of the fitted line and the corresponding forecasts.  We

assume that y is linearly related to an exogenously determined variable x, and we add an

independent and identically distributed (iid) disturbance with zero mean and constant variance:

t = 1, ..., T.  The intercept of the line is , the slope is , and the variance of the disturbance is

.    Collectively, , , and  are called the model's parameters.  The index t keeps track of10

time; the data sample begins at some time we've called "1" and ends at some time we've called

"T."

If the regression model postulated above holds true, then the expected value of y

conditional upon x taking a particular value, say , is 
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 Shortly we'll show how to estimate  as well.11
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That is, the regression function is the conditional expectation of y.  As we’ll see in detail later in

the book, the expectation of future y conditional upon available information is a particularly good

forecast.  In fact, under fairly general conditions, it is the best possible forecast.  The intimate

connection between regression and optimal forecasts makes regression an important tool for

forecasting.

We assume that the model sketched above is true in population.  If we knew  and 

we could make a forecast of y for any given value of , and the variance of the corresponding

forecast error would be .  The problem, of course, is that we don't know the values of the

model's parameters.  When we run the regression, or "estimate the regression model," we use a

computer to estimate the unknown parameters by solving the problem 

(or equivalently, , because ), where $ is shorthand notation for the

set of two parameters,  and .   We denote the set of estimated parameters by , and its11

elements by  and .  Each estimated coefficient gives the weight put on the corresponding

variable in forming the best linear forecast of y.  We can think of  as the coefficient on a

"constant" variable that's always equal to one.  The estimated coefficient on the constant variable

is the best forecast in the event that x is zero.  In that sense, it’s a baseline forecast.  We use the

set of estimated parameters,  and , to make forecasts that improve on the baseline.  The
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fitted values, or in-sample forecasts, are

t = 1, ..., T.

Forecasts are rarely perfect; instead, we make errors.  The residuals, or in-sample forecast

errors, are

t = 1, ..., T.  Forecasters are keenly interested in studying the properties of their forecast errors. 

Systematic patterns in forecast errors indicate that the forecasting model is inadequate; forecast

errors from a good forecasting model must be unforecastable!

Now suppose we have a second exogenous variable, z, which we could also use to

forecast y.  In Figure 3, we show a scatterplot of y against z, with the regression line

superimposed.  This time the slope of the fitted line is negative.  The regressions of y on x and y

on z are called simple linear regressions; they are potentially useful, but ultimately we'd like to

regress y on both x and z.  Fortunately, the idea of linear regression readily generalizes to

accommodate more than one right-hand-side variable.  We write
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t = 1, ..., T.  This is called a multiple linear regression model.  Again, we use the computer to find

the values of , , and  that produce the best forecast of y; that is, we find the $ values that

solve the problem  where $ denotes the set of three model

parameters.  We denote the set of estimated parameters by , with elements , , and .  The

fitted values are

and the residuals are

t = 1, ..., T.  Extension to the general multiple linear regression model, with an arbitrary number

of right-hand-side variables (k, including the constant), is immediate. 

This time, let's do more than a simple graphical analysis of the regression fit.  Instead, let's

look in detail at the computer output, which we show in Table 1.  We do so dozens of times in

this book, and the output format and interpretation are always the same, so it's important to get
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 Sometimes the population coefficient on C is called the constant term, and the12

regression estimate, the estimated constant term. 

 The coefficient will be normally distributed if the regression disturbance is normally13

distributed, or if the sample size is large.
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comfortable with it quickly.  The output is in Eviews format.  Other software will produce more-

or-less the same information, which is fundamental and standard. 

The printout begins by reminding us that we're running a least-squares (LS) regression,

and that the left-hand-side variable (the "dependent variable" -- see the Exercises, Problems and

Complements at the end of this chapter) is y.  It then shows us the sample range of the historical

data, which happens to be 1960 to 2007, for a total of 48 observations.

Next comes a table listing each right-hand-side variable together with four statistics.  The

right-hand-side variables x and z need no explanation, but the variable C does.  C is notation for

the earlier-mentioned constant variable.  The C variable always equals one, so the estimated

coefficient on C is the estimated intercept of the regression line.12

The four statistics associated with each right-hand-side variable are the estimated

coefficient ("Coefficient"), its standard error ("Std. Error"), a t statistic, and a corresponding

probability value ("Prob.").  The standard errors of the estimated coefficients indicate their likely

sampling variability, and hence their reliability.  The estimated coefficient plus or minus one

standard error is approximately a 68% confidence interval for the true but unknown population

parameter, and the estimated coefficient plus or minus two standard errors is approximately a

95% confidence interval, assuming that the estimated coefficient is approximately normally

distributed.   Thus large coefficient standard errors translate into wide confidence intervals.13
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 If the sample size is small, or if we want a significance level other than 5%, we must14

refer to a table of critical values of the t distribution.  It should also be pointed out that use of the
t distribution in small samples also requires an assumption of normally distributed disturbances.

Copyright © F.X. Diebold.  All rights reserved.

Each t-statistic provides a test of the hypothesis of variable irrelevance:  that the true but

unknown population parameter is zero, so that the corresponding variable contributes nothing to

the forecasting regression and can therefore be dropped.  One way to test variable irrelevance,

with, say, a 5% probability of incorrect rejection, is to check whether zero is outside the 95%

confidence interval for the parameter.  If so, we reject irrelevance.  The t statistic is just the ratio

of the estimated coefficient to its standard error, so if zero is outside the 95% confidence interval,

then the t statistic must be bigger than two in absolute value.  Thus we can quickly test irrelevance

at the 5% level by checking whether the t statistic is greater than two in absolute value.14

Finally, associated with each t statistic is a probability value, which is the probability of

getting a value of the t statistic at least as large in absolute value as the one actually obtained,

assuming that the irrelevance hypothesis is true.  Hence if a t statistic were two, the corresponding

probability value would be approximately .05.  The smaller the probability value, the stronger the

evidence against irrelevance.  There's no magic cutoff, but typically probability values less than

0.1 are viewed as strong evidence against irrelevance, and probability values below 0.05 are

viewed as very strong evidence against irrelevance.  Probability values are useful because they

eliminate the need for consulting tables of the t distribution.  Effectively the computer does it for

us and tells us the significance level at which the irrelevance hypothesis is just rejected.

Now let's interpret the actual estimated coefficients, standard errors, t statistics, and

probability values.  The estimated intercept is approximately 10, so that conditional on x and z
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both being zero, our best forecast of y would be 10.  Moreover, the intercept is very precisely

estimated, as evidenced by the small standard error of .19 relative to the estimated coefficient.  An

approximate 95% confidence interval for the true but unknown population intercept is ,

or [9.62, 10.38].  Zero is far outside that interval, so the corresponding t statistic is huge, with a

probability value that's zero to four decimal places.  

The estimated coefficient on x is 1.07, and the standard error is again small in relation to

the size of the estimated coefficient, so the t statistic is large and its probability value small.  The

coefficient is positive, so that y tends to rise when x rises.  In fact, the interpretation of the

estimated coefficient of 1.07 is that, holding everything else constant, we forecast that a one-unit

increase in x will produce a 1.07-unit increase in y.

The estimated coefficient on z is -.64.  Its standard error is larger relative to the estimated

parameter, and its t statistic smaller, than those of the other coefficients.  The standard error is

nevertheless small, and the absolute value of the t statistic is still well above 2, with a small

probability value of .06%.  Hence, at conventional levels we reject the hypothesis that z

contributes nothing to the forecasting regression.  The estimated coefficient is negative, so y tends

to fall when z rises.  We forecast that a one-unit increase in z will produce a .64-unit decrease in

y.

A variety of diagnostic statistics follow; they help us to evaluate the adequacy of the

regression.  We provide detailed discussions of many of them elsewhere.  Here we introduce them

very briefly:

Mean dependent var   10.08
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The sample mean of the dependent variable is

It measures the central tendency, or location, of y.

S.D. dependent var   1.91

The sample standard deviation of the dependent variable is

It measures the dispersion, or scale, of y.

Sum squared resid   76.56

Minimizing the sum of squared residuals is the objective of least squares estimation.  It's

natural, then, to record the minimized value of the sum of squared residuals.  In isolation it's not

of much value, but it serves as an input to other diagnostics that we'll discuss shortly.  Moreover,

it's useful for comparing models and testing hypotheses.  The formula is
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 Throughout this book, "log" refers to a natural (base e) logarithm.15

 We don't want to restrict the intercept to be zero, because under the hypothesis that all16

the other coefficients are zero, the intercept would equal the mean of y, which in general is not
zero.
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Log likelihood   -79.31

The likelihood function is the joint density function of the data, viewed as a function of the

model parameters.  Hence a natural estimation strategy, called maximum likelihood estimation, is

to find (and use as estimates) the parameter values that maximize the likelihood function.  After

all, by construction, those parameter values maximize the likelihood of obtaining the data that

were actually obtained.  In the leading case of normally-distributed regression disturbances,

maximizing the likelihood function turns out to be equivalent to minimizing the sum of squared

residuals, hence the maximum-likelihood parameter estimates are identical to the least-squares

parameter estimates.  The number reported is the maximized value of the log of the likelihood

function.   Like the sum of squared residuals, it's not of direct use, but it's useful for comparing15

models and testing hypotheses.  We will rarely use the likelihood function directly; instead, we’ll

focus for the most part on the sum of squared residuals.

F-statistic   27.83

We use the F statistic to test the hypothesis that the coefficients of all variables in the

regression except the intercept are jointly zero.   That is, we test whether, taken jointly as a set,16

the variables included in the forecasting model have any predictive value.  This contrasts with the
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exactly the same information, and .  When there are two or more right-hand-side variables,
however, the hypotheses tested differ, and .
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t statistics, which we use to examine the predictive worth of the variables one at a time.   If no17

variable has predictive value, the F statistic follows an F distribution with k-1 and T-k degrees of

freedom.  The formula is

where  is the sum of squared residuals from a restricted regression that contains only an

intercept.  Thus the test proceeds by examining how much the SSR increases when all the

variables except the constant are dropped.  If it increases by a great deal, there’s evidence that at

least one of the variables has predictive content.

Prob(F-statistic)   0.000000

The probability value for the F statistic gives the significance level at which we can just

reject the hypothesis that the set of right-hand-side variables has no predictive value.  Here, the

value is indistinguishable from zero, so we reject the hypothesis overwhelmingly.

S.E. of regression   1.30

If we knew the elements of , then our forecast errors would be the , with variance

 .  We'd like an estimate of , because it tells us whether our forecast errors are likely to be

large or small.  The observed residuals, the , are effectively estimates of the unobserved

population disturbances, the .  Thus the sample variance of the e's, which we denote  (read
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"s-squared"), is a natural estimator of :

 is an estimate of the dispersion of the regression disturbance and hence is used to assess

goodness of fit of the model, as well as the magnitude of forecast errors that we're likely to make. 

The larger is , the worse the model's fit, and the larger the forecast errors we're likely to make. 

 involves a degrees-of-freedom correction (division by T-k rather than by T or T-1), which is

an attempt to get a good estimate of the out-of-sample forecast error variance on the basis of the

in-sample residuals.

The standard error of the regression (SER) conveys the same information; it's an estimator

of F rather than , so we simply use s rather than .  The formula is

The standard error of the regression is easier to interpret than , because its units are the same

as those of the e's, whereas the units of  are not.  If the e's are in dollars, then the squared e's

are in dollars squared, so  is in dollars squared.  By taking the square root at the end of it all,

SER converts the units back to dollars. 

It's often informative to compare the standard error of the regression to the mean of the

dependent variable.  As a rough rule of thumb, the SER of a good forecasting model shouldn't be
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more than ten or fifteen percent of the mean of the dependent variable.  For the present model, the

SER is about thirteen percent of the mean of the dependent variable, so it just squeaks by.

Sometimes it's informative to compare the standard error of the regression (or a close

relative) to the standard deviation of the dependent variable (or a close relative).  The standard

error of the regression is an estimate of the standard deviation of forecast errors from the

regression model, and the standard deviation of the dependent variable is an estimate of the

standard deviation of the forecast errors from a simpler forecasting model, in which the forecast

each period is simply .  If the ratio is small, the variables in the model appear very helpful in

forecasting y.  R-squared measures, to which we now turn, are based on precisely that idea.

R-squared   0.55

If an intercept is included in the regression, as is almost always the case, R-squared must

be between zero and one.  In that case, R-squared, usually written , is the percent of the

variance of y explained by the variables included in the regression.   measures the in-sample

success of the regression equation in forecasting y; hence it is widely used as a quick check of

goodness of fit, or forecastability of y based on the variables included in the regression.  Here the

 is about 55% -- good but not great. The formula is
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We can write  in a more roundabout way as

which makes clear that the numerator in the large fraction is very close to , and the

denominator is very close to the sample variance of y.

Adjusted R-squared   0.53

The interpretation is the same as that of , but the formula is a bit different.  Adjusted

 incorporates adjustments for degrees of freedom used in fitting the model, in an attempt to

offset the inflated appearance of good fit, or high forecastability of y, if a variety of right-hand-

side variables are tried and the "best model" selected.  Hence adjusted  is a more trustworthy

goodness-of-fit measure than .  As long as there is more than one right-hand-side variable in

the model fitted, adjusted  is smaller than ; here, however, the two are quite close (53% vs.

55%).  Adjusted  is often denoted ; the formula is
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where k is the number of right-hand-side variables, including the constant term.  Here the

numerator in the large fraction is precisely , and the denominator is precisely the sample

variance of y.

Akaike info criterion   3.43

The Akaike information criterion, or AIC, is effectively an estimate of the out-of-sample

forecast error variance, as is , but it penalizes degrees of freedom more harshly.  It is used to

select among competing forecasting models.  The formula is:

Schwarz criterion   3.55

The Schwarz information criterion, or SIC, is an alternative to the AIC with the same

interpretation, but a still harsher degrees-of-freedom penalty. The formula is:

As they arise in the course of our discussion, we will discuss in detail the sum of squared

residuals, the standard error of the regression, , adjusted , the AIC, and the SIC, the

relationships among them, and their role in selecting forecasting models.  Thus we'll say no more

here.  It is worth noting, however, that other formulas, slightly different from the ones given

above, are sometimes used for AIC and SIC, as discussed in greater detail in Chapter 5.   
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 The Durbin-Watson test is designed to be very good at detecting serial correlation of the18

AR(1) type.  Many other types of serial correlation are possible; we’ll discuss them extensively in
Chapter 8.
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Durbin-Watson stat   1.51

We mentioned earlier that we're interested in examining whether there are patterns in our

forecast errors, because errors from a good forecasting model should be unforecastable.  The

Durbin-Watson statistic tests for correlation over time, called serial correlation, in regression

disturbances.  If the errors made by a forecasting model are serially correlated, then they are

forecastable, and  we could improve the forecasts by forecasting the forecast errors.  The Durbin-

Watson test works within the context of the model

The regression disturbance is serially correlated when .  The hypothesis of interest is that

.  When , the ideal conditions hold, but when , the disturbance is serially

correlated.  More specifically, when , we say that  follows an autoregressive process of

order one, or AR(1) for short.   If   the disturbance is positively serially correlated, and if18

 the disturbance is negatively serially correlated.  Positive serial correlation is typically the

relevant alternative in the applications that will concern us.  The formula for the Durbin-Watson
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 Sometimes, however, we'll use "residual plot" to refer to a plot of the residuals alone. 19

The intended meaning will be clear from context.
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(DW) statistic is

DW takes values in the interval [0, 4], and if all is well, DW should be around 2.  If DW is

substantially less than 2, there is evidence of positive serial correlation.  As a rough rule of thumb,

if DW is less than 1.5, there may be cause for alarm, and we should consult the tables of the DW

statistic, available in many statistics and econometrics texts. Here the Durbin-Watson statistic is

very close to 1.5.  A look at the tables of the DW statistic reveals, however, that we would not

reject the null hypothesis at the five percent level.

After running a regression, it's usually a good idea to assess the adequacy of the model by

plotting and examining the actual data ( 's), the fitted values ( 's), and the residuals ( 's). 

Often we'll refer to such plots, shown together in a single graph, as a residual plot.   In Figure 4,19

we show the residual plot for the regression of y on x and z.  The actual (short dash) and fitted

(long dash) values appear at the top of the graph; their scale is on the right.  The fitted values

track the actual values fairly well.  The residuals appear at the bottom of the graph (solid line);

their scale is on the left.  It's important to note that the scales differ; the 's are in fact

substantially smaller and less variable than either the 's or the 's.  We draw the  zero line
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through the residuals for visual comparison.  There are no obvious patterns in the residuals.
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Exercises, Problems and Complements

1.  (Interpreting distributions and densities)  The Sharpe Pencil Company has a strict quality

control monitoring program.  As part of that program, it has determined that the distribution of

the amount of graphite in each batch of one hundred pencil leads produced is continuous and

uniform between one and two grams.  That is, f(y) = 1 for y in [1, 2], and zero otherwise, where y

is the graphite content per batch of one hundred leads.  

a.  Is y a discrete or continuous random variable?

b.  Is f(y) a probability distribution or a density?

c.  What is the probability that y is between 1 and 2?  Between 1 and 1.3?  Exactly equal

to 1.67?

d.  For high-quality pencils, the desired graphite content per batch is 1.8 grams, with low

variation across batches.  With that in mind, discuss the nature of the density f(y).

2.  (Covariance and correlation)  Suppose that the annual revenues of world’s two top oil

producers have a covariance of 1,735,492. 

a.  Based on the covariance, the claim is made that the revenues are “very strongly

positively related.”  Evaluate the claim.

b.  Suppose instead that, again based on the covariance, the claim is made that the

revenues are “positively related.”  Evaluate the claim.

c.  Suppose you learn that the revenues have a correlation of 0.93.  In light of that new

information, re-evaluate the claims in parts a and b above.

3.  (Conditional expectations vs. linear projections)  It is important to note the distinction between
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a conditional mean and a linear projection.

a.  The conditional mean is not necessarily a linear function of the conditioning variable(s). 

In the Gaussian case, the conditional mean is a linear function of the conditioning

variables, so it coincides with the linear projection.  In non-Gaussian cases,

however, linear projections are best viewed as approximations to generally non-

linear conditional mean functions.

b.  The U.S. Congressional Budget Office (CBO) is helping the president to set tax policy. 

In particular, the president has asked for advice on where to set the average tax

rate to maximize the tax revenue collected per taxpayer.  For each of 23 countries

the CBO has obtained data on the tax revenue collected per taxpayer and the

average tax rate.  Is tax revenue likely related to the tax rate?  Is the relationship

likely linear?  (Hint:  how much revenue would be collected at tax rates of zero or

one hundred percent?)  If not, is a linear regression nevertheless likely to produce a

good approximation to the true relationship?

4.  (Conditional mean and variance)  Given the regression model,

,

find the mean and variance of  conditional upon  and .  Does the conditional mean

adapt to the conditioning information?  Does the conditional variance adapt to the conditioning

information?
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5.  (Scatter plots and regression lines)  Draw qualitative scatter plots and regression lines for each

of the following two-variable data sets, and state the  in each case:

a.  data set 1:  y and x have correlation 1

b.  data set 2:  y and x have correlation -1

c.  data set 3:  y and x have correlation 0.

6.  (Desired values of regression diagnostic statistics)  For each of the diagnostic statistics listed

below, indicate whether, other things the same, "bigger is better," "smaller is better," or neither. 

Explain your reasoning.  (Hint:  Be careful, think before you answer, and be sure to qualify your

answers as appropriate.)

a.  Coefficient 

b.  Standard error

c.  t statistic

d.  Probability value of the t statistic

e.  R-squared

f.  Adjusted R-squared

g.  Standard error of the regression

h.  Sum of squared residuals

i.  Log likelihood

j.  Durbin-Watson statistic

k.  Mean of the dependent variable

l.  Standard deviation of the dependent variable
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m.  Akaike information criterion

n.  Schwarz information criterion

o.  F-statistic

p.  Probability-value of the F-statistic

7.  (Mechanics of fitting a linear regression)  On the book’s web page you will find a second set of

data on y, x and z, similar to, but different from, the data that underlie the analysis performed in

this chapter.  Using the new data,  repeat the analysis and discuss your results.

8.  (Regression with and without a constant term)  Consider Figure 2, in which we showed a

scatterplot of y vs. x with a fitted regression line superimposed.

a.  In fitting that regression line, we included a constant term.  How can you tell?

b.  Suppose that we had not included a constant term.  How would the figure look?

c.  We almost always include a constant term when estimating regressions.  Why?

d.  When, if ever, might you explicitly want to exclude the constant term? 

9.  (Interpreting coefficients and variables)  Let , where  is the

number of hot dogs sold at an amusement park on a given day,  is the number of admission

tickets sold that day,  is the daily maximum temperature, and  is a random error.

a.  State whether each of , , , ,  and  is a coefficient or a variable.

b.  Determine the units of , , and , and describe the physical meaning of each. 

c.  What does the sign of a coefficient tell you about its corresponding variable affects the

number of hot dogs sold?  What are your expectations for the signs of the various

coefficients (negative, zero, positive or unsure)?
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d.  Is it sensible to entertain the possibility of a non-zero intercept (i.e., )?  ? 

?

10.  (Nonlinear least squares) The least squares estimator discussed in this chapter is often called

“ordinary” least squares.  The adjective "ordinary" distinguishes the ordinary least squares

estimator from fancier estimators, such as the nonlinear least squares estimator.  When we

estimate by nonlinear least squares, we use a computer to find the minimum of the sum of squared

residual function directly, using numerical methods.  For the simple regression model discussed in

this chapter, ordinary and nonlinear least squares produce the same result, and ordinary least

squares is simpler to implement, so we prefer ordinary least squares.  As we will see, however,

some intrinsically nonlinear forecasting models can’t be estimated using ordinary least squares but

can be estimated using nonlinear least squares.  We use nonlinear least squares in such cases.  

For each of the models below, determine whether ordinary least squares may be used for

estimation (perhaps after transforming the data).

a.  

b.  

c.  .

11.  (Regression semantics)  Regression analysis is so important, and used so often by so many

people, that a variety of associated terms have evolved over the years, all of which are the same

for our purposes.  You may encounter them in your reading, so it's important to be aware of

them.  Some examples:

a.  Ordinary least squares, least squares, OLS, LS.
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b.  y, left-hand-side variable, regressand, dependent variable, endogenous variable

c.  x's, right-hand-side variables, regressors, independent variables, exogenous variables,

predictors

d.  probability value, prob-value, p-value, marginal significance level

e.  Schwarz criterion, Schwarz information criterion, SIC, Bayes information criterion,

BIC
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Bibliographical and Computational Notes

See any  good introductory statistics or econometrics book for much more thorough

discussions of probability, statistics and regression, and for tables of significance points of the

normal, t, F, and Durbin-Watson distributions.  Possibilities include Anderson et al. (2006),

Maddala (2001), Pindyck and Rubinfeld (1997) and Wonnacott and Wonnacott (1990).

The Jarque-Bera test is developed in Jarque and Bera (1987).

Dozens of software packages – including spreadsheets – implement various statistical and

linear regression analyses.  Most automatically include an intercept in linear regressions unless

explicitly instructed otherwise.  That is, they automatically create and include a C variable.
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Concepts for Review

Discrete Random Variable

Discrete Probability Distribution

Continuous Random Variable

Probability Density Function

Moment

Mean, or Expected Value

Location, or Central Tendency

Variance

Dispersion, or Scale

Standard Deviation

Skewness

Asymmetry

Kurtosis

Leptokurtosis

Normal, or Gaussian, Distribution

Marginal Distribution

Joint Distribution

Covariance

Correlation

Conditional Distribution
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Conditional Moment

Conditional Mean

Conditional Variance

Population Distribution

Sample

Estimator

Statistic, or Sample Statistic

Sample Mean

Sample Variance

Sample Standard Deviation

Sample Skewness

Sample Kurtosis

 Distribution

t Distribution

F Distribution

Jarque-Bera Test

Regression Analysis

Least Squares

Disturbance

Regression Intercept

Regression Slope
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Parameters

Regression Function

Conditional Expectation

Fitted Values, or in-Sample Forecasts

Residuals, or in-Sample Forecast Errors

Simple Linear Regression

Multiple Linear Regression Model

Constant Term

Standard Error

t Statistic

Probability Value

Sample Mean of the Dependent Variable

Sample Standard Deviation of the Dependent Variable

Sum of Squared Residuals

Likelihood Function

Maximum Likelihood Estimation

F Statistic

Prob(F-statistic)

Standard Error of the Regression

R-squared
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Goodness of Fit

Adjusted R-Squared

Akaike Information Criterion

Schwarz Information Criterion

Durbin-Watson Statistic

Serial Correlation

Positive Serial Correlation

Residual Plot

Linear Projection

Nonlinear least squares
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Table 1
Regression of y on x and z

LS // Dependent Variable is Y

Sample: 1960 2007
Included observations: 48

Variable Coefficient Std. Error t-Statistic Prob.  

C  9.884732  0.190297  51.94359  0.0000
X   1.073140  0.150341  7.138031  0.0000
Z -0.638011  0.172499 -3.698642  0.0006

R-squared  0.552928     Mean dependent var 10.08241
Adjusted R-squared  0.533059     S.D. dependent var 1.908842
S.E. of regression  1.304371     Akaike info criterion 3.429780
Sum squared resid  76.56223     Schwarz criterion 3.546730
Log likelihood -79.31472     F-statistic 27.82752
Durbin-Watson stat  1.506278     Prob(F-statistic) 0.000000
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Figure 1
Scatterplot of y versus x
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Figure 2
Scatterplot of y versus x

Regression Line Superimposed
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Figure 3
Scatterplot of y versus z

Regression Line Superimposed
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Figure 4
Residual Plot

Regression of y on x and z



      There are of course many possible variations, combinations, and extensions of the questions;1

you should try to think of some as you read through them.
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Chapter 3

Six Considerations Basic to Successful Forecasting

In Chapter 1 we sketched a variety of areas where forecasts are used routinely, and we

took a brief tour of the basic forecasting tools that you’ll master as you progress through this

book.  Now let's back up and consider six types of questions that are relevant for any forecasting

task.1

(1) (Decision Environment and Loss Function) What decision will the forecast guide, and

what are the implications for the design, use and evaluation of the forecasting

model?  Related, how do we quantify what we mean by a "good" forecast, and in

particular, the cost or loss associated with forecast errors of various signs and

sizes?  How should we define optimality of a forecast in a particular situation? 

How do we compute optimal forecasts?

(2) (Forecast Object) What is the object that we need to forecast?  Is it a time series, such

as sales of a firm recorded over time, or an event, such as devaluation of a

currency?  And what is the quantity and quality of the data?  How long is the

sample of available data?  Are we forecasting one object or many (e.g., sales of

each of 350 products)?  Are there missing observations?  Unusual observations?

(3) (Forecast Statement) How do we wish to state our forecasts?  If, for example, the

object to be forecast is a time series, are we interested in a single "best guess"
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forecast, a “reasonable range” of possible future values that reflects the underlying

uncertainty associated with the forecasting problem, or a probability distribution of

possible future values?  What are the associated costs and benefits?

(4) (Forecast Horizon) What is the forecast horizon of interest, and what determines it? 

Are we interested, for example, in forecasting one month ahead, one year ahead, or

ten years ahead?  The best modeling and forecasting strategy will likely vary with

the horizon.

(5) (Information Set) On what information will the forecast be based?  Are the available

data simply the past history of the series to be forecast, or are other series available

that may be related to the series of interest?

(6) (Methods and Complexity, the Parsimony Principle, and the Shrinkage Principle) What

forecasting method is best suited to the needs of a particular forecasting problem? 

How complex should the forecasting model be?  More generally, what sorts of

models, in terms of complexity, tend to do best for forecasting in business, finance,

economics, and government?  The phenomena that we model and forecast are

often tremendously complex, but does it necessarily follow that our forecasting

models should be complex?

1.  The Decision Environment and Loss Function

Forecasts are not made in a vacuum.  The key to generating good and useful forecasts,

which we will stress now and throughout, is recognizing that forecasts are made to guide

decisions.  The link between forecasts and decisions sounds obvious -- and it is -- but it’s worth
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thinking about in some depth.  Forecasts are made in a wide variety of situations, but in every

case forecasts are of value because they aid in decision making.  Quite simply, good forecasts help

to produce good decisions.  Recognition and awareness of the decision making environment is the

key to effective design, use and evaluation of forecasting models.

Consider the following stylized problem:  You have started a firm and must decide how

much inventory to hold going into the next sales period.  If you knew that demand would be high

next period, then you’d like to have a lot of inventory on hand.  If you knew that demand would

be slack, then you would like to deplete your inventories because it costs money to store

unnecessary inventories.  Of course, the problem is that you don’t know next period’s demand,

and you’ve got to make your inventory stocking decision now!

There are four possible combinations of inventory decisions and demand outcomes:  in

two we make the correct decision, and in two we make the incorrect decision.  We show the four

possible outcomes in Table 1.  Each entry of the table contains a “cost” or “loss” to you

corresponding to the associated decision/outcome pair.  The good pairs on the diagonal have zero

loss – you did the right thing, building inventory when demand turned out to be high or

contracting inventory when demand turned out to be low.  The bad pairs off the diagonal have

positive loss – you did the wrong thing, building inventory when demand turned out to be low or

contracting inventory when demand turned out to be high.

In Table 1, the loss associated with each incorrect decision is $10,000.  We call such a loss

structure symmetric, because the loss is the same for both of the bad outcomes.  In many

important decision environments, a symmetric loss structure closely approximates the true losses
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of the forecaster.  In other decision environments, however, symmetric loss may not be realistic;

in general, there’s no reason for loss to be symmetric.

In Table 2, we summarize a decision environment with an asymmetric loss structure.  As

before, each entry of the table contains a loss corresponding to the associated decision/outcome

pair.  The good pairs on the diagonal have zero loss for the same reason as before – when you do

the right thing, you incur no loss.  The bad pairs off the diagonal again have positive loss – when

you do the wrong thing, you suffer – but now the amount of the loss differs depending on what

sort of mistake you make.  If you reduce inventories and demand turns out to be high, then you

have insufficient inventories to meet demand and you miss out on a lot of business, which is very

costly ($20,000).  On the other hand, if you build inventories and demand turns out to be low,

then you must carry unneeded inventories, which is not as costly ($10,000).

To recap:  for every decision-making problem, there is an associated loss structure; for

each decision/outcome pair, there is an associated loss.  We can think of zero loss as associated

with the correct decision and positive loss as associated with the incorrect decision.

 Recall that forecasts are made to help guide decisions.  Thus the loss structure associated

with a particular decision induces a similar loss structure for forecasts used to inform that

decision.  Continuing with our example, we might forecast sales to help us decide whether to

build or reduce inventory, and the loss we incur depends on the divergence between actual and

predicted sales.  To keep things simple, imagine that sales forecasts and sales realizations are

either “high” or “low.”  Table 3 illustrates a symmetric forecasting loss structure, and Table 4

illustrates an asymmetric forecasting loss structure.  Note that a forecast of high sales implies the
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decision “build inventory” (likewise for low sales and “reduce inventory”); thus we derive the loss

structure associated with a forecast from the loss structure of decisions based on the forecasts.

The above example is highly simplified:  forecasts are either “up” or “down” and

realizations are similarly “up” or “down”.  In the important case of time series forecasting, both

the forecast and the realization can typically assume a continuous range of values, so a more

general notion of loss function is needed.

Let y denote a series and  its forecast.  The corresponding forecast error, e, is the

difference between the realization and the previously-made forecast:

We consider loss functions of the form L(e).  This means that the loss associated with a forecast

depends only on the size of the forecast error.  We require the loss function L(e) to satisfy three

conditions:

(1)  L(0) = 0.  That is, no loss is incurred when the forecast error is zero.  (A zero forecast

error, after all, corresponds to a perfect forecast!)

(2)  L(e) is continuous.  That is, nearly-identical forecast errors should produce nearly-

identical losses.

(3)  L(e) is increasing on each side of the origin.  That is, the bigger the absolute value of

the error, the bigger the loss.

Apart from these three requirements, we impose no restrictions on the form of the loss function.

The quadratic loss function is tremendously important in practice, both because it is often
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an adequate approximation to realistic loss structures and because it is mathematically convenient. 

Quadratic loss is given by

and we graph it as a function of the forecast error in Figure 1.  Because of the squaring associated

with the quadratic loss function, it is symmetric around the origin, and in addition, it increases at

an increasing rate on each side of the origin, so that large errors are penalized much more severely

than small ones. 

Another important symmetric loss function is absolute loss, or absolute error loss, given

by

Like quadratic loss, absolute loss is increasing on each side of the origin, but loss increases at a

constant (linear) rate with the size of the error.  We illustrate absolute loss in Figure 2.

In certain contexts, symmetric loss functions may not be an adequate distillation of the

forecast / decision environment.  In Figure 3, for example, we show a particular asymmetric loss

function for which negative forecast errors are less costly than positive errors.

In some situations, even the L(e) form of the loss function is too restrictive.  Although loss

will always be of the form , there’s no reason why  should necessarily enter as

.  In predicting financial asset returns, for example, interest sometimes focuses on direction of

change.  A direction-of-change forecast takes one of two values -- up or down.  The loss function
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      The operator “)” means “change.”  Thus  is the change in y from period t-1 to period t,2

or .

      As noted above, not all relevant loss functions need be symmetric.  Symmetric loss, however,3

is usually a reasonable approximation, and symmetric loss is used routinely for practical
forecasting.
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associated with a direction of change forecast might be:2

With this loss function, if you predict the direction of change correctly, you incur no loss; but if

your prediction is wrong, you’re penalized.

Much of this book is about how to produce optimal forecasts.  What precisely do we

mean by an optimal forecast?  That’s where the loss function comes in – we’ll work with a wide

class of symmetric loss functions, and we’ll learn how to produce forecasts that are optimal in the

sense that they minimize expected loss for any such loss function.3

2.  The Forecast Object

There are many objects that we might want to forecast.  In business and economics, the

forecast object is typically one of three types:  event outcome, event timing, or time series.

Event outcome forecasts are relevant to situations in which an event is certain to take

place at a given time but the outcome is uncertain.  For example, many people are interested in

whether the current chairman of the Board of Governors of the U.S. Federal Reserve System will
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eventually be reappointed.  The "event" is the reappointment decision; the decision will occur at

the end of the term.  The outcome of this decision is confirmation or denial of the reappointment.

Event timing forecasts are relevant when an event is certain to take place and the outcome

is known, but the timing is uncertain.  A classic example of an event timing forecast concerns

business cycle turning points.  There are two types of turning points:  peaks and troughs.  A peak

occurs when the economy moves from expansion into recession, and a trough occurs when the

economy moves from recession into expansion.  If, for example, the economy is currently in an

expansion, then there is no doubt that the next turning point will be a peak, but there is substantial

uncertainty as to its timing.  Will the peak occur this quarter, this year, or ten years from now?

Time series forecasts are relevant when the future value of a time series is of interest and

must be projected.  As we’ll see, there are many ways to make such forecasts, but the basic

forecasting setup doesn’t change much.  Based upon the history of the time series (and possibly a

variety of other types of information as well, such as the histories of related time series, or

subjective considerations), we want to project future values of the series.  For example, we may

have data on the number of Apple computers sold in Germany in each of the last 60 months, and

we may want to use that data to forecast the number of Apple computers to be sold in Germany in

each month of the next year.

There are at least two reasons why time series forecasts are by far the most frequently

encountered in practice.  First, most business, economic and financial data are time series; thus,

the general scenario of projecting the future of a series for which we have historical data arises

constantly.  Second, the technology for making and evaluating time-series forecasts is well-
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developed and the typical time series forecasting scenario is precise, so time series forecasts can

be made and evaluated routinely.  In contrast, the situations associated with event outcome and

event timing forecasts arise less frequently and are often less amenable to quantitative treatment.

3.  The Forecast Statement

When we make a forecast, we must decide if the forecast will be (1) a single number (a

"best guess"), (2) a range of numbers, into which the future value can be expected to fall a certain

percentage of the time, or (3) an entire probability distribution for the future value.  In short, we

need to decide upon the forecast type.

More precisely, we must decide if the forecast will be (1) a point forecast, (2) an interval

forecast, or (3) a density forecast.  A point forecast is a single number.  For example, one possible

point forecast of the growth rate of the total number of web pages over the next year might be

+23.3%; likewise, a point forecast of the growth rate of U.S. real GDP over the next year might

be +1.3%.  Point forecasts are made routinely in numerous applications, and the methods used to

construct them vary in difficulty from simple to sophisticated.  The defining characteristic of a

point forecast is simply that it is a single number.

  A good point forecast provides a simple and easily-digested guide to the future of a time

series.  However, random and unpredictable “shocks” affect all of the series that we forecast.  As

a result of such shocks, we expect nonzero forecast errors, even from very good forecasts.  Thus,

we may want to know the degree of confidence we have in a particular point forecast.  Stated

differently, we may want to know how much uncertainty is associated with a particular point

forecast.  The uncertainty surrounding point forecasts suggests the usefulness of an interval
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      An interval forecast is very similar to the more general idea of a confidence interval that you4

studied in statistics.  An interval forecast is simply a confidence interval for the true (but
unknown) future value of a series, computed using a sample of historical data.  We’ll say that [a,
b] is a 100(1-")% interval forecast if the probability of the future value being less than a is "/2
and the probability of the future value being greater than b is also "/2.

      An interval forecast doesn’t have to be symmetric around the point forecast, so that we5

wouldn’t necessarily infer a point forecast as the midpoint of the interval forecast, but in many
cases such a procedure is appropriate.
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forecast.

An interval forecast is not a single number; rather, it is a range of values in which we

expect the realized value of the series to fall with some (pre-specified) probability.   Continuing4

with our examples, a 90% interval forecast for the growth rate of web pages might be the interval

[11.3%, 35.3%] (23.3% plus or minus 12%).  That is, the forecast states that with probability

90% the future growth rate of web pages will be in the interval [11.3%, 35.3%].  Similarly, a 90%

interval forecast for the growth rate of U.S. real GDP might be [-2.3%, 4.3%] (1.3% plus or

minus 3%); that is, the forecast states that with probability 90% the future growth rate of U.S.

real GDP will be in the interval [-2.3%, 4.3%].

A number of remarks are in order regarding interval forecasts.  First, the length (size) of

the intervals conveys information regarding forecast uncertainty.  The GDP growth rate interval is

much shorter then the web page growth rate interval; this reflects the fact that there is less

uncertainty associated with the real GDP growth rate forecast than the web page growth rate

forecast.  Second, interval forecasts convey more information than point forecasts: given an

interval forecast, you can construct a point forecast by using the midpoint of the interval.  5

Conversely, given only a point forecast, there is no way to infer an interval forecast.
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Finally, we consider density forecasts.  A density forecast gives the entire density (or

probability distribution) of the future value of the series of interest.  For example, the density

forecast of future web page growth might be normally distributed with a mean of 23.3% and a

standard deviation of 7.32%.  Likewise, the density forecast of future real GDP growth might be

normally distributed with a mean of 1.3% and a standard deviation of 1.83%.

As with interval forecasts, density forecasts convey more information than point forecasts. 

Density forecasts also convey more information than interval forecasts, because given a density,

interval forecasts at any desired confidence level are readily constructed.  For example, if the

future value of some series x is distributed as , then a 95% interval forecast of x is

, a 90% interval forecast of x is , and so forth.  Continuing with our example,

the relationships between density, interval, and point forecasts are made clear in Figure 4 (web

page growth) and Figure 5 (U.S. real GDP growth).

To recap, there are three time series forecast types:  point, interval, and density.  Density

forecasts convey more information than interval forecasts, which in turn convey more information

than point forecasts.  This may seem to suggest that density forecasts are always the preferred

forecast, that density forecasts are the most commonly used forecasts in practice, and that we

should focus most of our attention in this book on density forecasts.

In fact, the opposite is true.  Point forecasts are the most commonly used forecasts in

practice, interval forecasts are a rather distant second, and density forecasts are rarely made. 

There are at least two reasons.  First, the construction of interval and density forecasts requires

either (a) additional and possibly incorrect assumptions relative to those required for construction



Fcst4-03-12

Copyright © FX Diebold.  All rights reserved.

of point forecasts, or (b) advanced and computer-intensive methods involving, for example,

extensive simulation.  Second, point forecasts are often easier to understand and act upon than

interval or density forecasts.  That is, the extra information provided by interval and density

forecasts is not necessarily an advantage when information processing is costly.

Thus far we have focused exclusively on types of time series forecasts, because time series

are so prevalent and important in numerous fields.  It is worth mentioning another forecast type of

particular relevance to event outcome and event timing forecasting, the probability forecast.  To

understand the idea of a probability forecast, consider forecasting which of two politicians, Mr.

Liar or Ms. Cheat, will win an election.  (This is an event-outcome forecasting situation.)  If our

calculations tell us that the odds favor Mr. Liar, we might issue the forecast simply as “Mr. Liar

will win.”  This is roughly analogous to the time series point forecasts discussed earlier, in the

sense that we’re not reporting any measure of the uncertainty associated with out forecast. 

Alternatively, we could report the probabilities associated with each of the possible outcomes; for

example, “Mr. Liar will win with probability .6, and Ms. Cheat will win with probability .4.”  This

is roughly analogous to the time series interval or density forecasts discussed earlier, in the sense

that it explicitly quantifies the uncertainty associated with the future event with a probability

distribution.

Event outcome and timing forecasts, although not as common as time series forecasts, do

nevertheless arise in certain important situations and are often stated as probabilities.  For

example, when a bank assesses the probability of default on a new loan or a macroeconomist

assesses the probability that a business cycle turning point will occur in the next six months, the
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      The choice of h depends on the decision that the forecast will guide.  The nature of the6

decision environment typically dictates whether “short-term”, “medium-term”, or “long-term”
forecasts are needed. 
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banker or macroeconomist will often use a probability forecast.

4.  The Forecast Horizon

The forecast horizon is defined as the number of periods between today and the date of

the forecast we make.  For example, if we have annual data, and it’s now year T, then a forecast

of GDP for year T+2 has a forecast horizon of 2 steps.  The meaning of a step depends on the

frequency of observation of the data.  For monthly data a step is one month, for quarterly data a

step is one quarter (three months), and so forth.  In general, we speak of an h-step ahead forecast,

where the horizon h is at the discretion of the user.6

The horizon is important for at least two reasons.  First, of course, the forecast changes

with the forecast horizon.  Second, the best forecasting model will often change with the

forecasting horizon as well.  All of our forecasting models are approximations to the underlying

dynamic patterns in the series we forecast; there’s no reason why the best approximation for one

purpose (e.g., short-term forecasting) should be the same as the best approximation for another

purpose (e.g., long-term forecasting). 

In closing this section, let’s distinguish between what we’ve called h-step-ahead forecasts

and what we’ll call h-step-ahead extrapolation forecasts.  In h-step-ahead forecasts, the horizon is

always fixed at the same value, h.  For example, every month we might make a 4-month-ahead

forecast.  Alternatively, in extrapolation forecasts, the horizon includes all steps from 1-step-
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      For a sample of data on a series y, we’ll typically write .  This notation means, “we7

observe the series y from some beginning time “t=1" to some ending time “t=T”.
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ahead to h-steps-ahead.  There’s nothing particularly deep or difficult about the distinction, but

it’s useful to make it, and we’ll use it subsequently. 

Suppose, for example, that you observe a series from some initial time 1 to some final time

T, and you plan to forecast the series.   We illustrate the difference between h-step-ahead and h-7

step-ahead extrapolation forecasts in Figures 6 and 7.  In Figure 6 we show a 4-step-ahead point

forecast, and in Figure 7 we show a 4-step-ahead extrapolation point forecast.  The extrapolation

forecast is nothing more than a set consisting of  1-, 2-, 3-, and 4-step-ahead forecasts.

5.  The Information Set

The quality of our forecasts is limited by the quality and quantity of information available

when forecasts are made.  Any forecast we produce is conditional upon the information used to

produce it, whether explicitly or implicitly.  

The idea of an information set is fundamental to constructing good forecasts.  In

forecasting a series, y, using historical data from time 1 to time T, sometimes we use the

univariate information set, which is the set of historical values of y up to and including the

present,

 

Alternatively, sometimes we use the multivariate information set 

where the x’s are a set of additional variables potentially related to y.  Regardless, it’s always
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important to think hard about what information is available, what additional information could be

collected or made available, the form of the information (e.g., quantitative or qualitative), and so

on.

The idea of an information set is also fundamental for evaluating forecasts.  When

evaluating a forecast, we’re sometimes interested in whether the forecast could be improved by

using a given set of information more efficiently, and we’re sometimes interested in whether the

forecast could be improved by using more information.  Either way, the ideas of information and

information sets play crucial roles in forecasting.

6.  Methods and Complexity, the Parsimony Principle, and the Shrinkage Principle

It’s crucial to tailor forecasting tools to forecasting tasks, and doing so is partly a matter

of judgement.  Typically the specifics of the situation (e.g., decision environment, forecast object,

forecast statement, forecast horizon, information set, etc.) will indicate the desirability of a

specific method or modeling strategy.  Moreover, as we’ll see, formal statistical criteria exist to

guide model selection within certain classes of models.

We’ve stressed that a variety of forecasting applications use a small set of common tools

and models.  You might guess that those models are tremendously complex, because of the

obvious complexity of the real-world phenomena that we seek to forecast.  Fortunately, such is

not the case.  In fact, decades of professional experience suggest just the opposite -- simple,

parsimonious models tend to be best for out-of-sample forecasting in business, finance, and

economics.  Hence, the parsimony principle:  other things the same, simple models are usually

preferable to complex models.
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      One such possible restriction is that, loosely speaking, forecasting models be simple; hence8

the link to the parsimony principle.
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There are a number of reasons why smaller, simpler models are often more attractive than

larger, more complicated ones.  First, by virtue of their parsimony, we can estimate the

parameters of simpler models more precisely.  Second, because simpler models are more easily

interpreted, understood and scrutinized, anomalous behavior is more easily spotted.  Third, it's

easier to communicate an intuitive feel for the behavior of simple models, which makes them more

useful in the decision-making process.  Finally, enforcing simplicity lessens the scope for “data

mining” -- tailoring a model to maximize its fit to historical data.  Data mining often results in

models that fit historical data beautifully (by construction) but perform miserably in out-of-sample

forecasting, because it tailors models in part to the idiosyncracies of historical data, which have

no relationship to unrealized future data.

The parsimony principle is related to, but distinct from, the shrinkage principle, which

codifies the idea that imposing restrictions on forecasting models often improves forecast

performance.  The name shrinkage comes from the notion of coaxing, or "shrinking," forecasts in

certain directions by imposing restrictions of various sorts on the models used to produce the

forecasts.   The reasoning behind the shrinkage principle is subtle, but it permeates forecasting. 8

By the time you've completed this book, you'll have a firm grasp of it.

Finally, note that simple models should not be confused with naive models.  All of this is

well-formalized in the KISS principle (appropriately modified for forecasting):  “Keep it

Sophisticatedly Simple.”  We’ll attempt to do so throughout.



Fcst4-03-17

Copyright © FX Diebold.  All rights reserved.

7.  Concluding Remarks

This chapter, like Chapter 1, deals with broad issues of general relevance.  For the most

part, it avoids detailed discussion of specific modeling or forecasting techniques.  In the next

chapter, we begin to change the mix toward specific tools with specific applications.  In the

broad-brush tradition of Chapters 1, 2 and 3, we focus on principles of statistical graphics, which

are relevant in any forecasting situation, but we also introduce a variety of specific graphical

techniques, which are useful in a variety of situations.
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Exercises, Problems and Complements

1.  (Data and forecast timing conventions)  Suppose that, in a particular monthly data set, time

t=10 corresponds to September 1960.

a.  Name the month and year of each of the following times:  t+5, t+10, t+12, t+60.

b.  Suppose that a series of interest follows the simple process , for

t = 1, 2, 3, ..., meaning that each successive month’s value is one higher than the

previous month’s.  Suppose that , and suppose that at present t=10. 

Calculate the  forecasts , where, for example, 

denotes a forecast made at time t for future time t+5, assuming that t=10 at

present.

2.  (Properties of loss functions)  State whether the following potential loss functions meet the

criteria introduced in the text, and if so, whether they are symmetric or asymmetric:

a.  

b.  

c.  

d.  

3.  (Relationships among point, interval and density forecasts)  For each of the following density
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forecasts, how might you infer “good” point and ninety percent interval forecasts?  Conversely, if

you started with your point and interval forecasts, could you infer “good” density forecasts?  Be

sure to defend your definition of “good.”

a.  Future y is distributed as N(10,2).

b.  

4.  (Forecasting at short through long horizons)  Consider the claim, “The distant future is harder

to forecast than the near future.”  Is it sometimes true?  Usually true?  Always true?  Why or why

not?  Discuss in detail.  Be sure to define “harder.”

5.  (Forecasting as an ongoing process in organizations)  We could add another very important

item to this chapter’s list of considerations basic to successful forecasting -- forecasting in

organizations is an ongoing process of building, using, evaluating, and improving forecasting

models.  Provide a concrete example of a forecasting model used in business, finance, economics

or government, and discuss ways in which each of the following questions might be resolved prior

to, during, or after its construction.
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a.  Are the data “dirty”?  For example, are there “ragged edges”?  That is, do the starting

and ending dates of relevant series differ?  Are there missing observations?  Are

there aberrant observations, called outliers, perhaps due to measurement error? 

Are the data stored in a format that inhibits computerized analysis?

b.  Has software been written for importing the data in an ongoing forecasting operation?

c.  Who will build and maintain the model?

d.  Are sufficient resources available (time, money, staff) to facilitate model building, use,

evaluation, and improvement on a routine and ongoing basis?

e.  How much time remains before the first forecast must be produced?

f.  How many series must be forecast, and how often must ongoing forecasts be produced?

g.  What level of data aggregation or disaggregation is desirable?

h.  To whom does the forecaster or forecasting group report, and how will the forecasts

be communicated?

i.  How might you conduct a “forecasting audit”?

6.  (Assessing forecasting situations)  For each of the following scenarios, discuss the decision

environment, the nature of the object to be forecast, the forecast type, the forecast horizon, the

loss function, the information set, and what sorts of simple or complex forecasting approaches

you might entertain.

a.  You work for Airborne Analytics, a highly specialized mutual fund investing

exclusively in airline stocks.  The stocks held by the fund are chosen based on your

recommendations.  You learn that a newly rich oil-producing country has
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requested bids on a huge contract to deliver thirty state-of-the-art fighter planes,

but that only two companies submitted bids.  The stock of the successful bidder is

likely to rise.

b.  You work for the Office of Management and Budget in Washington DC and must

forecast tax revenues for the upcoming fiscal year.  You work for a president who

wants to maintain funding for his pilot social programs, and high revenue forecasts

ensure that the programs keep their funding.  However, if the forecast is too high,

and the president runs a large deficit at the end of the year, he will be seen as

fiscally irresponsible, which will lessen his probability of reelection.  Furthermore,

your forecast will be scrutinized by the more conservative members of Congress; if

they find fault with your procedures, they might have fiscal grounds to undermine

the President's planned budget.

c.  You work for D&D, a major Los Angeles advertising firm, and you must create an ad

for a client's product.  The ad must be targeted toward teenagers, because they

constitute the primary market for the product.  You must (somehow) find out what

kids currently think is "cool," incorporate that information into your ad, and make

your client's product attractive to the new generation.  If your hunch is right, your

firm basks in glory, and you can expect multiple future clients from this one

advertisement.  If you miss, however, and the kids don’t respond to the ad, then

your client’s sales fall and the client may reduce or even close its account with you.
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Bibliographical and Computational Notes

Klein (1971) and Granger and Newbold (1986) contain a wealth of insightful (but more

advanced) discussion of many of the topics discussed in this chapter.  The links between forecasts

and decisions are clearly displayed in many of the chapters of Makridakis and Wheelwright

(1987).  Armstrong (1978) provides entertaining and insightful discussion of many of the

specialized issues and techniques relevant in long-horizon forecasting.  Several of the papers in

Diebold and Watson (1996) concern the use of loss functions tailored to the decision making

situation of interest, both with respect to the forecast horizon and with respect to the shape of the

loss function, as does Christoffersen and Diebold (1997).  Zellner (1992) provides an insightful

statement of the KISS principle, which is very much related to the parsimony principle of Box and

Jenkins (see Box, Jenkins and Reinsel, 1994).  Levenbach and Cleary (1984) contains useful

discussion of forecasting as an ongoing process.
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Concepts for Review

Decision Environment

Loss Function

Forecast Object

Forecast Statement

Forecast Horizon

Information Set

Methods and Complexity

Parsimony Principle

Shrinkage Principle

Symmetric Loss

Asymmetric Loss

Forecast Error

Quadratic Loss

Absolute Loss

Absolute Error Loss

Direction-of-Change Forecast

Optimal Forecast

Event Outcome Forecast

Event Timing Forecast

Time Series
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Point Forecast

Interval Forecast

Density Forecast

Probability Forecast

h-Step-Ahead Forecast

h-Step-Ahead Extrapolation Forecast

KISS Principle

Ragged Edges

Missing Observations

Outlier

Measurement Error

Aggregation

Disaggregation
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Table 1
Decision Making with Symmetric Loss

Demand High Demand Low

Build Inventory 0 $10,000

Reduce Inventory $10,000 0

Table 2
Decision Making with Asymmetric Loss

Demand High Demand Low

Build Inventory 0 $10,000

Reduce Inventory $20,000 0
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Table 3
Forecasting with Symmetric Loss

High Actual Sales Low Actual Sales

High Forecasted Sales 0 $10,000

Low Forecasted Sales $10,000 0

Table 4
Forecasting with Asymmetric Loss

High Actual Sales Low Actual Sales

High Forecasted Sales 0 $10,000

Low Forecasted Sales $20,000 0
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Figure 1
Quadratic Loss
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Figure 2
Absolute Loss
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Figure 3
Asymmetric Loss
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Chapter 4

Statistical Graphics for Forecasting

It’s almost always a good idea to begin forecasting projects with graphical data analysis. 

When compared to the modern array of statistical modeling methods, graphical analysis might

seem trivially simple, perhaps even so simple as to be incapable of delivering serious insights into

the series to be forecast.  Such is not the case:  in many respects the human eye is a far more

sophisticated tool for data analysis and modeling than even the most sophisticated modern

modeling techniques.  That’s certainly not to say that graphical analysis alone will get the job done

-- certainly, graphical analysis has its limitations -- but it’s usually the best place to start.  With

that in mind, we introduce in this chapter some simple graphical techniques, and we consider

some basic elements of graphical style.

1.  The Power of Statistical Graphics

The four datasets shown in Table 1, known as Anscombe’s quartet, provide stark

illustration of the power of statistical graphics.  Each dataset consists of 11 observations on two

variables.  Simply glancing at the data -- or even studying it with some care -- yields little insight. 

Of course, you say, but that’s why we have powerful modern statistical techniques, such as the

linear regression model.  So let’s regress y on x for each of the four datasets.  The results appear

in Table 2.  Interestingly enough, although the four datasets certainly contain different numerical

data values, the standard linear regression output is identical in each case.  First, the fitted

regression line is the same in each case, y = 3 + ½ x.  Second, the uncertainty associated with the

estimated parameters, as summarized by standard errors, is also the same in each dataset.  Hence
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the t statistics, which are simply ratios of estimated coefficients to their standard errors, are also

identical across datasets.  Third, R , which is the percentage of variation in y explained by2

variation in x, is identical across datasets.  Fourth, the sum of squared residuals, and hence the

standard error of the regression (the estimated standard deviation of the stochastic disturbance to

the linear regression relationship) is the same in each dataset.

That’s all fine too, you say -- the relationship between y and x is simply the same in each

dataset, even though the specific data differ due to random influences.  The assertion that the

relationship between y and x is the same in each dataset could be correct, but graphical

examination of the data reveals immediately that it’s not correct.  In Figure 1, we show graphs of

y vs. x (called pairwise scatterplots, or bivariate scatterplots) for each of the four datasets, with

fitted regression lines superimposed.  Although the fitted regression line is the same in each case,

the reasons differ greatly, and it’s clear that for most of the datasets the linear regression model is

not appropriate.

In dataset 1, all looks well.  y1 and x1 are clearly positively correlated, and they appear to

conform rather well to a linear relationship, although the relationship is certainly not perfect.  In

short, all the conditions of the classical linear regression model appear satisfied in dataset 1.

In dataset 2, the situation is very different.  The graph reveals that there’s certainly a

relationship between y2 and x2 -- perhaps even a deterministic relationship -- but it also makes

clear that the relationship is not at all linear.  Thus, the use of the linear regression model is not

desirable in dataset 2.

In dataset 3, the graphics indicate that although y and x do seem to conform to a linear
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relationship, there is one key (y3,x3) pair that doesn’t conform well to the linear relationship. 

Most likely you never noticed that data point when you simply examined the raw data in tabular

form, in spite of the fact that it’s visually obvious when we make use of graphics.

Dataset 4 is rather odd -- the (y4,x4) pairs are all stacked vertically, with the exception of

one point, which exerts a huge influence on the fitted regression line.  At any rate, the graphics

once again make the anomalous nature of this situation immediately apparent.

Let’s summarize what we’ve learned about the power of graphics:

a.  Graphics helps us summarize and reveal patterns in data, as for example with linear

vs.  nonlinear functional form in the first and second Anscombe datasets.  That’s

key in any forecasting project.

b.  Graphics helps us identify anomalies in data, as in the third Anscombe dataset.  That’s

also key in forecasting, because we’ll produce our forecasts from models fit to the

historical data, and the dictum “garbage in, garbage out” most definitely applies.  

c.  Less obvious, but most definitely relevant, is the fact that graphics facilitates and

encourages comparison of different pieces of data.  That’s why, for example, we

graphed all four datasets in one big figure.  By doing so, we facilitate effortless and

instantaneous cross-dataset comparison of statistical relationships.  This technique

is called multiple comparisons.

d.  There’s one more aspect of the power of statistical graphics.  It comes into play in the

analysis of large datasets, so it wasn’t revealed in the analysis of the Anscombe

datasets, which are not large, but it’s nevertheless tremendously important. 
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Graphics enables us to present a huge amount of data in a small space, and it

enables us to make huge datasets coherent.  We might, for example, have

supermarket-scanner data, recorded in five-minute intervals for a year, on the

quantities of goods sold in each of four food categories -- dairy, meat, grains, and

vegetables.  Tabular or similar analysis of such data is simply out of the question,

but graphics are still straightforward and can reveal important patterns.

2.  Simple Graphical Techniques

As we discussed in Chapter 3, time series are by far the most common objects for which

forecasts are made.  Thus, we will focus primarily on graphics useful for modeling and forecasting

time series.  The dimensionality of the data -- the number of time series we wish to examine --

plays a key role.  Because graphical analysis “lets the data speak for themselves,” it is most useful

when the dimensionality of the data is low.  We will segment our discussion into two parts:

univariate and multivariate.

Univariate Graphics

First and foremost, graphics is used to reveal the patterns in time series data.  We use

graphical analysis to get a preliminary and informal idea of the nature of trend, seasonality and

cycles, as well as the nature and location of any unusual or aberrant observations, structural

breaks, etc.  The great workhorse of univariate time series graphics is the simple time series plot,

in which the series of interest is graphed against time.  

In Figure 2, for example, we present a time series plot of the 1-year U.S. Treasury bond
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 The notation “1960.01-2005.03" means the first month of 1960 through the third month1

of 2005.
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rate, 1960.01-2005.03.   A number of important features of the series are apparent.  Among other1

things, its movements appear sluggish and persistent, it appears to trend gently upward until about

1980, and it appears to trend gently downward thereafter.

Figure 3 provides a different perspective; we plot the change in the 1-year T-Bond rate,

which highlights volatility fluctuations.  Interest rate volatility appears low in the 1960s, a bit

higher in the 1970s, and very high from late 1979 through late 1982 (the period during which the

Federal Reserve targeted a monetary aggregate, which had the side effect of increasing interest

rate volatility), after which volatility gradually declines.

Time series plots are helpful for learning about other features of time series as well.  In

Figure 4, for example, we show a time series plot of U.S. liquor sales, 1960.01-2001.03.  Clearly

they’re trending upward, but the plot indicates that there may be a break in the trend sometime

during the 1980s.  In addition, the plot makes clear the pronounced seasonality in the series --

liquor sales skyrocket every December -- and moreover that the volatility of the seasonal

fluctuations grows over time as the level of the series increases.

Univariate graphical techniques are also routinely used to assess distributional shape.  A

histogram, for example, provides a simple estimate of the probability density of a random variable. 

The observed range of variation of the series is split into a number of segments of equal length,

and the height of the bar placed at a segment is the percentage of observations falling in that
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 In some software packages (e.g., Eviews), the height of the bar placed at a segment is2

simply the number, not the percentage, of observations falling in that segment.  Strictly speaking,
such histograms are not density estimators, because the “area under the curve” doesn’t add to
one, but they are equally useful for summarizing the shape of the density.

 The rejection could also occur because the sample size is too small too invoke the large-3

sample theory on which the Jarque-Bera test is based, but that’s not likely in the present
application, for which we have quite a large sample of data.
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segment.   In Figure 5 we show a histogram for the change in the 1-year T-Bond rate with related2

diagnostic information. The histogram indicates that the series is roughly symmetrically

distributed, and the additional statistics such as the sample mean, median, maximum, minimum,

and standard deviation convey important additional information about the distribution.

For example, a key feature of the distribution of T-Bond rate changes, which may not

have been immediately apparent from the histogram, is that it has fatter tails than would be the

case under normality.  This is at once apparent from the kurtosis statistic, which would be

approximately three if the data were normally distributed.  Instead, it’s about ten, indicating much

fatter tails than the normal, which is very common in high-frequency financial data.  The skewness

statistic is modestly negative, indicating a rather long left tail.  The Jarque-Bera normality test

rejects the hypothesis of independent normally-distributed observations.  The rejection occurs

because the interest rate changes are not independent, not normally distributed, or both.  It’s

likely both, and the deviation from normality is due more to leptokurtosis than to asymmetry.3

Multivariate Graphics

When two or more variables are available, the possibility of relations between the variables

becomes important, and we use graphics to uncover the existence and nature of such
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fitted regression lines superimposed, to help us visually assess the adequacy of a linear model. 
Note that although superimposing a regression line is helpful in bivariate scatterplots, “connecting
the dots” is not.  This contrasts to time series plots, for which connecting the dots is fine and is
typically done.
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relationships.  We use relational graphics to display relationships and flag anomalous

observations.  You already understand the idea of a bivariate scatterplot – we used it extensively

to uncover relationships and anomalies in the Anscombe data.   In Figure 6, for example, we show4

a bivariate scatterplot of the 1-year U.S. Treasury bond rate vs. the 10-year U.S. Treasury bond

rate, 1960.01-2005.03.  The scatterplot indicates that the two move closely together.  Although

each of the rates is individually highly persistent, the deviations from the superimposed regression

line appear transient.  You can think of the line as perhaps representing long-run equilibrium

relationships, to which the variables tend to cling.

The regression line that we superimpose on a scatterplot of y vs. x is an attempt to

summarize how the conditional mean of y (given x) varies with x.  Under certain conditions that

we’ll discuss in later chapters, this conditional mean is the best point forecast of y.  Thus, you can

think of the regression line as summarizing how our best point forecast of y varies with x.  The

linear regression model involves a lot of structure (it assumes that  is a linear function of

x), but less structured approaches exist and are often used to provide potentially nonlinear

estimates of conditional mean functions for superimposition on scatterplots.

Thus far all our discussion of multivariate graphics has been bivariate.  That’s because

graphical techniques are best-suited to low-dimensional data.  Much recent research has been

devoted to graphical techniques for high-dimensional data, but all such high-dimensional graphical
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analysis is subject to certain inherent limitations.  Here we’ll discuss just one simple and popular

scatterplot technique for high-dimensional data -- and one that’s been around for a long time --

the scatterplot matrix, or multiway scatterplot.  The scatterplot matrix is just the set of all possible

bivariate scatterplots, arranged in the upper right or lower left part of a matrix to facilitate

multiple comparisons.  If we have data on N variables, there are  such pairwise

scatterplots.  In Figure 7, for example, we show a scatterplot matrix for the 1-year, 10-year, 20-

year, and 30-year U.S. Treasury Bond rates, 1960.01-2005.03.  There are a total of six pairwise

scatterplots, and the multiple comparison makes clear that although the interest rates are closely

related in each case, with a regression slope of approximately one, the relationship is more precise

in some cases (e.g., 20- and 30-year rates) than in others (e.g., 1- and 30-year rates).

3.  Elements of Graphical Style 

In the preceding section we discussed various graphical tools.  As with all tools, however,

graphical tools can be used effectively or ineffectively.  In this section you’ll learn what makes

good graphics good and bad graphics bad.  In doing so you’ll learn to use graphical tools

effectively.

Bad graphics is like obscenity:  it’s hard to define, but you know it when you see it. 

Conversely, producing good graphics is like good writing:  it's an iterative, trial-and-error

procedure, and very much an art rather than a science.  But that’s not to say that anything goes;

as with good writing, good graphics requires discipline.  There are at least three keys to good

graphics:

a.  Know your audience, and know your goals.
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b.  Understand and follow two fundamental principles:  Show the data, and appeal to the

viewer. 

c.  Revise and edit, again and again.

We can use a number of devices to show the data.  First, avoid distorting the data or

misleading the viewer.  Thus, for example, avoid changing scales in midstream, use common

scales when performing multiple comparisons, and so on.  Second, minimize, within reason, non-

data ink.   Avoid chartjunk (elaborate shadings and grids, decoration, and related nonsense), erase5

unnecessary axes, refrain from use of artificial three-dimensional perspective, etc.

Other guidelines help us appeal to the viewer.  First, use clear and modest type, avoid

mnemonics and abbreviations, and use labels rather then legends when possible.  Second, make

graphics self-contained; a knowledgeable reader should be able to understand your graphics

without reading pages of accompanying text.  Third, as with our prescriptions for showing the

data, avoid chartjunk.

An additional aspect of creating graphics that show the data and appeal to the viewer is

selection of a graph’s aspect ratio.  The aspect ratio is the ratio of the graph’s height, h, to its

width, w, and it should be selected such that the graph reveals patterns in the data and is visually

appealing.  One time-honored approach geared toward visual appeal is to use an aspect ratio such

that height is to width as width is to the sum of height and width.  Algebraically,
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Dividing numerator and denominator of the right side by w yields

or

The positive root of this quadratic polynomial is a=.618, the so-called “golden ratio.”  Graphics

that conform to the golden ratio, with height a bit less than two thirds of width, are visually

appealing.  In Figure 8, for example, we show a plot whose dimensions roughly correspond to the

golden aspect ratio.

Other things the same, it’s a good idea to keep the golden ratio in mind when producing

graphics.  Other things are not always the same, however.  In particular, the golden aspect ratio

may not be the one that maximizes pattern revelation.  Consider Figure 9, for example, in which

we plot exactly the same data as in Figure 8,  but with a smaller aspect ratio.  The new plot

reveals an obvious pattern in the data, which you probably didn’t notice before, and is therefore a

superior graphic.

The improved aspect ratio of Figure 9 was selected to make the average absolute slope of

the line segments connecting the data points approximately equal to 45 degrees.  This procedure,

banking to 45 degrees, is useful for selecting a revealing aspect ratio.  As in Figure 9, the most

revealing aspect ratio for time series -- especially long time series -- is often less than the golden

ratio.  Sometimes, however, various devices can be used to maintain the golden aspect ratio while
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nevertheless clearly revealing patterns in the data.  In Figure 10, for example, we use the golden

aspect ratio but connect the data points, which makes the pattern clear.

4.  Application:  Graphing Four Components of  Real GDP

As with writing, the best way to learn graphics is to do it, so let’s proceed immediately

with an application that illustrates various points of graphical style.  We’ll examine four key

components of U.S. Real GDP:  manufacturing, retail, services, and agriculture, recorded annually

1960-2001 in millions of current dollars.

We begin in Figure 11 with a set of bar graphs.  The value of each series in each year is

represented by the height of a vertical bar, with different bar shadings for the different series.  It’s

repugnant and unreadable, with no title, no axis numbering or labels, bad mnemonics, and so on. 

The good news is there’s plenty of room for improvement.  

We continue in Figure 12 with a set of stacked bar graphs, which are a bit easier to read

because there’s only one bar at each time point rather than four, but otherwise they suffer from all

the defects of  the bar graphs in Figure 11.  Typically, bar graphs are simply not good graphical

tools for time series.  We therefore switch in Figure 13 to a time series plot with different types of

lines and symbols for each series, which is a big improvement, but there’s plenty of room for

additional improvement.

In Figure 14 we drop the symbols and we add axis numbering.  This is a major

improvement, but the plot is still poor.  In particular, it still has bad mnemonics, no title, and no

axis labels.  Moreover, it’s not clear that dropping the plotting symbols produced an

improvement, even though they are non-data ink.  (Why?)
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In Figure 15, we drop the different plotting lines and symbols altogether.  Instead, we

simply plot all the series with solid lines and label them directly.  This approach produces a much

more informative and appealing plot, in large part because there’s no longer a need for the

hideous legend and associated mnemonics.  However, a new annoyance has been introduced; the

CAPITAL series labeling repels the viewer.

In Figure 16 we attempt to remedy the remaining defects of the plot.  Both the horizontal

and vertical axes are labeled, all labeling makes use of both capital and small type as appropriate,

the northern and eastern box lines have been eliminated (they’re non-data ink and serve no useful

purpose), the plot has a descriptive title, and, for visual reference, we have added shading

indicating recessions.

5.  Concluding Remarks

We’ve emphasized in this chapter that graphics is a powerful tool with a variety of uses in

the construction and evaluation of forecasts and forecasting models.  We hasten to add, however,

that graphics has its limitations.  In particular, graphics loses a lot of its power as the dimension of

the data grows.  If we have data in ten dimensions, and we try to squash it into two or three

dimensions to make a graph, there’s bound to be some information loss.  That’s also true of the

models we fit -- a linear regression model with ten right-hand side variables, for example, assumes

that the data tend to lie in a small subset of ten-dimensional space.

Thus, in contrast to the analysis of data in two or three dimensions, in which case learning

about data by fitting models involves a loss of information whereas graphical analysis does not,

graphical methods lose their comparative advantage in higher dimensions.  In higher dimensions,
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both graphics and models lose information, and graphical analysis can become comparatively

laborious and less insightful.  The conclusion, however, is straightforward:  graphical analysis and

model fitting are complements, not substitutes, and when used together they can make valuable

contributions to forecasting.
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Exercises, Problems and Complements

1.  (Outliers)  Recall the lower-left panel of the multiple comparison plot of the Anscombe data

(Figure 1), which made clear that dataset number three contained a severely anomalous

observation.  We call such data points “outliers.”

a.  Outliers require special attention because they can have substantial influence on the

fitted regression line.  Regression parameter estimates obtained by least squares

are particularly susceptible to such distortions.  Why?

b.  Outliers can arise for a number of reasons.  Perhaps the outlier is simply a mistake due

to a clerical recording error, in which case you’d want to replace the incorrect data

with the correct data.  We’ll call such outliers measurement outliers, because they

simply reflect measurement errors.  If a particular value of a recorded series is

plagued by a measurement outlier, there’s no reason why observations at other

times should necessarily be affected.  But they might be affected.  Why?

c.  Alternatively, outliers in time series may be associated with large unanticipated shocks,

the effects of which may linger.  If, for example, an adverse shock hits the U.S.

economy this quarter (e.g., the price of oil on the world market triples) and the

U.S. plunges into a severe depression, then it’s likely that the depression will

persist for some time.  Such outliers are called innovation outliers, because they’re

driven by shocks, or “innovations,” whose effects naturally last more than one

period due to the dynamics operative in business, economic, and financial series.

d.  How to identify and treat outliers is a time-honored problem in data analysis, and
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there’s no easy answer.  What factors would you, as a forecaster, examine when

deciding what to do with an outlier?

2.  (Simple vs. partial correlation)  The set of pairwise scatterplots that comprises a multiway

scatterplot provides useful information about the joint distribution of the N variables, but it’s

incomplete information and should be interpreted with care.  A pairwise scatterplot summarizes

information regarding the simple correlation between, say, x and y.  But x and y may appear

highly related in a pairwise scatterplot even if they are in fact unrelated, if each depends on a third

variable, say z.  The crux of the problem is that there’s no way in a pairwise scatterplot to

examine the correlation between x and y controlling for z, which we call partial correlation. 

When interpreting a scatterplot matrix, keep in mind that the pairwise scatterplots provide

information only on simple correlation.

3.  (Graphical regression diagnostic I:  time series plot of )  After estimating a

forecasting model, we often make use of graphical techniques to provide important diagnostic

information regarding the adequacy of the model.  Often the graphical techniques involve the

residuals from the model.  Throughout, let the regression model be

and let the fitted values be
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The difference between the actual and fitted values is the residual,

a.  Superimposed time series plots of  help us to assess the overall fit of a

forecasting model and to assess variations in its performance at different times

(e.g., performance in tracking peaks vs. troughs in the business cycle).

b.  A time series plot of  (a so-called residual plot) helps to reveal patterns in the

residuals.  Most importantly, it helps us assess whether the residuals are correlated

over time, that is, whether the residuals are serially correlated, as well as whether

there are any anomalous residuals.  Note that even though there might be many

right-hand side variables in this regression model, the actual values of y, the fitted

values of y, and the residuals are simple univariate series which can be plotted

easily.  We’ll make use of such plots throughout this book.

4.  (Graphical regression diagnostic II:  time series plot of  or )  Plots of  or reveal

patterns (most notably serial correlation) in the squared or absolute residuals, which correspond

to non-constant volatility, or heteroskedasticity, in the levels of the residuals.  As with the

standard residual plot, the squared or absolute residual plot is always a simple univariate plot,

even when there are many right-hand side variables.  Such plots feature prominently, for example,

in tracking and forecasting time-varying volatility.

5.  (Graphical regression diagnostic III:  scatterplot of )  This plot helps us assess

whether the relationship between y and the set of x’s is truly linear, as assumed in linear
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regression analysis.  If not, the linear regression residuals will depend on x.  In the case where

there is only one right-hand side variable, as above, we can simply make a scatterplot of . 

When there is more than one right-hand side variable, we can make separate plots for each,

although the procedure loses some of its simplicity and transparency.

6.  (Graphical analysis of foreign exchange rate data)  Magyar Select, a marketing firm

representing a group of Hungarian wineries, is considering entering into a contract to sell 8,000

cases of premium Hungarian dessert wine to AMI Imports, a worldwide distributor based in New

York and London.  The contract must be signed now, but payment and delivery is 90 days hence. 

Payment is to be in U.S. Dollars; Magyar is therefore concerned about U.S. Dollar / Hungarian

Forint ($/Ft) exchange rate volatility over the next 90 days.  Magyar has hired you to analyze and

forecast the exchange rate, on which it has collected data for the last 620 days.  Naturally, you

suggest that Magyar begin with a graphical examination of the data.  (The $/Ft exchange rate data

are on the book’s web page.)

a.  Why might we be interested in examining data on the log rather than the level of the

$/Ft exchange rate?

b.  Take logs and produce a time series plot of the log of the $/Ft exchange rate.  Discuss.

c.  Produce a scatterplot of the log of the $/Ft exchange rate against the lagged log of the

$/Ft exchange rate.  Discuss.

d.  Produce a time series plot of the change in the log $/Ft exchange rate, and also

produce a histogram, normality test, and other descriptive statistics.  Discuss.  (For

small changes, the change in the logarithm is approximately equal to the percent
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change, expressed as a decimal.)  Do the log exchange rate changes appear

normally distributed?  If not, what is the nature of the deviation from normality? 

Why do you think we computed the histogram, etc., for the differenced log data,

rather than for the original series?

e.  Produce a time series plot of the square of the change in the log $/Ft exchange rate. 

Discuss and compare to the earlier series of log changes.  What do you conclude

about the volatility of the exchange rate, as proxied by the squared log changes?

7.  (Common scales)  Redo the multiple comparison of the Anscombe data in  Figure 1 using

common scales.  Do you prefer the original or your newly-created graphic?  Why or why not?

8.  (Graphing real GDP, continued)  

a.  Consider the final plot at which we arrived when graphing four components of U.S.

real GDP.  What do you like about the plot?  What do you dislike about the plot? 

How could you make it still better?  Do it!

b.  In order to help sharpen your eye (or so I claim), some of the graphics in this book fail

to adhere strictly to the elements of graphical style that we emphasized.  Pick and

critique three graphs from anywhere in the book (apart from this chapter), and

produce improved versions.

9.  (Color)

a.  Color can aid graphics both in showing the data and in appealing to the viewer.  How?

b.  Color can also confuse.  How?

c.  Keeping in mind the principles of graphical style, formulate as many guidelines for
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color graphics as you can.

10.  (Regression, regression diagnostics, and regression graphics in action)  You’re a new

financial analyst at a major investment house, tracking and forecasting earnings of the health care

industry.  At the end of each quarter, you forecast industry earnings for the next quarter. 

Experience has revealed that your clients care about your forecast accuracy -- that is, they want

small errors -- but that they are not particularly concerned with the sign of your error.  (Your

clients use your forecast to help allocate their portfolios, and if your forecast is way off, they lose

money, regardless of whether you’re too optimistic or too pessimistic.)  Your immediate

predecessor has bequeathed to you a forecasting model in which current earnings ( ) are

explained by one variable lagged by one quarter ( ).  (Both are on the book’s web page.)

a.  Suggest and defend some candidate “x” variables?  Why might lagged x, rather than

current x, be included in the model?  

b.  Graph  vs  and discuss.

c.  Regress  on  and discuss (including related regression diagnostics that you deem

relevant).

d.  Assess the entire situation in light of the “six considerations basic to successful

forecasting” emphasized in Chapter 3:  the decision environment and loss function,

the forecast object, the forecast statement, the forecast horizon, the information

set, and the parsimony principle.

e.  Consider as many variations as you deem relevant on the general theme.  At a

minimum, you will want to consider the following:
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-- Does it appear necessary to include an intercept in the regression?

-- Does the functional form appear adequate? Might the relationship be nonlinear?  

-- Do the regression residuals seem random, and in particular, do they appear

serially correlated or heteroskedastic?

-- Are there any outliers?  If so, does the estimated model appear robust to their

inclusion/exclusion?

-- Do the regression disturbances appear normally distributed?

-- How might you assess whether the estimated model is structurally stable?
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Bibliographical and Computational Notes

A sub-field of statistics called exploratory data analysis (EDA) focuses on learning about

patterns in data without pretending to have too much a priori theory.  As you would guess, EDA

makes heavy use of graphical and related techniques.  For an introduction, see Tukey (1977), a

well-known book by a pioneer in the area.

This chapter has been heavily influenced by Tufte (1983), as are all modern discussions of

statistical graphics.  Tufte’s book is an insightful and entertaining masterpiece on graphical style

that I recommend enthusiastically.  Our discussion of Anscombe's quartet follows Tufte's; the

original paper is Anscombe (1973).

Cleveland (1993, 1994) and Cook and Weisberg (1994) are fine examples of modern

graphical techniques.  Cleveland (1993) stresses tools for revealing information in high-

dimensional data, as well as techniques that aid in showing the data and appealing to the viewer in

standard low-dimensional situations.  It also contains extensive discussion of banking to 45

degrees.  Cook and Weisberg (1994) develop powerful graphical tools useful in the specification

and evaluation of regression models.

Details of the Jarque-Bera test may be found in Jarque and Bera (1987).

All graphics in this chapter were done using Eviews.  S+ implements a variety of more

sophisticated graphical techniques and in many respects represents the cutting edge of statistical

graphics software.
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Concepts for Review

Anscombe's Quartet

Pairwise Scatterplot

Bivariate Scatterplot

Multiple Comparison

Time Series Plot

Histogram

Relational Graphics

Scatterplot Matrix

Multiway Scatterplot

Non-data Ink

Chartjunk

Aspect Ratio

Golden Ratio

Banking to 45 Degrees

Outlier

Measurement Outlier

Innovation Outlier

Simple Correlation

Partial Correlation

Common Scales
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Exploratory Data Analysis
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Table 1
Anscombe’s Quartet

(1) (2) (3) (4)
x1 y1 x2 y2 x3 y3 x4 y4
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58  13.0  8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89
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Table 2
Anscombe’s Quartet

Regressions of yi on xi, i = 1, ..., 4.

LS // Dependent Variable is Y1

Variable Coefficient Std. Error T-Statistic  

C  3.00  1.12  2.67
X1  0.50  0.12  4.24

R-squared  0.67 S.E. of regression  1.24

LS // Dependent Variable is Y2

Variable Coefficient Std. Error T-Statistic   

C  3.00  1.12  2.67  
X2  0.50  0.12  4.24  

R-squared  0.67 S.E. of regression  1.24

LS // Dependent Variable is Y3

Variable Coefficient Std. Error T-Statistic  

C  3.00  1.12  2.67  
X3   0.50  0.12  4.24  

R-squared   0.67 S.E. of regression  1.24

LS // Dependent Variable is Y4

Variable Coefficient Std. Error T-Statistic   

C  3.00  1.12  2.67  
X4  0.50  0.12  4.24  

R-squared  0.67 S.E. of  regression  1.24
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Figure 1
Anscombe’s Quartet
Bivariate Scatterplots
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Figure 2
1-Year Treasury Bond Rate
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Figure 3
Change in 1-Year Treasury Bond Rate
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Figure 4
Liquor Sales
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Figure 5
Histogram and Descriptive Statistics

Change in 1-Year Treasury Bond Rate
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Figure 6
Scatterplot

1-Year versus 10-Year Treasury Bond Rate
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Figure 7
Scatterplot Matrix

1-, 10-, 20-, and 30-Year Treasury Bond Rates
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Figure 8
Time Series Plot
Aspect Ratio 1:1.6
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Figure 9
Time Series Plot
Banked to 45 Degrees
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Figure 10
Time Series Plot
Aspect Ratio 1:1.6
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Figure 11
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Figure 12
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Figure 13
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Figure 14
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Figure 15
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Figure 16
Components of Real GDP (Millions of Current Dollars, Annual)
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Production Notes

In the lower right panel of Figure 1, be sure the rightmost data point is not obscured by the
regression line.



      Later we’ll define and study seasonals and cycles.  Not all components need be present in1

all observed series.

      Later we’ll broaden our discussion to allow for stochastic trend.2
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Chapter 5

Modeling and Forecasting Trend

1.  Modeling Trend

The series that we want to forecast vary over time, and we often mentally attribute that

variation to unobserved underlying components, such as trends, seasonals, and cycles.  In this

chapter we focus on trend.   Trend is slow, long-run, evolution in the variables that we want to1

model and forecast.  In business, finance, and economics, for example, trend is produced by

slowly evolving preferences, technologies, institutions, and demographics.  We’ll focus here on

models of deterministic trend, in which the trend evolves in a perfectly predictable way. 

Deterministic trend models are tremendously useful in practice.2

Existence of trend is empirically obvious.  Numerous series in diverse fields display trends. 

In Figure 1 we show the U.S. labor force participation rate for females aged 16 and over, the

trend in which appears roughly linear, meaning that it increases or decreases like a straight line. 

That is, a simple linear function of time,

provides a good description of the trend.  The variable TIME is constructed artificially and is

called a “time trend” or "time dummy."  Time equals 1 in the first period of the sample, 2 in the
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second period, and so on.  Thus, for a sample of size T, TIME = (1, 2, 3, ..., T-1, T); put

tdifferently, TIME =t.   is the intercept; it’s the value of the trend at time t=0.   is the slope;

it’s positive if the trend is increasing and negative if the trend is decreasing.  The larger the

absolute value of , the steeper the trend’s slope.  In Figure 2, for example, we show two linear

trends, one increasing and one decreasing.  The increasing trend has an intercept of  and

an slope of , whereas the decreasing trend has an intercept of and a gentler absolute

slope of .    

In business, finance, and economics, linear trends are typically increasing, corresponding

to growth, but such need not be the case.  In Figure 3, for example, we show the U.S. labor force

participation rate for males aged 16 and over, which displays linearly decreasing trend.

To provide a visual check of the adequacy of linear trends for the labor force participation

rates, we show them with linear trends superimposed in Figures 4 and 5.   In each case, we show3

the actual participation rate series together with the fitted trend, and we also show the residual --

the deviation of the actual participation rate from the trend.  The linear trends seem adequate. 

There are still obvious dynamic patterns in the residuals, but that’s to be expected -- persistent

dynamic patterns are typically observed in the deviations of variables from trend.

Sometimes trend appears nonlinear, or curved, as for example when a variable increases

at an increasing or decreasing rate.  Ultimately, we don’t require that trends be linear, only that

they be smooth.  Figure 6 shows the monthly volume of shares traded on the New York Stock

Exchange.  Volume increases at an increasing rate; the trend is therefore nonlinear.
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Quadratic trend models can potentially capture nonlinearities such as those observed in the

volume series.  Such trends are quadratic, as opposed to linear, functions of time,

Linear trend emerges as a special (and potentially restrictive) case when   Higher-order

polynomial trends are sometimes entertained, but it’s important to use low-order polynomials to

maintain smoothness.

A variety of different nonlinear quadratic trend shapes are possible, depending on the signs

and sizes of the coefficients; we show several in Figure 7.  In particular, if  and  as in

the upper-left panel, the trend is monotonically, but nonlinearly, increasing,  Conversely, if 

and , the trend is  monotonically decreasing.  If  and  the trend has a U shape, and

if   and  the trend has an inverted U shape.  Keep in mind that quadratic trends are used

to provide local approximations; one rarely has a “U-shaped” trend, for example.  Instead, all of

the data may lie on one or the other side of the “U.”

Figure 8 presents the stock market volume data with a superimposed quadratic trend.  The

quadratic trend fits better than the linear trend, but it still has some awkward features.  The best-

fitting quadratic trend is still a little more U-shaped than the volume data, resulting in an odd

pattern of deviations from trend, as reflected in the residual series.

Other types of nonlinear trend are sometimes appropriate.  Consider the NYSE volume

series once again.  In Figure 9 we show the logarithm of volume, the trend of which appears
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approximately linear.   This situation, in which a trend appears nonlinear in levels but linear in4

logarithms, is called exponential trend, or log linear trend, and is very common in business,

finance and economics.  That’s because economic variables often display roughly constant growth

rates (e.g., three percent per year).  If trend is characterized by constant growth at rate  , then

we can write

The trend is a nonlinear (exponential) function of time in levels, but in logarithms we have

Thus,  is a linear function of time.

Figure 10 shows the variety of exponential trend shapes that can be obtained depending on

the parameters.  As with quadratic trend, depending on the signs and sizes of the parameter

values, exponential trend can achieve a variety of patterns, increasing or decreasing at an

increasing or decreasing rate.

It’s important to note that, although the same sorts of qualitative trend shapes can be

achieved with quadratic and exponential trend, there are subtle differences between them.  The

nonlinear trends in some series are well approximated by quadratic trend, while the trends in other

series are better approximated by exponential trend.  We have already seen, for example, that

although quadratic trend looked better than linear trend for the NYSE volume data, the quadratic
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      “Argmin” just means “the argument that minimizes.”  Least squares proceeds by finding5

the argument (in this case, the value of 2) that minimizes the sum of squared residuals; thus the
least squares estimator is the “argmin” of the sum of squared residuals function.  
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fit still had some undesirable features.  Let’s see how an exponential trend compares.  In Figure

11 we plot the log volume data with linear trend superimposed; the log-linear trend looks quite

good.  Equivalently, Figure 12 shows the volume data in levels with exponential trend

superimposed; the exponential trend looks much better than did the quadratic.

2.  Estimating Trend Models

Before we can estimate trend models we need to create and store on the computer

variables such as TIME and its square.  Fortunately we don’t have to type the trend values (1, 2,

3, 4, ...) in by hand; in most good software packages, a command exists to create the trend

automatically, after which we can immediately compute derived variables such as the square of

TIME, or TIME .  Because, for example, TIME = (1, 2, ..., T), TIME  = (1, 4, ..., T ); that is,2 2 2

.

We fit our various trend models to data on a time series y using least-squares regression. 

That is, we use a computer to find5

where  denotes the set of parameters to be estimated.  A linear trend, for example, has

 and , in which case the computer finds
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Similarly, in the quadratic trend case the computer finds

 We can estimate an exponential trend in two ways.  First, we can proceed directly from the

exponential representation and let the computer find

Alternatively, because the nonlinear exponential trend is nevertheless linear in logs, we can obtain

estimate it by regressing log y on an intercept and TIME.  Thus we let the computer find

Note that the fitted values from this regression are the fitted values of log y, so they must be

exponentiated to get the fitted values of y.

3.  Forecasting Trend

Consider first the construction of point forecasts.  Suppose we’re presently at time T, and
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      More formally, we say that we’re “projecting  on the time-T information set,”6

which we’ll discuss in detail in Chapter 9. 

      “Independent zero-mean random noise” is just a fancy way of saying that the regression7

disturbances satisfy the usual assumptions -- they are identically and independently distributed. 
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we want to use a trend model to forecast the h-step-ahead value of  a series y.  For illustrative

purposes, we’ll work with a linear trend, but the procedures are identical with more complicated

trends.  The linear trend model, which holds for any time t, is

In particular, at time T+h, the future time of interest,  

Two future values of series appear on the right side of the equation,  and   If

 and  were known at time T, we could immediately crank out the forecast.  In fact,

 is known at time T, because the artificially-constructed time variable is perfectly

predictable; specifically, .  Unfortunately  is not known at time T, so we

replace it with an optimal forecast of  constructed using information only up to time T.  6

Under the assumption that  is simply independent zero-mean random noise, the optimal forecast

of  for any future period is 0, yielding the point forecast,7

The subscript “T+h,T” on the forecast reminds us that the forecast is for time T+h and is made at



Fcst4-05-8

      When we say that we ignore parameter estimation uncertainty, we mean that we use the8

estimated parameters as if they were the true values, ignoring the fact that they are only estimates,
and subject to sampling variability.  Later we'll see how to account for parameter estimation
uncertainty by using simulation techniques.
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time T.

The point forecast formula given above is not of practical use, because it assumes known

values of the trend parameters  and .  But it’s a simple matter to make it operational -- we

just replace unknown parameters with their least squares estimates, yielding

To form an interval forecast we assume further that the trend regression disturbance is

normally distributed, in which case a 95% interval forecast ignoring parameter estimation

uncertainty is  where  is the standard deviation of the disturbance in the trend

regression.   To make this operational, we use  where  is the standard error of8

the trend regression, an estimate of .

To form a density forecast, we again assume that the trend regression disturbance is

normally distributed.  Then, ignoring parameter estimation uncertainty, we have the density

forecast  where  is the standard deviation of the disturbance in the trend

regression.  To make this operational, we use the density forecast 

4.  Selecting Forecasting Models Using the Akaike and Schwarz Criteria

We’ve introduced a number of trend models, but how do we select among them when

fitting a trend to a specific series?  What are the consequences, for example, of fitting a number of
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trend models and selecting the model with highest R ?  Is there a better way?  This issue of model2

selection is of tremendous importance in all of forecasting, so we introduce it now.

It turns out that model-selection strategies such as selecting the model with highest R  do2

not produce good out-of-sample forecasting models.  Fortunately, however, a number of powerful

modern tools exist to assist with model selection.  Here we digress to discuss some of the

available methods, which will be immediately useful in selecting among alternative trend models,

as well as many other situations.

Most model selection criteria attempt to find the model with the smallest out-of-sample 1-

step-ahead mean squared prediction error.  The criteria we examine fit this general approach; the

differences among criteria amount to different penalties for the number of degrees of freedom

used in estimating the model (that is, the number of parameters estimated).  Because all of the

criteria are effectively estimates of out-of-sample mean square prediction error, they have a

negative orientation -- the smaller the better. 

First consider the mean squared error,

where T is the sample size and 

where
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MSE is intimately related to two other diagnostic statistics routinely computed by regression

software, the sum of squared residuals and R .  Looking at the MSE formula reveals that the2

model with the smallest MSE is also the model with smallest sum of squared residuals, because

scaling the sum of squared residuals by 1/T doesn’t change the ranking.  So selecting the model

with the smallest MSE is equivalent to selecting the model with the smallest sum of squared

residuals.  Similarly, recall the formula for R ,2

The denominator of the ratio that appears in the formula is just the sum of squared deviations of y

from its sample mean (the so-called “total sum of squares”), which depends only on the data, not

on the particular model fit.  Thus, selecting the model that minimizes the sum of squared residuals

-- which as we saw is equivalent to selecting the model that minimizes MSE – is also equivalent to

selecting the model that maximizes R .2

Selecting forecasting models on the basis of MSE or any of the equivalent forms discussed

above -- that is, using in-sample MSE to estimate the out-of-sample 1-step-ahead MSE – turns

out to be a bad idea.  In-sample MSE can’t rise when more variables are added to a model, and
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typically it will fall continuously as more variables are added.  To see why, consider the fitting of

polynomial trend models.  In that context, the number of variables in the model is linked to the

degree of the polynomial (call it p):

We’ve already considered the cases of p=1 (linear trend) and p=2 (quadratic trend), but there’s

nothing to stop us from fitting models with higher powers of time included.  As we include higher

powers of time, the sum of squared residuals can’t rise, because the estimated parameters are

explicitly chosen to minimize the sum of squared residuals.  The last-included power of time could

always wind up with an estimated coefficient of zero; to the extent that the estimate is anything

else, the sum of squared residuals must have fallen.  Thus, the more variables we include in a

forecasting model, the lower the sum of squared residuals will be, and therefore the lower MSE

will be, and the higher R  will be.  The reduction in MSE as higher powers of time are included in2

the model occurs even if they are in fact of no use in forecasting the variable of interest.  Again,

the sum of squared residuals can’t rise, and due to sampling error it’s very unlikely that we’d get a

coefficient of exactly zero on a newly-included variable even if the coefficient is zero in

population.

The effects described above go under various names, including in-sample overfitting and

data mining, reflecting the idea that including more variables in a forecasting model won’t

necessarily improve its out-of-sample forecasting performance, although it will improve the

model’s “fit” on historical data.  The upshot is that MSE is a biased estimator of out-of-sample 1-

step-ahead prediction error variance, and the size of the bias increases with the number of
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      The degrees of freedom used in model fitting is simply the number of parameters9

estimated.
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variables included in the model.  The direction of the bias is downward -- in-sample MSE

provides an overly-optimistic (that is, too small) assessment of out-of-sample prediction error

variance.

To reduce the bias associated with MSE and its relatives, we need to penalize for degrees

of freedom used.  Thus let’s consider the mean squared error corrected for degrees of freedom,

where k is the number of degrees of freedom used in model fitting.   s  is just the usual unbiased9 2

estimate of the regression disturbance variance.  That is, it is the square of the usual standard

error of the regression.  So selecting the model that minimizes s  is also equivalent to selecting the2

model that minimizes the standard error of the regression.  s  is also intimately connected to the2

R  adjusted for degrees of freedom (the “adjusted R ,” or ).  Recall that 2 2

The denominator of the  expression depends only on the data, not the particular model fit, so
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the model that minimizes s  is also the model that maximizes .  In short, the strategies of2

selecting the model that minimizes s , or the model that minimizes the standard error of the2

regression, or the model that maximizes , are equivalent, and they do penalize for degrees of

freedom used.

To highlight the degree-of-freedom penalty, let’s rewrite s  as a penalty factor times the2

MSE,

Note in particular that including more variables in a regression will not necessarily lower s  or2

raise -- the MSE will fall, but the degrees-of-freedom penalty will rise, so the product could go

either way.

As with s , many of the most important forecast model selection criteria are of the form2

“penalty factor times MSE.”  The idea is simply that if we want to get an accurate estimate of the

1-step-ahead out-of-sample prediction error variance, we need to penalize the in-sample residual

variance (the MSE) to reflect the degrees of freedom used.  Two very important such criteria are

the Akaike Information Criterion (AIC) and the Schwarz Information Criterion (SIC).  Their

formulas are:
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and

How do the penalty factors associated with MSE, s , AIC and SIC compare in terms of2

severity?  All of the penalty factors are functions of k/T, the number of parameters estimated per

sample observation, and we can compare the penalty factors graphically as k/T varies.  In Figure

13 we show the penalties as k/T moves from 0 to .25, for a sample size of T=100.  The s  penalty2

is small and rises slowly with k/T; the AIC penalty is a bit larger and still rises only slowly with

k/T.  The SIC penalty, on the other hand, is substantially larger and rises at a slightly increasing

rate with k/T.

It’s clear that the different criteria penalize degrees of freedom differently.  In addition, we

could propose many other criteria by altering the penalty.  How, then, do we select among the

criteria?  More generally, what properties might we expect a “good” model selection criterion to

have?  Are s , AIC and SIC “good” model selection criteria?2

We evaluate model selection criteria in terms of a key property called consistency.  A

model selection criterion is consistent if:

a.  when the true model (that is, the data-generating process, or DGP) is among the

models considered, the probability of selecting the true DGP approaches one as the

sample size gets large, and

b.  when the true model is not among those considered, so that it’s impossible to select the
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      Most model selection criteria -- including all of those discussed here -- assess goodness10

of approximation in terms of 1-step-ahead mean squared forecast error.
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true DGP, the probability of selecting the best approximation to the true DGP

approaches one as the sample size gets large.10

Consistency is of course desirable.  If the DGP is among those considered, then we’d hope that as

the sample size gets large we’d eventually select it.  Of course, all of our models are false --

they’re intentional simplifications of a much more complex reality.  Thus the second notion of

consistency is the more compelling.

MSE is inconsistent, because it doesn’t penalize for degrees of freedom; that’s why it’s

unattractive.  s  does penalize for degrees of freedom, but as it turns out, not enough to render it a2

consistent model selection procedure.  The AIC penalizes degrees of freedom more heavily than

s , but it too remains inconsistent; even as the sample size gets large, the AIC selects models that2

are too large (“overparameterized”).  The SIC, which penalizes degrees of freedom most heavily,

is consistent.

The discussion thus far conveys the impression that SIC is unambiguously superior to AIC

for selecting forecasting models, but such is not the case.  Until now, we’ve implicitly assumed

that either the true DGP or the best approximation to the true DGP is in the fixed set of models

considered.  In that case, SIC is a superior model selection criterion.  However, a potentially more

compelling view for forecasters is that both the true DGP and the best approximation to it are

much more complicated than any model we fit, in which case we may want to expand the set of

models we entertain as the sample size grows.  We’re then led to a different optimality property,
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      When we say that the data have been “seasonally adjusted,” we simply mean that they11

have been smoothed in a way that eliminates seasonal variation.  We’ll discuss seasonality in detail
in Chapter 6. 
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called asymptotic efficiency.  An asymptotically efficient model selection criterion chooses a

sequence of models, as the sample size get large, whose 1-step-ahead forecast error variances

approach the one that would be obtained using the true model with known parameters at a rate at

least as fast as that of any other model selection criterion.  The AIC, although inconsistent, is

asymptotically efficient, whereas the SIC is not.

In practical forecasting we usually report and examine both AIC and SIC.  Most often

they select the same model.  When they don’t, and in spite of the theoretical asymptotic efficiency

property of AIC, this author recommends use of the more parsimonious model selected by the

SIC, other things equal.  This accords with the KISS principle of Chapter 3 and with the results of

studies comparing out-of-sample forecasting performance of models selected by various criteria.

The AIC and SIC have enjoyed widespread popularity, but they are not universally

applicable, and we’re still learning about their performance in specific situations.  However, the

general principle that we need to correct somehow for degrees of freedom when estimating out-

of-sample MSE on the basis of in-sample MSE is universally applicable.  Judicious use of criteria

like the AIC and SIC, in conjunction with knowledge about the nature of the system being

forecast, is helpful in a variety of forecasting situations.

5.  Application:  Forecasting Retail Sales

We’ll illustrate trend modeling with an application to forecasting U.S. current-dollar retail

sales.  The data are monthly from 1955.01 through 1994.12 and have been seasonally adjusted.  11
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      Such residual serial correlation may, however, render the standard errors of estimated12

coefficients (and the associated t statistics) untrustworthy.  Here that’s not a big problem, because
it’s visually obvious that trend is important in retail sales, but in other situations it may well be. 
Typically when constructing forecasting models we’re more concerned more with point
estimation than with inference.
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We’ll use the period 1955.01-1993.12 to estimate our forecasting models, and we’ll use the

“holdout sample” 1994.01-1994.12 to examine their out-of-sample forecasting performance.

In Figure 14 we provide a time series plot of the retail sales data, which display a clear

nonlinear trend and not much else.  Cycles are probably present but are not easily visible, because

they account for a comparatively minor share of the series’ variation.

In Table 1 we show the results of fitting a linear trend model by regressing retail sales on a

constant and a linear time trend.  The trend appears highly significant as judged by the p-value of

the t-statistic on the time trend, and the regression’s R  is high.  Moreover, the Durbin-Watson2

statistic indicates that the disturbances are positively serially correlated, so that the disturbance at

any time t is positively correlated with the disturbance at time t-1.  In later chapters we’ll show

how to model such residual serial correlation and exploit it for forecasting purposes, but for now

we’ll ignore it and focus only on the trend.12

The residual plot in Figure 15 makes clear what’s happening.  The linear trend is simply

inadequate, because the actual trend is nonlinear.  That’s one key reason why the residuals are so

highly serially correlated -- first the data are all above the linear trend, then below, and then

above.  Along with the residuals, we plot plus-or-minus one standard error of the regression, for

visual reference. 

Table 2 presents the results of fitting a quadratic trend model.  Both the linear and
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      The earlier caveat regarding the effects of serial correlation on inference applies,13

however.
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quadratic terms appear highly significant.   R  is now almost 1.  Figure 16 shows the residual13 2

plot, which now looks very nice, as the fitted nonlinear trend tracks the evolution of retail sales

well.  The residuals still display persistent dynamics (indicated as well by the still-low Durbin-

Watson statistic) but there’s little scope for explaining such dynamics with trend, because they’re

related to the business cycle, not the growth trend.

Now let’s estimate a different type of nonlinear trend model, the exponential trend.  First

we’ll do it by OLS regression of the log of retail sales on a constant and linear time trend variable. 

We show the estimation results and residual plot in Table 3 and Figure 17.  As with the quadratic

nonlinear trend, the exponential nonlinear trend model seems to fit well, apart from the low

Durbin-Watson statistic.

In sharp contrast to the results of fitting a linear trend to retail sales, which were poor, the

results of fitting a linear trend to the log of retail sales seem much improved.  But it’s hard to

compare the log-linear trend model to the linear and quadratic models because they’re in levels,

not logs, which renders diagnostic statistics like R  and the standard error of the regression2

incomparable.  One way around this problem is to estimate the exponential trend model directly in

levels, using nonlinear least squares.  In Table 4 and Figure 18 we show the nonlinear least

squares estimation results and residual plot for the exponential trend model.  The diagnostic

statistics and residual plot indicate that the exponential trend fits better than the linear but worse

than the quadratic.
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      It’s important that the exponential trend model be estimated in levels, in order to14

maintain comparability of the exponential trend model AIC and SIC with those of the other trend
models. 
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Thus far we’ve been informal in our comparison of the linear, quadratic and exponential

trend models for retail sales.  We’ve noticed, for example, that the quadratic trend seems to fit the

best.  The quadratic trend model, however, contains one more parameter than the other two, so

it’s not surprising that it fits a little better, and there’s no guarantee that its better fit on historical

data will translate into better out-of-sample forecasting performance.  (Recall the KISS principle.) 

To settle upon a final model, we examine the AIC or SIC, which are summarized in Table 5 for

the three trend models.   Both the AIC and SIC indicate that nonlinearity is important in the14

trend, as both rank the linear trend last.  Both, moreover, favor the quadratic trend model.  So

let’s use the quadratic trend model.

Figure 19 shows the history of retail sales, 1990.01-1993.12, together with out-of-sample

point and 95% interval extrapolation forecasts, 1994.01-1994.12.  The point forecasts look

reasonable.  The interval forecasts are computed under the (incorrect) assumption that the

deviation of retail sales from trend is random noise, which is why they’re of equal width

throughout.  Nevertheless, they look reasonable.

In Figure 20 we show the history of retail sales through 1993, the quadratic trend forecast

for 1994, and the realization for 1994.  The forecast is quite good, as the realization hugs the

forecasted trend line quite closely.  All of the realizations, moreover, fall inside the 95% forecast

interval.

For comparison, we examine the forecasting performance of a simple linear trend model. 



Fcst4-05-20

Copyright © F.X. Diebold.  All rights reserved.

Figure 21 presents the history of retail sales and the out-of-sample point and 95% interval

extrapolation forecasts for 1994.  The point forecasts look very strange.  The huge drop

forecasted relative to the historical sample path occurs because the linear trend is far below the

sample path by the end of the sample.  The confidence intervals are very wide, reflecting the large

standard error of the linear trend regression relative to the quadratic trend regression.

Finally, Figure 22 shows the history, the linear trend forecast for 1994, and the realization. 

The forecast is terrible -- far below the realization.  Even the very wide interval forecasts fail to

contain the realizations.  The reason for the failure of the linear trend forecast is that the forecasts

(point and interval) are computed under the assumption that the linear trend model is actually the

true DGP, whereas in fact the linear trend model is a very poor approximation to the trend in

retail sales.
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Exercises, Problems and Complements

1.  (Calculating forecasts from trend models) You work for the International Monetary Fund in

Washington DC, monitoring Singapore’s real consumption expenditures.  Using a sample of real

consumption data (measured in billions of 2005 Singapore dollars), , t = 1990:Q1, ..., 2006:Q4,

you estimate the linear consumption trend model, , where ,

obtaining the estimates , and .  Based upon your estimated trend

model, construct feasible point, interval and density forecasts for 2010:Q1.

2.  (Specifying and testing trend models) In 1965, Intel co-founder Gordon Moore predicted that

the number of transistors that one could place on a square-inch integrated circuit would double

every twelve months.

a.  What sort of trend is this?

b.  Given a monthly series containing the number of transistors per square inch for the

latest integrated circuit, how would you test Moore’s prediction?  How would you

test the currently accepted form of “Moore’s Law,” namely that the number of

transistors actually doubles every eighteen months?

3.  (Understanding model selection criteria) You are tracking and forecasting the earnings of a

new company developing and applying proprietary nano-technology.  The earnings are trending

upward.  You fit linear, quadratic, and exponential trend models, yielding sums of squared

residuals of 4352, 2791, and 2749, respectively.  Which trend model would you select, and why?

4.  (Mechanics of trend estimation and forecasting)  Obtain from the web an upward-trending

monthly series that interests you.  Choose your series such that it spans at least ten years, and
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such that it ends at the end of a year (i.e., in December).

a.  What is the series and why does it interest you?  Produce a time series plot of it. 

Discuss.

b.  Fit linear, quadratic and exponential trend models to your series.  Discuss the

associated diagnostic statistics and residual plots.

c.  Select a trend model using the AIC and using the SIC.  Do the selected models agree? 

If not, which do you prefer?

d.  Use your preferred model to forecast each of the twelve months of the next year. 

Discuss.

e.  The residuals from your fitted model are effectively a detrended version of your

original series.  Why?   Plot them and discuss.

5.  (Properties of polynomial trends)  Consider a sixth-order deterministic polynomial trend:

a.  How many local maxima or minima may such a trend display?

b.  Plot the trend for various values of the parameters to reveal some of the different

possible trend shapes.

c.  Is this an attractive trend model in general?  Why or why not?

d.  Fit the sixth-order polynomial trend model to the NYSE volume series.  How does it

perform in that particular case?

6.  (Specialized nonlinear trends)  The logistic trend is
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with 0<r<1.

a.  Display the trend shape for various a and b values.  When might such a trend shape be

useful?

b.  Can you think of other specialized situations in which other specialized trend shapes

might be useful?  Produce mathematical formulas for the additional specialized

trend shapes you suggest.

7.  (Moving average smoothing for trend estimation)  The trend regression technique is one way

to estimate and forecast trend.  Another way to estimate trend is by smoothing techniques, which

we briefly introduce here.  We’ll focus on three:  two-sided moving averages, one-sided moving

averages, and one-sided weighted moving averages.  Here we present them as ways to estimate

and examine the trend in a time series; later we’ll see how they can actually be used to forecast

time series.

Denote the original data by  and the smoothed data by .  Then the two-sided

moving average is  the one-sided moving average is 

and the one-sided weighted moving average is , where the  are weights and m is

an integer chosen by the user.  The “standard” one-sided moving average corresponds to a one-

sided weighted moving average with all weights equal to .

a.  For each of the smoothing techniques, discuss the role played by m.  What happens as

m gets very large?  Very small?  In what sense does m play a role similar to p, the
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order of a polynomial trend?

b.  If the original data runs from time 1 to time T, over what range can smoothed values

be produced using each of the three smoothing methods?  What are the

implications for “real-time” or “on-line” smoothing versus “ex post” or “off-line”

smoothing?

c.  You’ve been hired as a consultant by ICSB, a major international bank, to advise them

on trends in North American and European stock markets, and to help them

allocate their capital.  You have extracted from your database the recent history of

EUROStar, an index of eleven major European stock markets.  Smooth the

EUROStar data using equally-weighted one-sided and two-sided moving averages,

for a variety of m values, until you have found values of m that work well.  What

do we mean by “work well”?  Must the chosen value of m be the same for the one-

and two-sided smoothers?  For your chosen m values, plot the two-sided

smoothed series against the actual and plot the one-sided smoothed series against

the actual.  Do you notice any systematic difference in the relationship of the

smoothed to the actual series depending on whether you do a two-sided or one-

sided smooth?  Explain.

d.  Moving average procedures can also be used to detrend a series -- we simply subtract

the estimated trend from the series.  Sometimes, but not usually, it’s appropriate

and desirable to detrend a series before modeling and forecasting it.  Why might it

sometimes be appropriate?  Why is it not usually appropriate?
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      The MSE introduced earlier in the context of model selection is the mean of the in-15

sample residuals, as opposed to out-of-sample prediction errors.  The distinction is crucial.
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8.  (Bias corrections when forecasting from logarithmic models)

a.  In Chapter 3 we introduced squared error loss, .  A popular measure of

forecast accuracy is out-of-sample mean squared error,  .   The more15

accurate the forecast, the smaller is MSE.  Show that MSE is equal to the sum of

the variance of the error and the square of the mean error.

b.  A forecast is unbiased if the mean forecast error is zero.  Why might unbiased forecasts

be desirable?  Are they necessarily desirable? 

c.  Suppose that  is an unbiased forecast of .  Then  is

t+ha biased forecast of y .  More generally, if  is an unbiased forecast of

, then  is a biased forecast of , for the arbitrary nonlinear

function f.  Why?  (Hint:  Is the expected value of a nonlinear function of the

random variable the same as the nonlinear function of the expected value?)

d.  Various “corrections” for the bias in  have been proposed.  In practice,

however, bias corrections may increase the variance of the forecast error even if

they succeed in reducing bias.  Why?  (Hint:  In practice the corrections involve

estimated parameters.)

e.  In practice will bias corrections necessarily reduce the forecast MSE?  Why or why

not?

9.  (Model selection for long-horizon forecasting)  Suppose that you want to forecast monthly
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inventory of Lamborgini autos at an exclusive Manhattan dealership.

a.  Using the true data-generating process is best for forecasting at any horizon. 

Unfortunately, we never know the true data-generating process!  All our models

are approximations to the true but unknown data-generating process, in which case

the best forecasting model may change with the horizon.  Why?

b.  At what horizon are the forecasts generated by models selected by the AIC and SIC

likely to be most accurate?  Why?

c.  How might you proceed to select a 1-month-ahead forecasting model?  2-month-

ahead?  3-month-ahead?  4-month-ahead?

d.  What are the implications of your answer for construction of an extrapolation forecast,

at horizons 1-month-ahead through 4-months-ahead?

e.  In constructing our extrapolation forecasts for retail sales, we used the AIC and SIC to

select one model, which we then used to forecast all horizons.  Why do you think

we didn’t adopt a more sophisticated strategy?

10.  (The variety of “information criteria” reported across software packages)  Some authors, and

software packages, examine and report the logarithms of the AIC and SIC,
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The practice is so common that log(AIC) and log(SIC) are often simply called the “AIC” and

“SIC.”  AIC and SIC must be greater than zero, so log(AIC) and log(SIC) are always well-

defined and can take on any real value.  Other authors and packages use other variants, based for

example on the value of the maximized likelihood or log likelihood function.  Some software

packages have even changed definitions of AIC and SIC across releases!  (Eviews is one.)  The

important insight, however, is that although these variations will of course change the numerical

values of AIC and SIC produced by your computer, they will not change the rankings of models

under the various criteria.  Consider, for example, selecting among three models.  If

, then it must be true as well that , so we would

select model 1 regardless of the “definition” of the information criterion used.



Fcst4-05-28

Copyright © F.X. Diebold.  All rights reserved.

Bibliographical and Computational Notes

The AIC and SIC trace at least to Akaike (1974) and Schwarz (1978).  Granger, King and

White (1995) provide insightful discussion of consistency of model selection criteria, and the key

(and difficult) reference on efficiency is Shibata (1980).  Engle and Brown (1986) find that criteria

with comparatively harsh degrees-of-freedom penalties (e.g., the SIC) select the best forecasting

models.

Kennedy (1992) reviews a number of corrections for the bias in .

A number of authors have investigated the use of multiple models for multiple horizons,

including Findley (1983) and Tiao and Tsay (1994).  Findley (1985) develops criteria for selection

of multi-step-ahead forecasting models.
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Concepts for Review

Trend

Deterministic Trend

Stochastic Trend

Time Dummy

Regression Intercept

Regression Slope

Quadratic Trend

Exponential Trend

Log Linear Trend

Least Squares Regression

Argmin

Model Selection

Mean Squared Error

Sum of Squared Residuals

In-Sample Overfitting

Data Mining

Out-of-Sample 1-Step-Ahead Prediction Error Variance

Adjusted 
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Akaike Information Criterion (AIC)

Schwarz Information Criterion (SIC)

Consistency

Data-Generating Process ( DGP)

Asymptotic Efficiency

Residual Serial Correlation

Polynomial Trend

Logistic Trend

Smoothing

Two-Sided Moving Average

One-Sided Moving Average

One-Sided Weighted Moving Average

Real-Time, or On-Line, Smoothing

Ex  Post, or Off-Line, Smoothing

Detrending

Bias Correction
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Figure 1
Labor Force Participation Rate
Females
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Figure 2
Increasing and Decreasing Linear Trends
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Figure 3
Labor Force Participation Rate
Males
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Figure 4
Linear Trend
Female Labor Force Participation Rate
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Figure 5
Linear Trend
Male Labor Force Participation Rate
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Figure 6
Volume on the New York Stock Exchange
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Figure 7
Various Shapes of Quadratic Trends
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Figure 8
Quadratic Trend
Volume on the New York Stock Exchange
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Figure 9
Log Volume on the New York Stock Exchange
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Figure 10
Various Shapes of Exponential Trends
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Figure 11
Linear Trend
Log Volume on the New York Stock Exchange
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Figure 12
Exponential Trend
Volume on the New York Stock Exchange
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Figure 13
Degrees-of-Freedom Penalties
Various Model Selection Criteria
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Figure 14
Retail Sales
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Table 1
Retail Sales
Linear Trend Regression

Dependent Variable is RTRR
Sample: 1955:01 1993:12
Included observations: 468

Variable Coefficient Std. Error T-Statistic Prob.  

C -16391.25  1469.177 -11.15676  0.0000
TIME  349.7731  5.428670  64.43073  0.0000

R-squared  0.899076     Mean dependent var  65630.56
Adjusted R-squared  0.898859     S.D. dependent var  49889.26
S.E. of regression  15866.12     Akaike info criterion  19.34815
Sum squared resid  1.17E+11     Schwarz criterion  19.36587
Log likelihood -5189.529     F-statistic  4151.319
Durbin-Watson stat  0.004682     Prob(F-statistic)  0.000000
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Figure 15
Retail Sales
Linear Trend Residual Plot
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Table 2
Retail Sales
Quadratic Trend Regression

Dependent Variable is RTRR
Sample: 1955:01 1993:12
Included observations: 468

Variable Coefficient Std. Error T-Statistic Prob.  

C  18708.70  379.9566  49.23905  0.0000
TIME -98.31130  3.741388 -26.27669  0.0000
TIME2  0.955404  0.007725  123.6754  0.0000

R-squared  0.997022 Mean dependent var  65630.56
Adjusted R-squared  0.997010 S.D. dependent var  49889.26
S.E. of regression  2728.205     Akaike info criterion  15.82919
Sum squared resid  3.46E+09     Schwarz criterion  15.85578
Log likelihood -4365.093     F-statistic  77848.80
Durbin-Watson stat  0.151089     Prob(F-statistic)  0.000000
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Figure 16
Retail Sales
Quadratic Trend Residual Plot
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Table 3
Retail Sales
Log Linear Trend Regression

Dependent Variable is LRTRR
Sample: 1955:01 1993:12
Included observations: 468

Variable Coefficient Std. Error T-Statistic Prob.  

C  9.389975  0.008508  1103.684  0.0000
TIME  0.005931  3.14E-05  188.6541  0.0000

R-squared  0.987076     Mean dependent var  10.78072
Adjusted R-squared  0.987048     S.D. dependent var  0.807325
S.E. of regression  0.091879     Akaike info criterion -4.770302
Sum squared resid  3.933853     Schwarz criterion -4.752573
Log likelihood  454.1874     F-statistic  35590.36
Durbin-Watson stat  0.019949     Prob(F-statistic)  0.000000
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Figure 17
Retail Sales
Log Linear Trend Residual Plot
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Table 4
Retail Sales
Exponential Trend Regression

Dependent Variable is RTRR
Sample: 1955:01 1993:12
Included observations: 468
Convergence achieved after 1 iterations
RTRR=C(1)*EXP(C(2)*TIME)

Coefficient Std. Error T-Statistic Prob.  

C(1)  11967.80  177.9598  67.25003  0.0000
C(2)  0.005944  3.77E-05  157.7469  0.0000

R-squared   0.988796     Mean dependent var 65630.56
Adjusted R-squared  0.988772     S.D. dependent var 49889.26
S.E. of regression  5286.406     Akaike info criterion 17.15005
Sum squared resid  1.30E+10     Schwarz criterion 17.16778
Log likelihood -4675.175     F-statistic  41126.02
Durbin-Watson stat  0.040527     Prob(F-statistic) 0.000000
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Figure 18
Retail Sales
Exponential Trend Residual Plot
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Table 5
Model Selection Criteria
Linear, Quadratic and Exponential Trend Models

Linear Trend Quadratic Trend Exponential Trend

AIC 19.35 15.83 17.15

SIC 19.37 15.86 17.17
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Figure 19
Retail Sales
History, 1990.01 - 1993.12
Quadratic Trend Forecast, 1994.01-1994.12
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Figure 20
Retail Sales
History, 1990.01 - 1993.12
Quadratic Trend Forecast and Realization, 1994.01-1994.12
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Figure 21
Retail Sales
History, 1990.01 - 1993.12
Linear Trend Forecast, 1994.01-1994.12
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Figure 22
Retail Sales
History, 1990.01 - 1993.12
Linear Trend Forecast and Realization, 1994.01-1994.12



 Note therefore that seasonality is impossible, and therefore not an issue, in data recorded1

once per year, or less often than once per year.
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Chapter 6

Modeling and Forecasting Seasonality

 1.  The Nature and Sources of Seasonality

In the last chapter we focused on the trends; now we’ll focus on seasonality.  A seasonal

pattern is one that repeats itself every year.   The annual repetition can be exact, in which case we1

speak of deterministic seasonality, or approximate, in which case we speak of stochastic

seasonality.  Just as we focused exclusively on deterministic trend in Chapter 5, reserving

stochastic trend for subsequent treatment, so shall we focus exclusively on deterministic

seasonality here.

Seasonality arises from links of technologies, preferences and institutions to the calendar. 

The weather (e.g., daily high temperature in Tokyo) is a trivial but very important seasonal series,

as it’s always hotter in the summer than in the winter.  Any technology that involves the weather,

such as production of agricultural commodities, is likely to be seasonal as well.

Preferences may also be linked to the calendar.  Consider, for example, gasoline sales.  In

Figure 1 we show monthly U.S. current-dollar gasoline sales, 1980.01 - 1992.01.  People want to

do more vacation travel in the summer, which tends to increase both the price and quantity of

summertime gasoline sales, both of which feed into higher current-dollar sales.

Finally, social institutions that are linked to the calendar, such as holidays, are responsible

for seasonal variation in a variety of series.  Purchases of retail goods skyrocket, for example,
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every Christmas season.  In Figure 2, we plot monthly U.S. current-dollar liquor sales, 1980.01 -

1992.01, which are very high in November and December.  In contrast, sales of durable goods fall

in December, as Christmas purchases tend to be nondurables.  This emerges clearly in Figure 3, in

which we show monthly U.S. current-dollar durable goods sales, 1980.01 - 1992.01.  

You might imagine that, although certain series are seasonal for obvious reasons,

seasonality is nevertheless uncommon.  On the contrary, and perhaps surprisingly, seasonality is

pervasive in business and economics.  Many industrialized economies, for example, expand briskly

every fourth quarter and contract every first quarter.

One way to deal with seasonality in a series is simply to remove it, and then to model and

forecast the seasonally adjusted series.   This strategy is perhaps appropriate in certain situations,2

such as when interest centers explicitly on forecasting nonseasonal fluctuations, as is often the

case in macroeconomics.  Seasonal adjustment is often inappropriate in business forecasting

situations, however, precisely because interest typically centers on forecasting all the variation in

a series, not just the nonseasonal part.  If seasonality is responsible for a large part of the variation

in a series of interest, the last thing a forecaster wants to do is discard  it and pretend it isn’t there.

2.  Modeling Seasonality

A key technique for modeling seasonality is regression on seasonal dummies.  Let s be the

number of seasons in a year.  Normally we’d think of four seasons in a year, but that notion is too

restrictive for our purposes.  Instead, think of s as the number of observations on a series in each

year.  Thus s = 4 if we have quarterly data, s=12 if we have monthly data, s=52 if we have weekly
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data, and so forth.

Now let’s construct seasonal dummy variables, which indicate which season we’re in.  If,

for example, there are four seasons, we create:

1D  = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, ...)

2D  = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, ...)

3D  = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, ...)

4D  = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, ...).

1 2D  indicates whether we’re in the first quarter (it’s 1 in the first quarter and zero otherwise), D

indicates whether we’re in the second quarter (it’s 1 in the second quarter and zero otherwise),

and so on.  At any given time, we can be in only one of the four quarters, so one seasonal dummy

is 1, and all others are zero.

The pure seasonal dummy model is 

Effectively, we’re just regressing on an intercept, but we allow for a different intercept in each

season.  Those different intercepts, the , are called the seasonal factors; they summarize the

seasonal pattern over the year.  In the absence of seasonality, the  are all the same, so we can

drop all the seasonal dummies and instead simply include an intercept in the usual way.

Instead of including a full set of s seasonal dummies, we can include any s-1 seasonal

dummies and an intercept.  Then the constant term is the intercept for the omitted season, and the

coefficients on the seasonal dummies give the seasonal increase or decrease relative to the omitted



Fcst4-06-4

 For simplicity we have included only a linear trend, but more complicated models of3

trend, such as quadratic, exponential or logistic could of course be used.
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season.  In no case, however, should we include s seasonal dummies and an intercept.  Including

an intercept is equivalent to including a variable in the regression whose value is always one, but

note that the full set of s seasonal dummies sums to a variable whose value is always one.  Thus,

inclusion of an intercept and a full set of seasonal dummies produces perfect multicollinearity, and

your computer will scream at you if you run such a regression.  (Try it!) 

Trend may be included as well, in which case the model is  3

In fact, you can think of what we’re doing in this chapter as a generalization of what we did in the

last, in which we focused exclusively on trend.  We still want to account for trend, if it’s present,

but we want to expand the model so that we can account for seasonality as well.

The idea of seasonality may be extended to allow for more general calendar effects. 

"Standard" seasonality is just one type of calendar effect.  Two additional important calendar

effects are holiday variation and trading-day variation.

Holiday variation refers to the fact that some holidays' dates change over time.  That is,

although they arrive at approximately the same time each year, the exact dates differ.  Easter is a

common example.  Because the behavior of many series, such as sales, shipments, inventories,

hours worked, and so on, depends in part on the timing of such holidays, we may want to keep

track of them in our forecasting models.  As with seasonality, holiday effects may be handled with
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dummy variables.  In a monthly model, for example, in addition to a full set of seasonal dummies,

we might include an "Easter dummy," which is 1 if the month contains Easter and 0 otherwise.

Trading-day variation refers to the fact that different months contain different numbers of

trading days or business days, which is an important consideration when modeling and forecasting

certain series.  For example, in a monthly forecasting model of volume traded on the London

Stock Exchange, in addition to a full set of seasonal dummies, we might include a trading day

variable, whose value each month is the number of trading days that month.

Allowing for the possibility of holiday or trading day variation gives the complete model

1where the HDVs are the relevant holiday variables ( there are v  of them) and the TDVs are the

2 2relevant trading day variables (here we’ve allowed for v  of them, but in most applications v =1

will be adequate).  This is just a standard regression equation and can be estimated by ordinary

least squares.

3.  Forecasting Seasonal Series

Now consider constructing an h-step-ahead point forecast, , at time T.  As with the

pure trend models discussed in the previous chapter, there’s no problem of forecasting the right-

hand side variables, due to the special (perfectly predictable) nature of trend and seasonal

variables, so point forecasts are easy to generate.

The full model is 
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so that at time T+h,

As with the pure trend model of Chapter 5, we project the right side of the equation on what’s

known at time T (that is, the time-T information set, ) to obtain the forecast

As always, we make this point forecast operational by replacing unknown parameters with

estimates,

To form an interval forecast we proceed precisely as in pure trend models we studied

earlier.  We assume that the regression disturbance is normally distributed, in which case a 95%

interval forecast ignoring parameter estimation uncertainty is  where  is the

standard deviation of the regression disturbance.  To make the interval forecast operational, we

use  where  is the standard error of the regression.
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To form a density forecast, we again assume that the trend regression disturbance is

normally distributed.  Then, ignoring parameter estimation uncertainty, the density forecast is

 where  is the standard deviation of the disturbance in the trend regression.  The

operational density forecast is then 

4.  Application:  Forecasting Housing Starts

We’ll use the seasonal modeling techniques that we’ve developed in this chapter to build a

forecasting model for housing starts.  Housing starts are seasonal because it’s usually preferable

to start houses in the spring, so that they’re completed before winter arrives.  We have monthly

data on U.S. housing starts; we’ll use the 1946.01-1993.12 period for estimation and the 1994.01-

1994.11 period for out-of-sample forecasting.  We show the entire series in Figure 4, and we

zoom in on the 1990.01-1994.11 period in Figure 5 in order to reveal the seasonal pattern in

better detail.

The figures reveal that there is no trend, so we’ll work with the pure seasonal model,

Table 1 shows the estimation results.  The twelve seasonal dummies account for more than a third

of the variation in housing starts, as R =.38.  At least some of the remaining variation is cyclical,2

which the model is not designed to capture.  (Note the very low Durbin-Watson statistic.)

The residual plot in Figure 6 makes clear the strengths and limitations of the model.  First

compare the actual and fitted values.  The fitted values go through the same seasonal pattern

every year -- there’s nothing in the model other than deterministic seasonal dummies -- but that
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rigid seasonal pattern picks up a lot of the variation in housing starts.  It doesn’t pick up all of the

variation, however, as evidenced by the serial correlation that’s apparent in the residuals.  Note

the dips in the residuals, for example, in recessions (e.g., 1990, 1982, 1980, and 1975), and the

peaks in booms.

The estimated seasonal factors are just the twelve estimated coefficients on the seasonal

dummies; we graph them in Figure 7.  The seasonal effects are very low in January and February,

and then rise quickly and peak in May, after which they decline, at first slowly and then abruptly in

November and December.

In Figure 8 we see the history of housing starts through 1993, together with the out-of-

sample point and 95% interval extrapolation forecasts for the first eleven months of 1994.  The

forecasts look reasonable, as the model has evidently done a good job of capturing the seasonal

pattern.  The forecast intervals are quite wide, however, reflecting the fact that the seasonal

effects captured by the forecasting model are responsible for only about a third of the variation in

the variable being forecast.

In Figure 9, we include the 1994 realization.  The forecast appears highly accurate, as the

realization and forecast are quite close throughout.  Moreover, the realization is everywhere well

within the 95% interval.
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Exercises, Problems and Complements

1.  (Log transformations in seasonal models)  Just as log transformations were useful in trend

models to allow for nonlinearity, so too are they useful in seasonal models, although for a

somewhat different purpose:  stabilization of variance.  Often log transformations stabilize

seasonal patterns whose variance is growing over time.  Explain and illustrate.

2.  (Seasonal adjustment)  Just as we sometimes want to remove the trend from a series,

sometimes we want to seasonally adjust a series before modeling and forecasting it.  Seasonal

adjustment may be done with moving average methods analogous to those used for detrending in

Chapter 5, or with the dummy variable methods discussed in this chapter, or with sophisticated

hybrid methods like the X-11 procedure developed at the U.S. Census Bureau.

a.  Discuss in detail how you’d use dummy variable regression methods to seasonally

adjust a series.  (Hint:  the seasonally adjusted series is closely related to the

residual from the seasonal dummy variable regression.) 

b.  Seasonally adjust the housing starts series using dummy variable regression.  Discuss

the patterns present and absent from the seasonally adjusted series.

c.  Search the Web (or the library) for information on the latest U.S. Census Bureau

seasonal adjustment procedure, and report what you learned.

3.  (Selecting forecasting models involving calendar effects)  You’re sure that a series you want to

forecast is trending, and that a linear trend is adequate, but you’re not sure whether seasonality is

important.  To be safe, you fit a forecasting model with both trend and seasonal dummies,
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a.  The hypothesis of no seasonality, in which case you could drop the seasonal dummies,

corresponds to equal seasonal coefficients across seasons, which is a set of s-1

linear restrictions:

How would you perform an F test of the hypothesis?  What assumptions are you

implicitly making about the regression’s disturbance term?

b.  Alternatively, how would you use forecast model selection criteria to decide whether

or not to include the seasonal dummies?

c.  What would you do in the event that the results of the  “hypothesis testing” and “model

selection” approaches disagree?

d.  How, if at all, would your answers change if instead of considering whether to include

seasonal dummies you were considering whether to include holiday dummies? 

Trading day dummies?

4.  (Testing for seasonality) Using the housing starts data:

a.  As in the chapter, construct and estimate a model with a full set of seasonal dummies.

b.  Test the hypothesis of no seasonal variation.  Discuss your results.

c.  Test for the equality of the coefficients on March and November and the coefficients on
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all the months in between and construct a model that uses three dummy variables,

one for December, January, and February, one for March and November, and one

for the remaining months.

5.  (Seasonal regressions with an intercept and s-1 seasonal dummies)  Reestimate the housing

starts model using an intercept and eleven seasonal dummies, rather than the full set of seasonal

dummies as in the text.  Compare and contrast your results with those reported in the text.  What

is the interpretation of the intercept?  What are the interpretations of the coefficients on the eleven

included seasonal dummies?  Does it matter which month’s dummy you drop?

6.  (Applied trend and seasonal modeling)  Nile.com, a successful on-line bookseller, monitors and

forecasts the number of “hits” per day to its web page.  You have daily hits data for 1/1/98

through 9/28/98.

a.  Fit and assess the standard linear, quadratic, and log linear trend models.

b.  For a few contiguous days roughly in late April and early May, hits were much higher

than usual during a big sale.  Do you find evidence of a corresponding group of

outliers in the residuals from your trend models?  Do they influence your trend

estimates much?  How should you treat them?

c.  Model and assess the significance of day-of-week effects in Nile.com web page hits.

d.  Select a final model, consisting only of trend and seasonal components, to use for

forecasting.

e.  Use your model to forecast Nile.com hits through the end of 1998.

7. (Periodic models) We introduced the seasonal dummy model as a natural and simple method
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for generalizing a simple “mean plus noise” model,

to allow the mean to vary with the seasons,

More generally, we can also allow the coefficients of richer models to vary with the seasons, as

for example when we move from the fixed-coefficient regression model,

to the model,

This model, which permits not only a seasonally varying intercept but also a seasonally varying

slope, is an example of a “periodic regression model.”  The word “periodic” refers to the

coefficients, which vary regularly with a fixed seasonal periodicity.

8.  (Interpreting dummy variables) You fit a purely seasonal model with a full set of standard

monthly dummy variables to a monthly series of employee hours worked.  Discuss how the

estimated dummy variable coefficients  would change if you changed the first dummy

variable  (with all the other dummy variables remaining the same) to:

a.  
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b.  

c.  .

9.  (Constructing seasonal models) Describe how you would construct a purely seasonal model

for the following monthly series.  In particular, what dummy variable(s) would you use to capture

the relevant effects?

a.  A sporting goods store finds that detrended monthly sales are roughly the same for

each month in a given three-month season.  For example, sales are similar in the

winter months of January, February and March, in the spring months of April, May

and June, and so on.

b.  A campus bookstore finds that detrended sales are roughly the same for all first, all

second, all third, and all fourth months of each trimester.  For example, sales are

similar in January, May, and September, the first months of the first, second, and

third trimesters, respectively.

c.  A Christmas ornament store is only open in November and December, so sales are zero

in all other months.

10.  (Calendar effects) You run a large catering firm, specializing in Sunday brunches and

weddings.  You model the firm’s monthly income as , where y is

monthly income, and S and W are calendar effect variables indicating the number of Sundays and

weddings in a month.

a.  What are the units of , , and ?

b.  How could you estimate the average income the firm receives per wedding?
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c.  Over the past thirty years, you have regularly increased your prices to keep pace with

inflation.  How would you modify the model to account for the effects of such

increases?
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Bibliographical and Computational Notes

Nerlove et al. (1979), Hylleberg (1986), and Ghysels and Osborne (2001) discuss

seasonality as relevant for forecasting (and much else).  Franses and Paap (2004) provide a

detailed overview of periodic time series models.
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Concepts for Review

Seasonality

Deterministic Seasonality

Stochastic Seasonality

Seasonally-Adjusted Time Series

Seasonal Adjustment

Nonseasonal Fluctuations

Regression on Seasonal Dummies

Seasonal Dummy Variables

Calendar Effect

Holiday Variation

Trading-Day Variation

Stabilization of Variances

Time-Varying Parameters

Periodic Models
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Figure 1
Gasoline Sales
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Figure 2
Liquor Sales
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Figure 3
Durable Goods Sales
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Figure 4
Housing Starts, 1946.01 - 1994.11
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Figure 5
Housing Starts, 1990.01 - 1994.11
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Table 1
Regression Results

Seasonal Dummy Variable Model
Housing Starts

LS // Dependent Variable is STARTS
Sample: 1946:01 1993:12
Included observations: 576

Variable Coefficient Std. Error t-Statistic Prob.  

D1 86.50417  4.029055  21.47009  0.0000
D2 89.50417  4.029055  22.21468  0.0000
D3  122.8833  4.029055  30.49929  0.0000
D4 142.1687  4.029055  35.28588  0.0000
D5  147.5000  4.029055  36.60908  0.0000
D6  145.9979  4.029055  36.23627  0.0000
D7  139.1125  4.029055  34.52733  0.0000
D8  138.4167  4.029055  34.35462  0.0000
D9  130.5625  4.029055  32.40524  0.0000
D10  134.0917  4.029055  33.28117  0.0000
D11  111.8333  4.029055  27.75671  0.0000
D12  92.15833  4.029055  22.87344  0.0000

R-squared  0.383780 Mean dependent var 123.3944
Adjusted R-squared  0.371762 S.D. dependent var 35.21775
S.E. of regression  27.91411     Akaike info criterion 6.678878
Sum squared resid  439467.5     Schwarz criterion 6.769630
Log likelihood -2728.825     F-statistic  31.93250
Durbin-Watson stat  0.154140     Prob(F-statistic) 0.000000
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Figure 6
Residual Plot
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Figure 7
Estimated Seasonal Factors
Housing Starts
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Figure 8
Housing Starts
History, 1990.01-1993.12
Forecast, 1994.01-1994.11
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Figure 9
Housing Starts
History, 1990.01-1993.12
Forecast and Realization, 1994.01-1994.11
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Chapter 7

Characterizing Cycles

We’ve already built forecasting models with trend and seasonal components.  In this

chapter, as well as the next two, we consider a crucial third component, cycles.  When you think

of a “cycle,” you probably think of the sort of rigid up-and-down pattern depicted in Figure 1. 

Such cycles can sometimes arise, but cyclical fluctuations in business, finance, economics and

government are typically much less rigid.  In fact, when we speak of cycles, we have in mind a

much more general, all-encompassing, notion of cyclicality:  any sort of dynamics not captured by

trends or seasonals.

Cycles, according to our broad interpretation, may display the sort of back-and-forth

movement characterized in Figure 1, but they don't have to.  All we require is that there be some

dynamics, some persistence, some way in which the present is linked to the past, and the future to

the present.  Cycles are present in most of the series that concern us, and it's crucial that we know

how to model and forecast them, because their history conveys information regarding their future.

Trend and seasonal dynamics are simple, so we can capture them with simple models. 

Cyclical dynamics, however, are more complicated.  Because of the wide variety of cyclical

patterns, the sorts of models we need are substantially more involved.  Thus we split the

discussion into three parts.  Here in Chapter 7 we develop methods for characterizing cycles, in

Chapter 8 we discuss models of cycles, and following that, in Chapter 9, we show how to use

those models to forecast cycles.  All of the material is crucial to a real understanding of

forecasting and forecasting models, and it’s also a bit difficult the first time around because it’s
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unavoidably rather mathematical, so careful, systematic study is required.  The payoff will be large

when we arrive at Chapter 10, in which we assemble and apply extensively the ideas for modeling

and forecasting trends, seasonals and cycles developed in Chapters 5-9.

1.  Covariance Stationary Time Series

A realization of a time series is an ordered set, .  Typically

the observations are ordered in time -- hence the name time series -- but they don’t have to be. 

We could, for example, examine a spatial series, such as office space rental rates as we move

along a line from a point in midtown Manhattan to a point in the New York suburbs thirty miles

away.  But the most important case for forecasting, by far, involves observations ordered in time,

so that’s what we’ll stress.

In theory, a time series realization begins in the infinite past and continues into the infinite

future.  This perspective may seem abstract and of limited practical applicability, but it will be

useful in deriving certain very important properties of the forecasting models we’ll be using

1shortly.  In practice, of course, the data we observe is just a finite subset of a realization, {y , ...,

Ty }, called a sample path.

Shortly we’ll be building forecasting models for cyclical time series.  If the underlying

probabilistic structure of the series were changing over time, we’d be doomed -- there would be

no way to predict the future accurately on the basis of the past, because the laws governing the

future would differ from those governing the past.  If we want to forecast a series, at a minimum

we’d like its mean and its covariance structure (that is, the covariances between current and past

values) to be stable over time, in which case we say that the series is covariance stationary.
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Let’s discuss covariance stationarity in greater depth.  The first requirement for a series to

be covariance stationary is that the mean of the series be stable over time.  The mean of the series

at time t is

If the mean is stable over time, as required by covariance stationarity, then we can write

for all t.  Because the mean is constant over time, there’s no need to put a time subscript on it.

The second requirement for a series to be covariance stationary is that its covariance

structure be stable over time.  Quantifying stability of the covariance structure is a bit tricky, but

tremendously important, and we do it using the autocovariance function.  The autocovariance at

displacement J is just the covariance between  and .  It will of course depend on J, and it

may also depend on t, so in general we write

If the covariance structure is stable over time, as required by covariance stationarity, then the

autocovariances depend only on displacement, J, not on time, t, and we write 

for all t.

The autocovariance function is important because it provides a basic summary of cyclical

dynamics in a covariance stationary series.  By examining the autocovariance structure of a series,
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we learn about its dynamic behavior.  We graph and examine the autocovariances as a function of

J.  Note that the autocovariance function is symmetric; that is,

for all J.  Typically, we'll consider only non-negative values of J.  Symmetry reflects the fact that

the autocovariance of a covariance stationary series depends only on displacement; it doesn’t

matter whether we go forward or backward.  Note also that 

There is one more technical requirement of covariance stationarity:  we require that the

variance of the series -- the autocovariance at displacement 0,  -- be finite.  It can be shown

that no autocovariance can be larger in absolute value than , so if , then so too are all

the other autocovariances.

It may seem that the requirements for covariance stationarity are quite stringent, which

would bode poorly for our forecasting models, almost all of which invoke covariance stationarity

in one way or another.  It is certainly true that many economic, business, financial and government

series are not covariance stationary.  An upward trend, for example, corresponds to a steadily

increasing mean, and seasonality corresponds to means that vary with the season, both of which

are violations of covariance stationarity.

But appearances can be deceptive.  Although many series are not covariance stationary, it

is frequently possible to work with models that give special treatment to nonstationary

components such as trend and seasonality, so that the cyclical component that’s left over is likely

to be covariance stationary.  We’ll often adopt that strategy.  Alternatively, simple
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weak stationarity.
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transformations often appear to transform nonstationary series to covariance stationarity.  For

example, many series that are clearly nonstationary in levels appear covariance stationary in

growth rates.

In addition, note that although covariance stationarity requires means and covariances to

be stable and finite, it places no restrictions on other aspects of the distribution of the series, such

as skewness and kurtosis.   The upshot is simple:  whether we work directly in levels and include1

special components for the nonstationary elements of our models, or we work on transformed

data such as growth rates, the covariance stationarity assumption is not as unrealistic as it may

seem.

Recall that the correlation between two random variables x and y is defined by

That is, the correlation is simply the covariance, “normalized,” or “standardized,” by the product

of the standard deviations of x and y.  Both the correlation and the covariance are measures of

linear association between two random variables.  The correlation is often more informative and

easily interpreted, however, because the construction of the correlation coefficient guarantees that

, whereas the covariance between the same two random variables may take

any value.  The correlation, moreover, does not depend on the units in which x and y are

measured, whereas the covariance does.  Thus, for example, if x and y have a covariance of ten
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infinite sample of data at our disposal, so that the parameter estimates in the regression are not
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experiment just described is a population regression.
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million, they're not necessarily very strongly associated, whereas if they have a correlation of .95,

it is unambiguously clear that they are very strongly associated.

In light of the superior interpretability of correlations as compared to covariances, we

often work with the correlation, rather than the covariance, between  and .  That is, we

work with the autocorrelation function, D(J), rather than the autocovariance function, ((J).  The

autocorrelation function is obtained by dividing the autocovariance function by the variance,

The formula for the autocorrelation is just the usual correlation formula, specialized to the

correlation between  and .  To see why, note that the variance of  is , and by

covariance stationarity, the variance of y at any other time  is also .  Thus,

as claimed.  Note that we always have , because any series is perfectly

correlated with itself.  Thus the autocorrelation at displacement 0 isn’t of interest; rather, only the

autocorrelations beyond displacement 0 inform us about a series’ dynamic structure.

Finally, the partial autocorrelation function, p(J), is sometimes useful.  p(J) is just the

t-J t t-1 t-Jcoefficient of y  in a population linear regression of y  on y , ..., y .   We call such regressions2
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displacement 0 is always one and is therefore uninformative and uninteresting.  Thus, when we
graph the autocorrelation and partial autocorrelation functions, we’ll begin at displacement 1
rather than displacement 0.
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autoregressions, because the variable is regressed on lagged values of itself.  It’s easy to see that

the autocorrelations and partial autocorrelations, although related, differ in an important way. 

The autocorrelations are just the “simple” or “regular” correlations between   and .  The

partial autocorrelations, on the other hand,  measure the association between  and  after

controlling for the effects of  , ..., ; that is, they measure the partial correlation between 

 and .

As with the autocorrelations, we often graph the partial autocorrelations as a function of

 and examine their qualitative shape, which we’ll do soon.  Like the autocorrelation function,

the partial autocorrelation function provides a summary of a series’ dynamics, but as we’ll see, it

does so in a different way.3

All of the covariance stationary processes that we will study subsequently have

autocorrelation and partial autocorrelation functions that approach zero, one way or another, as

the displacement gets large.  In Figure 2 we show an autocorrelation function that displays

gradual one-sided damping, and in Figure 3 we show a constant autocorrelation function; the

latter could not be the autocorrelation function of a stationary process, whose autocorrelation

function must eventually decay.  The precise decay patterns of autocorrelations and partial

autocorrelations of a covariance stationary series, however, depend on the specifics of the series,

as we’ll see in detail in the next chapter.  In Figure 4, for example, we show an autocorrelation
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spectrum, in equal amounts.  We can think of white noise as being composed of a wide variety of
cycles of differing periodicities, in equal amounts. 
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function that displays damped oscillation -- the autocorrelations are positive at first, then become

negative for a while, then positive again, and so on, while continuously getting smaller in absolute

value.  Finally, in Figure 5 we show an autocorrelation function that differs in the way it

approaches zero -- the autocorrelations drop abruptly to zero beyond a certain displacement.

2.  White Noise

In this section, and throughout the next chapter, we’ll study the population properties of

certain time series models, or time series processes, which are very important for forecasting. 

Before we estimate time series forecasting models, we need to understand their population

properties, assuming that the postulated model is true.  The simplest of all such time series

processes is the fundamental building block from which all others are constructed.  In fact, it’s so

important that we introduce it now.  We use y to denote the observed series of interest.  Suppose

that

where the “shock,” , is uncorrelated over time.  We say that , and hence , is serially

uncorrelated.  Throughout, unless explicitly stated otherwise, we assume that .  Such a

process, with zero mean, constant variance, and no serial correlation, is called zero-mean white

noise, or simply white noise.   Sometimes for short we write4
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 Recall that zero correlation implies independence only in the normal case.5

 Another name for independent white noise is strong white noise, in contrast to standard6

serially uncorrelated weak white noise.

 Karl Friedrich Gauss, one of the greatest mathematicians of all time, discovered the7

normal distribution some 200 years ago; hence the adjective “Gaussian.”
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and hence

Note that, although  and hence  are serially uncorrelated, they are not necessarily serially

independent, because they are not necessarily normally distributed.   If in addition to being serially5

uncorrelated, y is serially independent, then we say that y is independent white noise.   We write6

and we say that “y is independently and identically distributed with zero mean and constant

variance.”  If y is serially uncorrelated and normally distributed, then it follows that y is also

serially independent, and we say that y is normal white noise, or Gaussian white noise.   We write7

We read “y is independently and identically distributed as normal, with zero mean and constant

variance,” or simply “y is Gaussian white noise.”  In Figure 6 we show a sample path of Gaussian

white noise, of length T=150, simulated on a computer.  There are no patterns of any kind in the

series due to the independence over time.



Fcst4-07-10

 Recall that .8

Copyright © F.X. Diebold.  All rights reserved.

You’re already familiar with white noise, although you may not realize it.  Recall that the

disturbance in a regression model is typically assumed to be white noise of one sort or another. 

There’s a subtle difference here, however.  Regression disturbances are not observable, whereas

we’re working with an observed series.  Later, however, we’ll see how all of our models for

observed series can be used to model unobserved variables such as regression disturbances.

Let’s characterize the dynamic stochastic structure of white noise, .  By

construction the unconditional mean of y is

and the unconditional variance of y is

Note that the unconditional mean and variance are constant.  In fact, the unconditional mean and

variance must be constant for any covariance stationary process.  The reason is that constancy of

the unconditional mean was our first explicit requirement of covariance stationarity, and that

constancy of the unconditional variance follows implicitly from the second requirement of

covariance stationarity, that the autocovariances depend only on displacement, not on time.8

To understand fully the linear dynamic structure of a covariance stationary time series

process, we need to compute and examine its mean and its autocovariance function.  For white

noise, we’ve already computed the mean and the variance, which is the autocovariance at

displacement 0.  We have yet to compute the rest of the autocovariance function; fortunately,

however, it’s very simple.  Because white noise is, by definition, uncorrelated over time, all the
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autocorrelations are proportional to the autocovariances.
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autocovariances, and hence all the autocorrelations, are zero beyond displacement 0.   Formally,9

then, the autocovariance function for a white noise process is

and the autocorrelation function for a white noise process is

In Figure 7 we plot the white noise autocorrelation function.

Finally, consider the partial autocorrelation function for a white noise series.  For the same

reason that the autocorrelation at displacement 0 is always one, so too is the partial

autocorrelation at displacement 0.  For a white noise process, all partial autocorrelations beyond

displacement 0 are zero, which again follows from the fact that white noise, by construction, is

serially uncorrelated.  Population regressions of  on , or on  and , or on any other

lags, produce nothing but zero coefficients, because the process is serially uncorrelated.  Formally,

the partial autocorrelation function of a white noise process is

We show the partial autocorrelation function of a white noise process in Figure 8.  Again, it’s

degenerate, and exactly the same as the autocorrelation function!
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 If you need to refresh your memory on conditional means, consult any good10

introductory statistics book, such as Wonnacott and Wonnacott (1990).
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By now you’ve surely noticed that if you were assigned the task of forecasting

independent white noise, you’d likely be doomed to failure.  What happens to a white noise series

at any time is uncorrelated with anything in the past, and similarly, what happens in the future is

uncorrelated with anything in the present or past.  But understanding white noise is tremendously

important for at least two reasons.  First, as already mentioned, processes with much richer

dynamics are built up by taking simple transformations of white noise.  Second, 1-step-ahead

forecast errors from good models should be white noise.  After all, if such forecast errors aren’t

white noise, then they’re serially correlated, which means that they’re forecastable, and if forecast

errors are forecastable then the forecast can’t be very good.  Thus it’s important that we

understand and be able to recognize white noise.

Thus far we’ve characterized white noise in terms of its mean, variance, autocorrelation

function and partial autocorrelation function.  Another characterization of dynamics, with

important implications for forecasting, involves the mean and variance of a process, conditional

upon its past.  In particular, we often gain insight into the dynamics in a process by examining its

conditional mean, which is a key object for forecasting.   In fact, throughout our study of time10

series, we’ll be interested in computing and contrasting the unconditional mean and variance and

the conditional mean and variance of various processes of interest.  Means and variances, which

convey information about location and scale of random variables, are examples of what

statisticians call moments.  For the most part, our comparisons of the conditional and
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unconditional moment structure of time series processes will focus on means and variances

(they’re the most important moments), but sometimes we’ll be interested in higher-order

moments, which are related to properties such as skewness and kurtosis.

For comparing conditional and unconditional means and variances, it will simplify our

story to consider independent white noise, .  By the same arguments as before, the

unconditional mean of y is 0 and the unconditional variance is .  Now consider the conditional

t-1 mean and variance, where the information set S upon which we condition contains either the

past history of the observed series, , or the past history of the shocks,

.  (They’re the same in the white noise case.)  In contrast to the

unconditional mean and variance, which must be constant by covariance stationarity, the

conditional mean and variance need not be constant, and in general we’d expect them not to be

constant.  The unconditionally expected growth of laptop computer sales next quarter may be ten

percent, but expected sales growth may be much higher, conditional upon knowledge that sales

grew this quarter by twenty percent.  For the independent white noise process, the conditional

mean is

and the conditional variance is 
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Conditional and unconditional means and variances are identical for an independent white noise

series; there are no dynamics in the process, and hence no dynamics in the conditional moments to

exploit for forecasting.

3.  The Lag Operator

The lag operator and related constructs are the natural language in which forecasting

models are expressed.  If you want to understand and manipulate forecasting models -- indeed,

even if you simply want to be able to read the software manuals -- you have to be comfortable

with the lag operator.  The lag operator, L, is very simple: it “operates” on a series by lagging it. 

Hence

Similarly,

and so on.  Typically we’ll operate on a series not with the lag operator but with a polynomial in

the lag operator.  A lag operator polynomial of degree m is just a linear function of powers of L,

up through the m-th power,

To take a very simple example of a lag operator polynomial operating on a series, consider the m-

th order lag operator polynomial L , for which m
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A well-known operator, the first-difference operator ), is actually a first-order polynomial in the

lag operator; you can readily verify that

As a final example, consider the second-order lag operator polynomial (1+.9L+.6L ) operating on2

.  We have

which is a weighted sum, or distributed lag, of current and past values.  All forecasting models,

one way or another, must contain such distributed lags, because they’ve got to quantify how the

past evolves into the present and future; hence lag operator notation is a useful shorthand for

stating and manipulating forecasting models.

Thus far we’ve considered only finite-order polynomials in the lag operator; it turns out

that infinite-order polynomials are also of great interest.  We write the infinite-order lag operator

polynomial as

Thus, for example, to denote an infinite distributed lag of current and past shocks we might write
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you may want to read it several times.  The material in it is crucially important for time series
modeling and forecasting and is therefore central to our concerns.
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At first sight, infinite distributed lags may seem esoteric and of limited practical interest, because

models with infinite distributed lags have infinitely many parameters  and therefore

can’t be estimated with a finite sample of data.  On the contrary, and surprisingly, it turns out that

models involving infinite distributed lags are central to time series modeling and forecasting. 

Wold’s theorem, to which we now turn, establishes that centrality.

4.  Wold’s Theorem, the General Linear Process, and Rational Distributed Lags11

Wold’s Theorem

Many different dynamic patterns are consistent with covariance stationarity.  Thus, if we

know only that a series is covariance stationary, it’s not at all clear what sort of model we might

fit to describe its evolution.  The trend and seasonal models that we’ve studied aren’t of use;

they’re models of specific nonstationary components.  Effectively, what we need now is an

appropriate model for what’s left after fitting the trend and seasonal components -- a model for a

covariance stationary residual.  Wold's representation theorem points to the appropriate model.

Theorem
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deterministic components.
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tLet {y } be any zero-mean covariance-stationary process.   Then we can write it as12

where  and .  In short, the correct “model” for any covariance stationary series

is some infinite distributed lag of white noise, called the Wold representation.  The  are often

called innovations, because (as we’ll see in Chapter 9) they correspond to the 1-step-ahead

forecast errors that we’d make if we were to use a particularly good forecast.  That is, the 

represent that part of the evolution of y that’s linearly unpredictable on the basis of the past of y. 

Note also that the , although uncorrelated, are not necessarily independent.  Again, it’s only

for Gaussian random variables that lack of correlation implies independence, and the innovations

are not necessarily Gaussian.

In our statement of Wold’s theorem we assumed a zero mean.  That may seem restrictive,

but it’s not.  Rather, whenever you see , just read , so that the process is expressed in

deviations from its mean.  The deviation from the mean has a zero mean, by construction. 

Working with zero-mean processes therefore involves no loss of generality while facilitating

notational economy.  We’ll use this device frequently.

The General Linear Process
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Wold’s theorem tells us that when formulating forecasting models for covariance

stationary time series we need only consider models of the form

i 0where the b are coefficients with b =1 and .  We call this the general linear process,

“general” because any covariance stationary series can be written that way, and “linear” because

the Wold representation expresses the series as a linear function of its innovations.

The general linear process is so important that it’s worth examining its unconditional and

conditional moment structure in some detail.  Taking means and variances, we obtain the

unconditional moments

and

At this point, in parallel to our discussion of white noise, we could compute and examine
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 Although Wold’s theorem guarantees only serially uncorrelated white noise innovations,13

we shall sometimes make a stronger assumption of independent white noise innovations in order
to focus the discussion.  We do so, for example, in the following characterization of the
conditional moment structure of the general linear process. 

 Note, however, an embarrassing asymmetry:  the conditional variance, like the14

unconditional variance, is a fixed constant.  However, models that allow the conditional variance
to change with the information set have been developed recently, as discussed in detail in Chapter
14.
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the autocovariance and autocorrelation functions of the general linear process.  Those

calculations, however, are rather involved, and not particularly revealing, so we’ll proceed instead

to examine the conditional mean and variance, where the information set  upon which we

condition contains past innovations; that is, .  In this manner we can see

how dynamics are modeled via conditional moments.   The conditional mean is13

and the conditional variance is

The key insight is that the conditional mean moves over time in response to the evolving

information set.  The model captures the dynamics of the process, and the evolving conditional

mean is one crucial way of summarizing them.  An important goal of time series modeling,

especially for forecasters, is capturing such conditional mean dynamics -- the unconditional mean

is constant (a requirement of stationarity), but the conditional mean varies in response to the

evolving information set.14

Rational Distributed Lags
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As we’ve seen, the Wold representation points to the crucial importance of models with

infinite distributed lags.  Infinite distributed lag models, in turn, are stated in terms of infinite

polynomials in the lag operator, which are therefore very important as well.  Infinite distributed

lag models are not of immediate practical use, however, because they contain infinitely many

parameters, which certainly inhibits practical application!  Fortunately, infinite polynomials in the

lag operator needn’t contain infinitely many free parameters.  The infinite polynomial B(L) may

for example be a ratio of finite-order (and perhaps very low-order) polynomials.  Such

polynomials are called rational polynomials, and distributed lags constructed from them are called

rational distributed lags.

Suppose, for example, that

where the numerator polynomial is of degree q,

and the denominator polynomial is of degree p,

There are not infinitely many free parameters in the B(L) polynomial; instead, there are only p+q

parameters (the 2’s and the N’s).  If p and q are small, say 0, 1 or 2, then what seems like a

hopeless task -- estimation of B(L) -- may actually be easy.  
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More realistically, suppose that B(L) is not exactly rational, but is approximately rational,

Then we can approximate the Wold representation using a rational distributed lag.  Rational

distributed lags produce models of cycles that economize on parameters (they’re parsimonious),

while nevertheless providing accurate approximations to the Wold representation.  The popular

ARMA and ARIMA forecasting models, which we’ll study shortly, are simply rational

approximations to the Wold representation.

5.  Estimation and Inference for the Mean, Autocorrelation and Partial Autocorrelation

Functions

Now suppose we have a sample of data on a time series, and we don’t know the true

model that generated the data, or the mean, autocorrelation function or partial autocorrelation

function associated with that true model.  Instead, we want to use the data to estimate the mean,

autocorrelation function, and partial autocorrelation function, which we might then use to help us

learn about the underlying dynamics, and to decide upon a suitable model or set of models to fit to

the data.

Sample Mean

The mean of a covariance stationary series is   A fundamental principle of

estimation, called the analog principle, suggests that we develop estimators by replacing

expectations with sample averages.  Thus our estimator for the population mean, given a sample

of size T, is the sample mean,
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Typically we’re not directly interested in the estimate of the mean, but it’s needed for estimation

of the autocorrelation function.

Sample Autocorrelations

The autocorrelation at displacement J for the covariance stationary series y is

Application of the analog principle yields a natural estimator,

This estimator, viewed as a function of J, is called the sample autocorrelation function, or

correlogram.  Note that some of the summations begin at t = J+1, not at t=1; this is necessary

because of the appearance of  in the sum.  Note that we divide those same sums by T, even

though only (T-J) terms appear in the sum.  When T is large relative to J (which is the relevant

case), division by T or by T-J will yield approximately the same result, so it won’t make much

difference for practical purposes, and moreover there are good mathematical reasons for
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 For additional discussion, consult any of the more advanced time-series texts mentioned15

in Chapter 1.  
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preferring division by T.15

It’s often of interest to assess whether a series is reasonably approximated as white noise,

which is to say whether all its autocorrelations are zero in population.  A key result, which we

simply assert, is that if a series is white noise, then the distribution of the sample autocorrelations

in large samples is

Note how simple the result is.  The sample autocorrelations of a white noise series are

approximately normally distributed, and the normal is always a convenient distribution to work

with.  Their mean is zero, which is to say the sample autocorrelations are unbiased estimators of

the true autocorrelations, which are in fact zero.  Finally, the variance of the sample

autocorrelations is approximately 1/T (equivalently, the standard deviation is ), which is easy

to construct and remember.  Under normality, taking plus or minus two standard errors yields an

approximate 95% confidence interval.  Thus, if the series is white noise, approximately 95% of

the sample autocorrelations should fall in the interval .  In practice, when we plot the sample

autocorrelations for a sample of data, we typically include the “two standard error bands,” which

are useful for making informal graphical assessments of whether and how the series deviates from

white noise.

The two-standard-error bands, although very useful, only provide 95% bounds for the
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 Recall that the square of a standard normal random variable is a P  random variable with16 2

one degree of freedom.  We square the sample autocorrelations  so that positive and negative
values don’t cancel when we sum across various values of , as we will soon do.
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sample autocorrelations taken one at a time.  Ultimately, we’re often interested in whether a series

is white noise, that is, whether all its autocorrelations are jointly zero.  A simple extension lets us

test that hypothesis.  Rewrite the expression

as 

Squaring both sides yields16

It can be shown that, in addition to being approximately normally distributed, the sample

autocorrelations at various displacements are approximately independent of one another. 

Recalling that the sum of independent P  variables is also P  with degrees of freedom equal to the2 2

sum of the degrees of freedom of the variables summed, we have shown that the Box-Pierce Q-

statistic, 

is approximately distributed as a  random variable under the null hypothesis that y is white
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 m is a maximum displacement selected by the user.  Shortly we’ll discuss how to choose17

it.
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noise.   A slight modification of this, designed to follow more closely the P  distribution in small17 2

samples, is

LBUnder the null hypothesis that y is white noise, Q  is approximately distributed as a  random

variable.  Note that the Ljung-Box Q-statistic is the same as the Box-Pierce Q statistic, except

that the sum of squared autocorrelations is replaced by a weighted sum of squared

autocorrelations, where the weights are .  For moderate and large T, the weights are

approximately 1, so that the Ljung-Box statistic differs little from the Box-Pierce statistic.

Selection of m is done to balance competing criteria.  On one hand, we don’t want m too

small, because after all, we’re trying to do a joint test on a large part of the autocorrelation

function.  On the other hand, as m grows relative to T, the quality of the distributional

approximations we’ve invoked deteriorates.  In practice, focusing on m in the neighborhood of

 is often reasonable.

Sample Partial Autocorrelations

Recall that the partial autocorrelations are obtained from population linear regressions,

which correspond to a thought experiment involving linear regression using an infinite sample of

data.  The sample partial autocorrelations correspond to the same thought experiment, except that

the linear regression is now done on the (feasible) sample of size T.  If the fitted regression is
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partial autocorrelation functions (with two standard error bands), together with related
diagnostics, such as Q statistics.

 We show the Ljung-Box version of the Q statistic.19
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then the sample partial autocorrelation at displacement J is

Distributional results identical to those we discussed for the sample autocorrelations hold as well

for the sample partial autocorrelations.  That is, if the series is white noise, approximately 95% of

the sample partial autocorrelations should fall in the interval .  As with the sample

autocorrelations, we typically plot the sample partial autocorrelations along with their two-

standard-error bands.

6.  Application:  Characterizing Canadian Employment Dynamics

To illustrate the ideas we’ve introduced, we examine a quarterly, seasonally adjusted index

of Canadian employment, 1962.1 - 1993.4, which we plot in Figure 9.  The series displays no

trend, and of course it displays no seasonality because it’s seasonally adjusted.  It does, however,

appear highly serially correlated.  It evolves in a slow, persistent fashion -- high in business cycle

booms and low in recessions.

To get a feel for the dynamics operating in the employment series we perform a

correlogram analysis.   The results appear in Table 1.  Consider first the Q statistic.   We18 19
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 We don’t show the sample autocorrelation or partial autocorrelation at displacement 0,20

because as we mentioned earlier, they equal 1.0, by construction, and therefore convey no useful
information.  We’ll adopt this convention throughout.

 Note that the sample autocorrelation and partial autocorrelation are identical at21

displacement 1.  That’s because at displacement 1, there are no earlier lags to control for when
computing the sample partial autocorrelation, so it equals the sample autocorrelation.  At higher
displacements, of course, the two diverge.
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compute the Q statistic and its p-value under the null hypothesis of white noise for values of m

(the number of terms in the sum that underlies the Q statistic) ranging from one through twelve. 

The p-value is consistently zero to four decimal places, so the null hypothesis of white noise is

decisively rejected.

Now we examine the sample autocorrelations and partial autocorrelations.  The sample

autocorrelations are very large relative to their standard errors and display slow one-sided

decay.   The sample partial autocorrelations, in contrast, are large relative to their standard errors20

at first (particularly for the 1-quarter displacement) but are statistically negligible beyond

displacement 2.   In Figure 10 we plot the sample autocorrelations and partial autocorrelations21

along with their two standard error bands.

It’s clear that employment has a strong cyclical component; all diagnostics reject the white

noise hypothesis immediately.  Moreover, the sample autocorrelation and partial autocorrelation

functions have particular shapes -- the autocorrelation function displays slow one-sided damping,

while the partial autocorrelation function cuts off at displacement 2.  You might guess that such

patterns, which summarize the dynamics in the series, might be useful for suggesting candidate

forecasting models.  Such is indeed the case, as we’ll see in the next chapter.
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Exercises, Problems and Complements

1.  (Lag operator expressions, I)  Rewrite the following expressions without using the lag

operator.

a.  

b.  

c. .

2.  (Lag operator expressions, II)  Rewrite the following expressions in lag operator form.

a. , where  is a constant

b. .

3.  (Autocorrelation functions of covariance stationary series)  While interviewing at a top

investment bank, your interviewer is impressed by the fact that you have taken a course on time

series forecasting.  She decides to test your knowledge of the autocovariance structure of

covariance stationary series and lists five autocovariance functions:

a.  

b.  

c.  

d. ,

where  is a positive constant.  Which autocovariance function(s) are consistent with covariance
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stationarity, and which are not?  Why?

4.  (Autocorrelation vs. partial autocorrelation)  Describe the difference between autocorrelations

and partial autocorrelations.  How can autocorrelations at certain displacements be positive while

the partial autocorrelations at those same displacements are negative?

5.  (Conditional and unconditional means)  As head of sales of the leading technology and

innovation magazine publisher TECCIT, your bonus is dependent on the firm’s revenue.  Revenue

changes from season to season, as subscriptions and advertizing deals are entered or renewed. 

From your experience in the publishing business you know that the revenue in a season is a

function of the number of magazines sold in the previous season and can be described as

, with uncorrelated residuals , where  is revenue and  is

number of magazines sold.

a.  What is the expected revenue for next season conditional upon total sales of 6,340 this

season?

b.  What is unconditionally expected revenue if unconditionally expected sales are 8500?

c.  A rival publisher offers you a contract identical to your current contract (same base pay

and bonus).  Based upon a confidential interview, you know that the same revenue

model with identical coefficients is appropriate for your rival.  The rival has sold an

average of 9000 magazines in previous seasons but only 5,650 this season.  Will

you accept the offer?  Why or why not?

6.  (White noise residuals) You work for a top five consulting firm and are in the middle of a one-

week vacation, when one of the directors calls you and urges you immediately to join a
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turnaround project at Stardust Cinemas.  You are briefed that despite its bad financial condition,

the recently-fired CEO had planned to increase Stardust’s market share by renovating every

theater to include a bar, an arcade, and a restaurant.  Your task on the team is to assess whether

this renovation should be scrapped or included in a future value-creation project.  To do so, you

spend a long night fitting a trend + seasonal model to a sample of  observations of

Stardust’s recent box office income data.  You find that the residuals (e) from your model

approximately follow , where .  At 4 AM you send your results to

your project manager.

a.  The next morning you receive an email from your project manager.  He thinks that your

residuals do not look like white noise.  Why?  Why care?

b.  Assuming that the residuals do indeed follow , what is their

autocorrelation function?  Discuss.

c.  What type of model might be useful for describing the historical path of box office

income, and its likely future path in the absence of renovations?  How would you

use it to assess the efficacy of the renovation project, if implemented?

7.  (Selecting an employment forecasting model with the AIC and SIC)  Use the AIC and SIC to

assess the necessity and desirability of including trend and seasonal components in a forecasting

model for Canadian employment.

a.  Display the AIC and SIC for a variety of specifications of trend and seasonality.  Which

would you select using the AIC?  SIC?  Do the AIC and SIC select the same

model?  If not, which do you prefer?
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b.  Discuss the estimation results and residual plot from your preferred model, and

perform a correlogram analysis of the residuals.  Discuss, in particular, the patterns

of the sample autocorrelations and partial autocorrelations, and their statistical

significance.

c.  How, if at all, are your results different from those reported in the text?  Are the

differences important?  Why or why not?

8.  (Simulating time series processes)  Many cutting-edge estimation and forecasting techniques

involve simulation.  Moreover, simulation is often a good way to get a feel for a model and its

behavior.  White noise can be simulated on a computer using random number generators, which

are available in most statistics, econometrics and forecasting packages. 

a.  Simulate a Gaussian white noise realization of length 200.  Call the white noise . 

Compute the correlogram.  Discuss.

b.  Form the distributed lag , t = 2, 3, ..., 200.  Compute the sample

autocorrelations and partial autocorrelations.  Discuss.

c.  Let  and , t = 2, 3, ..., 200.  Compute the sample autocorrelations

and partial autocorrelations.  Discuss.

9. (Sample autocorrelation functions for trending series)  A tell-tale sign of the slowly-evolving

nonstationarity associated with trend is a sample autocorrelation function that damps extremely

slowly.

a.  Find three trending series, compute their sample autocorrelation functions, and report

your results.  Discuss.
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b.  Fit appropriate trend models, obtain the model residuals, compute their sample

autocorrelation functions, and report your results.  Discuss.

10.  (Sample autocorrelation functions for seasonal series)  A tell-tale sign of seasonality is a

sample autocorrelation function with sharp peaks at the seasonal displacements (4, 8, 12, etc. for

quarterly data, 12, 24, 36, etc. for monthly data, and so on).

a.  Find a series with both trend and seasonal variation.  Compute its sample

autocorrelation function.  Discuss.

b.  Detrend the series.  Discuss.

c.  Compute the sample autocorrelation function of the detrended series.  Discuss.

d.  Seasonally adjust the detrended series.  Discuss.

e.  Compute the sample autocorrelation function of the detrended, seasonally-adjusted

series.  Discuss.

11.  (Volatility dynamics:  correlograms of squares)  In the Chapter 4 Exercises, Problems and

Complements, we suggested that a time series plot of a squared residual, , can reveal serial

correlation in squared residuals, which corresponds to non-constant volatility, or

heteroskedasticity, in the levels of the residuals.  Financial asset returns often display little

systematic variation, so instead of examining residuals from a model of returns, we often examine

returns directly.  In what follows, we will continue to use the notation , but you should interpret

 it as an observed asset return.

a.  Find a high frequency (e.g., daily) financial asset return series, , plot it, and discuss

your results.
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b.  Perform a correlogram analysis of , and discuss your results.

c.  Plot , and discuss your results.

d.  In addition to plotting , examining the correlogram of  often proves informative

for assessing volatility persistence.  Why might that be so?  Perform a correlogram

analysis of  and discuss your results.
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Bibliographical and Computational Notes

Wold’s theorem was originally proved in a 1938 monograph, later revised as Wold (1954). 

Rational distributed lags have long been used in engineering, and their use in econometric

modeling dates at least to Jorgenson (1966). 

Bartlett (1946) derived the standard errors of the sample autocorrelations and partial

autocorrelations of white noise.  In fact, the plus-or-minus two standard error bands are often

called the “Bartlett bands.”

The two variants of the Q statistic that we introduced were developed in the 1970s by 

Box and Pierce (1970) and by Ljung and Box (1978).  Some packages compute both variants, and

some compute only one (typically Ljung-Box, because it’s designed to be more accurate in small

samples).  In practice, the Box-Pierce and Ljung-Box statistics usually lead to the same

conclusions.

For concise and insightful discussion of random number generation, as well as a variety of

numerical and computational techniques, see Press et al. (1992).
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Concepts for Review

Cycle

Time Series

Realization

Sample Path

Covariance Stationarity

Autocovariance Function

Second-Order Stationarity

Weak Stationarity

Autocorrelation Function

Partial Autocorrelation Function

Population Regression

Autoregression

Time Series Process

Serially Uncorrelated

Zero-Mean White Noise

White Noise

Weak White Noise

Strong White Noise

Independent White Noise

Normal White Noise
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Gaussian White Noise

Unconditional Mean and Variance

Conditional Mean and Variance

Moments

Lag Operator

Polynomial in the Lag Operator

Distributed Lag

Wold's Representation Theorem

Wold Representation

Innovation

General Linear Process

Rational Polynomial

Rational Distributed Lag

Approximation of the Wold Representation

Parsimonious

Analog Principle

Sample Mean

Sample Autocorrelation Function

Box-Pierce Q-statistic

Ljung-Box Q-statistic

Sample Partial Autocorrelation
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Correlogram Analysis

Simulation of  a Time Series Process

Random Number Generator

Bartlett Bands
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Figure 1
A Rigid Cyclical Pattern
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Figure 2
Autocorrelation Function, One-Sided Gradual Damping
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Figure 3
Autocorrelation Function, Non-Damping
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Figure 4
Autocorrelation Function, Gradual Damped Oscillation 
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Figure 5
Autocorrelation Function, Sharp Cutoff
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Figure 6
Realization of White Noise Process
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Figure 7
Population Autocorrelation Function
White Noise Process
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Figure 8
Population Partial Autocorrelation Function
White Noise Process
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Figure 9
Canadian Employment Index
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Table 1
Canadian Employment Index
Correlogram

Sample: 1962:1 1993:4
Included observations: 128

Acorr.  P. Acorr. Std. Error Ljung-Box p-value

 1  0.949  0.949 .088 118.07  0.000
 2  0.877 -0.244  .088 219.66  0.000
 3  0.795 -0.101  .088 303.72  0.000
 4  0.707 -0.070  .088 370.82  0.000
 5  0.617 -0.063  .088 422.27  0.000
 6  0.526 -0.048  .088 460.00  0.000
 7  0.438 -0.033  .088 486.32  0.000
 8  0.351 -0.049  .088 503.41  0.000
 9  0.258 -0.149  .088 512.70  0.000
 10  0.163 -0.070  .088 516.43  0.000
 11  0.073 -0.011  .088 517.20  0.000
 12 -0.005   0.016  .088 517.21  0.000
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Figure 10
Canadian Employment Index
Sample Autocorrelation and Partial Autocorrelation Functions,
With Plus or Minus Two Standard Error Bands
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* Production notes

The bands in Figure 10 should be dashed, not solid.



 Sometimes, especially when characterizing population properties under the assumption1

that the models are correct, we refer to them as processes, which is short for stochastic processes. 
Hence the terms moving average process, autoregressive process, and ARMA process.
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Chapter 8

Modeling Cycles:  MA, AR, and ARMA Models

When building forecasting models, we don’t want to pretend that the model we fit is true. 

Instead, we want to be aware that we’re approximating a more complex reality.  That’s the

modern view, and it has important implications for forecasting.  In particular, we’ve seen that the

key to successful time series modeling and forecasting is parsimonious, yet accurate,

approximation of the Wold representation.  In this chapter we consider three approximations: 

moving average (MA) models, autoregressive (AR) models, and autoregressive moving average

(ARMA) models.  The three models differ in their specifics and have different strengths in

capturing different sorts of autocorrelation behavior.  

We begin by characterizing the autocorrelation functions and related quantities associated

with each model, under the assumption that the model is "true."  We do this separately for

autoregressive, moving average, and ARMA models.   These characterizations have nothing to do1

with data or estimation, but they're crucial for developing a basic understanding of the properties

of the models, which is necessary to perform intelligent modeling and forecasting.  They enable us

to make statements such as “If the data were really generated by an autoregressive process, then

we'd expect its autocorrelation function to have property x.”  Armed with that knowledge, we use

the sample autocorrelations and partial autocorrelations, in conjunction with the AIC and the SIC,

to suggest candidate forecasting models, which we then estimate.
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 Economic equilibria, for example, may be disturbed by shocks that take some time to be2

fully assimilated.
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1.  Moving Average (MA) Models

The finite-order moving average processes is a natural and obvious approximation to the

Wold representation, which is an infinite-order moving average process.  Finite-order moving

average processes also have direct motivation:  the fact that all variation in time series, one way or

another, is driven by shocks of various sorts suggests the possibility of modeling time series

directly as distributed lags of current and past shocks, that is, as moving average processes.    2

The MA(1) Process

The first-order moving average, or MA(1), process is

The defining characteristic of the MA process in general, and the MA(1) in particular, is that the

current value of the observed series is expressed as a function of current and lagged unobservable

shocks -- think of it as a regression model with nothing but current and lagged disturbances on the

right-hand side.

To help develop a feel for the behavior of the MA(1) process, we show two simulated
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realizations of length 150 in Figure 1.  The processes are

and

where in each case   To construct the realizations, we used the same series of

underlying white noise shocks; the only difference in the realizations comes from the different

coefficients.  Past shocks feed positively into the current value of the series, with a small weight

of 2=.4 in one case and a large weight of 2=.95 in the other.  You might think that 2=.95 would

induce much more persistence than 2=.4, but it doesn’t.  The structure of the MA(1) process, in

which only the first lag of the shock appears on the right, forces it to have a very short memory,

and hence weak dynamics, regardless of the parameter value.

The unconditional mean and variance are

and
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Note that for a fixed value of F, as 2 increases in absolute value so too does the unconditional

variance.  That’s why the MA(1) process with parameter 2=.95 varies a bit more than the process

with a parameter of 2=.4.

The conditional mean and variance of an MA(1), where the conditioning information set is 

, are

and

The conditional mean explicitly adapts to the information set, in contrast to the unconditional

mean, which is constant.  Note, however, that only the first lag of the shock enters the conditional

mean -- more distant shocks have no effect on the current conditional expectation.  This is

indicative of the one-period memory of MA(1) processes, which we’ll now characterize in terms

of the autocorrelation function.

To compute the autocorrelation function for the MA(1) process, we must first compute

the autocovariance function.  We have

(The proof is left as a problem.)  The autocorrelation function is just the autocovariance function
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scaled by the variance,

The key feature here is the sharp cutoff in the autocorrelations.  All autocorrelations are zero

beyond displacement 1, the order of the MA process.  In Figures 2 and 3, we show the

autocorrelation functions for our two MA(1) processes with parameters 2=.4 and 2=.95.  At

displacement 1, the process with parameter 2=.4 has a smaller autocorrelation (.34) than the

process with parameter 2=.95, (.50) but both drop to zero beyond displacement 1.

Note that the requirements of covariance stationarity (constant unconditional mean,

constant and finite unconditional variance, autocorrelation depends only on displacement) are met

for any MA(1) process, regardless of the values of its parameters.  If, moreover, , then we

say that the MA(1) process is invertible.  In that case, we can “invert” the MA(1) process and

express the current value of the series not in terms of a current shock and a lagged shock, but

rather in terms of a current shock and lagged values of the series.  That’s called an autoregressive

representation.  An autoregressive representation has a current shock and lagged observable

values of the series on the right,  whereas a moving average representation has a current shock

and lagged unobservable shocks on the right.

Let’s compute the autoregressive representation.  The process is
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Thus we can solve for the innovation as

Lagging by successively more periods gives expressions for the innovations at various dates,

and so forth.  Making use of these expressions for lagged innovations we can substitute backward

in the MA(1) process, yielding

In lag-operator notation, we write the infinite autoregressive representation as 

Note that the back substitution used to obtain the autoregressive representation only makes sense,
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and in fact a convergent autoregressive representation only exists, if , because in the back

substitution we raise 2 to progressively higher powers.

We can restate the invertibility condition in another way:  the inverse of the root of the

moving average lag operator polynomial  must be less than one in absolute value.  Recall

that a polynomial of degree m has m roots.  Thus the MA(1) lag operator polynomial has one

root, which is the solution to

The root is L=-1/2, so its inverse will be less than one in absolute value if , and the two

invertibility conditions are equivalent.  The “inverse root” way of stating invertibility conditions

seems tedious, but it turns out to be of greater applicability than the  condition, as we’ll see

shortly.

Autoregressive representations are appealing to forecasters, because one way or another,

if a model is to be used for real-world forecasting, it’s got to link the present observables to the

past history of observables, so that we can extrapolate to form a forecast of future observables

based on present and past observables.  Superficially, moving average models don’t seem to meet

that requirement, because the current value of a series is expressed in terms of current and lagged

unobservable shocks, not observable variables.  But under the invertibility conditions that we’ve

described, moving average processes have equivalent autoregressive representations.  Thus,

although we want autoregressive representations for forecasting, we don’t have to start with an

autoregressive model.  However, we typically restrict ourselves to invertible processes, because
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for forecasting purposes we want to be able to express current observables as functions of past

observables.

Finally, let’s consider the partial autocorrelation function for the MA(1) process.  From

the infinite autoregressive representation of the MA(1) process, we see that the partial

autocorrelation function will decay gradually to zero.  As we discussed in Chapter 7, the partial

autocorrelations are just the coefficients on the last included lag in a sequence of progressively

higher-order autoregressive approximations.  If 2>0, then the pattern of decay will be one of

damped oscillation; otherwise, the decay will be one-sided.

In Figures 4 and 5 we show the partial autocorrelation functions for our example MA(1)

processes.  For each process, , so that an autoregressive representation exists, and 2>0, so

that the coefficients in the autoregressive representations alternate in sign.  Specifically, we

showed the general autoregressive representation to be

so the autoregressive representation for the process with 2=.4 is

and the autoregressive representation for the process with 2=.95 is
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 Note, however, that the partial autocorrelations are not the successive coefficients in the3

infinite autoregressive representation.  Rather, they are the coefficients on the last included lag in
sequence of progressively longer autoregressions.  The two are related but distinct.
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The partial autocorrelations display a similar damped oscillation.   The decay, however, is slower3

for the 2=.95 case.

The MA(q) Process

Now consider the general finite-order moving average process of order q, or MA(q) for

short,

where

is a qth-order lag operator polynomial.  The MA(q) process is a natural generalization of the

MA(1).  By allowing for more lags of the shock on the right side of the equation, the MA(q)

process can capture richer dynamic patterns, which we can potentially exploit for improved

forecasting.  The MA(1) process is of course a special case of the MA(q), corresponding to q=1.

The properties of the MA(q) processes parallel those of the MA(1) process in all respects,
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so in what follows we’ll refrain from grinding through the mathematical derivations.  Instead we’ll

focus on the key features of practical importance.  Just as the MA(1) process was covariance

stationary for any value of its parameters, so too is the finite-order MA(q) process.  As with the

MA(1) process, the MA(q) process is invertible only if a root condition is satisfied.  The MA(q)

lag operator polynomial has q roots; when q>1 the possibility of complex roots arises.  The

condition for invertibility of the MA(q) process is that the inverses of all of the roots must be

inside the unit circle, in which case we have the convergent autoregressive representation,

The conditional mean of the MA(q) process evolves with the information set, in contrast

to the unconditional moments, which are fixed.  In contrast to the MA(1) case, in which the

conditional mean depends on only the first lag of the innovation, in the MA(q) case the

conditional mean depends on q lags of the innovation.  Thus the MA(q) process has the potential

for longer memory.

The potentially longer memory of the MA(q) process emerges clearly in its autocorrelation

function.  In the MA(1) case, all autocorrelations beyond displacement 1 are zero; in the MA(q)

case all autocorrelations beyond displacement q are zero.  This autocorrelation cutoff is a

distinctive property of moving average processes.  The partial autocorrelation function of the

MA(q) process, in contrast, decays gradually, in accord with the infinite autoregressive

representation, in either an oscillating or one-sided fashion, depending on the parameters of the

process.
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In closing this section, let's step back for a moment and consider in greater detail the

precise way in which finite-order moving average processes approximate the Wold representation. 

The Wold representation is

where B(L) is of infinite order.  The MA(1), in contrast, is simply a first-order moving average, in

which a series is expressed as a one-period moving average of current and past innovations.  Thus

when we fit an MA(1) model we’re using the first-order polynomial  to approximate the

infinite-order polynomial B(L).  Note that  is a rational polynomial with numerator

polynomial of degree one and degenerate denominator polynomial (degree zero).

MA(q) process have the potential to deliver better approximations to the Wold

representation, at the cost of more parameters to be estimated.  The Wold representation involves

an infinite moving average; the MA(q) process approximates the infinite moving average with a

finite-order moving average,

 whereas the MA(1) process approximates the infinite moving average with a only a first-order

moving average, which can sometimes be very restrictive.

2.  Autoregressive (AR) Models

The autoregressive process is also a natural approximation to the Wold representation. 
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We've seen, in fact, that under certain conditions a moving average process has an autoregressive

representation, so an autoregressive process is in a sense the same as a moving average process. 

Like the moving average process, the autoregressive process has direct motivation; it’s simply a

stochastic difference equation, a simple mathematical model in which the current value of a series

is linearly related to its past values, plus an additive stochastic shock.  Stochastic difference

equations are a natural vehicle for discrete-time stochastic dynamic modeling.

The AR(1) Process

The first-order autoregressive process, AR(1) for short, is

In lag operator form, we write

In Figure 6 we show simulated realizations of length 150 of two AR(1) processes; the first is

and the second is 
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where in each case , and the same innovation sequence underlies each realization. 

The fluctuations in the AR(1) with parameter N=.95 appear much more persistent that those of

the AR(1) with parameter N=.4.  This contrasts sharply with the MA(1) process, which has a very

short memory regardless of parameter value.  Thus the AR(1) model is capable of capturing much

more persistent dynamics than is the MA(1).

Recall that a finite-order moving average process is always covariance stationary, but that

certain conditions must be satisfied for invertibility, in which case an autoregressive representation

exists.  For autoregressive processes, the situation is precisely the reverse.  Autoregressive

processes are always invertible -- in fact invertibility isn’t even an issue, as finite-order

autoregressive processes already are in autoregressive form -- but certain conditions must be

satisfied for an autoregressive process to be covariance stationary.

If we begin with the AR(1) process,

and substitute backward for lagged y’s on the right side, we obtain

In lag operator form we write
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This moving average representation for y is convergent if and only if ; thus,  is the

condition for covariance stationarity in the AR(1) case.  Equivalently, the condition for covariance

stationarity is that the inverse of the root of the autoregressive lag operator polynomial be less

than one in absolute value.

From the moving average representation of the covariance stationary AR(1) process, we

can compute the unconditional mean and variance,

and 
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The conditional moments, in contrast, are

and

Note in particular that the simple way that the conditional mean adapts to the changing

information set as the process evolves.

To find the autocovariances, we proceed as follows.  The process is

so that multiplying both sides of the equation by  we obtain

For , taking expectations of both sides gives
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This is called the Yule-Walker equation.  It is a recursive equation; that is, given , for any ,

the Yule-Walker equation immediately tells us how to get .  If we knew  to start

things off (an “initial condition”), we could use the Yule-Walker equation to determine the entire

autocovariance sequence.  And we do know ; it’s just the variance of the process, which we

already showed to be .  Thus we have

and so on.  In general, then,

Dividing through by ((0) gives the autocorrelations,
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Note the gradual autocorrelation decay, which is typical of autoregressive processes.  The

autocorrelations approach zero, but only in the limit as the displacement approaches infinity.  In

particular, they don’t cut off to zero, as is the case for moving average processes.  If  is

positive, the autocorrelation decay is one-sided.  If  is negative, the decay involves back-and-

forth oscillations.  The relevant case in business and economics is , but either way, the

autocorrelations damp gradually, not abruptly.  In Figure 7 and 8 we show the autocorrelation

functions for AR(1) processes with parameters N=.4 and N=.95.  The persistence is much

stronger when N=.95, in contrast to the MA(1) case, in which the persistence was weak

regardless of the parameter.

Finally, the partial autocorrelation function for the AR(1) process cuts off abruptly;

specifically, 

It’s easy to see why.  The partial autocorrelations are just the last coefficients in a sequence of

successively longer population autoregressions.  If the true process is in fact an AR(1), the first

partial autocorrelation is just the autoregressive coefficient, and coefficients on all longer lags are

zero.

In Figures 9 and 10 we show the partial autocorrelation functions for our two AR(1)

processes.  At displacement 1, the partial autocorrelations are simply the parameters of the
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is .  If the condition is satisfied, the process may or may not be stationary, but if the

condition is violated, the process can’t be stationary.    
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process (.4 and .95, respectively), and at longer displacements, the partial autocorrelations are

zero.

The AR(p) Process

The general p-th order autoregressive process, or AR(p) for short, is

In lag operator form we write

As with our discussion of the MA(q) process, in our discussion of the AR(p) process we dispense

here with mathematical derivations and instead rely on parallels with the AR(1) case to establish

intuition for its key properties.

An AR(p) process is covariance stationary if and only if the inverses of all roots of the

autoregressive lag operator polynomial M(L) are inside the unit circle.   In the covariance4

stationary case we can write the process in the convergent infinite moving average form
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The autocorrelation function for the general AR(p) process, as with that of the AR(1) process,

decays gradually with displacement.  Finally, the AR(p) partial autocorrelation function has a

sharp cutoff at displacement p, for the same reason that the AR(1) partial autocorrelation function

has a sharp cutoff at displacement 1.

Let’s discuss the AR(p) autocorrelation function in a bit greater depth.  The key insight is

that, in spite of the fact that its qualitative behavior (gradual damping) matches that of the AR(1)

autocorrelation function, it can nevertheless display a richer variety of patterns, depending on the

order and parameters of the process.  It can, for example, have damped monotonic decay, as in

the AR(1) case with a positive coefficient, but it can also have damped oscillation in ways that

AR(1) can’t have.  In the AR(1) case, the only possible oscillation occurs when the coefficient is

negative, in which case the autocorrelations switch signs at each successively longer displacement. 

In higher-order autoregressive models, however, the autocorrelations can oscillate with much

richer patterns reminiscent of cycles in the more traditional sense.  This occurs when some roots

of the autoregressive lag operator polynomial are complex.5

Consider, for example, the AR(2) process,
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The corresponding lag operator polynomial is , with two complex conjugate

roots, .83±.65i.  The inverse roots are .75±.58i, both of which are close to, but inside, the unit

circle; thus the process is covariance stationary.  It can be shown that the autocorrelation function

for an AR(2) process is

Using this formula, we can evaluate the autocorrelation function for the process at hand; we plot

it in Figure 11.  Because the roots are complex, the autocorrelation function oscillates, and

because the roots are close to the unit circle, the oscillation damps slowly.

Finally, let's step back once again to consider in greater detail the precise way that finite-

order autoregressive processes approximate the Wold representation.  As always, the Wold

representation is

where B(L) is of infinite order.  The AR(1), as compared to the MA(1), is simply a different

approximation to the Wold representation.  The moving average representation associated with



Fcst4-08-21

Copyright © F.X. Diebold.  All rights reserved.

the AR(1) process is

Thus, when we fit an AR(1) model, we’re using , a rational polynomial with degenerate

numerator polynomial (degree zero) and denominator polynomial of degree one, to approximate

B(L).  The moving average representation associated with the AR(1) process is of infinite order,

as is the Wold representation, but it does not have infinitely many free coefficients.  In fact, only

one parameter, N, underlies it.

The AR(p) is an obvious generalization of the AR(1) strategy for approximating the Wold

representation.  The moving average representation associated with the AR(p) process is

When we fit an AR(p) model to approximate the Wold representation we’re still using a rational

polynomial with degenerate numerator polynomial (degree zero), but the denominator polynomial

is of higher degree.

3.  Autoregressive Moving Average (ARMA) Models

Autoregressive and moving average models are often combined in attempts to obtain

better and more parsimonious approximations to the Wold representation, yielding the

autoregressive moving average process, ARMA(p,q) for short.  As with moving average and
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 Both stationarity and invertibility need to be checked in the ARMA case, because both7

autoregressive and moving average components are present.
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autoregressive processes, ARMA processes also have direct motivation.   First, if the random6

shock that drives an autoregressive process is itself a moving average process, then it can be

shown that we obtain an ARMA process.  Second, ARMA processes can arise from aggregation. 

For example, sums of AR processes, or sums of AR and MA processes, can be shown to be

ARMA processes.  Finally, AR processes observed subject to measurement error also turn out to

be ARMA processes.

The simplest ARMA process that’s not a pure autoregression or pure moving average is

the ARMA(1,1), given by

or in lag operator form,

where  is required for stationarity and  is required for invertibility.   If the covariance7

stationarity condition is satisfied, then we have the moving average representation
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which is an infinite distributed lag of current and past innovations.  Similarly, if the invertibility

condition is satisfied, then we have the infinite autoregressive representation,

The ARMA(p,q) process is a natural generalization of the ARMA(1,1) that allows for

multiple moving average and autoregressive lags.  We write

or

where

and 
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If the inverses of all roots of M(L) are inside the unit circle, then the process is covariance

stationary and has convergent infinite moving average representation

If the inverses of all roots of 1(L) are inside the unit circle, then the process is invertible and has

convergent infinite autoregressive representation

As with autoregressions and moving averages, ARMA processes have a fixed unconditional mean

but a time-varying conditional mean.  In contrast to pure moving average or pure autoregressive

processes, however, neither the autocorrelation nor partial autocorrelation functions of ARMA

processes cut off at any particular displacement.  Instead, each damps gradually, with the precise

pattern depending on the process.

ARMA models approximate the Wold representation by a ratio of two finite-order lag-

operator polynomials, neither of which is degenerate.  Thus ARMA models use ratios of full-

fledged polynomials in the lag operator to approximate the Wold representation,
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ARMA models, by allowing for both moving average and autoregressive components, often

provide accurate approximations to the Wold representation that nevertheless have just a few

parameters.  That is, ARMA models are often both highly accurate and highly parsimonious.  In a

particular situation, for example, it might take an AR(5) to get the same approximation accuracy

as could be obtained with an ARMA(2,1), but the AR(5) has five parameters to be estimated,

whereas the ARMA(2,1) has only three.

4.  Application:  Specifying and Estimating Models for Employment Forecasting

In Chapter 7, we examined the correlogram for the Canadian employment series, and we

saw that the sample autocorrelations damp slowly and the sample partial autocorrelations cut off,

just the opposite of what’s expected for a moving average.  Thus the correlogram indicates that a

finite-order moving average process would not provide a good approximation to employment

dynamics.  Nevertheless, nothing stops us from fitting moving average models, so let’s fit them

and use the AIC and the SIC to guide model selection.

Moving average models are nonlinear in the parameters; thus, estimation proceeds by

nonlinear least squares (numerical minimization).  The idea is the same as when we encountered

nonlinear least squares in our study of nonlinear trends -- pick the parameters to minimize the sum

of squared residuals -- but finding an expression for the residual is a little bit trickier.  To

understand why moving average models are nonlinear in the parameters, and to get a feel for how

they’re estimated, consider an invertible MA(1) model, with a nonzero mean explicitly included

for added realism,
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Substitute backward m times to obtain the autoregressive approximation

Thus an invertible moving average can be approximated as a finite-order autoregression.  The

larger is m, the better the approximation.  This lets us (approximately) express the residual in

terms of observed data, after which we can use a computer to solve for the parameters that

minimize the sum of squared residuals,

The parameter estimates must be found using numerical optimization methods, because the

parameters of the autoregressive approximation are restricted.  The coefficient of the second lag

of y is the square of the coefficient on the first lag of y, and so on.  The parameter restrictions

must be imposed in estimation, which is why we can’t simply run an ordinary least squares

regression of y on lags of itself.
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The next step would be to estimate MA(q) models, q = 1, 2, 3, 4.  Both the AIC and the

SIC suggest that the MA(4) is best.  To save space, we report only the results of MA(4)

estimation in Table 1.  The results of the MA(4) estimation, although better than lower-order

MAs, are nevertheless poor.  The R  of .84 is rather low, for example, and the Durbin-Watson2

statistic indicates that the MA(4)  model fails to account for all the serial correlation in

employment.  The residual plot, which we show in Figure 12, clearly indicates a neglected cycle,

an impression confirmed by the residual correlogram (Table 2, Figure 13).

If we insist on using a moving average model, we’d want to explore orders greater than

four, but all the results thus far indicate that moving average processes don’t provide good

approximations to employment dynamics.  Thus let’s consider alternative approximations, such as

autoregressions.  Autoregressions can be conveniently estimated by ordinary least squares

regression.  Consider, for example, the AR(1) model,

We can write it as

where   The least squares estimators are
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The implied estimate of  is   Unlike the moving average case, for which the sum

of squares function is nonlinear in the parameters, requiring the use of numerical minimization

methods, the sum of squares function for autoregressive processes is linear in the parameters, so

that estimation is particularly stable and easy.  In the AR(1) case, we simply run an ordinary least

squares regression of y on one lag of y; in the AR(p) case, we regress y on p lags of y.

We estimate AR(p) models, p = 1, 2, 3, 4.  Both the AIC and the SIC suggest that the

AR(2) is best.  To save space, we report only the results of AR(2) estimation in Table 3.  The

estimation results look good, and the residuals (Figure 14) look like white noise.  The residual

correlogram (Table 4, Figure 15) supports that conclusion. 

Finally, we consider ARMA(p,q) approximations to the Wold representation.  ARMA

models are estimated in a fashion similar to moving average models; they have autoregressive

approximations with nonlinear restrictions on the parameters, which we impose when doing a

numerical sum of squares minimization.  We examine all ARMA(p,q) models with p and q less

than or equal to four; the SIC and AIC values appear in Tables 5 and 6.  The SIC selects the

AR(2) (an ARMA(2,0)), which we’ve already discussed.  The AIC, which penalizes degrees of
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freedom less harshly, selects an ARMA(3,1) model.  The ARMA(3,1) model looks good; the

estimation results appear in Table 7, the residual plot in Figure 16, and the residual correlogram in

Table 8 and Figure 17.

Although the ARMA(3,1) looks good, apart from its lower AIC it looks no better than the

AR(2), which basically seemed perfect.  In fact, there are at least three reasons to prefer the

AR(2).  First, for the reasons that we discussed in Chapter 5, when the AIC and the SIC disagree

we recommend using the more parsimonious model selected by the SIC.  Second, if we consider a

model selection strategy involving not just examination of the AIC and SIC, but also examination

of autocorrelations and partial autocorrelations, which we advocate, we’re led to the AR(2). 

Finally, and importantly, the impression that the ARMA(3,1) provides a richer approximation to

employment dynamics is likely spurious in this case.  The ARMA(3,1) has a inverse

autoregressive root of -.94 and an inverse moving average root of -.97.  Those roots are of course

just estimates, subject to sampling uncertainty, and are likely to be statistically indistinguishable

from one another, in which case we can cancel them, which brings us down to an ARMA(2,0), or

AR(2), model with roots virtually indistinguishable from those of our earlier-estimated AR(2)

process!  We refer to this situation as one of common factors in an ARMA model.  Be on the

lookout for such situations, which arise frequently and can lead to substantial model

simplification.

Thus we arrive at an AR(2) model for employment.  In the next chapter we’ll learn how to

use it to produce point and interval forecasts.



Fcst4-08-30

Copyright © F.X. Diebold.  All rights reserved.

Exercises, Problems and Complements

1.  (ARMA lag inclusion)  Review Table 1.  Why is the MA(3) term included even though the p-

value indicates that it is not significant?  What would be the costs and benefits of dropping the

insignificant MA(3) term?

2.  (Shapes of correlograms)  Given the following ARMA processes, sketch the expected forms of

the autocorrelation and partial autocorrelation functions.  (Hint:  examine the roots of the various

autoregressive and moving average lag operator polynomials.)

a.  

b.  

c.  .

3. (The autocovariance function of the MA(1) process, revisited)  In the text we wrote

Fill in the missing steps by evaluating explicitly the expectation .

4.  (ARMA algebra)  Derive expressions for the autocovariance function, autocorrelation

function, conditional mean, unconditional mean, conditional variance and unconditional variance
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of the following processes:

a.  

b.  .

5.  (Diagnostic checking of model residuals)  If a forecasting model has extracted all the

systematic information from the data, then what’s left -- the residual -- should be white noise. 

More precisely, the true innovations are white noise, and if a model is a good approximation to

the Wold representation then its 1-step-ahead forecast errors should be approximately white

noise.  The model residuals are the in-sample analog of out-of-sample 1-step-ahead forecast

errors.  Hence the usefulness of various tests of the hypothesis that residuals are white noise.

The Durbin-Watson test is the most popular.  Recall the Durbin-Watson test statistic,

discussed in Chapter 2, 

Note that

Thus
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examine the Durbin-Watson statistic even when lagged dependent variables are included.  We
always supplement the Durbin-Watson statistic, however, with other diagnostics such as the
residual correlogram, which remain valid in the presence of lagged dependent variables, and which
almost always produce the same inference as the Durbin-Watson statistic.
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so that the Durbin-Watson test is effectively based only on the first sample autocorrelation and

really only tests whether the first autocorrelation is zero.  We say therefore that the Durbin-

Watson is a test for first-order serial correlation.  In addition, the Durbin-Watson test is not valid

in the presence of lagged dependent variables.   On both counts, we’d like a more general and8

flexible framework for diagnosing serial correlation.  The residual correlogram, comprised of the

residual sample autocorrelations, the sample partial autocorrelations, and the associated Q

statistics, delivers the goods.

a.  When we discussed the correlogram in the text, we focused on the case of an observed

time series, in which case we showed that the Q statistics are distributed as . 

Now, however, we want to assess whether unobserved model disturbances are

white noise.  To do so, we use the model residuals, which are estimates of the

unobserved disturbances.  Because we fit a model to get the residuals, we need to

account for the degrees of freedom used.  The upshot is that the distribution of the

Q statistics under the white noise hypothesis is better approximated by a 

random variable, where k is the number of parameters estimated.  That’s why, for

example, we don’t report (and in fact the software doesn’t compute) the p-values

for the Q statistics associated with the residual correlogram of our employment

forecasting model until m>k. 
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b.  Durbin’s h test is an alternative to the Durbin-Watson test.  As with the Durbin-Watson

test, it’s designed to detect first-order serial correlation, but it’s valid in the

presence of lagged dependent variables.  Do some background reading as well on

Durbin's h test and report what you learned.

c.  The Breusch-Godfrey test is another alternative to the Durbin-Watson test.  It’s

designed to detect p -order serial correlation, where p is selected by the user, andth

is also valid in the presence of lagged dependent variables.  Do some background

reading on the Breusch-Godfrey procedure and report what you learned.

d.  Which do you think is likely to be most useful to you in assessing the properties of

residuals from forecasting models:  the residual correlogram, Durbin's h test, or the

Breusch-Godfrey test?  Why?

6.  (Mechanics of fitting ARMA models)  On the book’s web page you will find data for daily

transfers over BankWire, a financial wire transfer system in a country responsible for much of the

world’s finance, over a recent span of 200 business days.   

a.  Is trend or seasonality operative?  Defend your answer.

b.  Using the methods developed in Chapters 7 and 8, find a parsimonious ARMA(p,q)

model that fits well, and defend its adequacy.

7.  (Modeling cyclical dynamics)  As a research analyst at the U.S. Department of Energy, you

have been asked to model non-seasonally-adjusted U.S. imports of crude oil.  

a.  Find a suitable time series on the web.

b.  Create a model that captures the trend in the series.
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c.  Adding to the model from part b, create a model with trend and a full set of seasonal

dummy variables.

d.  Observe the residuals of the model from part b and their correlogram.  Is there

evidence neglected dynamics?  If so, what to do?

8.  (Aggregation and disaggregation:  top-down vs. bottom-up forecasting models)  Related to

the issue of methods and complexity discussed in Chapter 3 is the question of aggregation.  Often

we want to forecast an aggregate, such as total sales of a manufacturing firm, but we can take

either an aggregated or disaggregated approach.

Suppose, for example, that total sales is composed of sales of three products.  The

aggregated, or top-down, or macro, approach is simply to model and forecast total sales.  The

disaggregated, or bottom- up, or micro, approach is to model and forecast separately the sales of

the individual products, and then to add them together.

Perhaps surprisingly, it’s impossible to know in advance whether the aggregated or

disaggregated approach is better.  It all depends on the specifics of the situation; the only way to

tell is to try both approaches and compare the forecasting results.

However, in real-world situations characterized by likely model misspecification and

parameter estimation uncertainty, there are reasons to suspect that the aggregated approach may

be preferable.  First, standard (e.g., linear) models fit to aggregated series may be less prone to

specification error, because aggregation can produce approximately linear relationships even when

the underlying disaggregated relationships are not linear.  Second, if the disaggregated series

depend in part on a common factor (e.g., general business conditions) then it will emerge more
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clearly in the aggregate data.  Finally, modeling and forecasting of one aggregated series, as

opposed to many disaggregated series, relies on far fewer parameter estimates. 

Of course, if our interest centers on the disaggregated components, then we have no

choice but to take a disaggregated approach.

It is possible that an aggregate forecast may be useful in forecasting disaggregated series. 

Why?  (Hint: See Fildes and Stekler, 2000.)

9.  (Nonlinear forecasting models:  regime switching)  In this chapter we’ve studied dynamic

linear models, which are tremendously important in practice.  They’re called linear because  is a

simple linear function of past y's or past 's.  In some forecasting situations, however, good

statistical characterization of dynamics may require some notion of regime switching, as between

"good" and "bad" states, which is a type of nonlinear model.

Models incorporating regime switching have a long tradition in business-cycle analysis, in

which expansion is the good state, and contraction (recession) is the bad state.  This idea is also

manifest in the great interest in the popular press, for example, in identifying and forecasting

turning points in economic activity.  It is only within a regime-switching framework that the

concept of a turning point has intrinsic meaning; turning points are naturally and immediately

defined as the times separating expansions and contractions.

Threshold models are squarely in line with the regime-switching tradition.  The following

threshold model, for example, has three regimes, two thresholds, and a d-period delay regulating

the switches:
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The superscripts indicate “upper,” “middle,” and “lower” regimes, and the regime operative at any

time t depends on the observable past history of y -- in particular, on the value of .

  Although observable threshold models are of interest, models with latent (or

unobservable) states as opposed to observed states may be more appropriate in many business,

economic and financial contexts.  In such a setup, time-series dynamics are governed by a finite-

dimensional parameter vector that switches (potentially each period) depending upon which of

two unobservable states is realized, with state transitions governed by a first-order Markov

process (meaning that the state at any time t depends only on the state at time t-1, not at time t-2,

t-3, etc.).

To make matters concrete, let's take a simple example.  Let  be the (latent) sample

path of two-state first-order autoregressive process, taking just the two values 0 or 1, with

transition probability matrix given by

The ij-th element of M gives the probability of moving from state i (at time t-1) to state j (at time

00 11t).  Note that there are only two free parameters, the staying probabilities, p  and p .  Let 

tbe the sample path of an observed time series that depends on  such that the density of y
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tconditional upon s  is

tThus, y  is Gaussian white noise with a potentially switching mean.  The two means around which

ty  moves are of particular interest and may, for example, correspond to episodes of differing

growth rates ("booms" and "recessions", “bull” and “bear” markets, etc.).

10.  (Difficulties with nonlinear optimization)  Nonlinear optimization is a tricky business, fraught

with problems.  Some eye-opening reading includes Newbold, Agiakloglou and Miller (1994) and

McCullough and Vinod (1999).

Some problems are generic.  It’s relatively easy to find a local optimum, for example, but

much harder to be confident that the local optimum is global.  Simple checks such as trying a

variety of startup values and checking the optimum to which convergence occurs are used

routinely, but the problem nevertheless remains.  Other problems may be software specific.  For

example, some software may use highly accurate analytic derivatives whereas other software uses

approximate numerical derivatives.  Even the same software package may change algorithms or

details of implementation across versions, leading to different results.  Software for ARMA model

estimation is unavoidably exposed to all such problems, because estimation of any model

involving MA terms requires numerical optimization of a likelihood or sum-of-squares function.
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Bibliographical and Computational Notes

Characterization of time series by means of autoregressive, moving average, or ARMA

models was suggested, more or less simultaneously, by the Russian statistician and economist E.

Slutsky and the British statistician G.U. Yule.  Slutsky (1927) remains a classic.  The Slutsky-

Yule framework was modernized, extended, and made part of an innovative and operational

modeling and forecasting paradigm in a more recent classic, a 1970 book by Box and Jenkins, the

latest edition of which is Box, Jenkins and Reinsel (1994).  In fact, ARMA and related models are

often called “Box-Jenkins models.”

Granger and Newbold (1986) contains more detailed discussion of a number of topics that

arose in this chapter, including the idea of moving average processes as describing economic

equilibrium disturbed by transient shocks, the Yule-Walker equation, and the insight that

aggregation and measurement error lead naturally to ARMA processes.

The sample autocorrelations and partial autocorrelations, together with related

diagnostics, provide graphical aids to model selection that complement the Akaike and Schwarz

information criteria introduced earlier.  Not long ago, the sample autocorrelation and partial

autocorrelation functions were often used alone to guide forecast model selection, a tricky

business that was more art than science.  Use of the Akaike and Schwarz criteria results in more

systematic and replicable model selection, but the sample autocorrelation and partial

autocorrelation functions nevertheless remain important as basic graphical summaries of dynamics

in time-series data.  The two approaches are complements, not substitutes.

Our discussion of estimation was a bit fragmented; we discussed estimation of moving
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average and ARMA models using nonlinear least squares, whereas we discussed estimation of

autoregressive models using ordinary least squares.  A more unified approach proceeds by writing

each model as a regression on an intercept, with a serially correlated disturbance.  Thus the

moving average model is

the autoregressive model is 

and the ARMA model is
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convergence is presented even for estimation of the autoregressive model.

 Hence the notation “:” for the intercept.10
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We can estimate each model in identical fashion using nonlinear least squares.  Eviews and other

forecasting packages proceed in precisely that way.9

This framework -- regression on a constant with serially correlated disturbances -- has a

number of attractive features.  First, the mean of the process is the regression constant term.  10

Second, it leads us naturally toward regression on more than just a constant, as other right-hand

side variables can be added as desired.  Finally, it exploits the fact that because autoregressive and

moving average models are special cases of the ARMA model, their estimation is also a special

case of estimation of the ARMA model.

Our description of estimating ARMA models -- compute the autoregressive

representation, truncate it, and estimate the resulting approximate model by nonlinear least

squares -- is conceptually correct but intentionally simplified.  The actual estimation methods

implemented in modern software are more sophisticated, and the precise implementations vary

across software packages.  Beneath it all, however, all estimation methods are closely related to
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our discussion, whether implicitly or explicitly.  You should consult your software manual for

details.  (Hopefully they’re provided!)

Pesaran, Pierse and Kumar (1989) and Granger (1990) study the question of top-down vs.

bottom-up forecasting.  For a comparative analysis in the context of forecasting Euro area

macroeconomic activity, see Stock and Watson (2003).

Our discussion of regime-switching models draws heavily on Diebold and Rudebusch

(1996).  Tong (1983) is a key reference on observable-state threshold models, as is Hamilton

(1989) for latent-state threshold models.  There are a number of extensions of those basic regime-

switching models of potential interest for forecasters, such as allowing for smooth as opposed to

abrupt transitions in threshold models with observed states (Granger and Teräsvirta, 1993), and

allowing for time-varying transition probabilities in threshold models with latent states (Diebold,

Lee and Weinbach, 1994).
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Concepts for Review

Moving Average Model (MA)

Autoregressive Model (AR)

Autoregressive Moving Average Model (ARMA)

Approximation to the Wold Representation

Stochastic Process

MA(1) Process

Cutoff in the Autocorrelation Function

Invertibility

Condition for Invertibility of MA(q)

Autoregressive Representation

MA(q) Process

Complex Roots

Yule-Walker Equation

AR(p) Process

Condition for Covariance Stationarity

ARMA(p,q) Process

Common Factors

First-Order Serial Correlation

Breusch-Godfrey Test

Durbin's h Test
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Aggregation

Disaggregation

Top-Down Forecasting Model

Bottom-Up Forecasting Model

Linear Model

Nonlinear Model

Regime Switching

Threshold Model

Box-Jenkins Model
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Figure 1
Realizations of Two MA(1) Processes
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Figure 2
Population Autocorrelation Function
MA(1) Process, 2=.4



Fcst4-08-49

Copyright © F.X. Diebold.  All rights reserved.

Figure 3
Population Autocorrelation Function
MA(1) Process, 2=.95
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Figure 4
Population Partial Autocorrelation Function
MA(1) Process, 2=.4
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Figure 5
Population Partial Autocorrelation Function
MA(1) Process, 2=.95
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Figure 6
Realizations of Two AR(1) Processes
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Figure 7
Population Autocorrelation Function
AR(1) Process, N=.4
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Figure 8
Population Autocorrelation Function
AR(1) Process, N=.95
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Figure 9
Population Partial Autocorrelation Function
AR(1) Process, N=.4
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Figure 10
Population Partial Autocorrelation Function
AR(1) Process, N=.95
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Figure 11
Population Autocorrelation Function
AR(2) Process with Complex Roots
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Table 1
Employment

MA(4) Model

LS // Dependent Variable is CANEMP
Sample: 1962:1 1993:4
Included observations: 128
Convergence achieved after 49 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C  100.5438  0.843322  119.2234  0.0000
MA(1)  1.587641  0.063908  24.84246  0.0000
MA(2)  0.994369  0.089995  11.04917  0.0000
MA(3) -0.020305  0.046550 -0.436189  0.6635
MA(4) -0.298387  0.020489 -14.56311  0.0000

R-squared  0.849951     Mean dependent var  101.0176
Adjusted R-squared  0.845071     S.D. dependent var  7.499163
S.E. of regression  2.951747     Akaike info criterion  2.203073
Sum squared resid  1071.676     Schwarz criterion  2.314481
Log likelihood -317.6208     F-statistic  174.1826
Durbin-Watson stat  1.246600     Prob(F-statistic)  0.000000

Inverted MA Roots        .41   -.56+.72i   -.56 -.72i       -.87
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Figure 12
Employment
MA(4) Model
Residual Plot
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Table 2
Employment

MA(4) Model
Residual Correlogram

Sample: 1962:1 1993:4
Included observations: 128
Q-statistic probabilities adjusted for 4 ARMA term(s)

Acorr.  P. Acorr. Std. Error Ljung-Box p-value

1 0.345  0.345 .088 15.614
2 0.660  0.614  .088 73.089
3 0.534 0.426  .088 111.01
4 0.427 -0.042  .088 135.49
5 0.347 -0.398  .088 151.79 0.000
6 0.484  0.145  .088 183.70 0.000
7 0.121 -0.118  .088 185.71 0.000
8 0.348 -0.048  .088 202.46 0.000
9 0.148 -0.019  .088 205.50 0.000
10 0.102 -0.066  .088 206.96 0.000
11 0.081 -0.098  .088 207.89 0.000
12 0.029 -0.113  .088 208.01 0.000
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Figure 13
Employment
MA(4) Model
Residual Sample Autocorrelation and Partial Autocorrelation Functions,
With Plus or Minus Two Standard Error Bands
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Table 3
Employment
AR(2) Model

LS // Dependent Variable is CANEMP
Sample: 1962:1 1993:4
Included observations: 128
Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C  101.2413  3.399620  29.78017  0.0000
AR(1)  1.438810  0.078487  18.33188  0.0000
AR(2) -0.476451  0.077902 -6.116042  0.0000

R-squared  0.963372     Mean dependent var  101.0176
Adjusted R-squared  0.962786     S.D. dependent var  7.499163
S.E. of regression  1.446663     Akaike info criterion  0.761677
Sum squared resid  261.6041     Schwarz criterion  0.828522
Log likelihood -227.3715     F-statistic  1643.837
Durbin-Watson stat  2.067024     Prob(F-statistic)  0.000000

Inverted AR Roots        .92        .52
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Figure 14
Employment
AR(2) Model
Residual Plot
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Table 4
Employment
AR(2) Model

Residual Correlogram

Sample: 1962:1 1993:4
Included observations: 128
Q-statistic probabilities adjusted for 2 ARMA term(s)

Acorr.  P. Acorr. Std. Error Ljung-Box p-value

1 -0.035 -0.035  .088 0.1606
2  0.044  0.042  .088 0.4115
3  0.011  0.014  .088 0.4291  0.512
4  0.051  0.050  .088 0.7786  0.678
5  0.002  0.004  .088 0.7790  0.854
6  0.019  0.015  .088 0.8272  0.935
7 -0.024 -0.024  .088 0.9036  0.970
8  0.078  0.072  .088 1.7382  0.942
9  0.080  0.087  .088 2.6236  0.918
10  0.050  0.050  .088 2.9727  0.936
11 -0.023 -0.027  .088 3.0504  0.962
12 -0.129 -0.148  .088 5.4385  0.860
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Figure 15
Employment
AR(2) Model
Residual Sample Autocorrelation and Partial Autocorrelation Functions,
With Plus or Minus Two Standard Error Bands
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Table 5
Employment
AIC Values

Various ARMA Models

MA Order

0 1 2 3 4

0 2.86 2.32 2.47 2.20

1 1.01 .83 .79 .80 .81

AR Order 2 .762 .77 .78 .80 .80

3 .77 .761 .77 .78 .79

4 .79 .79 .77 .79 .80

Table 6
Employment
SIC Values

Various ARMA Models

MA Order

0 1 2 3 4

0 2.91 2.38 2.56 2.31

1 1.05 .90 .88 .91 .94

AR Order 2 .83 .86 .89 .92 .96

3 .86 .87 .90 .94 .96

4 .90 .92 .93 .97 1.00
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Table 7
Employment

ARMA(3,1) Model

LS // Dependent Variable is CANEMP
Sample: 1962:1 1993:4
Included observations: 128
Convergence achieved after 17 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C  101.1378  3.538602  28.58130  0.0000
AR(1)  0.500493  0.087503  5.719732  0.0000
AR(2)  0.872194  0.067096  12.99917  0.0000
AR(3) -0.443355  0.080970 -5.475560  0.0000
MA(1)  0.970952  0.035015  27.72924  0.0000

R-squared  0.964535    Mean dependent var  101.0176
Adjusted R-squared  0.963381     S.D. dependent var  7.499163
S.E. of regression  1.435043     Akaike info criterion  0.760668
Sum squared resid  253.2997     Schwarz criterion  0.872076
Log likelihood -225.3069     F-statistic   836.2912
Durbin-Watson stat  2.057302     Prob(F-statistic)  0.000000

Inverted AR Roots        .93        .51       -.94
Inverted MA Roots       -.97
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Figure 16
Employment
ARMA(3,1) Model
Residual Plot
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Table 8
Employment

ARMA(3,1) Model
Residual Correlogram

Sample: 1962:1 1993:4
Included observations: 128
Q-statistic probabilities adjusted for 4 ARMA term(s)

Acorr.  P. Acorr. Std. Error Ljung-Box p-value

1 -0.032 -0.032  .09 0.1376
2  0.041  0.040  .09 0.3643
3  0.014  0.017  .09 0.3904
4  0.048  0.047  .09 0.6970
5  0.006  0.007  .09 0.7013  0.402
6  0.013  0.009  .09 0.7246  0.696
7 -0.017 -0.019  .09 0.7650  0.858
8  0.064  0.060  .09 1.3384  0.855
9  0.092  0.097  .09 2.5182  0.774
10  0.039  0.040  .09 2.7276  0.842
11 -0.016 -0.022  .09 2.7659  0.906
12 -0.137 -0.153  .09 5.4415  0.710
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Figure 17
Employment
ARMA(3,1) Model
Residual Sample Autocorrelation and Partial Autocorrelation Functions,
With Plus or Minus Two Standard Error Bands
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Production notes:
* The bands in Figures 13, 15, and 17 should be dashed, not solid.
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Chapter 9

Forecasting Cycles

1.  Optimal Forecasts

By now you’ve gotten comfortable with the idea of an information set.  Here we’ll use

that idea extensively.  We denote the time-T information set by .  As first pass it seems most

natural to think of the information set as containing the available past history of the series,

where for theoretical purposes we imagine history as having begun in the infinite past.

So long as y is covariance stationary, however, we can just as easily express the

information available at time T in terms of current and past shocks,

Suppose, for example, that the process to be forecast is a covariance stationary AR(1),

Then immediately,
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and so on.  More generally, if a series is covariance stationary and invertible, 

Assembling the discussion thus far, we can view the time-T information set as containing

the current and past values of y and , 

Based upon that information set, we want to find the optimal forecast of y at some future time

T+h.  The optimal forecast is the one with the smallest loss on average, that is, the forecast that

minimizes expected loss.  It turns out that under reasonably weak conditions the optimal forecast

is the conditional mean, , the expected value of the future value of the series being

forecast, conditional upon available information.

In general, the conditional mean need not be a linear function of the elements of the

information set.  Because linear functions are particularly tractable, we prefer to work with linear

forecasts -- forecasts that are linear in the elements of the information set -- by finding the best

linear approximation to the conditional mean, called the linear projection, denoted .  
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This explains the common term "linear least squares forecast."  The linear projection is often very

useful and accurate, because the conditional mean is often close to linear.  In fact, in the Gaussian

case the conditional expectation is exactly linear, so that .

2.  Forecasting Moving Average Processes

Optimal Point Forecasts for Finite-Order Moving Averages

Our forecasting method is always the same:  we write out the process for the future time

period of interest, T+h, and project it on what’s known at time T, when the forecast is made. 

This process is best learned by example.  Consider an MA(2) process,

Suppose we’re standing at time T and we want to forecast .  First we write out the process

for T+1,

Then we project on the time-T information set, which simply means that all future innovations are

replaced by zeros.  Thus

To forecast 2 steps ahead, we note that
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      Recall that the forecast error is simply the difference between the actual and forecasted1

values.  That is, .
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and we project on the time-T information set to get

Continuing in this fashion, we see that

for all h>2.

Now let’s compute the corresponding forecast errors.   We have:1

...

for all h>2.

Finally, the forecast error variances are:



Fcst4-09-5

Copyright © F.X. Diebold.  All rights reserved.

...

tfor all h>2.  Moreover, the forecast error variance for h>2 is just the unconditional variance of y .

Now consider the general MA(q) case.  The model is

First, consider the forecasts.  If h#q, the forecast has the form

whereas if h>q the forecast is

Thus, an MA(q) process is not forecastable (apart from the unconditional mean) more than q

steps ahead.  All the dynamics in the MA(q) process, which we exploit for forecasting, “wash out”

by the time we get to horizon q, which reflects the autocorrelation structure of the MA(q)

process.  (Recall that, as we showed in Chapter 8, it cuts off at displacement q.)

Second, consider the corresponding forecast errors.  They are 
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for h#q and 

for h>q.  The h-step-ahead forecast error for h>q is just the process itself, minus its mean.

Finally, consider the forecast error variances.  For h#q,

whereas for h>q,

In summary, we’ve thus far studied the MA(2), and then the general MA(q), process,

computing the optimal h-step-ahead forecast, the corresponding forecast error, and the forecast

error variance.  As we’ll now see, the emerging patterns that we cataloged turn out to be quite

general.

Optimal Point Forecasts for Infinite-Order Moving Averages

By now you’re getting the hang of it, so let’s consider the general case of an infinite-order

MA process.  The infinite-order moving average process may seem like a theoretical curiosity, but

precisely the opposite is true.  Any covariance stationary process can be written as a (potentially

infinite-order) moving average process, and moving average processes are easy to understand and

manipulate, because they are written in terms of white noise shocks, which have very simple



Fcst4-09-7

Copyright © F.X. Diebold.  All rights reserved.

statistical properties.  Thus, if you take the time to understand the mechanics of constructing

optimal forecasts for infinite moving-average processes, you'll understand everything, and you'll

have some powerful technical tools and intuition at your command.

Recall from Chapter 7 that the general linear process is

where , , and .  We proceed in the usual way.  We first write

out the process at the future time of interest:

T+hThen we project y  on the time-T information set.  The projection yields zeroes for all of the

future  (because they are white noise and hence unforecastable), leaving 

It follows that the h-step ahead forecast error is serially correlated; it follows an MA(h-1) process,

with mean 0 and variance
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A number of remarks are in order concerning the optimal forecasts of the general linear

process, and the corresponding forecast errors and forecast error variances.  First, the 1-step-

T+1ahead forecast error is simply .   is that part of y  that can’t be linearly forecast on the

basis of  (which, again, is why it is called the innovation).  Second, although it might at first

seem strange that an optimal forecast error would be serially correlated, as is the case when h>1,

nothing is awry.  The serial correlation can't be used to improve forecasting performance, because

the autocorrelations of the MA(h-1) process cut off just before the beginning of the time-T

information set .  This is a general and tremendously important property of the

errors associated with optimal forecasts:  errors from optimal forecasts can't be forecast using

information available when the forecast was made.  If you can forecast the forecast error, then

you can improve the forecast, which means that it couldn’t have been optimal.  Finally, note that

as h approaches infinity  approaches zero, the unconditional mean of the process, and 

approaches  the unconditional variance of the process, which reflects the fact that as h

approaches infinity the conditioning information on which the forecast is based becomes

progressively less useful.  In other words, the distant future is harder to forecast than the near

future!

Interval and Density Forecasts

Now we construct interval and density forecasts.  Regardless of whether the moving

average is finite or infinite, we proceed in the same way, as follows.  The definition of the h-step-
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      Confidence intervals at any other desired confidence level may be constructed in similar2

fashion, by using a different critical point of the standard normal distribution.  A 90% interval
forecast, for example, is   In general, for a Gaussian process, a (1 - ")100%

confidence interval is , where  is that point on the N(0,1) distribution such that
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ahead forecast error is

Equivalently, the h-step-ahead realized value, , equals the forecast plus the error,

If the innovations are normally distributed, then the future value of the series of interest is also

normally distributed, conditional upon the information set available at the time the forecast was

made, and so we have the 95% h-step-ahead interval forecast .   In similar2

fashion, we construct the h-step-ahead density forecast as .  The mean of the

conditional distribution of  is , which of course must be the case because we

constructed the point forecast as the conditional mean, and the variance of the conditional

distribution is , the variance of the forecast error.

As an example of interval and density forecasting, consider again the MA(2) process, 
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Assuming normality, the 1-step-ahead 95% interval forecast is ,

and the 1-step-ahead density forecast is .

3.  Making the Forecasts Operational

So far we've assumed that the parameters of the process being forecast are known.  In

practice, of course, they must be estimated.  To make our forecasting procedures operational, we

simply replace the unknown parameters in our formulas with estimates, and the unobservable

innovations with residuals.

Consider, for example, the MA(2) process,

As you can readily verify using the methods we’ve introduced, the 2-step ahead optimal forecast,

assuming known parameters, is

with corresponding forecast error

and forecast-error variance

To make the forecast operational, we replace unknown parameters with estimates and the time-T

innovation with the time-T residual, yielding



Fcst4-09-11

Copyright © F.X. Diebold.  All rights reserved.

and forecast error variance

Then, if desired, we can construct operational 2-step-ahead interval and density forecasts, as

 and .

The strategy of taking a forecast formula derived under the assumption of known

parameters, and replacing unknown parameters with estimates, is a natural way to operationalize

the construction of point forecasts.  However, using the same strategy to produce operational

interval or density forecasts involves a subtlety that merits additional discussion.  The forecast

error variance estimate so obtained can be interpreted as one that ignores parameter estimation

uncertainty, as follows.  Recall once again that the actual future value of the series is

and that the operational forecast is

Thus the exact forecast error is

the variance of which is very difficult to evaluate.  So we make a convenient approximation:  we
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ignore parameter estimation uncertainty by assuming that estimated parameters equal true

parameters.  We therefore set  to zero, which yields

with variance

which we make operational as 

4.  The Chain Rule of Forecasting

Point Forecasts of Autoregressive Processes

Because any covariance stationary AR(p) process can be written as an infinite moving

average, there's no need for specialized forecasting techniques for autoregressions.  Instead, we

can simply transform the autoregression into a moving average, and then use the techniques we

developed for forecasting moving averages.  It turns out, however, that a very simple recursive

method for computing the optimal forecast is available in the autoregressive case.

The recursive method, called the chain rule of forecasting, is best learned by example. 

Consider the AR(1) process,
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First we construct the optimal 1-step-ahead forecast, and then we construct the optimal 2-step-

ahead forecast, which depends on the optimal 1-step-ahead forecast, which we’ve already

constructed.  Then we construct the optimal 3-step-ahead forecast, which depends on the already-

computed 2-step-ahead forecast, which we’ve already constructed, and so on.

To construct the 1-step-ahead forecast, we write out the process for time T+1,

Then, projecting the right-hand side on the time-T information set, we obtain

Now let’s construct the 2-step-ahead forecast.  Write out the process for time T+2,

Then project directly on the time-T information set to get

Note that the future innovation is replaced by 0, as always, and that we have directly replaced the

time T+1 value of y with its earlier-constructed optimal forecast.  Now let’s construct the 3-step-

ahead forecast.  Write out the process for time T+3,
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Then project directly on the time-T information set,

The required 2-step-ahead forecast was already constructed.

Continuing in this way, we can recursively build up forecasts for any and all future

periods.  Hence the name “chain rule of forecasting.”  Note that, for the AR(1) process, only the

most recent value of y is needed to construct optimal forecasts, for any horizon, and for the

general AR(p) process only the p most recent values of y are needed.

Point Forecasts of ARMA processes

Now we consider forecasting covariance stationary ARMA processes.  Just as with

autoregressive processes, we could always convert an ARMA process to an infinite moving

average, and then use our earlier-developed methods for forecasting moving averages.  But also

as with autoregressive processes, a simpler method is available for forecasting ARMA processes

directly, by combining our earlier approaches to moving average and autoregressive forecasting.

As always, we write out the ARMA (p,q) process for the future period of interest,

On the right side we have various future values of y and , and perhaps also past values,

depending on the forecast horizon.  We replace everything on the right-hand side with its

projection on the time-T information set.  That is, we replace all future values of y with optimal

forecasts (built up recursively using the chain rule) and all future values of  with optimal

forecasts (0), yielding
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When evaluating this formula, note that the optimal time-T "forecast” of any value of y or 

dated time T or earlier is just y or  itself.

As an example, consider forecasting the ARMA (1,1) process,

Let’s find   The process at time T+1 is

Projecting the right-hand side on  yields 

Now let’s find .  The process at time T+2 is

Projecting the right-hand side on  yields
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Substituting our earlier-computed 1-step-ahead forecast yields 

Continuing, it is clear that 

for all h > 1.

Interval and Density Forecasts

The chain rule, whether applied to pure autoregressive models or to ARMA models, is a

device for simplifying the computation of point forecasts.  Interval and density forecasts require

the h-step-ahead forecast error variance, which we get from the moving average representation,

as discussed earlier.  It is

which we operationalize as

Note that we don't actually estimate the moving average representation; rather, we solve

backward for as many b's as we need, in terms of the original model parameters, which we then

replace with estimates.
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Let's illustrate by constructing a 2-step-ahead 95% interval forecast for the ARMA(1,1)

process.  We already constructed the 2-step-ahead point forecast, ; we need only compute

the 2-step-ahead forecast error variance.  The process is

Substitute backward for  to get

We need not substitute back any farther, because the 2-step-ahead forecast error variance 

is , where  is the coefficient on  in the moving average representation of

the ARMA(1,1) process, which we just calculated to be ( ).  Thus the 2-step-ahead interval

forecast is , or .  We make this operational

as .  

5.  Application:  Forecasting Employment

Now we put our forecasting technology to work to produce point and interval forecasts

for Canadian employment.  Recall that the best moving average model was an MA(4), while the

best autoregressive model, as well as the best ARMA model and the best model overall, was an

AR(2).

First, consider forecasting with the MA(4) model.  In Figure 1, we show the employment
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history together with operational 4-quarter-ahead point and interval extrapolation forecasts.  The

4-quarter-ahead extrapolation forecast reverts very quickly to the mean of the employment index. 

In 1993.4, the last quarter of historical data, employment is well below its mean, but the forecast

calls for a quick rise.  The forecasted quick rise seems unnatural, because employment dynamics

are historically very persistent.  If employment is well below its mean in 1993.4, we’d expect it to

stay well below its mean for some time.

The MA(4) model is unable to capture such persistence.  The quick reversion of the

MA(4) forecast to the mean is a manifestation of the short memory of moving average processes. 

Recall, in particular, that an MA(4) process has a 4-period memory -- all autocorrelations are zero

beyond displacement 4.  Thus, all forecasts more than four steps ahead are simply equal to the

unconditional mean (100.2), and all 95% interval forecasts more than four steps ahead are plus or

minus 1.96 unconditional standard deviations.  All of this is made clear in Figure 2, in which we

show the employment history together with 12-step-ahead point and interval extrapolation

forecasts.

In Figure 3 we show the 4-quarter-ahead forecast and realization.  Our suspicions are

confirmed.  The actual employment series stays well below its mean over the forecast period,

whereas the forecast rises quickly back to the mean.  The mean squared forecast error is a large

55.9.

Now consider forecasting with the AR(2) model.  In Figure 4 we show the 4-quarter-

ahead extrapolation forecast, which reverts to the unconditional mean much less quickly, as seems

natural given the high persistence of employment.  The 4-quarter-ahead point forecast, in fact, is

still well below the mean.  Similarly, the 95% error bands grow gradually and haven’t approached
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their long-horizon values by four quarters out.

Figures 5 and 6 make clear the very different nature of the autoregressive forecasts. 

Figure 5 presents the 12-step-ahead extrapolation forecast, and Figure 6 presents a much longer-

horizon extrapolation forecast.  Eventually the unconditional mean is approached, and eventually

the error bands do go flat, but only for very long-horizon forecasts, due to the high persistence in

employment, which the AR(2) model captures.

In Figure 7 we show the employment history, 4-quarter-ahead AR(2) extrapolation

forecast,  and the realization.  The AR(2) forecast appears quite accurate; the mean squared

forecast error is 1.3, drastically smaller than that of the MA(4) forecast.
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Exercises, Problems and Complements

1.  (Forecast accuracy across horizons) You are a consultant to MedTrax, a large pharmaceutical

company, which released a new ulcer drug three months ago and is concerned about recovering

research and development costs.  Accordingly, MedTrax has approached you for drug sales

projections at 1- through 12-month-ahead horizons, which it will use to guide potential sales force

realignments.  In briefing you, MedTrax indicated that it expects your long-horizon forecasts

(e.g., 12-month-ahead) to be just as accurate as your short-horizon forecasts (e.g., 1-month-

ahead).  Explain to MedTrax why that is not likely to be the case, even if you do the best

forecasting job possible.

2. (Mechanics of forecasting with ARMA models:  BankWire continued)  On the book’s web

page you will find data for daily transfers over BankWire, a wire transfer system in a country

responsible for much of the world’s finance, over a recent span of 200 business days.

a.  In the Chapter 8 Exercises, Problems and Complements, you were asked to find a

parsimonious ARMA(p,q) model that fits the transfer data well, and to defend its

adequacy.  Repeat the exercise, this time using only the first 175 days for model

selection and fitting.  Is it necessarily the case that the selected ARMA model will

remain the same as when all 200 days are used?  Does yours?

b.  Use your estimated model to produce point and interval forecasts for days 176 through

200.  Plot them and discuss the forecast pattern.

c.  Compare your forecasts to the actual realizations.  Do the forecasts perform well? 

Why or why not? 

d.  Discuss precisely how your software constructs point and interval forecasts.  It should
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certainly match our discussion in spirit, but it may differ in some of the details. 

Are you uncomfortable with any of the assumptions made?  How, if at all, could

the forecasts be improved?

3.  (Forecasting an AR(1) process with known and unknown parameters)  Use the chain rule to

forecast the AR(1) process,

For now, assume that all parameters are known.

a.  Show that the optimal forecasts are

...

b.  Show that the corresponding forecast errors are
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...

c.  Show that the forecast error variances are

...

d.  Show that the limiting forecast error variance is 

the unconditional variance of the AR(1) process.

Now assume that the parameters are unknown and so must be estimated.

e.  Make your expressions for both the forecasts and the forecast error variances

operational, by inserting least squares estimates where unknown parameters

appear, and use them to produce an operational point forecast and an operational

90% interval forecast for .
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4.  (Forecasting an ARMA(2,2) process)  Consider the ARMA(2,2) process:

a.  Verify that the optimal 1-step ahead forecast made at time T is

b.  Verify that the optimal 2-step ahead forecast made at time T is

and express it purely in terms of elements of the time-T information set.

c.  Verify that the optimal 3-step ahead forecast made at time T is

and express it purely in terms of elements of the time-T information set.

d.  Show that for any forecast horizon h greater than or equal to three,

5.  (Optimal forecasting under asymmetric loss)  One of the conditions required for optimality of

the conditional mean forecast is symmetric loss.  We make that assumption for a number of

reasons.  First, the conditional mean is usually easy to compute.  In contrast, optimal forecasting

under asymmetric loss is rather involved, and the tools for doing so are still under development. 

(See, for example, Christoffersen and Diebold, 1997.)  Second, and more importantly, symmetric
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       A forecast is unbiased if its error has zero mean.  The error from the conditional mean3

forecast has zero mean, by construction.
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loss often provides a good approximation to the loss structure relevant in a particular decision

environment.

Symmetric loss is not always appropriate, however.  Here we discuss some aspects of

forecasting under asymmetric loss.  Under asymmetric loss, optimal forecasts are biased, whereas

the conditional mean forecast is unbiased.   Bias is optimal under asymmetric loss because we can3

gain on average by pushing the forecasts in the direction such that we make relatively few errors

of the more costly sign.

There are many possible asymmetric loss functions.  A few, however, have proved

particularly useful, because of their flexibility and tractability.  One is the linex loss function,

It's called linex because when a>0, loss is approximately linear to the left of the origin and

approximately exponential to the right, and conversely when a<0.  Another is the linlin loss

function, given by

Its name comes from the linearity on each side of the origin.

a.  Discuss three practical forecasting situations in which the loss function might be

asymmetric.  Give detailed reasons for the asymmetry, and discuss how you might
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produce and evaluate forecasts.

b.  Explore and graph the linex and linlin loss functions for various values of a and b. 

Discuss the roles played by a and b in each loss function.  In particular, which

parameter or combination of parameters governs the degree of asymmetry?  What

happens to the linex loss function as a gets smaller?  What happens to the linlin

loss function as a/b approaches one?

6.  (Truncation of infinite distributed lags, state space representations, and the Kalman filter)  This

complement concerns practical implementation of formulae that involve innovations ( 's).  Earlier

we noted that as long as a process is invertible we can express the 's in terms of the y's.  If the

process involves a moving average component, however, the 's will depend on the infinite past

history of the y's, so we need to truncate to make it operational.  Suppose, for example, that we're

forecasting the MA(1) process,

The operational 1-step-ahead forecast is

But what, precisely, do we insert for the residual, ?  Back substitution yields the autoregressive

representation,
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Thus,

which we are forced to truncate at time T=1, when the data begin.  This yields the approximation

Unless the sample size is very small, or  is very close to 1, the approximation will be very

accurate, because 2 is less than one in absolute value (by invertibility), and we're raising it to

higher and higher powers.  Finally, we make the expression operational by replacing the unknown

moving average parameter with an estimate, yielding

In the engineering literature of the 1960s, and then in the statistics and econometrics

literatures of the 1970s, important tools called state space representations and the Kalman filter

were developed.  Those tools provide a convenient and powerful framework for estimating a wide

variety of forecasting models and constructing optimal forecasts, and they enable us to tailor the

forecasts precisely to the sample of data at hand, so that no truncation is necessary.

7.  (Point and interval forecasts allowing for serial correlation - Nile.com continued)  On the

book’s website you will find data for the internet retailer Nile.com, giving the number of hits at

the Nile.com website each day from 1/1/1998 through 9/28/1998.  Your marketing firm,

CyberMedia, which specializes in developing quick, intensive marketing strategies based on short
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term projections, is hired to develop a forecasting model for hits at the Nile.com website.

a.  In Chapter 6, Problem 6, you estimated a trend + seasonal model for Nile.com hits,

ignoring the possible presence of cyclical dynamics.  Now generalize your earlier

model to allow for cyclical dynamics, if present, via AR(p) disturbances.  Write the

full specification of your model in general notation (e.g., with p left unspecified).

b.  Estimate three versions of your full model, corresponding to p = 0, 1, 2, 3, while

leaving the original trend and seasonal specifications intact, and select the one that

optimizes SIC.

cc.  Using the model selected in part b, write theoretical expressions for the 1- and 2-day-

ahead point forecasts and 95% interval forecasts, using estimated parameters. 

d.  Calculate those point and interval forecasts for Nile.com for 9/29 and 9/30.

7.  (Bootstrap simulation to acknowledge innovation distribution uncertainty and parameter

estimation uncertainty)  A variety of simulation-based methods fall under the general heading of

"bootstrap."  Their common element, and the reason for the name bootstrap, is that they build up

an approximation to an object of interest directly from the data.  Hence they “pull themselves up

by their own bootstrap.”  For example, the object of interest might be the distribution of a random

disturbance, which has implications for interval and density forecasts, and about which we might

sometimes feel uncomfortable making a possibly erroneous assumption such as normality. 

a.  The density and interval forecasts that we’ve discussed rely crucially on normality.  In

many situations, normality is a perfectly reasonable and useful assumption; after

all, that’s why we call it the “normal” distribution.  Sometimes, however, such as

when forecasting high-frequency financial asset returns, normality may be



Fcst4-09-28

Copyright © F.X. Diebold.  All rights reserved.

unrealistic.  Using bootstrap methods we can relax the normality assumption. 

Suppose, for example, that we want a 1-step-ahead interval forecast for an AR(1)

process.  We know that the future observation of interest is 

We know , and we can estimate N and then proceed as if N were known, using

the operational point forecast,   If we want an operational interval

forecast, however, we’ve thus far relied on a normality assumption, in which case

we use .  To relax the normality assumption, we can proceed as

follows.  Imagine that we could sample from the distribution of  -- whatever

that distribution might be.  Take R draws, , where R is a large number,

such as 10000.  For each such draw, construct the corresponding forecast of 

as

  

Then form a histogram of the  values, which is the density forecast.  And

given the density forecast, we can of course construct interval forecasts at any

desired level.  If, for example, we want a 90% interval we can sort the 

values from smallest to largest, and find the 5th percentile (call it a) and the 95th

percentile (call it b), and use the 90% interval forecast [a, b].

b.  The only missing link in the strategy above is how to sample from the distribution of

.  It turns out that it’s easy to do -- we simply assign probability 1/T to each of

the observed residuals  (which are estimates of the unobserved 's) and draw from
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them R times with replacement.  Describe how you might do so.

c.  Note that the interval and density forecasts we’ve constructed thus far -- even the one

above  based on bootstrap techniques -- make no attempt to account for parameter

estimation uncertainty.  Intuitively, we would expect confidence intervals obtained

by ignoring parameter estimation uncertainty to be more narrow than they would

be if parameter uncertainty were accounted for, thereby producing an artificial

appearance of precision.  In spite of this defect, parameter uncertainty is usually

ignored in practice, for a number of reasons.  The uncertainty associated with

estimated parameters vanishes as the sample size grows, and in fact it vanishes

quickly.  Furthermore, the fraction of forecast error attributable to the difference

between estimated and true parameters is likely to be small compared to the

fraction of forecast error coming from other sources, such as using a model that

does a poor job of approximating the dynamics of the variable being forecast. 

d.  Quite apart from the reasons given above for ignoring parameter estimation

uncertainty, the biggest reason is probably that, until very recently, mathematical

and computational difficulties made attempts to account for parameter uncertainty

infeasible in many situations of practical interest.  Modern computing speed,

however, lets us use the bootstrap to approximate the effects of parameter

estimation uncertainty.  To continue with the AR(1) example, suppose that we

know that the disturbances are Gaussian, but that we want to attempt to account

for the effects of parameter estimation uncertainty when we produce our 1-step-

ahead density forecast.  How could we use the bootstrap to do so?
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e.  The “real sample” of data ends with observation , and the optimal point forecast

depends only on .  It would therefore seem desirable that all of your R

"bootstrap samples" of data also end with .  Do you agree?  How might you

enforce that property while still respecting the AR(1) dynamics?  (This is tricky.)

f.  Can you think of a way to assemble the results thus far to produce a density forecast

that acknowledges both innovation distribution uncertainty and parameter

estimation uncertainty?  (This is very challenging.)
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Bibliographical and Computational Notes

The methods discussed in this chapter were developed by Wiener, Kolmogorov and Wold

more than fifty years ago, and they underlie all modern forecasting software.  It’s important to

understand them so that you're the master of your software, not the opposite.

For a proof of our assertion of optimality of the conditional mean forecast, as well as a

precise statement of the conditions under which the result holds, see any good advanced text,

such as Hamilton (1994). 

Linex loss was introduced by Varian (1974) in the context of real estate assessment, and

further studied by Zellner (1986).  Harvey (1993) gives a lucid exposition of state-space

representations and the Kalman filter.  Efron and Tibshirani (1993) is a good introduction to the

bootstrap and its many uses.  Stine (1987) and Breidt, Davis and Dunsmuir (1995) show how to

use the bootstrap to produce interval and density forecasts under weak assumptions.  Chatfield

(1993, 1995) argues that the fraction of forecast error attributable to the difference between

estimated and true parameters is likely much smaller than the fraction of forecast error coming

from other sources, such as model misspecification.  Clements and Hendry (1994, 1998) provide

insightful discussion of a variety of advanced topics in applied forecasting.
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Concepts for Review

Information Set

Optimal Forecast

Expected Loss

Conditional Mean

Linear Forecast

Linear Projection

Linear Least Squares Forecast

Forecast Error

Forecast Error Variance

Chain Rule of Forecasting

Symmetric Loss

Asymmetric Loss

Linex Loss Function

Linlin Loss Function

Bootstrapping

Innovation Distribution Uncertainty

Parameter Estimation Uncertainty
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Figure 1
Employment History and Forecast
MA(4) Model
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Figure 2
Employment History and Long-Horizon Forecast
MA(4) Model
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Figure 3
Employment History, Forecast and Realization
MA(4) Model
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Figure 4
Employment History and Forecast
AR(2) Model
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Figure 5
Employment History and Long-Horizon Forecast
AR(2) Model
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Figure 6
Employment History and Very Long-Horizon Forecast
AR(2) Model
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Figure 7
Employment History, Forecast and Realization
AR(2) Model
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Chapter 10

Putting it all Together:

A Forecasting Model with Trend, Seasonal and Cyclical Components

1.  Assembling What We've Learned

Thus far we've focused on modeling trend, seasonals, and cycles one at a time.  In Chapter

5, we introduced models and forecasts of trend.  We forecasted retail sales, and we used a model

that included only trend.  The data were seasonally adjusted, so it wasn't necessary to model

seasonality, and, although cycles were likely present, we simply ignored them.  In Chapter 6, we

introduced models and forecasts of seasonality.  We forecasted housing starts, and we used a

model that included only seasonal dummies.  We didn't need a trend, and again we simply ignored

cycles.  In Chapters 7-9, we introduced models and forecasts of cycles.  We forecasted

employment, and we used autoregressive, moving-average, and ARMA models.  We didn't need

trends or seasonals, because employment had no trend and had been seasonally adjusted.

In many forecasting situations, however, more than one component is needed to capture

the dynamics in a series to be forecast -- frequently they're all needed.  Here we assemble our

tools for forecasting trends, seasonals, and cycles; we use regression on a trend and seasonal

dummies, and we capture cyclical dynamics by allowing for ARMA effects in the regression

disturbances.  The full model is 
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 is a trend, with underlying parameters 2.  For example, linear trend has  and

and quadratic trend has  and

In addition to the trend, we include seasonal dummies, holiday dummies, and trading-day
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      Note that, because we include a full set of seasonal dummies, the trend does not contain1

an intercept, and we don't include an intercept in the regression.

      If the seasonal dummies were dropped, then we'd include an intercept in the regression.2

Copyright © F.X. Diebold.  All rights reserved.

dummies.   The disturbances follow an ARMA(p,q) process, of which pure autoregressions and1

pure moving averages are special cases.  In any particular application, of course, various trend

effects, seasonal and other calendar effects, and ARMA cyclical effects may not be needed and so

could be dropped.   Finally,  is the underlying innovation that drives everything.2

Now consider constructing an h-step-ahead point forecast at time T, .  

At time T+h,

Projecting the right-hand side variables on what’s known at time T (that is, the time-T information

set, ), yields the point forecast

As with the pure trend and seasonal models discussed earlier, the trend and seasonal variables on

the right-hand side are perfectly predictable.  The only twist concerns the cyclical behavior that

may be lurking in the disturbance term, future values of which don't necessarily project to zero,

because the disturbance is not necessarily white noise.  Instead, we construct  using the



Fcst4-10-4

Copyright © F.X. Diebold.  All rights reserved.

methods we developed for forecasting cycles.

As always, we make the point forecast operational by replacing unknown parameters with

estimates, yielding

To construct , in addition to replacing the parameters in the formula for  with

estimates, we replace the unobservable disturbances, the 's, with the observable residuals, the

's. 

We use our earlier-developed operational expressions for cycle forecast error variances to

produce an h-step-ahead interval forecast; it's simply , where  is the operational

estimate of the variance of the error in forecasting  and  is the appropriate critical point of

the N(0,1) density.  For example, a 95% interval forecast is .  Finally, the

complete h-step-ahead density forecast is .

Once again, we don't actually have to do any of the computations just discussed; rather,

the computer does them all for us.  So let's get on with an application, now that we know what

we're doing.

2.  Application:  Forecasting Liquor Sales

We'll forecast monthly U.S. liquor sales.  We graphed a short span of the series in Chapter

6 and noted its pronounced seasonality -- sales skyrocket during the Christmas season.  In Figure

1, we show a longer history of liquor sales, 1968.01 - 1993.12.  In Figure 2 we show log liquor
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      The nature of the logarithmic transformation is such that it “compresses” an increasing3

variance.  Make a graph of log(x) as a function of x, and you’ll see why.

      From this point onward, for brevity we'll simply refer to "liquor sales," but remember4

that we've taken logs.

      Recall that the Durbin-Watson test is designed to detect simple AR(1) dynamics.  It also5

has the ability to detect other sorts of dynamics, but evidently not those relevant to the present
application, which are very different from a simple AR(1).

Copyright © F.X. Diebold.  All rights reserved.

sales; we take logs to stabilize the variance, which grows over time.   The variance of log liquor3

sales is more stable, and it's the series for which we'll build forecasting models.4

Liquor sales dynamics also feature prominent trend and cyclical effects.  Liquor sales trend

upward, and the trend appears nonlinear in spite of the fact that we're working in logs.  To handle

the nonlinear trend, we adopt a quadratic trend model (in logs).  The estimation results are in

Table 1.  The residual plot (Figure 3) shows that the fitted trend increases at a decreasing rate;

both the linear and quadratic terms are highly significant.  The adjusted  is 89%, reflecting the

fact that trend is responsible for a large part of the variation in liquor sales.  The standard error of

the regression is .125; it's an estimate of the standard deviation of the error we'd expect to make

in forecasting liquor sales if we accounted for trend but ignored seasonality and serial correlation. 

The Durbin-Watson statistic provides no evidence against the hypothesis that the regression

disturbance is white noise.

The residual plot, however, shows obvious residual seasonality.  The Durbin-Watson

statistic missed it, evidently because it's not designed to have power against seasonal dynamics.  5

The residual plot also suggests that there may be a cycle in the residual, although it's hard to tell

(hard for the Durbin-Watson statistic as well), because the pervasive seasonality swamps the
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picture and makes it hard to infer much of anything. 

The residual correlogram (Table 2) and its graph (Figure 4) confirm the importance of the

neglected seasonality.  The residual sample autocorrelation function has large spikes, far

exceeding the Bartlett bands, at the seasonal displacements, 12, 24, and 36.  It indicates some

cyclical dynamics as well; apart from the seasonal spikes, the residual sample autocorrelation and

partial autocorrelation functions oscillate, and the Ljung-Box statistic rejects the white noise null

hypothesis even at very small, non-seasonal, displacements.

In Table 3 we show the results of regression on quadratic trend and a full set of seasonal

dummies.  The quadratic trend remains highly significant.  The adjusted  rises to 99%, and the

standard error of the regression falls to .046, which is an estimate of the standard deviation of the

forecast error we expect to make if we account for trend and seasonality but ignore serial

correlation.  The Durbin-Watson statistic, however, has greater ability to detect serial correlation

now that the residual seasonality has been accounted for, and it sounds a loud alarm.

The residual plot of Figure 5 shows no seasonality, as that's now picked up by the model,

but it confirms the Durbin-Watson's warning of serial correlation.  The residuals are highly

persistent, and hence predictable.  We show the residual correlogram in tabular and graphical

form in Table 4 and Figure 6.  The residual sample autocorrelations oscillate and decay slowly,

and they exceed the Bartlett standard errors throughout.  The Ljung-Box test strongly rejects the

white noise null at all displacements.  Finally, the residual sample partial autocorrelations cut off

at displacement 3.  All of this suggests that an AR(3) would provide a good approximation to the

disturbance's Wold representation.
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      Recall that v is the innovation that drives the ARMA process for the regression6

disturbance, .
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In Table 5, then, we report the results of estimating a liquor sales model with quadratic

trend, seasonal dummies, and AR(3) disturbances.  The  is now 100%, and the Durbin-Watson

is fine.  One inverse root of the AR(3) disturbance process is estimated to be real and close to the

unit circle (.95), and the other two inverse roots are a complex conjugate pair farther from the

unit circle.  The standard error of this regression is an estimate of the standard deviation of the

forecast error we'd expect to make after modeling the residual serial correlation, as we've now

done; that is, it's an estimate of the standard deviation of v.   It's a very small .027, roughly half6

that obtained when we ignored serial correlation.

We show the residual plot in Figure 7 and the residual correlogram in Table 6 and Figure

8.  The residual plot reveals no patterns; instead, the residuals look like white noise, as they

should.  The residual sample autocorrelations and partial autocorrelations display no patterns and

are mostly inside the Bartlett bands.  The Ljung-Box statistics also look good for small and

moderate displacements, although their p-values decrease for longer displacements.

All things considered, the quadratic trend, seasonal dummy, AR(3) specification seems

tentatively adequate.  We also perform a number of additional checks.  In Figure 9, we show a

histogram and normality test applied to the residuals.  The histogram looks symmetric, as

confirmed by the skewness near zero.  The residual kurtosis is a bit higher then three and causes

Jarque-Bera test to reject the normality hypothesis with a p-value of .02, but the residuals

nevertheless appear to be fairly well approximated by a normal distribution, even if they may have
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      We show the point forecast together with 95% intervals.7

      Recall that exponentiating “undoes” a natural logarithm.8

      Strictly speaking, “sequential” might be a more descriptive adjective than “recursive.” 9

“Recursive updating” refers to the fact that an estimate based on t+1 observations can sometimes
be computed simply by appropriately combining the old estimate based on t observations with the
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slightly fatter tails.

Now we use the estimated model to produce forecasts.  In Figure 10 we show the history

of liquor sales and a 12-month-ahead extrapolation forecast for 1994.   To aid visual7

interpretation, we show only two years of history.  The forecast looks reasonable.  It's visually

apparent that the model has done a good job of picking up the seasonal pattern, which dominates

the local behavior of the series.  In Figure 11, we show the history, the forecast, and the 1994

realization.  The forecast was very good!

In Figure 12 we show four years of history together with a 60-month-ahead (five year)

extrapolation forecast, to provide a better feel for the dynamics in the forecast.  The figure also

makes clear the trend forecast is slightly downward.  To put the long-horizon forecast in historical

context, we show in Figure 13 the 60-month-ahead forecast together with the complete history. 

Finally, in Figure 14, we show the history and point forecast of the level of liquor sales (as

opposed to log liquor sales), which we obtain by exponentiating the forecast of log liquor sales.8

3.  Recursive Estimation Procedures for Diagnosing and Selecting Forecasting Models

Recursive estimation means beginning with a small sample of data, estimating a model,

adding an observation and re-estimating the model, and continuing in that fashion until the sample

is exhausted.   Recursive estimation and related techniques are useful in a variety of situations of9
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new observation.  (This is possible, for example, with linear least squares regression.)  Recursive
updating achieves a drastic reduction in computational requirements relative to complete re-
estimation of the model each time the sample is updated, which we might call “brute force
updating.”  For our purposes, it’s inconsequential whether we do recursive updating or brute
force updating (and the speed of modern computers often makes brute force attractive); we use
“recursive estimation” as a blanket term for any sequential estimation procedure, whether the
computations are done by recursive or brute force techniques.     
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importance in forecasting, including stability assessment and model selection.  On both counts, it’s

natural to introduce them now.

Assessing the Stability of Forecasting Models:  Recursive Parameter Estimation and Recursive

Residuals

Business and economic relationships often vary over time; sometimes parameters evolve

slowly, and sometimes they break sharply.  If a forecasting model displays such instability, it’s not

likely to produce good forecasts, so it’s important that we have tools that help us to diagnose the

instability.  Recursive estimation procedures allow us to assess and track time-varying parameters

and are therefore useful in the construction and evaluation of a variety of forecasting models.

First we introduce the idea of recursive parameter estimation.  We work with the standard

linear regression model,

t = 1, ..., T, and we estimate it using least squares.  Instead of immediately using all the data to
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t      Derivation of a formula for r  is beyond the scope of this book.  Ordinarily we’d ignore10

the inflation of due to parameter estimation, which vanishes with sample size so that
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estimate the model, however, we begin with a small subset.  If the model contains k parameters,

begin with the first k observations and estimate the model.  Then we estimate it using the first k+1

observations, and so on, until the sample is exhausted.  At the end we have a set of recursive

parameter estimates , for t = k, ..., T and i = 1, ..., k.  It often pays to compute and examine

recursive estimates, because they convey important information about parameter stability -- they

show how the estimated parameters move as more and more observations are accumulated.  It’s

often informative to plot the recursive estimates, to help answer the obvious questions of interest. 

Do the coefficient estimates stabilize as the sample size grows?  Or do they wander around, or

drift in a particular direction, or break sharply at one or more points?

Now let’s introduce the recursive residuals.  At each t, t = k, ... ,T-1, we can compute a 1-

step-ahead forecast, .  The corresponding forecast errors, or recursive

residuals, are .  The variance of these 1-step-ahead forecast errors changes as

the sample size grows, because under the maintained assumptions the model parameters are

estimated more precisely as the sample size grows.  Specifically,

t twhere r >1 for all t and r  is a somewhat complicated function of the data.10
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, and simply use the large-sample approximation .  Presently, however,

we’re estimating the regression recursively, so the initial regressions will always be performed on
very small samples, thereby rendering large-sample approximations unpalatable.

       is just the usual standard error of the regression, estimated from the full sample of11

data.
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As with recursive parameter estimates, recursive residuals can reveal parameter instability

in forecasting models.  Often we’ll examine a plot of the recursive residuals and estimated two

standard error bands ( ).   This has an immediate forecasting interpretation and is11

sometimes called a sequence of 1-step forecast tests -- we make recursive 1-step-ahead 95%

interval forecasts and then check where the subsequent realizations fall.  If many of them fall

outside the intervals, one or more parameters may be unstable, and the locations of the violations

of the interval forecasts give some indication as to the nature of the instability.

Sometimes it’s helpful to consider the standardized recursive residuals,

t = k, ... ,T-1.  Under the maintained assumptions,

If any of the maintained model assumptions are violated, the standardized recursive residuals will
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      Sums of zero-mean iid random variables are very important.  In fact, they're so12

important that they have their own name, random walks.  We'll study them in detail in Chapter 13.

      To make the standardized recursive residuals, and hence the CUSUM statistic,13

operational, we replace  with .

Copyright © F.X. Diebold.  All rights reserved.

fail to be iid normal, so we can learn about various model inadequacies by examining them.  The

cumulative sum (“CUSUM”) of the standardized recursive residuals is particularly useful in

assessing parameter stability.  Because  it follows that

is just a sum of iid N(0, 1) random variables.   Probability bounds for the CUSUM have been12

tabulated, and we often examine time series plots of the CUSUM and its 95% probability bounds,

which grow linearly and are centered at zero.   If the CUSUM violates the bounds at any point,13

there is evidence of parameter instability.  Such an analysis is called a CUSUM analysis.

As an illustration of the use of recursive techniques for detecting structural change, we

consider in Figures 15 and 16 two stylized data-generating processes (bivariate regression models,

satisfying the classical assumptions apart from the possibility of a time-varying parameter).  The

first has a constant parameter, and the second has a sharply breaking parameter.  For each we

show a scatterplot of y vs. x, recursive parameter estimates, recursive residuals, and a CUSUM

plot.

We show the constant parameter model in Figure 15.  As expected, the scatterplot shows
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no evidence of instability, the recursive parameter estimate stabilizes quickly, its variance

decreases quickly, the recursive residuals look like zero-mean random noise, and the CUSUM

plot shows no evidence of instability.

We show the breaking parameter model in Figure 16; the results are different yet again. 

The true relationship between y and x is one of proportionality, with the constant of

proportionality jumping in mid-sample.  The jump is clearly evident in the scatterplot, in the

recursive residuals, and in the recursive parameter estimate.  The CUSUM remains near zero until

mid-sample, at which time it shoots through the 95% probability limit.

Model selection based on simulated forecasting performance

All the forecast model selection strategies that we’ve studied amount to strategies for

finding the model that’s most likely to perform well in terms of out-of-sample 1-step-ahead mean

squared forecast error.  In every case, we effectively estimate out-of-sample 1-step-ahead mean

squared forecast error by adjusting the in-sample mean squared error with a degrees-of-freedom

penalty.  The important insight is that we estimate out-of-sample forecast accuracy using in-

sample residuals.  Recursive estimation suggests a different approach, which is also more direct

and flexible -- recursive estimation lets us estimate out-of-sample forecast accuracy directly, using

out-of-sample forecast errors.

We first introduce a procedure called cross validation, in reference to the fact that the

predictive ability of the model is evaluated on observations different from those on which the

model is estimated, thereby incorporating an automatic degrees-of-freedom penalty.  It’s actually

not based on recursive estimation, because we don’t let the estimation sample expand.  Instead,
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we obtain the various estimation samples by sequentially deleting observations.  As we’ll see,

however, it provides a natural introduction to a closely related recursive model selection

procedure that we’ll introduce subsequently, which we call recursive cross validation.

Cross validation proceeds as follows.  Consider selecting among J forecasting models. 

Start with model 1, estimate it using all data observations except the first, use it to forecast the

first observation, and compute the associated squared forecast error.  Then estimate it using all

observations except the second, use it to forecast the second observation, and compute the

associated squared error.  Keep doing this -- estimating the model with one observation deleted

and then using the estimated model to forecast the deleted observation -- until each observation

has been sequentially deleted, and average the squared errors in predicting each of the T

sequentially deleted observations.  Repeat the procedure for the other models, j = 2, ..., J, and

select the model with the smallest average squared forecast error.

As we’ve described it here, cross validation is mainly of use in cross section, as opposed

to time series, forecasting environments, because the “leave one out” estimations required for

cross validation only make sense in the absence of dynamics.  That is, it’s only in the absence of

dynamics that we can simply pluck out an observation, discard it, and proceed to estimate the

model with the remaining observations without further adjustment.  It’s easy to extend the basic

idea of cross validation to the time series case, however, which leads to the idea of recursive cross

validation.

Recursive cross validation proceeds as follows.  Let the initial estimation sample run from

t = 1, ..., T , and let the "holdout sample" used for comparing predictive performance run from t =*
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T +1, ..., T.  For each model, proceed as follows.  Estimate the model using observations t = 1,*

..., T .  Then use it to forecast observation T +1, and compute the associated squared error. * *

Next, update the sample by one observation (observation T +1), estimate the model using the*

updated sample t = 1, ..., T +1, forecast observation T +2, and compute the associated squared* *

error.  Continue this recursive re-estimation and forecasting until the sample is exhausted, and

then average the squared errors in predicting observations T +1 through T.  Select the model with*

the smallest average squared forecast error.

4.  Liquor Sales, Continued

In Figures 17-19, we show the results of a recursive analysis.  In Figure 17, we show the

recursive residuals and their two-standard-error bands under the joint null hypothesis of correct

specification and parameter constancy.  The recursive residuals rarely violate the 95% bands.  In

Figure 18 we show the recursive parameter estimates together with recursively computed

standard errors.  The top row shows the two trend parameters, the next three rows show the

twelve seasonal dummy parameters, and the last row shows the three autoregressive parameters. 

All parameter estimates seem to stabilize as the sample size grows.  Finally, in Figure 19, we show

a CUSUM chart, which reveals no evidence against the hypothesis of correct specification and

structural stability; the CUSUM never even approaches the 5% significance boundary.
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      I thank Ron Michener, University of Virginia, for suggesting parts d and f.14
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Exercises, Problems and Complements

1.  (Serially correlated disturbances vs. lagged dependent variables)  Estimate the quadratic trend

model for log liquor sales with seasonal dummies and three lags of the dependent variable

included directly.  Discuss your results and compare them to those we obtained when we instead

allowed for AR(3) disturbances in the regression.

2.  (Assessing the adequacy of the liquor sales forecasting model trend specification)  Critique the

liquor sales forecasting model that we adopted (log liquor sales with quadratic trend, seasonal

dummies, and AR(3) disturbances).14

a.  If the trend is not a good approximation to the actual trend in the series, would it

greatly affect short-run forecasts?  Long-run forecasts?

b.  Fit and assess the adequacy of a model with log-linear trend.

c.  How might you fit and assess the adequacy of a broken linear trend?  How might you

decide on the location of the break point?

3.  (Improving non-trend aspects of the liquor sales forecasting model)

a.  Recall our earlier argument from Chapter 8 that best practice requires using a 

distribution rather than a  distribution to assess the significance of Q-statistics

for model residuals, where m is the number of autocorrelations included in the

Box-Pierce statistic and k is the number of parameters estimated.  In several places

in this chapter, we failed to heed this advice when evaluating the liquor sales

model.  If we were instead to compare the residual Q-statistic p-values to a 
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distribution, how, if at all, would our assessment of the model’s adequacy change?

b.  Return to the log-quadratic trend model with seasonal dummies, allow for ARMA(p,q)

disturbances, and do a systematic selection of p and q using the AIC and SIC.  Do

AIC and SIC select the same model?  If not, which do you prefer?  If your

preferred forecasting model differs from the AR(3) that we used, replicate the

analysis in the text using your preferred model, and discuss your results.

c.  Discuss and evaluate another possible model improvement:  inclusion of an additional

dummy variable indicating the number of Fridays and/or Saturdays in the month. 

Does this model have lower AIC or SIC than the final model used in the text?  Do

you prefer it to the one in the text?  Why or why not?

4.  (CUSUM analysis of the housing starts model)  Consider the housing starts forecasting model

that we built in Chapter 6.

a.  Perform a CUSUM analysis of a housing starts forecasting model that does not account

for cycles.   (Recall that our model in Chapter 6 did not account for cycles). 

Discuss your results.

b.  Specify and estimate a model that does account for cycles.

c.  Do a CUSUM analysis of the model that accounts for cycles.  Discuss your results and

compare them to those of part a.

5.  (Model selection based on simulated forecasting performance)

a.  Return to the retail sales data of Chapter 5,  and use recursive cross validation to select

between the linear trend forecasting model and the quadratic trend forecasting
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model.  Which do you select?  How does it compare with the model selected by

the AIC and SIC?

b.  How did you decide upon a value of T  when performing the recursive cross validation*

on the retail sales data?  What are the relevant considerations? 

c.  One virtue of recursive cross validation procedures is their flexibility.  Suppose that

your loss function is not 1-step-ahead mean squared error; instead, suppose it’s an

asymmetric function of the 1-step-ahead error.  How would you modify the

recursive cross validation procedure to enforce the asymmetric loss function? 

How would you proceed if the loss function were 4-step-ahead squared error? 

How would you proceed if the loss function were an average of 1-step-ahead

through 4-step-ahead squared error?  

6.  (Seasonal models with time-varying parameters:  forecasting AirSpeed passenger-miles)  You

work for a hot new startup airline, AirSpeed, modeling and forecasting the miles per person

(“passenger-miles”) traveled on their flights through the four quarters of the year.  During the past

fifteen years for which you have data, it’s well known in the industry that trend passenger-miles

have been flat (that is, there is no trend), and similarly, there have been no cyclical effects.  It is

believed by industry experts, however, that there are strong seasonal effects, which you think

might be very important for modeling and forecasting passenger-miles.

a.  Why might airline passenger-miles be seasonal?

b.  Fit a quarterly seasonal model to the AirSpeed data, and assess the importance of

seasonal effects.  Do the t and F tests indicate that seasonality is important?  Do
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the Akaike and Schwarz criteria indicate that seasonality is important?  What is the

estimated seasonal pattern?

c.  Use recursive procedures to assess whether the seasonal coefficients are evolving over

time.  Discuss your results.

d.  If the seasonal coefficients are evolving over time, how might you model that evolution

and thereby improve your forecasting model?  (Hint:  Allow for trends in the

seasonal coefficients themselves.)

e.  Compare 4-quarter-ahead extrapolation forecasts from your models with and without

evolving seasonality.

7.  (Formal models of unobserved components)  We've used the idea of unobserved components

as informal motivation for our models of trends, seasonals, and cycles.  Although we will not do

so, it's possible to work with formal unobserved components models, such as

where T is the trend component, S is the seasonal component, C is the cyclical component, and I

is the remainder, or “irregular,” component, which is white noise.  Typically we'd assume that

each component is uncorrelated with all other components at all leads and lags.  Typical models

for the various components include:

Trend
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 Seasonal

Cycle

Irregular

8.  (The restrictions associated with unobserved-components structures)  The restrictions

associated with formal unobserved-components models are surely false, in the sense that real-

world dynamics are not likely to be decomposable in such a sharp and tidy way.  Rather, the
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decomposition is effectively an accounting framework that we use simply because it’s helpful to

do so.  Trend, seasonal and cyclical variation are so different -- and so important in business,

economic and financial series -- that it’s often helpful to model them separately to help ensure that

we model each adequately.  A consensus has not yet emerged as to whether it's more effective to

exploit the unobserved components perspective for intuitive motivation, as we do throughout this

book, or to enforce formal unobserved components decompositions in hopes of benefitting from

considerations related to the shrinkage principle.

9.  (Additive and multiplicative unobserved-components decompositions)  We introduced the

formal unobserved components decomposition,

where T is the trend component, S is the seasonal component, C is the cyclical component, and I

is the remainder, or “irregular,” component.  Alternatively, we could have introduced a

multiplicative decomposition,

a.  Begin with the multiplicative decomposition and take logs.  How does your result

relate to our original additive decomposition?

b.  Does the exponential (log-linear) trend fit more naturally in the additive or

multiplicative decomposition framework?  Why?

10.  (Signal, noise and overfitting)  Using our unobserved-components perspective, we’ve



Fcst4-10-22

Copyright © F.X. Diebold.  All rights reserved.

discussed trends, seasonals, cycles, and noise.  We’ve modeled and forecasted each, with the

exception of noise.  Clearly we can’t model or forecast the noise; by construction, it’s

unforecastable.  Instead, the noise is what remains after accounting for the other components. 

We call the other components signals, and the signals are buried in noise.  Good models fit

signals, not noise.  Data mining expeditions, in contrast, lead to models that often fit very well

over the historical sample, but that fail miserably for out-of-sample forecasting.  That’s because

such data mining effectively tailors the model to fit the idiosyncracies of the in-sample noise,

which improves the in-sample fit but is of no help in out-of-sample forecasting.

a.  Choose your favorite trending (but not seasonal) series, and select a sample path of

length 100.  Graph it.

b.  Regress the first twenty observations on a fifth-order polynomial time trend, and allow

for five autoregressive lags as well.  Graph the actual and fitted values from the

regression.  Discuss.

c.    Use your estimated model to produce an 80-step-ahead extrapolation forecast. 

Graphically compare your forecast to the actual realization.  Discuss.
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Bibliographical and Computational Notes

Nerlove, Grether and Carvalho (1979) discuss unobserved components models and their

relationship to ARMA models.  They also provide an insightful history of the use of unobserved

components decompositions for data description and forecasting.

tHarvey (1990) derives and presents the formula for r , the key element of the variance of

the recursive residual.  We suggested using the standard error of the regression to estimate F, the

standard deviation of the non-recursive regression disturbance, as suggested in the original work

by Brown, Durbin and Evans (1975).  Since then, a number of authors have used an alternative

estimator of F based on the recursive residuals, which may lead to CUSUM tests with better

small-sample power.  For a discussion in the context of the dynamic models useful for forecasting,

see Krämer, Ploberger, and Alt (1988).

Efron and Tibshirani (1993) give an insightful discussion of forecasting model selection

criteria as estimates of out-of-sample MSE, and the natural attractiveness in that regard of

numerical methods such as cross validation and its relatives.

Recursive cross validation is often called predictive stochastic complexity; the basic theory

was developed by Rissanen (1989).  Kuan and Liu (1995) make good use of recursive cross

validation to select models for forecasting exchange rates, and they provide additional references

to the literature on the subject.

Recursive estimation and related techniques are implemented in a number of modern

software packages.
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Concepts for Review

Recursive Estimation

Recursive Residuals

Parameter Instability

Standardized Recursive Residuals

CUSUM

Random Walk

CUSUM Plot

Cross Validation

Recursive Cross Validation

Formal Model of Unobserved Components

Additive Unobserved Components Decomposition

Multiplicative Unobserved Components Decomposition

Signal, Noise, and Overfitting
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Figure 1
Liquor Sales, 1968.01 - 1993.12
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Figure 2
Log Liquor Sales, 1968.01 - 1993.12
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Table 1
Log Liquor Sales
Quadratic Trend Regression

LS // Dependent Variable is LSALES
Sample: 1968:01 1993:12
Included observations: 312

Variable Coefficient Std. Error t-Statistic Prob.  

C  6.237356  0.024496  254.6267  0.0000
TIME   0.007690  0.000336  22.91552  0.0000
TIME2 -1.14E-05  9.74E-07 -11.72695  0.0000

R-squared     0.892394     Mean dependent var  7.112383
Adjusted R-squared  0.891698     S.D. dependent var              0.379308
S.E. of regression  0.124828     Akaike info criterion -4.152073
Sum squared resid  4.814823     Schwarz criterion -4.116083
Log likelihood  208.0146     F-statistic   1281.296
Durbin-Watson stat  1.752858     Prob(F-statistic)  0.000000
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Figure 3
Log Liquor Sales
Quadratic Trend Regression
Residual Plot
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Table 2
Log Liquor Sales
Quadratic Trend Regression
Residual Correlogram

Acorr.  P. Acorr. Std. Error Ljung-Box p-value
 1  0.117   0.117 .056 4.3158  0.038
 2 -0.149 -0.165  .056 11.365  0.003
 3 -0.106 -0.069  .056 14.943  0.002
 4 -0.014 -0.017 .056  15.007  0.005
 5  0.142   0.125 .056 21.449  0.001
 6  0.041 -0.004  .056 21.979  0.001
 7  0.134   0.175  .056 27.708  0.000
 8 -0.029 -0.046  .056 27.975  0.000
 9 -0.136 -0.080  .056 33.944  0.000
 10 -0.205 -0.206  .056 47.611  0.000
 11  0.056   0.080  .056 48.632  0.000
 12  0.888   0.879  .056 306.26  0.000
 13  0.055 -0.507  .056 307.25  0.000
 14 -0.187 -0.159  .056 318.79  0.000
 15 -0.159 -0.144  .056 327.17  0.000
 16 -0.059 -0.002  .056 328.32  0.000
 17  0.091 -0.118  .056 331.05  0.000
 18 -0.010 -0.055  .056 331.08  0.000
 19  0.086 -0.032  .056 333.57  0.000
 20 -0.066   0.028  .056 335.03  0.000
 21 -0.170   0.044  .056 344.71  0.000
 22 -0.231   0.180  .056 362.74  0.000
 23  0.028   0.016  .056 363.00  0.000
 24  0.811 -0.014  .056 586.50  0.000
 25  0.013 -0.128  .056 586.56  0.000
 26 -0.221 -0.136  .056 603.26  0.000
 27 -0.196 -0.017  .056 616.51  0.000
 28 -0.092 -0.079  .056 619.42  0.000
 29  0.045 -0.094  .056 620.13  0.000
 30 -0.043   0.045  .056 620.77  0.000
 31  0.057   0.041  .056 621.89  0.000
 32 -0.095 -0.002  .056 625.07  0.000
 33 -0.195   0.026  .056 638.38  0.000
 34 -0.240   0.088  .056 658.74  0.000
 35  0.006 -0.089  .056 658.75  0.000
 36  0.765   0.076  .056 866.34  0.000
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Figure 4
Log Liquor Sales
Quadratic Trend Regression
Residual Sample Autocorrelation and Partial Autocorrelation Functions
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Table 3
Log Liquor Sales
Quadratic Trend Regression with Seasonal Dummies

LS // Dependent Variable is LSALES
Sample: 1968:01 1993:12
Included observations: 312

Variable Coefficient Std. Error t-Statistic Prob.  

TIME  0.007656  0.000123  62.35882  0.0000
TIME2 -1.14E-05  3.56E-07 -32.06823  0.0000
D1  6.147456  0.012340  498.1699  0.0000
D2  6.088653  0.012353  492.8890  0.0000
D3  6.174127  0.012366  499.3008  0.0000
D4  6.175220  0.012378  498.8970  0.0000
D5  6.246086  0.012390  504.1398  0.0000
D6  6.250387  0.012401  504.0194  0.0000
D7  6.295979  0.012412  507.2402  0.0000
D8  6.268043  0.012423  504.5509  0.0000
D9  6.203832  0.012433  498.9630  0.0000
D10  6.229197  0.012444  500.5968  0.0000
D11  6.259770  0.012453  502.6602  0.0000
D12  6.580068  0.012463  527.9819  0.0000

R-squared  0.986111     Mean dependent var  7.112383
Adjusted R-squared  0.985505     S.D. dependent var  0.379308
S.E. of regression  0.045666     Akaike info criterion -6.128963
Sum squared resid  0.621448     Schwarz criterion -5.961008
Log likelihood  527.4094     F-statistic  1627.567
Durbin-Watson stat  0.586187     Prob(F-statistic)  0.000000
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Figure 5
Log Liquor Sales
Quadratic Trend Regression with Seasonal Dummies
Residual Plot
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Table 4
Log Liquor Sales
Quadratic Trend Regression with Seasonal Dummies
Residual Correlogram

Acorr.  P. Acorr. Std. Error Ljung-Box p-value
 1  0.700   0.700  .056 154.34 0.000
 2  0.686   0.383  .056 302.86 0.000
 3  0.725   0.369  .056 469.36 0.000
 4  0.569 -0.141  .056 572.36 0.000
 5  0.569   0.017  .056 675.58 0.000
 6  0.577   0.093  .056 782.19 0.000
 7  0.460 -0.078  .056 850.06 0.000
 8  0.480   0.043  .056 924.38 0.000
 9  0.466   0.030  .056 994.46 0.000
 10  0.327 -0.188  .056 1029.1 0.000
 11  0.364   0.019  .056 1072.1 0.000
 12  0.355   0.089  .056 1113.3 0.000
 13  0.225 -0.119  .056 1129.9 0.000
 14  0.291   0.065  .056 1157.8 0.000
 15  0.211 -0.119  .056 1172.4 0.000
 16  0.138 -0.031  .056 1178.7 0.000
 17  0.195   0.053  .056 1191.4 0.000
 18  0.114 -0.027  .056 1195.7 0.000
 19  0.055 -0.063  .056 1196.7 0.000
 20  0.134   0.089  .056 1202.7 0.000
 21  0.062   0.018  .056 1204.0 0.000
 22 -0.006 -0.115  .056 1204.0 0.000
 23  0.084   0.086  .056 1206.4 0.000
 24 -0.039 -0.124  .056 1206.9 0.000
 25 -0.063 -0.055  .056 1208.3 0.000
 26 -0.016 -0.022  .056 1208.4 0.000
 27 -0.143 -0.075  .056 1215.4 0.000
 28 -0.135 -0.047  .056 1221.7 0.000
 29 -0.124 -0.048  .056 1227.0 0.000
 30 -0.189   0.086  .056 1239.5 0.000
 31 -0.178 -0.017  .056 1250.5 0.000
 32 -0.139   0.073  .056 1257.3 0.000
 33 -0.226 -0.049  .056 1275.2 0.000
 34 -0.155   0.097  .056 1283.7 0.000
 35 -0.142   0.008  .056 1290.8 0.000
 36 -0.242 -0.074  .056 1311.6 0.000
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Figure 6
Log Liquor Sales
Quadratic Trend Regression with Seasonal Dummies
Residual Sample Autocorrelation and Partial Autocorrelation Functions
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Table 5
Log Liquor Sales
Quadratic Trend Regression with Seasonal Dummies and AR(3) Disturbances

LS // Dependent Variable is LSALES
Sample: 1968:01 1993:12
Included observations: 312
Convergence achieved after 4 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

TIME  0.008606  0.000981  8.768212  0.0000
TIME2 -1.41E-05  2.53E-06 -5.556103  0.0000
D1  6.073054  0.083922  72.36584  0.0000
D2  6.013822  0.083942  71.64254  0.0000
D3  6.099208  0.083947  72.65524  0.0000
D4  6.101522  0.083934  72.69393  0.0000
D5  6.172528  0.083946  73.52962  0.0000
D6  6.177129  0.083947  73.58364  0.0000
D7  6.223323  0.083939  74.14071  0.0000
D8  6.195681  0.083943  73.80857  0.0000
D9  6.131818  0.083940  73.04993  0.0000
D10  6.157592  0.083934  73.36197  0.0000
D11  6.188480  0.083932  73.73176  0.0000
D12  6.509106  0.083928  77.55624  0.0000
AR(1)  0.268805  0.052909  5.080488  0.0000
AR(2)  0.239688  0.053697  4.463723  0.0000
AR(3)  0.395880  0.053109  7.454150  0.0000

R-squared   0.995069     Mean dependent var  7.112383
Adjusted R-squared  0.994802     S.D. dependent var              0.379308
S.E. of regression  0.027347     Akaike info criterion -7.145319
Sum squared resid  0.220625     Schwarz criterion -6.941373
Log likelihood  688.9610     F-statistic   3720.875
Durbin-Watson stat  1.886119     Prob(F-statistic)  0.000000

Inverted AR Roots        .95   -.34+.55i   -.34 -.55i
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Figure 7
Log Liquor Sales
Quadratic Trend Regression with Seasonal Dummies and AR(3) Disturbances
Residual Plot
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Table 6
Log Liquor Sales
Quadratic Trend Regression with Seasonal Dummies and AR(3) Disturbances
Residual Correlogram

Acorr.  P. Acorr. Std. Error Ljung-Box p-value
 1  0.056   0.056  .056 0.9779  0.323
 2  0.037   0.034  .056 1.4194  0.492
 3  0.024   0.020  .056 1.6032  0.659
 4 -0.084 -0.088  .056 3.8256  0.430
 5 -0.007   0.001  .056 3.8415  0.572
 6  0.065   0.072  .056 5.1985  0.519
 7 -0.041 -0.044  .056 5.7288  0.572
 8  0.069   0.063  .056 7.2828  0.506
 9  0.080   0.074  .056 9.3527  0.405
 10 -0.163 -0.169  .056 18.019  0.055
 11 -0.009 -0.005  .056 18.045  0.081
 12  0.145   0.175  .056 24.938  0.015
 13 -0.074 -0.078  .056 26.750  0.013
 14  0.149   0.113  .056 34.034  0.002
 15 -0.039 -0.060  .056 34.532  0.003
 16 -0.089 -0.058  .056 37.126  0.002
 17  0.058   0.048  .056 38.262  0.002
 18 -0.062 -0.050  .056 39.556  0.002
 19 -0.110 -0.074  .056 43.604  0.001
 20  0.100   0.056  .056 46.935  0.001
 21  0.039   0.042  .056 47.440  0.001
 22 -0.122 -0.114  .056 52.501  0.000
 23  0.146  0.130  .056 59.729  0.000
 24 -0.072 -0.040  .056 61.487  0.000
 25  0.006   0.017  .056 61.500  0.000
 26  0.148   0.082  .056 69.024  0.000
 27 -0.109 -0.067  .056 73.145  0.000
 28 -0.029 -0.045  .056 73.436  0.000
 29 -0.046 -0.100  .056 74.153  0.000
 30 -0.084   0.020  .056 76.620  0.000
 31 -0.095 -0.101  .056 79.793  0.000
 32  0.051   0.012  .056 80.710  0.000
 33 -0.114 -0.061  .056 85.266  0.000
 34  0.024   0.002  .056 85.468  0.000
 35  0.043 -0.010  .056 86.116  0.000
 36 -0.229 -0.140  .056 104.75  0.000
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Figure 8
Log Liquor Sales
Quadratic Trend Regression with Seasonal Dummies and AR(3) Disturbances
Residual Sample Autocorrelation and Partial Autocorrelation Functions
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Figure 9
Log Liquor Sales
Quadratic Trend Regression with Seasonal Dummies and AR(3) Disturbances
Residual Histogram and Normality Test
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Figure 10
Log Liquor Sales
History and 12-Month-Ahead Forecast
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Figure 11
Log Liquor Sales
History, 12-Month-Ahead Forecast, and Realization
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Figure 12
Log Liquor Sales
History and 60-Month-Ahead Forecast
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Figure 13
Log Liquor Sales
Long History and 60-Month-Ahead Forecast
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Figure 14
Liquor Sales
Long History and 60-Month-Ahead Forecast
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Figure 15
Recursive Analysis
Constant Parameter Model
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Figure 16
Recursive Analysis
Breaking Parameter Model
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Figure 17
Log Liquor Sales
Quadratic Trend Regression with Seasonal Dummies and AR(3) Disturbances
Recursive Residuals and Two Standard Error Bands
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Figure 18
Log Liquor Sales
Quadratic Trend Regression with Seasonal Dummies and AR(3) Disturbances
Recursive Parameter Estimates
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Figure 19
Log Liquor Sales
Quadratic Trend Regression with Seasonal Dummies and AR(3) Disturbances
CUSUM Analysis
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Chapter 11

Forecasting with Regression Models

The regression model is an explicitly multivariate model, in which variables are explained

and forecast on the basis of their own history and the histories of other, related, variables.

Exploiting such cross-variable linkages may lead to good and intuitive forecasting models, and to

better forecasts than those obtained from univariate models.

Regression models are often called causal, or explanatory, models.  For example, in the

linear regression model,

the presumption is that x helps determine, or cause, y, not the other way around.  For this reason

the left-hand-side variable is sometimes called the “endogenous” variable, and the right-hand side

variables are called “exogenous” or “explanatory” variables.

But ultimately regression models, like all statistical models, are models of correlation, not

causation.  Except in special cases, all variables are endogenous, and it’s best to admit as much

from the outset.  Toward the end of this chapter we’ll explicitly do so; we’ll work with systems of

regression equations called vector autoregressions (VARs).  For now, however, we’ll work with

the standard single-equation linear regression model, a great workhorse of forecasting, which we
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can interpret as one equation of a larger system.

1.  Conditional Forecasting Models and Scenario Analysis

A conditional forecasting model is one that can be used to produce forecasts for a variable

of interest, conditional upon assumptions about other variables.  With the regression model, for

example, we can forecast y conditional upon an assumed future value of x.   This sort of1

conditional forecasting is often called scenario analysis, or contingency analysis, because a

conditional forecasting model helps us answer the “what if” questions that often arise.  If we

condition on the assumption, for example, that the h-step-ahead value of x is , then our h-

step-ahead conditional forecast for y is

Assuming normality, we use the conditional density forecast  and conditional

interval forecasts follow immediately from the conditional density forecast.  As always, we make

the procedure operational by replacing unknown parameters with estimates. 

2.  Accounting for Parameter Uncertainty in Confidence Intervals for Conditional

Forecasts

Forecasts are of course subject to error, and scenario forecasts are no exception.  There

are at least three sources of such error.  One important source of forecast error is specification
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uncertainty.  All our models are intentional simplifications, which hopefully capture the salient

properties of the data for forecasting purposes. By using modern tools such as information

criteria, residual correlograms, and so on, in conjunction with intuition and theory, we attempt to

minimize specification uncertainty.

A second source of forecast error is innovation uncertainty, which reflects the fact that

future innovations are not known when the forecast is made.  This is the source of forecast error

that we’ve explicitly acknowledged in our computations of interval and density forecasts.  We’ve

seen, for example, that the cumulative effect of innovation uncertainty tends to grow with the

forecast horizon, resulting in interval and density forecasts that widen with the horizon.

A third source of forecast error is parameter uncertainty.  The coefficients that we use to

produce forecasts are of course just estimates, and the estimates are subject to sampling

variability.  Specification and innovation uncertainty are likely more important than parameter

uncertainty (which vanishes as the sample size grows), and in addition, the effect of parameter

uncertainty on forecast uncertainty is difficult to quantify in many situations.  For both these

reasons, parameter uncertainty is often ignored, as we have done thus far.

When using a conditional forecasting model, however, simple calculations allow us to

quantify both innovation and parameter uncertainty.  Consider, for example, the very simple case

in which x has a zero mean and

Suppose we want to predict  at .  If , then



Fcst4-11-4

 See any of the elementary statistics or econometrics texts cited in Chapter 1.2

Copyright © F.X. Diebold.  All rights reserved.

Thus

with corresponding error

Thus,

We won’t do so here, but it can be shown that2

Thus we arrive at the final formula,
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 The discussion also applies to forecasting in cross-sectional environments, in which3

forecasts are almost always conditional.  Suppose, for example, that we estimate a regression
model relating expenditure on restaurant meals to income, using cross-section data on 1000
households for 1997.  Then, if we get 1997 income data for an additional set of people, we can
use it to forecast their restaurant expenditures.
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In this expression, the first term accounts for parameter uncertainty, while the second accounts for

the usual innovation uncertainty.  Taken together, the results suggest an operational density

forecast that accounts for parameter uncertainty,  from which

interval forecasts may be constructed as well.

Note that when parameter uncertainty exists, the closer  is to its mean (0), the smaller

is the prediction-error variance.  The idea can be shown to carry over to more complicated

situations when y and x don’t necessarily have zero means, and to models with more than one

regressor:  the closer is x to its mean, the tighter is the prediction interval.  We illustrate the

situation in Figure 1; the top panel shows constant intervals ( ) that fail to account for

parameter uncertainty, and the bottom panel shows the intervals of varying width that account for

parameter uncertainty.  Finally, note that as the sample size gets large,  gets large as well,

so the adjustment for parameter uncertainty vanishes, and the formula collapses to our old one.

The discussion of this section depends on the future value of x being known with

certainty, which is acceptable in the case of conditional forecasts, in which case we’re simply

conditioning on an assumption about future x.   If we don’t want to condition on an assumption3
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about future x, or if we’re using certain more complicated models (with dynamics, for example),

the formula does not apply.  We now turn to such situations and models.

3.  Unconditional Forecasting Models

Notwithstanding the usefulness of scenario analyses, often we don’t want to make

forecasts of y conditional upon assumptions about x; rather, we just want the best possible

forecast of y -- an unconditional forecast.  To get an unconditional forecast from a regression

model, we often encounter the forecasting the right-hand-side variables problem.  That is, to get

an optimal unconditional point forecast for y, we can’t insert an arbitrary value for future x;

rather, we need to insert the optimal point forecast, , which yields the unconditional forecast

Of course we usually don’t have such a forecast for x, and the model at hand doesn’t help us. 

(It’s a model for y -- we don’t have a model for x.) 

One thing we might do is fit a univariate model to x (e.g., an autoregressive model),

forecast x (that is, form ), and then use that forecast of x to forecast y.  But just as easily,

and in fact preferably, we can estimate all the parameters simultaneously by regressing y on

  If we want to forecast only one step ahead, we could use the model

The right-hand-side variable is lagged by one period, so the model is immediately useful for 1-

step-ahead unconditional forecasting.  More lags of x can of course be included; the key is that all
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variables on the right are lagged by at least one period.  Forecasting more than one step ahead,

however, again leads to the forecasting the right-hand-side variables problem -- if we want to

forecast h steps ahead, all variables on the right must be lagged by at least h periods.

In a few important special cases, the problem of forecasting the right-hand-side variables

doesn’t arise, because the regressors are perfectly deterministic, so we know exactly what they’ll

be at any future time.  The trend and seasonal models discussed in Chapters 5 and 6 are leading

examples.  Such cases are atypical, however.

4.  Distributed Lags, Polynomial Distributed Lags, and Rational Distributed Lags

An unconditional forecasting model like

can be immediately generalized to the distributed lag model, 

We say that y depends on a distributed lag of past x’s.  The coefficients on the lagged x’s are

called lag weights, and their pattern is called the lag distribution.

xOne way to estimate a distributed lag model is simply to include all N  lags of x in the

regression, which can be estimated by least squares in the usual way.  In many situations,

xhowever, N  might be quite a large number, in which case we’d have to use many degrees of

freedom to estimate the model, violating the parsimony principle.  Often we can recover many of

those degrees of freedom without seriously worsening the model’s fit by constraining the lag
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weights to lie on a low-order polynomial.  Such polynomial distributed lags promote smoothness

in the lag distribution and may lead to sophisticatedly simple models with improved forecasting

performance.

Polynomial distributed lag models are estimated by minimizing the sum of squared

residuals in the usual way, subject to the constraint that the lag weights follow a low-order

polynomial whose degree must be specified.  Suppose, for example, that we constrain the lag

weights to follow a second-degree polynomial.  Then we find the parameter estimates by solving

the problem 

subject to

xThis converts the estimation problem from one of estimating 1+N  parameters, 

, to one of estimating 4 parameters, , a, b, and c.  Sometimes additional

constraints are imposed on the shape of the polynomial, such as 

xwhich enforces the idea that the dynamics have been exhausted by lag N .

Polynomial distributed lags produce aesthetically appealing, but basically ad hoc, lag



Fcst4-11-9

Copyright © F.X. Diebold.  All rights reserved.

distributions.  After all, why should the lag weights necessarily follow a low-order polynomial? An

alternative and often preferable approach makes use of the rational distributed lags that we

introduced in Chapter 7 in the context of univariate ARMA modeling.  Rational distributed lags

promote parsimony, and hence smoothness in the lag distribution, but they do so in a way that's

potentially much less restrictive than requiring the lag weights to follow a low-order polynomial. 

We might, for example, use a model like

where A(L) and B(L) are low-order polynomials in the lag operator.  Equivalently, we can write

which emphasizes that the rational distributed lag of x actually brings both lags of x and lags of y

into the model.  One way or another, it's crucial to allow for lags of y, and we now study such

models in greater depth.

5.  Regressions with Lagged Dependent Variables, Regressions with ARMA Disturbances,

and Transfer Function Models

There’s something missing in distributed lag models of the form

A multivariate model (in this case, a regression model) should relate the current value y to its own

past and to the past of x.  But as presently written, we’ve left out the past of y!  Even in
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distributed lag models, we always want to allow for the presence of the usual univariate dynamics. 

Put differently, the included regressors may not capture all the dynamics in y, which we need to

model one way or another.  Thus, for example, a preferable model includes lags of the dependent

variable,

This model, a distributed lag regression model with lagged dependent variables, is closely related

to, but not exactly the same as, the rational distributed lag model introduced earlier.  (Why?)  You

can think of it as arising by beginning with a univariate autoregressive model for y, and then

introducing additional explanatory variables.  If the lagged y’s don’t play a role, as assessed with

the usual tests, we can always delete them, but we never want to eliminate from the outset the

possibility that lagged dependent variables play a role.  Lagged dependent variables absorb

residual serial correlation and can dramatically enhance forecasting performance.

Alternatively, we can capture own-variable dynamics in distributed-lag regression models

by using a distributed-lag regression model with ARMA disturbances.  Recall that our

ARMA(p,q) models are equivalent to regression models, with only a constant regressor, and with

ARMA(p,q) disturbances,
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We want to begin with the univariate model as a baseline, and then generalize it to allow for

multivariate interaction, resulting in models such as

Regressions with ARMA disturbances make clear that regression (a statistical and econometric

tool with a long tradition) and the ARMA model of time-series dynamics (a more recent

innovation) are not at all competitors; rather, when used appropriately they can be highly

complementary.

It turns out that the distributed-lag regression model with autoregressive disturbances -- a

great workhorse in econometrics -- is a special case of the more general model with lags of both y

and x and white noise disturbances.  To see this, let’s take the simple example of an unconditional

(1-step-ahead) regression forecasting model with AR(1) disturbances:
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In lag operator notation, we write the AR(1) regression disturbance as

or

Thus we can rewrite the regression model as

Now multiply both sides by  to get

or
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 Table 1 displays a variety of important forecasting models, all of which are special cases4

of the transfer function model.
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Thus a model with one lag of x on the right and AR(1) disturbances is equivalent to a model with

 and  on the right-hand side and white noise errors, subject to the restriction that

the coefficient on the second lag of  is the negative of the product of the coefficients on

.

Thus, distributed lag regressions with lagged dependent variables are more general than

distributed lag regressions with dynamic disturbances.  Transfer function models are more general

still, and include both as special cases.   The basic idea is to exploit the power and parsimony of4

rational distributed lags in modeling both own-variable and cross-variable dynamics.  Imagine

beginning with a univariate ARMA model,

which captures own-variable dynamics using a rational distributed lag.  Now extend the model to

capture cross-variable dynamics using a rational distributed lag of the other variable, which yields

the general transfer function model,

Distributed lag regression with lagged dependent variables is a potentially restrictive special case,

which emerges when C(L)=1 and B(L)=D(L).  (Verify this for yourself.)  Distributed lag

regression with ARMA disturbances is also a special case, which emerges when B(L)=1.  (Verify
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they’re all included in every equation.
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this too.)

In practice, the important thing is to allow for own-variable dynamics somehow, in order

to account for dynamics in y not explained by the right-hand-side variables.  Whether we do so by

including lagged dependent variables, or by allowing for ARMA disturbances, or by estimating

general transfer function models, can occasionally be important, but usually it's a comparatively

minor issue.

6.  Vector Autoregressions

A univariate autoregression involves one variable.  In a univariate autoregression of order

p, we regress a variable on p lags of itself.  In contrast, a multivariate autoregression -- that is, a

vector autoregression, or VAR -- involves N variables.  In an N-variable vector autoregression of

order p, or VAR(p), we estimate N different equations.  In each equation, we regress the relevant

left-hand-side variable on p lags of itself, and p lags of every other variable.   Thus the right-5

hand-side variables are the same in every equation -- p lags of every variable.

The key point is that, in contrast to the univariate case, vector autoregressions allow for

cross-variable dynamics.  Each variable is related not only to its own past, but also to the past of

all the other variables in the system.  In a two-variable VAR(1), for example, we have two

1 2equations, one for each variable (y  and y ) .  We write
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Each variable depends on one lag of the other variable in addition to one lag of itself; that’s one

obvious source of multivariate interaction captured by the VAR that may be useful for

forecasting.  In addition, the disturbances may be correlated, so that when one equation is

shocked, the other will typically be shocked as well, which is another type of multivariate

interaction that univariate models miss.  We summarize the disturbance variance-covariance

structure as

The innovations could be uncorrelated, which occurs when , but they needn’t be.

You might guess that VARs would be hard to estimate.  After all, they’re fairly

complicated models, with potentially many equations and many right-hand-side variables in each
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 Estimation of MA and ARMA models is stable enough in the univariate case but rapidly6

becomes unwieldy in multivariate situations.  Hence multivariate ARMA models are used
infrequently in practice, in spite of the potential they hold for providing parsimonious
approximations to the Wold representation.

 For an exposition of seemingly unrelated regression, see Pindyck and Rubinfeld (1997).7
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equation.  In fact, precisely the opposite is true.  VARs are very easy to estimate, because we

need only run N linear regressions.  That’s one reason why VARs are so popular -- OLS

estimation of autoregressive models is simple and stable, in contrast to the numerical estimation

required for models with moving-average components.   Equation-by-equation OLS estimation6

also turns out to have very good statistical properties when each equation has the same

regressors, as is the case in standard VARs.  Otherwise, a more complicated estimation procedure

called seemingly unrelated regression, which explicitly accounts for correlation across equation

disturbances, would be required to obtain estimates with good statistical properties.7

When fitting VARs to data, we use the Schwarz and Akaike criteria, just as in the

univariate case.  The formulas differ, however, because we’re now working with a multivariate

system of equations rather than a single equation.  To get an AIC or SIC value for a VAR system,

we could add up the equation-by-equation AICs or SICs, but unfortunately, doing so is

appropriate only if the innovations are uncorrelated across equations, which is a very special and

unusual situation.  Instead, explicitly multivariate versions of the AIC and SIC -- and more

advanced formulas -- are required that account for cross-equation innovation correlation.  It’s

beyond the scope of this book to derive and present those formulas, because they involve

unavoidable use of matrix algebra, but fortunately we don’t need to.  They’re pre-programmed in



Fcst4-11-17

Copyright © F.X. Diebold.  All rights reserved.

many computer packages, and we interpret the AIC and SIC values computed for VARs of

various orders in exactly the same way as in the univariate case:  we select that order p such that

the AIC or SIC is minimized.

We construct VAR forecasts in a way that precisely parallels the univariate case.  We can

construct 1-step-ahead point forecasts immediately, because all variables on the right-hand side

are lagged by one period.  Armed with the 1-step-ahead forecasts, we can construct the 2-step-

ahead forecasts, from which we can construct the 3-step-ahead forecasts, and so on in the usual

way, following the chain rule of forecasting.  We construct interval and density forecasts in ways

that also parallel the univariate case.  The multivariate nature of VARs makes the derivations

more tedious, however, so we bypass them.  As always, to construct practical forecasts we

replace unknown parameters by estimates.

7.  Predictive Causality

There’s an important statistical notion of causality that’s intimately related to forecasting

and naturally introduced in the context of VARs.  It is based on two key principles:  first, cause

should occur before effect, and second, a causal series should contain information useful for

forecasting that is not available in the other series (including the past history of the variable being

forecast).  In the unrestricted VARs that we’ve studied thus far, everything causes everything

else, because lags of every variable appear on the right of every equation.  Cause precedes effect

because the right-hand-side variables are lagged, and each variable is useful in forecasting every

other variable.

We stress from the outset that the notion of predictive causality contains little if any
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in the system will be the same as the error variance in forecasting  using lags of all variables in
the system except .
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information about causality in the philosophical sense.  Rather, the statement “  causes ” is just

shorthand for the more precise, but long-winded, statement, “  contains useful information for

predicting  (in the linear least squares sense), over and above the past histories of the other

variables in the system.”  To save space, we simply say that  causes .

To understand what predictive causality means in the context of a VAR(p), consider the j-

th equation of the N-equation system, which has  on the left and p lags of each of the N

variables on the right.  If  causes , then at least one of the lags of  that appear on the right

side of the  equation must have a nonzero coefficient.

It’s also useful to consider the opposite situation, in which  does not cause .  In that

case, all of the lags of that  that appear on the right side of the  equation must have zero

coefficients.   Statistical causality tests are based on this formulation of non-causality.  We use an8

F-test to assess whether all coefficients on lags of  are jointly zero.

Note that we’ve defined non-causality in terms of 1-step-ahead prediction errors.  In the

bivariate VAR,  this implies non-causality in terms of h-step-ahead prediction errors, for all h. 

(Why?)  In higher dimensional cases, things are trickier; 1-step-ahead noncausality does not

necessarily imply noncausality at other horizons.  For example, variable i may 1-step cause

variable j, and variable j may 1-step cause variable k.  Thus, variable i 2-step causes variable k, but

does not 1-step cause variable k.

Causality tests are often used when building and assessing forecasting models, because
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they can inform us about those parts of the workings of complicated multivariate models that are

particularly relevant for forecasting.  Just staring at the coefficients of an estimated VAR (and in

complicated systems there are many coefficients) rarely yields insights into its workings.  Thus we

need tools that help us to see through to the practical forecasting properties of the model that

concern us.  And we often have keen interest in the answers to questions such as “Does 

contribute toward improving forecasts of ?,” and “Does  contribute toward improving

forecasts of ?”  If the results violate intuition or theory, then we might scrutinize the model

more closely.  In a situation in which we can’t reject a certain noncausality hypothesis, and neither

intuition nor theory makes us uncomfortable with it, we might want to impose it, by omitting

certain lags of certain variables from certain equations.

Various types of causality hypotheses are sometimes entertained.  In any equation (the j-

th, say), we’ve already discussed testing the simple noncausality hypothesis that:

(a)  No lags of variable i aid in one-step-ahead prediction of variable j.

We can broaden the idea, however.  Sometimes we test stronger noncausality hypotheses such as:

(b)  No lags of a set of other variables aid in one-step-ahead prediction of variable j.

(c)  No lags of any other variables aid in one-step-ahead prediction of variable j.

All of hypotheses (a), (b) and (c) amount to assertions that various coefficients are zero.  Finally,

sometimes we test noncausality hypotheses that involve more than one equation, such as:

(d)  No variable in a set A causes any variable in a set B, in which case we say that the

variables in A are block non-causal for those in B.

This particular noncausality hypothesis corresponds to exclusion restrictions that hold
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simultaneously in a number of equations.  Again, however, standard test procedures are

applicable.

8.  Impulse-Response Functions and Variance Decompositions

The impulse-response function is another device that helps us to learn about the dynamic

properties of vector autoregressions of interest to forecasters.  We’ll introduce it first in the

univariate context, and then we’ll move to VARs.  The question of interest is simple and direct: 

How does a unit innovation to a series affect it, now and in the future?  To answer the question,

we simply read off the coefficients in the moving average representation of the process.

We’re used to normalizing the coefficient on  to unity in moving-average

representations, but we don’t have to do so; more generally, we can write

The additional generality introduces ambiguity, however, because we can always multiply and

divide every  by an arbitrary constant m, yielding an equivalent model but with different

parameters and innovations, 
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or

where  and . 

To remove the ambiguity, we must set a value of m.  Typically we set m=1, which yields

the standard form of the moving average representation.  For impulse-response analysis, however,

a different normalization turns out to be particularly convenient; we choose , which yields



Fcst4-11-22

Copyright © F.X. Diebold.  All rights reserved.

or

where  and .  Taking  converts shocks to “standard deviation units,”

because a unit shock to  corresponds to a one standard deviation shock to .

To make matters concrete, consider the univariate AR(1) process,

The standard moving average form is
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and the equivalent representation in standard deviation units is

where  and .  The impulse-response function is { }.  The parameter 

is the contemporaneous effect of a unit shock to , or equivalently a one standard deviation

shock to ; as must be the case, then, .  Note well that  gives the immediate effect of the

shock at time t, when it hits.  The parameter , which multiplies , gives the effect of the

shock one period later, and so on.  The full set of impulse-response coefficients, { },

tracks the complete dynamic response of y to the shock.

Now we consider the multivariate case.  The idea is the same, but there are more shocks

to track.  The key question is, “How does a unit shock to  affect , now and in the future, for

all the various combinations of i and j?”  Consider, for example, the bivariate VAR(1),
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The standard moving average representation, obtained by back substitution, is
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 In higher-dimensional VAR’s, the equation that’s first in the ordering has only one10

current innovation, .  The equation that’s second has only current innovations  and , the
equation that’s third has only current innovations ,  and , and so on.
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Just as in the univariate case, it proves fruitful to adopt a different normalization of the moving

average representation for impulse-response analysis.  The multivariate analog of our univariate

normalization by F is called normalization by the Cholesky factor.   The resulting VAR moving9

average representation has a number of useful properties that parallel the univariate case precisely. 

First, the innovations of the transformed system are in standard deviation units.  Second, although

the current innovations in the standard representation have unit coefficients, the current

innovations in the normalized representation have non-unit coefficients.  In fact, the first equation

has only one current innovation, .  (The other has a zero coefficient.)  The second equation has

both current innovations.  Thus, the ordering of the variables can matter.10

If  is ordered first, the normalized representation is
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Alternatively, if  ordered first, the normalized representation is
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analysis; for forecasting we only need the unnormalized model.
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Finally, the normalization adopted yields a zero covariance between the disturbances of the

transformed system.  This is crucial, because it lets us perform the experiment of interest --

shocking one variable in isolation of the others, which we can do if the innovations are

uncorrelated but can’t do if they’re correlated, as in the original unnormalized representation.

After normalizing the system, for a given ordering, say  first, we compute four sets of

impulse-response functions for the bivariate model:  response of  to a unit normalized

innovation to , { }, response of  to a unit normalized innovation to , {

}, response of  to a unit normalized innovation to , { }, and

response of  to a unit normalized innovation to , { }.  Typically we examine

the set of impulse-response functions graphically.  Often it turns out that impulse-response

functions aren’t sensitive to ordering, but the only way to be sure is to check.11

In practical applications of impulse-response analysis, we simply replace unknown

parameters by estimates, which immediately yields point estimates of the impulse-response
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functions.  Getting confidence intervals for impulse-response functions is trickier, however, and

adequate procedures are still under development.

Another way of characterizing the dynamics associated with VARs, closely related to

impulse-response functions, is the variance decomposition.  Variance decompositions have an

immediate link to forecasting -- they answer the question, “How much of the h-step-ahead

forecast error variance of variable i is explained by innovations to variable j, for h = 1, 2, ...”  As

with impulse-response functions, we typically make a separate graph for every (i,j) pair.  Impulse-

response functions and the variance decompositions present the same information (although they

do so in different ways).  For that reason it’s not strictly necessary to present both, and impulse-

response analysis has gained greater popularity.  Hence we offer only this brief discussion of

variance decomposition.  In the application to housing starts and completions that follows,

however, we examine both impulse-response functions and variance decompositions.  The two are

highly complementary, as with information criteria and correlograms for model selection, and the

variance decompositions have a nice forecasting motivation.  

9.  Application:  Housing Starts and Completions

We estimate a bivariate VAR for U.S. seasonally-adjusted housing starts and completions,

two widely-watched business cycle indicators, 1968.01-1996.06.  We use the VAR to produce

point extrapolation forecasts.  We show housing starts and completions in Figure 2.  Both are

highly cyclical, increasing during business-cycle expansions and decreasing during contractions. 

Moreover, completions tend to lag behind starts, which makes sense because a house takes time

to complete.
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We split the data into an estimation sample, 1968.01-1991.12, and a hold-out sample,

1992.01-1996.06 for forecasting.  We therefore perform all model specification analysis and

estimation, to which we now turn, on the 1968.01-1991.12 data.  We show the starts correlogram

in Table 2 and Figure 3.  The sample autocorrelation function decays slowly, whereas the sample

partial autocorrelation function appears to cut off at displacement 2.  The patterns in the sample

autocorrelations and partial autocorrelations are highly statistically significant, as evidenced by

both the Bartlett standard errors and the Ljung-Box Q-statistics.  The completions correlogram, in

Table 3 and Figure 4, behaves similarly.

We’ve not yet introduced the cross correlation function.  There’s been no need, because

it’s not relevant for univariate modeling.  It provides important information, however, in the

multivariate environments that now concern us.  Recall that the autocorrelation function is the

correlation between a variable and lags of itself.  The cross-correlation function is a natural

multivariate analog; it’s simply the correlation between a variable and lags of another variable. 

We estimate those correlations using the usual estimator and graph them as a function of

displacement along with the Bartlett two- standard-error bands, which apply just as in the

univariate case.

The cross-correlation function (Figure 5) for housing starts and completions is very

revealing.  Starts and completions are highly correlated at all displacements, and a clear pattern

emerges as well:  although the contemporaneous correlation is high (.78), completions are

maximally correlated with starts lagged by roughly 6-12 months (around .90).  Again, this makes

good sense in light of the time it takes to build a house.
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Now we proceed to model starts and completions.  We need to select the order, p, of our

VAR(p).  Based on exploration using multivariate versions of SIC and AIC, we adopt a VAR(4).

First consider the starts equation (Table 4), residual plot (Figure 6), and residual

correlogram (Table 5, Figure 7).  The explanatory power of the model is good, as judged by the

 as well as the plots of actual and fitted values, and the residuals appear white, as judged by

the residual sample autocorrelations, partial autocorrelations, and Ljung-Box statistics.  Note as

well that no lag of completions has a significant effect on starts, which makes sense -- we

obviously expect starts to cause completions, but not conversely.  The completions equation

(Table 6), residual plot (Figure 8), and residual correlogram (Table 7, Figure 9) appear similarly

good.  Lagged starts, moreover, most definitely have a significant effect on completions.

Table 8 shows the results of formal causality tests.  The hypothesis that starts don’t cause

completions is simply that the coefficients on the four lags of starts in the completions equation

are all zero.  The F-statistic is overwhelmingly significant, which is not surprising in light of the

previously-noticed highly-significant t-statistics.  Thus we reject noncausality from starts to

completions at any reasonable level.  Perhaps more surprising is the fact that we also reject

noncausality from completions to starts at roughly the 5% level.  Thus the causality appears bi-

directional, in which case we say there is feedback.  

In order to get a feel for the dynamics of the estimated VAR before producing forecasts,

we compute impulse-response functions and variance decompositions.  We present results for

starts first in the ordering, so that a current innovation to starts affects only current starts, but the

results are robust to reversal of the ordering.
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In Figure 10, we display the impulse-response functions.  First let’s consider the own-

variable impulse responses, that is, the effects of a starts innovation on subsequent starts or a

completions innovation on subsequent completions; the effects are similar.  In each case, the

impulse response is large and decays in a slow, approximately monotonic fashion.  In contrast, the

cross-variable impulse responses are very different.  An innovation to starts produces no

movement in completions at first, but the effect gradually builds and becomes large, peaking at

about fourteen months.  (It takes time to build houses.)  An innovation to completions, however,

produces little movement in starts at any time.

Figure 11 shows the variance decompositions.  The fraction of the error variance in

forecasting starts due to innovations in starts is close to 100 percent  at all horizons.  In contrast,

the fraction of the error variance in forecasting completions due to innovations in starts is near

zero at short horizons, but it rises steadily and is near 100 percent at long horizons, again

reflecting time-to-build effects.

Finally, we construct forecasts for the out-of-sample period, 1992.01-1996.06.  The starts

forecast appears in Figure 12.  Starts begin their recovery before 1992.01, and the VAR projects

continuation of the recovery.  The VAR forecasts captures the general pattern quite well, but it

forecasts quicker mean reversion than actually occurs, as is clear when comparing the forecast and

realization in Figure 13.  The figure also makes clear that the recovery of housing starts from the

recession of 1990 was slower than the previous recoveries in the sample, which naturally makes

for difficult forecasting.  The completions forecast suffers the same fate, as shown in Figures 14

and 15.  Interestingly, however, completions had not yet turned by 1991.12, but the forecast
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nevertheless correctly predicts the turning point.  (Why?)
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econometric simultaneous equations paradigm, as well as the link between structural simultaneous
equations models and reduced-form time series models.  Wallis (1995) provides a good summary
of modern large-scale macroeconometric modeling and forecasting, and Pagan and Robertson
(2002) provide an intriguing discussion of the variety of macroeconomic forecasting approaches
currently employed in central banks around the world.

 For an acerbic assessment circa the mid-1970s, see Jenkins (1979).13
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Exercises, Problems and Complements

1.  (Econometrics, time series analysis, and forecasting)  As recently as the early 1970s, time

series analysis was mostly univariate and made little use of economic theory.  Econometrics, in

contrast, stressed the cross-variable dynamics associated with economic theory, with equations

estimated using multiple regression.  Econometrics, moreover, made use of simultaneous systems

of such equations, requiring complicated estimation methods.  Thus the econometric and time

series approaches to forecasting were very different.12

As Klein (1981) notes, however, the complicated econometric system estimation methods

had little payoff for practical forecasting and were therefore largely abandoned, whereas the

rational distributed lag patterns associated with time-series models led to large improvements in

practical forecast accuracy.   Thus, in more recent times, the distinction between econometrics13

and time series analysis has largely vanished, with the union incorporating the best of both.  In

many respects the VAR is a modern embodiment of both econometric and time-series traditions. 

VARs use economic considerations to determine which variables to include and which (if any)

restrictions should be imposed, allow for rich multivariate dynamics, typically require only simple

estimation techniques, and are explicit forecasting models.
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2.  (Forecasting crop yields)  Consider the following dilemma in agricultural crop yield

forecasting:

The possibility of forecasting crop yields several years in advance would, of
course, be of great value in the planning of agricultural production.  However, the
success of long-range crop forecasts is contingent not only on our knowledge of
the weather factors determining yield, but also on our ability to predict the
weather.  Despite an abundant literature in this field, no firm basis for reliable long-
range weather forecasts has yet been found.  (Sanderson, 1953, p. 3)

a.  How is the situation related to our concerns in this chapter, and specifically, to the

issue of conditional vs. unconditional forecasting?

b.  What variables other than weather might be useful for predicting crop yield?

c.  How would you suggest that the forecaster should proceed?

3.  (Regression forecasting models with expectations, or anticipatory, data)  A number of surveys

exist of anticipated market conditions, investment intentions, buying plans, advance commitments,

consumer sentiment, and so on.

a.  Search the World Wide Web for such series and report your results.  A good place to

start is the Resources for Economists page mentioned in Chapter 1.

b.  How might you use the series you found in an unconditional regression forecasting

model of GDP?  Are the implicit forecast horizons known for all the anticipatory

series you found?  If not, how might you decide how to lag them in your

regression forecasting model?

c.  How would you test whether the anticipatory series you found provide incremental

forecast enhancement, relative to the own past history of GDP?

4.  (Business cycle analysis and forecasting:  expansions, contractions, turning points, and leading
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indicators )  The use of anticipatory data is linked to business cycle analysis in general, and14

leading indicators in particular.  During the first half of this century, much research was

devoted to obtaining an empirical characterization of the business cycle.  The most

prominent example of this work was Burns and Mitchell (1946), whose summary empirical

definition was:

Business cycles are a type of fluctuation found in the aggregate economic activity of

nations that organize their work mainly in business enterprises:  a cycle consists of

expansions occurring at about the same time in many economic activities, followed

by similarly general recessions, contractions, and revivals which merge into the

expansion phase of the next cycle.  (p. 3)

The comovement among individual economic variables was a key feature of Burns and

Mitchell's definition of business cycles.  Indeed, the comovement among series, taking into

account possible leads and lags in timing, was the centerpiece of Burns and Mitchell's

methodology.  In their analysis, Burns and Mitchell considered the historical concordance of

hundreds of series, including those measuring commodity output, income, prices, interest

rates, banking transactions, and transportation services, and they classified series as leading,

lagging or coincident.  One way to define a leading indicator is to say that a series x is a

leading indicator for a series y if x causes y in the predictive sense.  According to that

definition, for example, our analysis of housing starts and completions indicates that starts

are a leading indicator for completions.
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Leading indicators have the potential to be used in forecasting equations in the same

way as anticipatory variables.  Inclusion of a leading indicator, appropriately lagged, can

improve forecasts.  Zellner and Hong (1989) and Zellner, Hong and Min (1991), for

example, make good use of that idea in their ARLI (autoregressive leading-indicator) models

for forecasting aggregate output growth.  In those models, Zellner et al. build forecasting

models by regressing output on lagged output and lagged leading indicators; they also use

shrinkage techniques to coax the forecasted growth rates toward the international average,

which improves forecast performance.

Burns and Mitchell used the clusters of turning points in individual series to determine the

monthly dates of the turning points in the overall business cycle, and to construct composite

indexes of leading, coincident, and lagging indicators.  Such indexes have been produced by the

National Bureau of Economic Research (a think tank in Cambridge, Mass.), the Department of

Commerce (a U.S. government agency in Washington, DC), and the Conference Board (a

business membership organization based in New York).   Composite indexes of leading15

indicators are often used to gauge likely future economic developments, but their usefulness is by

no means uncontroversial and remains the subject of ongoing research.  For example, leading

indexes apparently cause aggregate output in analyses of ex post historical data (Auerbach, 1982),

but they appear much less useful in real-time forecasting, which is what’s relevant (Diebold and

Rudebusch, 1991).
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5.  (Subjective information, Bayesian VARs, and the Minnesota prior)  When building and using

forecasting models, we frequently have hard-to-quantify subjective information, such as a

reasonable range in which we expect a parameter to be.  We can incorporate such subjective

information in a number of ways.  One way is informal judgmental adjustment of estimates. 

Based on a variety of factors, for example, we might feel that an estimate of a certain parameter in

a forecasting model is too high, so we might reduce it a bit.

Bayesian analysis  allows us to incorporate subjective information in a rigorous and

replicable way.  We summarize subjective information about parameters with a probability

distribution called the prior distribution, and as always we summarize the information in the data

with the likelihood function.  The centerpiece of Bayesian analysis is a mathematical formula

called Bayes’ rule, which tells us how to combine the information in the prior and the likelihood to

form the posterior distribution of model parameters, which then feed their way into forecasts.

The Minnesota prior (introduced and popularized by Robert Litterman and Christopher

Sims at the University of Minnesota) is commonly used for Bayesian estimation of VAR

forecasting models, called Bayesian VARs, or BVARs.  The Minnesota prior is centered on a

parameterization called a random walk, in which the current value of each variable is equal to its

lagged value plus a white noise error term.  Thus the parameter estimates in BVARs are coaxed,

but not forced, in the direction of univariate random walks.  This sort of stochastic restriction has

an immediate shrinkage interpretation, which suggests that it’s likely to improve forecast

accuracy.   This hunch is verified in Doan, Litterman and Sims (1984), who study forecasting16
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with standard and Bayesian VARs.  Ingram and Whiteman (1994) replace the Minnesota prior

with a prior derived from macroeconomic theory, and they obtain even better forecasting

performance.  

6.  (Housing starts and completions, continued)  Our VAR analysis of housing starts and

completions, as always, involved many judgement calls.  Using the starts and completions data,

assess the adequacy of our models and forecasts.  Among other things, you may want to consider

the following questions:

a.  Should we allow for a trend in the forecasting model? 

b.  How do the results change if, in light of the results of the causality tests, we exclude

lags of completions from the starts equation, re-estimate by seemingly-unrelated

regression, and forecast?

c.  Are the VAR forecasts of starts and completions more accurate than univariate

forecasts?

7.  (Nonlinear regression models I:  functional form and Ramsey's test)  The idea of using powers

of a right-hand-side variable to pick up nonlinearity in a regression can also be used to test for

linearity of functional form, following Ramsey (1969).  If we were concerned that we'd missed

some important nonlinearity, an obvious strategy to capture it, based on the idea of a Taylor series

expansion of a function, would be to include powers and cross products of the various x variables

in the regression.  Such a strategy would be wasteful of degrees of freedom, however, particularly

if there were more than just one or two right-hand-side variables in the regression and/or if the

nonlinearity were severe, so that fairly high powers and interactions would be necessary to
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capture it.  In light of this, Ramsey suggests first fitting a linear regression and obtaining the fitted

values, , t = 1, ..., T.  Then, to test for nonlinearity, we run the regression again with powers of

 included.  There is no need to include the first power of , because that would be redundant

with the included x variables.  Instead we include powers , , ..., , where m is a maximum

power determined in advance.  Note that the powers of  are linear combinations of powers and

cross products of the x variables -- just what the doctor ordered.  Significance of the included set

of powers of  can be checked using an F test or an asymptotic likelihood ratio test.

8.  (Nonlinear regression models II:  logarithmic regression models)  We've already seen the use

of logarithms in our studies of trend and seasonality.  In those setups, however, we had occasion

only to take logs of the left-hand-side variable.  In more general regression models, such as those

that we’re studying now, with variables other than trend or seasonals on the right-hand side, it's

sometimes useful to take logs of both the left- and right-hand-side variables.  Doing so allows us

to pick up multiplicative nonlinearity.  To see this, consider the regression model,

This model is clearly nonlinear due to the multiplicative interactions.  Direct estimation of its

parameters would require special techniques.  Taking natural logs, however, yields the model
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This transformed model can be immediately estimated by ordinary least squares, by regressing log

y on an intercept and log x.  Such “log-log regressions” often capture nonlinearities relevant for

forecasting, while maintaining the convenience of ordinary least squares.

9.  (Nonlinear regression models III:  neural networks)  Neural networks amount to a particular

nonlinear functional form associated with repeatedly running linear combinations of inputs

through nonlinear "squashing" functions.  The 0-1 squashing function is useful in classification,

and the logistic function is useful for regression.

The neural net literature is full of biological jargon, which serves to obfuscate rather than

clarify.  We speak, for example, of a “single-output feedforward neural network with n inputs and

1 hidden layer with q neurons.”  But the idea is simple.  If the output is y and the inputs are x’s,

we write

where

are the “neurons” (“hidden units”), and the "activation functions" Q and M are arbitrary, except

that Q (the squashing function) is generally restricted to be bounded.  (Commonly M(x)=x.) 

Assembling it all, we write
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which makes clear that a neural net is just a particular nonlinear functional form for a regression

model.

To incorporate dynamics, we can allow for autoregressive effects in the hidden units.  A

dynamic (“recurrent”) neural network is

where

Compactly,

Recursive back substitution reveals that y is a nonlinear function of the history of the x’s.

where  and 

The Matlab Neural Network Toolbox implements a variety of networks.  The toolbox

manual is itself a useful guide to the literature on the practical aspects of constructing and

forecasting with neural nets.  Kuan and Liu (1995) use a dynamic neural network to predict

foreign exchange rates, and Faraway and Chatfield (1995) provide an insightful case study of the

efficacy of neural networks in applied forecasting.  Ripley (1996) provides a fine and statistically-
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informed (in contrast to much of the neural net literature) survey of the use of neural nets in a

variety of fields.

10.  (Spurious regression)  Consider two variables y and x, both of which are highly serially

correlated, as are most series in business, finance and economics.  Suppose in addition that y and

x are completely unrelated, but that we don’t know they’re unrelated, and we regress y on x using

ordinary least squares.

a.  If the usual regression diagnostics (e.g., R , t-statistics, F-statistic) were reliable, we’d2

expect to see small values of all of them.  Why?

b.  In fact the opposite occurs; we tend to see large  R , t-, and F-statistics, and a very low2

Durbin-Watson statistic.  Why the low Durbin-Watson?  Why, given the low

Durbin-Watson, might you expect misleading R , t-, and F-statistics?2

c.  This situation, in which highly persistent series that are in fact unrelated nevertheless

appear highly related, is called spurious regression.  Study of the phenomenon

dates to the early twentieth century, and a key study by Granger and Newbold

(1974) drove home the prevalence and potential severity of the problem.  How

might you insure yourself against the spurious regression problem?  (Hint: 

Consider allowing for lagged dependent variables, or dynamics in the regression

disturbances, as we’ve advocated repeatedly.)

11.  (Comparative forecasting performance of VAR and univariate models)  Using the housing

starts and completions data on the book’s website, compare the forecasting performance of the

VAR used in this chapter to that of the obvious competitor:  univariate autoregressions.  Use the
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same in-sample and out-of-sample periods as in the chapter.  Why might the forecasting

performance of the VAR and univariate methods differ?  Why might you expect the VAR

completions forecast to outperform the univariate autoregression, but the VAR starts forecast to

be no better than the univariate autoregression?  Do your results support your conjectures?  
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Bibliographical and Computational Notes

Some software, such as Eviews, automatically accounts for parameter uncertainty when

forming conditional regression forecast intervals by using variants of the techniques we introduced

in Section 2.  Similar but advanced techniques are sometimes used to produce unconditional

forecast intervals for dynamic models, such as autoregressions (see Lütkepohl, 1991), but

bootstrap simulation techniques are becoming increasingly popular (Efron and Tibshirani, 1993).

Chatfield (1993) argues that innovation uncertainty and parameter estimation uncertainty

are likely of minor importance compared to specification uncertainty.  We rarely acknowledge

specification uncertainty, because we don’t know how to quantify “what we don’t know we don’t

know.”  Quantifying it is a major challenge for future research, and useful recent work in that

direction includes Chatfield (1995).

The idea that regression models with serially correlated disturbances are more restrictive

than other sorts of transfer function models has a long history in econometrics and engineering

and is highlighted in a memorably-titled paper, "Serial Correlation as a Convenient Simplification,

not a Nuisance," by Hendry and Mizon (1978).  Engineers have scolded econometricians for not

using more general transfer function models, as for example in Jenkins (1979).  But the fact is, as

we’ve seen repeatedly, that generality for generality’s sake in business and economic forecasting

is not necessarily helpful, and can be positively harmful.  The shrinkage principle asserts that the

imposition of restrictions -- even false restrictions -- can be helpful in forecasting.

Sims (1980) is an influential paper arguing the virtues of VARs.  The idea of predictive

causality and associated tests in VARs is due to Granger (1969) and Sims (1972), who build on
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earlier work by the mathematician Norbert Weiner.  Lütkepohl (1991) is a good reference on

VAR analysis and forecasting.

Gershenfeld and Weigend (1993) provide a perspective on time series forecasting from the

computer-science/engineering/nonlinear/neural-net perspective, and Swanson and White (1995)

compare and contrast a variety of linear and nonlinear forecasting methods.
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Concepts for Review

Conditional Forecasting Model

Scenario, or contingency, Analysis

Specification, Innovation, and Parameter Uncertainty

Unconditional Forecasting Model

Forecasting the Right-Hand-Side Variables Problem

Distributed Lag Model

Polynomial Distributed Lag

Rational Distributed Lag

Distributed Lag Regression Model with Lagged Dependent Variables

Distributed-Lag Regression Model with ARMA Disturbances

Transfer Function Model

Vector Autoregression of Order p 

Cross-Variable Dynamics

Predictive Causality 

Impulse-Response Function 

Variance Decomposition

Cross Correlation Function 

Feedback

Bayesian analysis

Random walk
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Functional Form

Logarithmic Regression Models

Spurious Regressions
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Figure 1
Point and Interval Forecasts
Top Panel Interval Forecasts Don’t Acknowledge Parameter Uncertainty
Bottom Panel Interval Forecasts Do Acknowledge Parameter Uncertainty

Notes to figure:  To produce the figure, we set , , and .
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Table 1
The Transfer Function Model and Various Special Cases

Name Model Restrictions

Transfer Function None

Standard Distributed Lag B(L)=C(L)=D(L)=1

Rational Distributed Lag C(L)=D(L)=1

Univariate AR A(L)=0, C(L)=1

Univariate MA A(L)=0, D(L)=1

Univariate ARMA A(L)=0

Distributed Lag with , or

Lagged Dep. Variables C(L)=1, D(L)=B(L)

Distributed Lag with B(L)=1

ARMA Disturbances

Distributed Lag with B(L)=C(L)=1

AR Disturbances 
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Figure 2
U.S. Housing Starts and Completions, 1968.01 - 1996.06

Notes to figure:  The left scale is starts, and the right scale is completions.
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Table 2
Starts Correlogram

Sample: 1968:01 1991:12  
Included observations: 288

Acorr.  P. Acorr. Std. Error Ljung-Box p-value

 1  0.937   0.937  0.059 255.24  0.000
 2  0.907   0.244  0.059 495.53  0.000
 3  0.877   0.054  0.059 720.95  0.000
 4  0.838 -0.077  0.059 927.39  0.000
 5  0.795 -0.096  0.059 1113.7  0.000
 6  0.751 -0.058  0.059 1280.9  0.000
 7  0.704 -0.067  0.059 1428.2  0.000
 8  0.650 -0.098  0.059 1554.4  0.000
 9  0.604   0.004  0.059 1663.8  0.000
 10  0.544 -0.129  0.059 1752.6  0.000
 11  0.496   0.029  0.059 1826.7  0.000
 12  0.446 -0.008 0.059 1886.8  0.000
 13  0.405   0.076  0.059 1936.8  0.000
 14  0.346 -0.144  0.059 1973.3  0.000
 15  0.292 -0.079  0.059 1999.4  0.000
 16  0.233 -0.111  0.059 2016.1  0.000
 17  0.175 -0.050  0.059 2025.6  0.000
 18  0.122 -0.018  0.059 2030.2  0.000
 19  0.070   0.002  0.059 2031.7  0.000
 20  0.019 -0.025  0.059 2031.8  0.000
 21 -0.034 -0.032  0.059 2032.2  0.000
 22 -0.074   0.036  0.059 2033.9  0.000
 23 -0.123 -0.028  0.059 2038.7  0.000
 24 -0.167 -0.048  0.059 2047.4  0.000
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Figure 3
Starts
Sample Autocorrelations and Partial Autocorrelations



Fcst4-11-57

Copyright © F.X. Diebold.  All rights reserved.

Table 3
Completions Correlogram

Sample: 1968:01 1991:12  
Included observations: 288

Acorr.  P. Acorr. Std. Error Ljung-Box p-value

 1  0.939   0.939  0.059 256.61  0.000
 2  0.920   0.328  0.059 504.05  0.000
 3  0.896  0.066  0.059 739.19  0.000
 4  0.874   0.023  0.059 963.73  0.000
 5  0.834 -0.165  0.059 1168.9  0.000
 6  0.802 -0.067  0.059 1359.2  0.000
 7  0.761 -0.100  0.059 1531.2  0.000
 8  0.721 -0.070  0.059 1686.1  0.000
 9  0.677 -0.055  0.059 1823.2  0.000
 10  0.633 -0.047  0.059 1943.7  0.000
 11  0.583 -0.080  0.059 2046.3  0.000
 12  0.533 -0.073  0.059 2132.2  0.000
 13  0.483 -0.038  0.059 2203.2  0.000
 14  0.434 -0.020  0.059 2260.6  0.000
 15  0.390   0.041  0.059 2307.0  0.000
 16  0.337 -0.057  0.059 2341.9  0.000
 17  0.290 -0.008  0.059 2367.9  0.000
 18  0.234 -0.109  0.059 2384.8  0.000
 19  0.181 -0.082  0.059 2395.0  0.000
 20  0.128 -0.047  0.059 2400.1  0.000
 21  0.068 -0.133  0.059 2401.6  0.000
 22  0.020   0.037  0.059 2401.7  0.000
 23 -0.038 -0.092  0.059 2402.2  0.000
 24 -0.087 -0.003  0.059 2404.6  0.000



Fcst4-11-58

Copyright © F.X. Diebold.  All rights reserved.

Figure 4
Completions
Sample Autocorrelations and Partial Autocorrelations
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Figure 5
Starts and Completions
Sample Cross Correlations

Notes to figure:  We graph the sample correlation between completions at time t and starts at time
t-i, i = 1, 2, ..., 24.
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Table 4
VAR Starts Equation

LS // Dependent Variable is STARTS
Sample(adjusted): 1968:05 1991:12
Included observations: 284 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.  

C  0.146871  0.044235  3.320264  0.0010
STARTS(-1)  0.659939  0.061242  10.77587  0.0000
STARTS(-2)  0.229632  0.072724  3.157587  0.0018
STARTS(-3)  0.142859  0.072655  1.966281  0.0503
STARTS(-4)  0.007806  0.066032  0.118217  0.9060
COMPS(-1)  0.031611  0.102712  0.307759  0.7585
COMPS(-2) -0.120781  0.103847 -1.163069  0.2458
COMPS(-3) -0.020601  0.100946 -0.204078  0.8384
COMPS(-4) -0.027404  0.094569 -0.289779  0.7722

R-squared  0.895566     Mean dependent var  1.574771
Adjusted R-squared  0.892528     S.D. dependent var  0.382362
S.E. of regression  0.125350     Akaike info criterion -4.122118
Sum squared resid  4.320952     Schwarz criterion -4.006482
Log likelihood  191.3622     F-statistic   294.7796
Durbin-Watson stat  1.991908     Prob(F-statistic)  0.000000
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Figure 6
VAR Starts Equation
Residual Plot
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Table 5
VAR Starts Equation
Residual Correlogram

Sample: 1968:01 1991:12  
Included observations: 284

Acorr.  P. Acorr. Std. Error Ljung-Box p-value

 1  0.001   0.001  0.059 0.0004  0.985
 2  0.003   0.003  0.059 0.0029  0.999
 3  0.006   0.006  0.059 0.0119  1.000
 4  0.023   0.023  0.059 0.1650  0.997
 5 -0.013 -0.013  0.059 0.2108  0.999
 6  0.022   0.021  0.059 0.3463  0.999
 7  0.038   0.038  0.059 0.7646  0.998
 8 -0.048 -0.048  0.059 1.4362  0.994
 9  0.056   0.056  0.059 2.3528  0.985
 10 -0.114 -0.116  0.059 6.1868  0.799
 11 -0.038 -0.038  0.059 6.6096  0.830
 12 -0.030 -0.028  0.059 6.8763  0.866
 13  0.192  0.193  0.059 17.947  0.160
 14  0.014   0.021  0.059 18.010  0.206
 15  0.063   0.067  0.059 19.199  0.205
 16 -0.006 -0.015  0.059 19.208  0.258
 17 -0.039 -0.035  0.059 19.664  0.292
 18 -0.029 -0.043  0.059 19.927  0.337
 19 -0.010 -0.009  0.059 19.959  0.397
 20  0.010 -0.014  0.059 19.993  0.458
 21 -0.057 -0.047  0.059 21.003  0.459
 22  0.045   0.018  0.059 21.644  0.481
 23 -0.038   0.011  0.059 22.088  0.515
 24 -0.149 -0.141  0.059 29.064  0.218
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Figure 7
VAR Starts Equation
Residual Sample Autocorrelations and Partial Autocorrelations
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Table 6
VAR Completions Equation

LS // Dependent Variable is COMPS
Sample(adjusted): 1968:05 1991:12
Included observations: 284 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.  

C   0.045347  0.025794  1.758045  0.0799
STARTS(-1)  0.074724  0.035711  2.092461  0.0373
STARTS(-2)  0.040047  0.042406  0.944377  0.3458
STARTS(-3)  0.047145  0.042366  1.112805  0.2668
STARTS(-4)  0.082331  0.038504  2.138238  0.0334
COMPS(-1)  0.236774  0.059893  3.953313  0.0001
COMPS(-2)  0.206172  0.060554  3.404742  0.0008
COMPS(-3)  0.120998  0.058863  2.055593  0.0408
COMPS(-4)  0.156729  0.055144  2.842160  0.0048

R-squared   0.936835     Mean dependent var  1.547958
Adjusted R-squared  0.934998     S.D. dependent var  0.286689
S.E. of regression  0.073093     Akaike info criterion -5.200872
Sum squared resid  1.469205     Schwarz criterion -5.085236
Log likelihood  344.5453     F-statistic   509.8375
Durbin-Watson stat  2.013370     Prob(F-statistic)  0.000000
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Figure 8
VAR Completions Equation
Residual Plot
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Table 7
VAR Completions Equation
Residual Correlogram

Sample: 1968:01 1991:12  
Included observations: 284

Acorr.  P. Acorr. Std. Error Ljung-Box p-value

 1 -0.009 -0.009  0.059 0.0238 0.877
 2 -0.035 -0.035  0.059 0.3744 0.829
 3 -0.037 -0.037  0.059 0.7640 0.858
 4 -0.088 -0.090  0.059 3.0059 0.557
 5 -0.105 -0.111  0.059 6.1873 0.288
 6  0.012   0.000  0.059 6.2291 0.398
 7 -0.024 -0.041  0.059 6.4047  0.493
 8  0.041   0.024  0.059 6.9026  0.547
 9  0.048   0.029  0.059 7.5927  0.576
 10  0.045   0.037  0.059 8.1918  0.610
 11 -0.009 -0.005  0.059 8.2160  0.694
 12 -0.050 -0.046  0.059 8.9767  0.705
 13 -0.038 -0.024  0.059 9.4057  0.742
 14 -0.055 -0.049  0.059 10.318  0.739
 15  0.027   0.028  0.059 10.545  0.784
 16 -0.005 -0.020  0.059 10.553  0.836
 17  0.096   0.082  0.059 13.369  0.711
 18  0.011 -0.002  0.059 13.405  0.767
 19  0.041   0.040  0.059 13.929  0.788
 20  0.046   0.061  0.059 14.569  0.801
 21 -0.096 -0.079  0.059 17.402  0.686
 22  0.039   0.077  0.059 17.875  0.713
 23 -0.113 -0.114  0.059 21.824  0.531
 24 -0.136 -0.125  0.059 27.622  0.276
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Figure 9
VAR Completions Equation
Residual Sample Autocorrelations and Partial Autocorrelations
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Table 8
Housing Starts and Completions
Causality Tests

Sample: 1968:01 1991:12  
Lags: 4
Obs: 284

Null Hypothesis: F-Statistic Probability

STARTS does not Cause COMPS  26.2658  0.00000
COMPS does not Cause STARTS  2.23876  0.06511
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Figure 10
Housing Starts and Completions
VAR Impulse-Response Functions
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Figure 11
Housing Starts and Completions
VAR Variance Decompositions
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Figure 12
Starts
History, 1968.01-1991.12
Forecast, 1992.01-1996.06
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Figure 13
Starts
History, 1968.01-1991.12
Forecast and Realization, 1992.01-1996.06
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Figure 14
Completions
History, 1968.01-1991.12
Forecast, 1992.01-1996.06
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Figure 15
Completions
History, 1968.01-1991.12
Forecast and Realization, 1992.01-1996.06
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* Production notes:  The bands in Figures 3, 4, 5, 8 and 10 should be dashed, not solid.
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Chapter 12

Evaluating and Combining Forecasts

As we’ve stressed repeatedly, good forecasts lead to good decisions.  The importance of

forecast evaluation and combination techniques follows immediately.  Given a track record of

forecasts,  and corresponding realizations,  we naturally want to monitor and improve

forecast performance.  In this chapter we show how to do so.  First we discuss evaluation of a

single forecast.  Second, we discuss the evaluation and comparison of forecast accuracy.  Third,

we discuss whether and how a set of forecasts may be combined to produce a superior composite

forecast.

1.  Evaluating a Single Forecast

Evaluating a single forecast amounts to checking whether it has the properties expected of

tan optimal forecast.  Denote by y  the covariance stationary time series to be forecast.  The Wold

representation is

 

Thus, the h-step-ahead linear least-squares forecast is

and the corresponding h-step-ahead forecast error is

with variance
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Four key properties of optimal forecasts, which we can easily check, follow immediately:

a.  Optimal forecasts are unbiased

b.  Optimal forecasts have 1-step-ahead errors that are white noise

c.  Optimal forecasts have h-step-ahead errors that are at most MA(h-1)

d.  Optimal forecasts have h-step-ahead errors with variances that are non-decreasing in h

and that converge to the unconditional variance of the process.

Testing Properties of Optimal Forecasts

(a)  Optimal forecasts are unbiased

If the forecast is unbiased, then the forecast error has a zero mean.  A variety of tests of

the zero-mean hypothesis can be performed, depending on the assumptions we’re willing to

maintain.  For example, if  is Gaussian white noise (as might be reasonably the case for 1-

step-ahead errors), then the standard t-test is the obvious choice.  We would simply regress the

forecast error series on a constant and use the reported t-statistic to test the hypothesis that the

population mean is zero.  If the errors are non-Gaussian but remain independent and identically

distributed (iid), then the t-test is still applicable in large samples.

If the forecast errors are dependent, then more sophisticated procedures are required. 

Serial correlation in forecast errors can arise for many reasons.  Multi-step-ahead forecast errors

will be serially correlated, even if the forecasts are optimal, because of the forecast-period overlap

associated with multi-step-ahead forecasts.  More generally, serial correlation in forecast errors



Fcst4-12-3

Copyright © F.X. Diebold.  All rights reserved.

may indicate that the forecasts are suboptimal.  The upshot is simply that when regressing forecast

errors on an intercept, we need to be sure that any serial correlation in the disturbance is

appropriately modeled.  A reasonable starting point for a regression involving h-step-ahead

forecast errors is MA(h-1) disturbances, which we’d expect if the forecast were optimal.  The

forecast may, of course, not be optimal, so we don’t adopt MA(h-1) disturbances uncritically;

instead, we try a variety of models using the AIC and SIC to guide selection in the usual way.

(b)  Optimal forecasts have 1-step-ahead errors that are white noise

Under various sets of maintained assumptions, we can use standard tests of the white

noise hypothesis.  For example, the sample autocorrelation and partial autocorrelation functions,

together with Bartlett asymptotic standard errors, are often useful in that regard.  Tests based on

the first autocorrelation (e.g., the Durbin-Watson test), as well as more general tests, such as the

Box-Pierce and Ljung-Box statistics, are useful as well.  We implement all of these tests by

regression on a constant term.

(c)  Optimal forecasts have h-step-ahead errors that are at most MA(h-1)

The MA(h-1) structure implies a cutoff in the forecast error’s autocorrelation function

beyond displacement h-1.  This immediately suggests examining the statistical significance of the

sample autocorrelations beyond displacement h-1 using the Bartlett standard errors.  In addition,

we can regress the errors on a constant, allowing for MA(q) disturbances with q>(h-1), and test

whether the moving-average parameters beyond lag h-1 are zero.

(d)  Optimal forecasts have h-step-ahead errors with variances that are non-decreasing in h

It’s often useful to examine the sample h-step-ahead forecast error variances as a function
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of h, both to be sure they’re non-decreasing in h and to see their pattern, which often conveys

useful information.

Assessing Optimality with Respect to an Information Set

The key property of optimal forecast errors, from which all others follow (including those

cataloged above), is that they should be unforecastable on the basis of information available at the

time the forecast was made.  This unforecastability principle is valid in great generality; it holds,

for example, regardless of whether linear-projection optimality or conditional-mean optimality is

of interest, regardless of whether the relevant loss function is quadratic, and regardless of whether

the series being forecast is stationary.

Many of the tests of properties of optimal forecasts introduced above are based on the

unforecastability principle.  1-step-ahead errors, for example, had better be white noise, because

otherwise we could forecast the errors using information readily available when the forecast is

made.  Those tests, however, make incomplete use of the unforecastability principle, insofar as

they assess only the univariate properties of the errors.  

We can make a more complete assessment by broadening the information set and

assessing optimality with respect to various sets of information, by estimating regressions of the

form

The hypothesis of interest is that all the "’s are zero, which is a necessary condition for forecast

optimality with respect to the information contained in the x’s.  The particular case of testing



Fcst4-12-5

Copyright © F.X. Diebold.  All rights reserved.

optimality with respect to  is very important in practice.  The relevant regression is

0 1and optimality corresponds to (" , " ) = (0, 0).  Keep in mind that the disturbances may be serially

correlated, especially if the forecast errors are multi-step-ahead, in which case they should be

modeled accordingly.

If the above regression seems a little strange to you, consider what may seem like a more

natural approach to testing optimality, regression of the realization on the forecast:

This is called a “Mincer-Zarnowitz regression.”  If the forecast is optimal with respect to the

0 1information used to construct it, then we’d expect ($ , $ ) = (0, 1), in which case 

Note, however, that if we start with the regression

and then subtract  from each side, we obtain

0 1 0 1where (" , " ) = (0, 0) when ($ , $ ) = (0, 1).  Thus, the two approaches are identical.

2.  Evaluating Two or More Forecasts:  Comparing Forecast Accuracy
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 Because in many applications the loss function will be a direct function of the forecast1

error,  we write  from this point on to economize on notation, while

recognizing that certain loss functions (such as direction-of-change) don't collapse to the 

form.
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Measures of Forecast Accuracy

In practice, it is unlikely that we’ll ever stumble upon a fully-optimal forecast; instead,

situations often arise in which a number of forecasts (all of them suboptimal) are compared and

possibly combined.  Even for very good forecasts, the actual and forecasted values may be very

different.  To take an extreme example, note that the linear least squares forecast for a zero-mean

white noise process is simply zero -- the paths of forecasts and realizations will look very

different, yet there does not exist a better linear forecast under quadratic loss.  This highlights the

inherent limits to forecastability, which depends on the process being forecast; some processes are

inherently easy to forecast, while others are hard to forecast.  In other words, sometimes the

information on which the forecaster conditions is very valuable, and sometimes it isn't.

The crucial object in measuring forecast accuracy is the loss function,  often

restricted to  which charts the "loss," "cost," or "disutility" associated with various pairs

of forecasts and realizations.   In addition to the shape of the loss function, the forecast horizon h1

is of crucial importance.  Rankings of forecast accuracy may of course be very different across

different loss functions and different horizons.

Let’s discuss a few accuracy measures that are important and popular.  Accuracy

measures are usually defined on the forecast errors,  or percent errors,

  Mean error,
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measures bias, which is one component of accuracy.  Other things the same, we prefer a forecast

with a small bias.  Error variance,

measures dispersion of the forecast errors.  Other things the same, we prefer a forecast whose

errors have small variance.  Although the mean error and the error variance are components of

accuracy, neither provides an overall accuracy measure.  For example, one forecast might have a

small ME but a large EV, and another might have a large ME and a small EV.  Hence we would

like an accuracy measure that somehow incorporates both ME and EV.  The mean squared error,

to which we now turn, does just that.

The most common overall accuracy measures, by far, are mean squared error,

and mean squared percent error,

Often the square roots of these measures are used to preserve units, yielding the root mean

squared error,
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and the root mean squared percent error,

To understand the meaning of “preserving units,” and why it’s sometimes helpful to do so,

suppose that the forecast  errors are measured in dollars.  Then the mean squared error, which is

built up from squared errors, is measured in dollars squared.  Taking square roots -- that is,

moving from MSE to RMSE -- brings the units back to dollars.

MSE can be decomposed into bias and variance components, reflecting the tradeoff

between bias (ME) and variance (EV) in forecast accuracy under quadratic loss. In particular,

MSE can be decomposed into the sum of variance and squared bias (you should verify this),

Somewhat less popular, but nevertheless common, accuracy measures are mean absolute

error,

 and mean absolute percent error,
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When using MAE or MAPE we don’t have to take square roots to preserve units.  Why?

Statistical Comparison of Forecast Accuracy

All the accuracy measures we’ve discussed are actually sample estimates of population

accuracy.  Population MSE, for example, is defined as the expected squared error,

which we estimate by replacing the expectation with a sample average, 

 yielding the sample MSE.

Once we’ve decided on a loss function, it is often of interest to know whether one forecast

is more accurate than another.  In hypothesis testing terms, we might want to test the equal

accuracy hypothesis,

against the alternative hypothesis that one or the other is better.  Equivalently, we might want to

test the hypothesis that the expected loss differential is zero,
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The hypothesis concerns population expected loss; we test it using sample average loss.

t In fact, we can show that if d  is a covariance stationary series, then the large-sample

distribution of the sample mean loss differential is2

where  is the sample mean loss differential, f is the variance of the

sample mean loss differential, and : is the population mean loss differential.  This implies that in

large samples, under the null hypothesis of a zero population mean loss differential, the

standardized sample mean loss differential has a standard normal distribution, 

where  is a consistent estimator of f.  In practice, using , where  and

 denotes the sample autocovariance of the loss differential at displacement J, provides an

adequate estimator in many cases.

Note that the statistic B is just a t-statistic for the hypothesis of a zero population mean

loss differential, adjusted to reflect the fact that the loss differential series is not necessarily white

noise.  We can compute it by regressing the loss differential series on an intercept, taking care to

correct the equation for serial correlation.  The procedure outlined above amounts to a

“nonparametric” way of doing so.  It’s called nonparametric because instead of assuming a

particular model for the serial correlation, we use the sample autocorrelations of the loss
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differential directly.

The nonparametric serial correlation correction is a bit tedious, however, and it involves

the rather arbitrary selection of the truncation lag, M.  Alternatively, and perhaps preferably, we

can proceed by regressing the loss differential on an intercept, allowing for ARMA(p,q)

disturbances, and using information criteria to select p and q.  This model-based parametric serial

correlation correction is easy to do, economizes on degrees of freedom, and makes use of

convenient model selection procedures.

3.  Forecast Encompassing and Forecast Combination

In forecast accuracy comparison, we ask which forecast is best with respect to a particular

loss function.  Such “horse races” arise constantly in practical work.  Regardless of whether one

forecast is significantly better than the others, however, the question arises as to whether

competing forecasts may be fruitfully combined to produce a composite forecast superior to all

the original forecasts.  Thus, forecast combination, although obviously related to forecast

accuracy comparison, is logically distinct and of independent interest.

Forecast Encompassing

We use forecast encompassing tests to determine whether one forecast incorporates (or

encompasses) all the relevant information in competing forecasts.  If one forecast incorporates all

the relevant information, nothing can be gained by combining forecasts.  For simplicity, let’s focus

on the case of two forecasts,   Consider the regression

a b a bIf ($ , $ ) = (1,0), we’ll say that model a forecast-encompasses model b, and if  ($ , $ )= (0,1),
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a bwe’ll say that model b forecast-encompasses model a.  For other ($ , $ ) values, neither model

t+hencompasses the other, and both forecasts contain useful information about y .  In covariance

stationary environments, encompassing hypotheses can be tested using standard methods.   If3

neither forecast encompasses the other, forecast combination is potentially desirable. 

Forecast Combination

Failure of each model's forecasts to encompass other model’s forecasts indicates that both

models are misspecified, and that there may be gains from combining the forecasts.  It should

come as no surprise that such situations are typical in practice, because forecasting models are

likely to be misspecified -- they are intentional abstractions of a much more complex reality.

Many combining methods have been proposed, and they fall roughly into two groups,

"variance-covariance" methods and "regression" methods.  As we’ll see, the variance-covariance

forecast combination method is in fact a special case of the regression-based forecast combination

method, so there’s really only one method.  However, for historical reasons -- and more

importantly, to build valuable intuition -- it’s important to understand the variance-covariance

forecast combination, so let’s begin with it.  Suppose we have two unbiased forecasts from which

we form a composite as

Because the weights sum to unity, the composite forecast will necessarily be unbiased.  Moreover,

the combined forecast error will satisfy the same relation as the combined forecast; that is, 
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with variance  where  and  are the forecast

error variances and  is their covariance.  We find the optimal combining weight by minimizing

the variance of the combined forecast error with respect to T, which yields

The optimal combining weight is a simple function of the variances and covariances of the

underlying forecast errors.  The forecast error variance associated with the optimally combined

forecast is less than or equal to the smaller of  ; thus, in population, we have nothing

to lose by combining forecasts, and potentially much to gain.  In practical applications, the

unknown variances and covariances that underlie the optimal combining weights are unknown, so

we replace them with consistent estimates; that is, we estimate T  by replacing    with*

 yielding the combining weight estimates,

To gain intuition for the formula that defines the optimal combining weight, consider the

special case in which the forecast errors are uncorrelated, so that .  Then 

As  approaches 0, forecast a becomes progressively more accurate.  The formula for 

indicates that as  approaches 0,  approaches 1, so that all weight is put on forecast a, which
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is desirable.  Similarly, as  approaches 0, forecast b becomes progressively more accurate. 

The formula for  indicates that as   approaches 0,  approaches 0, so that all weight is

put on forecast b, which is also desirable.  In general, the forecast with the smaller error variance

receives the higher weight, with the precise size of the weight depending on the disparity between

variances.

The full formula for the optimal combining weight indicates that the variances and the

covariance are relevant, but the basic intuition remains valid.  Effectively, we’re forming a

portfolio of forecasts, and as we know from standard results in finance, the optimal shares in a

portfolio depend on the variances and covariances of the underlying assets.

Now consider the regression method of forecast combination.  The form of forecast-

encompassing regressions immediately suggests combining forecasts by simply regressing

realizations on forecasts.  This intuition proves accurate, and in fact the optimal variance-

covariance combining weights have a regression interpretation as the coefficients of a linear

t+hprojection of y  onto the forecasts, subject to two constraints:  the weights sum to unity, and the

intercept is excluded.

In practice, of course, population linear projection is impossible, so we simply run the

regression on the available data.  Moreover, it’s usually preferable not to force the weights to add

to unity, or to exclude an intercept.  Inclusion of an intercept, for example, facilitates bias

correction and allows biased forecasts to be combined.  Typically, then, we simply estimate the

regression,
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Extension to the fully general case of more than two forecasts is immediate.

In general, the regression method is simple and flexible.  There are many variations and

extensions, because any regression tool is potentially applicable.  The key is to use generalizations

with sound motivation.  We’ll give four examples in an attempt to build an intuitive feel for the

sorts of extensions that are possible:  time-varying combining weights, dynamic combining

regressions, shrinkage of combining weights toward equality, and nonlinear combining

regressions.

a.  Time-Varying Combining Weights

Relative accuracies of different forecasts may change, and if they do, we naturally want to

weight the improving forecasts progressively more heavily and the worsening forecasts less

heavily.  Relative accuracies can change for a number of reasons.  For example, the design of a

particular forecasting model may make it likely to perform well in some situations, but poorly in

others.  Alternatively, people’s decision rules and firms’ strategies may change over time, and

certain forecasting techniques may be relatively more vulnerable to such change.

We allow for time-varying combining weights in the regression framework by using

weighted or rolling estimation of combining regressions, or by allowing for explicitly time-varying

parameters.  If, for example, we suspect that the combining weights are evolving over time in a

trend-like fashion, we might use the combining regression

which we estimate by regressing the realization on an intercept, time, each of the two forecasts,
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the product of time and the first forecast, and the product of time and the second forecast.  We

assess the importance of time variation by examining the size and statistical significance of the

estimates of , , and .

b.  Serial Correlation

It’s a good idea to allow for serial correlation in combining regressions, for two reasons. 

First, as always, even in the best of conditions we need to allow for the usual serial correlation

induced by overlap when forecasts are more than 1-step-ahead.  This suggests that instead of

treating the disturbance in the combining regression as white noise, we should allow for MA(h-1)

serial correlation,

Second, and very importantly, the MA(h-1) error structure is associated with forecasts

that are optimal with respect to their information sets, of which there’s no guarantee.  That is,

although the primary forecasts were designed to capture the dynamics in y, there’s no guarantee

that they do so.  Thus, just as in standard regressions, it’s important in combining regressions that

we allow either for serially correlated disturbances or lagged dependent variables, to capture any

dynamics in y not captured by the various forecasts.  A combining regression with ARMA(p,q)

disturbances,
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with p and q selected using information criteria in conjunction with other diagnostics, is usually

adequate.

c.  Shrinkage of Combining Weights Toward Equality

Simple arithmetic averages of forecasts -- that is, combinations in which the weights are

constrained to be equal -- sometimes perform very well in out-of-sample forecast competitions,

even relative to "optimal" combinations.  The equal-weights constraint eliminates sampling

variation in the combining weights at the cost of possibly introducing bias.  Sometimes the

benefits of imposing equal weights exceed the cost, so that the MSE of the combined forecast is

reduced.

The equal-weights constraint associated with the arithmetic average is an example of

extreme shrinkage; regardless of the information contained in the data, the weights are forced into

equality.  We’ve seen before that shrinkage can produce forecast improvements, but typically we

want to coax estimates in a particular direction, rather than to force them.  In that way we guide

our parameter estimates toward reasonable values when the data are uninformative, while

nevertheless paying a great deal of attention to the data when they are informative.

Thus, instead of imposing a deterministic equal-weights constraint, we might like to
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impose a stochastic constraint.  With this in mind, we sometimes coax the combining weights

toward equality without forcing equality.  A simple way to do so is to take a weighted average of

the simple average combination and the least-squares combination.  Let the shrinkage parameter (

be the weight put on the simple average combination, and let (1-() be the weight put on the least-

squares combination, where ( is chosen by the user.  The larger is (, the more the combining

weights are shrunken toward equality.  Thus the combining weights are coaxed toward the

arithmetic mean, but the data are still allowed to speak, when they have something important to

say. 

d.  Nonlinear Combining Regressions

There is no reason to force linearity of combining regressions, and various of the nonlinear

techniques that we’ve already introduced may be used.  We might, for example, regress

realizations not only on forecasts, but also on squares and cross products of the various forecasts,

in order to capture quadratic deviations from linearity,

We assess the importance of nonlinearity by examining the size and statistical significance of

estimates of , , and ; if the linear combining regression is adequate, those estimates

should differ significantly from zero.  If, on the other hand, the nonlinear terms are found to be

important, then the full nonlinear combining regression should be used.

4.  Application:  OverSea Shipping Volume on the Atlantic East Trade Lane
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OverSea Services, Inc. is a major international cargo shipper.  To help guide fleet

allocation decisions, each week OverSea makes forecasts of volume shipped over each of its

major trade lanes, at horizons ranging from 1-week ahead through 16-weeks-ahead.  In fact,

OverSea produces two sets of forecasts -- a quantitative forecast is produced using modern

quantitative techniques, and a judgmental forecast is produced by soliciting the opinion of the

sales representatives, many of whom have years of valuable experience.

Here we’ll examine the realizations and 2-week-ahead forecasts of volume on the Atlantic

East trade lane (North America to Europe).  We have nearly ten years of data on weekly realized

volume (VOL) and weekly 2-week-ahead forecasts (the quantitative forecast VOLQ, and the

judgmental forecast VOLJ), from January 1988 through mid-July 1997, for a total of 499 weeks.

In Figure 1, we plot realized volume vs. the quantitative forecast, and in Figure 2 we show

realized volume vs. the judgmental forecast.  The two plots look similar, and both forecasts

appear quite accurate; it’s not too hard to forecast shipping volume just two weeks ahead.

In Figures 3 and 4, we plot the errors from the quantitative and judgmental forecasts,

which are more revealing.  The quantitative error, in particular, appears roughly centered on zero,

whereas the judgmental error seems to be a bit higher than zero on average.  That is, the

judgmental forecast appears biased in a pessimistic way -- on average, actual realized volume is a

bit higher than forecasted volume.

In Figures 5 and 6, we show histograms and related statistics for the quantitative and

judgmental forecast errors.  The histograms confirm our earlier suspicions based on the error

plots; the histogram for the quantitative error is centered on a mean of -.03, whereas that for the
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judgmental error is centered on 1.02.  The error standard deviations, however, reveal that the

judgmental forecast errors vary a bit less around their mean than do the quantitative errors. 

Finally, the Jarque-Bera test can’t reject the hypothesis that the errors are normally distributed.

In Tables 1 and 2 and Figures 7 and 8, we show the correlograms of the quantitative and

judgmental forecast errors.  In each case, the errors appear to have MA(1) structure; the sample

autocorrelations cut off at displacement 1, whereas the sample partial autocorrelations display

damped oscillation, which is reasonable for 2-step-ahead forecast errors.

To test for the statistical significance of bias, we need to account for the MA(1) serial

correlation.  To do so, we regress the forecast errors on a constant, allowing for MA(1)

disturbances.  We show the results for the quantitative forecast errors in Table 3, and those for

the judgmental forecast errors in Table 4.  The t-statistic indicates no bias in the quantitative

forecasts, but sizeable and highly statistically significant bias in the judgmental forecasts.

In Tables 5 and 6, we show the results of Mincer-Zarnowitz regressions; both forecasts

fail miserably.  We expected the judgmental forecast to fail, because it’s biased, but until now no

defects were found in the quantitative forecast.

Now let’s compare forecast accuracy.  We show the histogram and descriptive statistics

for the squared quantitative and judgmental errors in Figures 9 and 10.  The histogram for the

squared judgmental error is pushed rightward relative to that of the quantitative error, due to bias. 

The RMSE of the quantitative forecast is 1.26, while that of the judgmental forecast is 1.48.

In Figure 11 we show the (quadratic) loss differential; it’s fairly small but looks a little

negative.  In Figure 12 we show the histogram of the loss differential; the mean is -.58, which is
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small relative to the standard deviation of the loss differential, but remember that we have not yet

corrected for serial correlation.  In Table 7 we show the correlogram of the loss differential,

which strongly suggests MA(1) structure.  The sample autocorrelations and partial

autocorrelations, shown in Figure 13, confirm that impression.  Thus, to test for significance of

the loss differential, we regress it on a constant and allow for MA(1) disturbances; we show the

results in Table 8.  The mean loss differential is highly statistically significant, with a p-value less

than .01; we conclude that the quantitative forecast is more accurate than the judgmental forecast

under quadratic loss.

Now let’s combine the forecasts.  Both failed Mincer-Zarnowitz tests, which suggests that

there may be scope for combining.  The correlation between the two forecast errors is .54,

positive but not too high.  In Table 9 we show the results of estimating the unrestricted combining

regression with MA(1) errors (equivalently, a forecast encompassing test).  Neither forecast

encompasses the other; both combining weights, as well as the intercept, are highly statistically

significantly different from zero.  Interestingly, the judgmental forecast actually gets more weight

than the quantitative forecast in the combination, in spite of the fact that its RMSE was higher. 

That’s because, after correcting for bias, the judgmental forecast appears a bit more accurate.

It’s interesting to track the RMSE’s as we progress from the original forecasts to the

combined forecast.  The RMSE of the quantitative forecast is 1.26, and that of the judgmental

forecast is 1.48.  The RMSE associated with using the modified quantitative forecast that we

obtain using the weights estimated in the Mincer-Zarnowitz regression is .85, and that of the

modified judgmental forecast is .74.  Finally, the RMSE of the combined forecast is .70.  In this
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case, we get a big improvement in forecast accuracy from using the modifications associated with

the Mincer-Zarnowitz regressions, and a smaller, but non-negligible, additional improvement from

using the full combining regression.4
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Exercises, Problems and Complements

1.  (Forecast evaluation in action)  Discuss in detail how you would use forecast evaluation

techniques to address each of the following questions.

a.  Are asset returns (e.g., stocks, bonds, exchange rates) forecastable over long horizons?

b.  Do forward exchange rates provide unbiased forecasts of future spot exchange rates at

all horizons?

c.  Are government budget projections systematically too optimistic, perhaps for strategic

reasons?

d.  Can interest rates be used to provide good forecasts of future inflation?

2.  (Forecast error analysis)  You are working for a London-based hedge fund, Thompson Energy

Investors, and your boss has assigned you to assess a model used to forecast U.S. crude oil

imports.  On the last day of each quarter, the model is used to forecast oil imports at horizons of

1-quarter-ahead through 4-quarter-ahead.  Thompson has done this for each of the past 80

quarters and has kept the corresponding four forecast error series, which appear on the book’s

web page.

a.  Based on a correlogram analysis, assess whether the 1-quarter-ahead forecast errors

are white noise.  (Be sure to discuss all parts of the correlogram:  sample

autocorrelations, sample partial autocorrelations, Bartlett standard errors and

Ljung-Box statistics.)  Why care?

b.  Regress each of the four forecast error series on constants, in each case allowing for a

MA(5) disturbances.  Comment on the significance of the MA coefficients in each
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of the four cases and use the results to assess the optimality of the forecasts at

each of the four horizons.  Does  your 1-step-ahead MA(5)-based assessment

match the correlogram-based assessment obtained in part a?  Do the multi-step

forecasts appear optimal?

c.  Overall, what do your results suggest about the model’s ability to predict U.S. crude oil

imports?

3.  (Combining Forecasts)  You are a managing director at Paramex, a boutique investment bank

in Paris.  Each day during the summer your two interns, Alex and Betsy, give you a 1-day-ahead

forecast of the Euro/Dollar exchange rate.  At the end of the summer, you calculate each intern’s

series of daily forecast errors.  You find that the mean errors are zero, and the error variances and

covariances are  and .  

a.  If you were forced to choose between Alex’s forecast and Betsy’s forecast, which

would you choose?  Why?

b.  If instead you had the opportunity to combine the two forecasts by forming a weighted

average, what would be the optimal weights according to the variance-covariance

method?  Why?

c.  Is it guaranteed that a combined forecast formed using the “optimal” weights calculated

in part b will have lower mean squared prediction error?  Why or why not?

4.  (Quantitative forecasting, judgmental forecasting, forecast combination, and shrinkage) 

Interpretation of the modern quantitative approach to forecasting as eschewing judgement is most

definitely misguided.  How is judgement used routinely and informally to modify quantitative
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forecasts?  How can judgement be formally used to modify quantitative forecasts via forecast

combination?  How can judgement be formally used to modify quantitative forecasts via

shrinkage?  Discuss the comparative merits of each approach.  Klein (1981) provides insightful

discussion of the interaction between judgement and models, as well as the comparative track

record of judgmental vs. model-based forecasts.

5.  (The algebra of forecast combination)  Consider the combined forecast,

Verify the following claims made in the text:

a.  The combined forecast error will satisfy the same relation as the combined forecast;

that is, 

b.  Because the weights sum to unity, if the primary forecasts are unbiased then so too is

the combined forecast.

c.  The variance of the combined forecast error is

where  and  are unconditional forecast error variances and   is their

covariance.

d.  The combining weight that minimizes the combined forecast error variance (and hence

the combined forecast error MSE, by unbiasedness) is
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e.  If neither forecast encompasses the other, then

f.  If one forecast encompasses the other, then

6.  (The mechanics of practical forecast evaluation and combination)  On the book’s web page

you’ll find the time series of shipping volume, quantitative forecasts, and judgmental forecasts

used in this chapter.

a.  Replicate the empirical results reported in this chapter.  Explore and discuss any

variations or extensions that you find interesting.

b.  Using the first 250 weeks of shipping volume data, specify and estimate a univariate

autoregressive model of shipping volume (with trend and seasonality if necessary),

and provide evidence to support the adequacy of your chosen specification.

c.  Use your model each week to forecast two weeks ahead, each week estimating the

model using all available data, producing forecasts for observations 252 through

499, made using information available at times 250 through 497.  Calculate the

corresponding series of 248 2-step-ahead recursive forecast errors.

d.  Using the methods of this chapter, evaluate the quality of your forecasts, both in

isolation and relative to the original quantitative and judgmental forecasts. 

Discuss.
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e.  Using the methods of this chapter, assess whether your forecasting model can usefully

be combined with the original quantitative and judgmental models.  Discuss.

7.  (What are we forecasting?  Preliminary series, revised series, and the limits to forecast

accuracy)  Many economic series are revised as underlying source data increase in quantity and

quality.  For example, a typical quarterly series might be issued as follows.  First, shortly after the

end of the relevant quarter, a “preliminary” value for the current quarter is issued.  A few months

later, a “revised” value is issued, and a year or so later the “final revised” value is issued.  For

extensive discussion, see Croushore and Stark (2001).

a.  If you’re evaluating the accuracy of a forecast or forecasting technique, you’ve got to

decide on what to use for the “actual” values, or realizations, to which the

forecasts will be compared.  Should you use the preliminary value?  The final

revised value?  Something else?  Be sure to weigh as many relevant issues as

possible in defending your answer.

b.  Morgenstern (1963) assesses the accuracy of economic data and reports that the great

mathematician Norbert Wiener, after reading an early version of Morgenstern’s

book, remarked that “economics is a one or two digit science.”  What might

Wiener have meant?

c.  Theil (1966) is well aware of the measurement error in economic data; he speaks of

“predicting the future and estimating the past.”  Klein (1981) notes that, in

addition to the usual innovation uncertainty, measurement error in economic data -

- even “final revised” data -- provides additional limits to measured forecast
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accuracy.  That is, even if a forecast were perfect, so that forecast errors were

consistently zero, measured forecast errors would be nonzero due to measurement

error.  The larger the measurement error, the more severe the inflation of measured

forecast error.  Evaluate.

d.  When assessing improvements (or lack thereof) in forecast accuracy over time, how

might you guard against the possibility of spurious assessed improvements due not

to true forecast improvement, but rather to structural change toward a more

“forcastable” process?  (On forecastability, see Diebold and Kilian, 2001).

8.  (Ex post vs. real-time forecast evaluation)  If you’re evaluating a forecasting model, you’ve

also got to take a stand on precisely what information is available to the forecaster, and when. 

Suppose, for example, that you’re evaluating the forecasting accuracy of a particular regression

model.

a.  Do you prefer to estimate and forecast recursively, or simply estimate once using the

full sample of data?

b.  Do you prefer to estimate using final-revised values of the left- and right-hand side

variables, or do you prefer to use the preliminary, revised and final-revised data as

it became available in real time?

c.  If the model is explanatory rather than causal, do you prefer to substitute the true

realized values of right-hand side variables, or to substitute forecasts of the right-

hand side variables that could actually be constructed in real time?

These sorts of timing issues can make large differences in conclusions.  For an application to using
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the composite index of leading indicators to forecast industrial production, see Diebold and

Rudebusch (1991).

9.  (What do we know about the accuracy of macroeconomic forecasts?)  Zarnowitz and Braun

(1993) provide a fine assessment of the track record of economic forecasts since the late 1960s. 

Read their paper and try to assess just what we really know about:

a.  comparative forecast accuracy at business cycle turning points vs. other times

b.  comparative accuracy of judgmental vs. model-based forecasts

c.  improvements in forecast accuracy over time

d.  the comparative forecastability of various series

e.  the comparative accuracy of linear vs. nonlinear forecasting models.

Other well-known and useful comparative assessments of U.S. macroeconomic forecasts have

been published over the years by Stephen K. McNees, a private consultant formerly with the

Federal Reserve Bank of Boston.  McNees (1988) is a good example.  Similarly useful studies for

the U.K.. with particular attention to decomposing forecast error into its various possible sources,

have recently been produced by Kenneth F. Wallis and his coworkers at the ESRC

Macroeconomic Modelling Bureau at the University of Warwick.  Wallis and Whitley (1991) is a

good example.  Finally, the Model Comparison Seminar, founded by Lawrence R. Klein of the

University of Pennsylvania and now led by Michael Donihue of Colby College, is dedicated to the

ongoing comparative assessment of macroeconomic forecasting models.  Klein (1991) provides a

good survey of some of the group's recent work, and more recent information can be found on the

web at http://www.colby.edu/economics/faculty/mrdonihu/mcs/.
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10.  (Forecast evaluation when realizations are unobserved)  Sometimes we never see the

realization of the variable being forecast.  Pesaran and Samiei (1995), for example, develop

models for forecasting ultimate resource recovery, such as the total amount of oil in an

underground reserve.  The actual value, however, won’t be known until the reserve is depleted,

which may be decades away.  Such situations obviously make for difficult accuracy evaluation! 

How would you evaluate such forecasting models?

11.  (Forecast error variances in models with estimated parameters)  As we’ve seen, computing

forecast error variances that acknowledge parameter estimation uncertainty is very difficult; that’s

one reason why we’ve ignored it.  We’ve learned a number of lessons about optimal forecasts

while ignoring parameter estimation uncertainty, such as:

a.  Forecast error variance grows as the forecast horizon lengthens.

b.  In covariance stationary environments, the forecast error variance approaches the

(finite) unconditional variance as the horizon grows.

Such lessons provide valuable insight and intuition regarding the workings of forecasting models

and provide a useful benchmark for assessing actual forecasts.  They sometimes need

modification, however, when parameter estimation uncertainty is acknowledged.  For example, in

models with estimated parameters:

a.  Forecast error variance needn’t grow monotonically with horizon.  Typically we expect

forecast error variance to increase monotonically with horizon, but it doesn’t have

to.

b.  Even in covariance stationary environments, the forecast error variance needn’t
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converge to the unconditional variance as the forecast horizon lengthens; instead,

it may grow without bound.  Consider, for example, forecasting a series that’s just

a stationary AR(1) process around a linear trend.  With known parameters, the

point forecast will converge to the trend as the horizon grows, and the forecast

error variance will converge to the unconditional variance of the AR(1) process. 

With estimated parameters, however, if the estimated trend parameters are even

the slightest bit different from the true values (as they almost surely will be, due to

sampling variation), that error will be magnified as the horizon grows, so the

forecast error variance will grow. 

Thus, results derived under the assumption of known parameters should be viewed as a

benchmark to guide our intuition, rather than as precise rules.

12.  (The empirical success of forecast combination)  In the text we mentioned that we have

nothing to lose by forecast combination, and potentially much to gain.  That’s certainly true in

population, with optimal combining weights.  However, in finite samples of the size typically

available, sampling error contaminates the combining weight estimates, and the problem of

sampling error may be exacerbated by the collinearity that typically exists between

  Thus, while we hope to reduce out-of-sample forecast MSE by combining,

there is no guarantee.  Fortunately, however, in practice forecast combination often leads to very

good results.  The efficacy of forecast combination is well-documented in Clemen's (1989) review

of the vast literature, and it emerges clearly in the landmark study by Stock and Watson (1999).

13.  (Forecast combination and the Box-Jenkins paradigm)  In an influential book, Box and
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Jenkins (latest edition, Box, Jenkins and Reinsel, 1994) envision an ongoing, iterative process of

model selection and estimation, forecasting, and forecast evaluation.  What is the role of forecast

combination in that paradigm?  In a world in which information sets can be instantaneously and

costlessly combined, there is no role; it is always optimal to combine information sets rather than

forecasts.  That is, if no model forecast-encompasses the others, we might hope to eventually

figure out what’s gone wrong, learn from our mistakes, and come up with a model based on a

combined information set that does forecast-encompass the others.  But in the short run --

particularly when deadlines must be met and timely forecasts produced -- pooling of information

sets is typically either impossible or prohibitively costly.  This simple insight motivates the

pragmatic idea of forecast combination, in which forecasts rather than models are the basic object

of analysis, due to an assumed inability to combine information sets.  Thus, forecast combination

can be viewed as a key link between the short-run, real-time forecast production process, and the

longer-run, ongoing process of model development.

14.  (Consensus forecasts)  A  number of services, some commercial and some non-profit,

regularly survey economic and financial forecasters and publish “consensus” forecasts, typically

the mean or median of the forecasters surveyed.  The consensus forecasts often perform very well

relative to the individual forecasts.  The Survey of Professional Forecasters is a leading consensus

forecast that has been produced each quarter since the late 1960s; currently it’s produced by the

Federal Reserve Bank of Philadelphia.  See Zarnowitz and Braun (1993) and Croushore (1993).

15.  (The Delphi method for combining experts' forecasts)  The “Delphi method” is a structured

judgmental forecasting technique that sometimes proves useful in very difficult forecasting
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situations not amenable to quantification, such as new-technology forecasting.  The basic idea is

to survey a panel of experts anonymously, reveal the distribution of opinions to the experts so

they can revise their opinions, repeat the survey, and so on.  Typically the diversity of opinion is

reduced as the iterations proceed.

a.  Delphi and related techniques are fraught with difficulties and pitfalls.  Discuss them.

b.  At the same time, it’s not at all clear that we should dispense with such techniques;

they may be of real value.  Why?
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Bibliographical and Computational Notes

This chapter draws on Diebold and Lopez (1996) and Diebold (1989).

Mincer-Zarnowitz regressions are due to Mincer and Zarnowitz (1969).

The test for a zero expected loss differential, due to Diebold and Mariano (1995), builds

on earlier work by Granger and Newbold (1986) and has been improved and extended by Harvey,

Leybourne and Newbold (1997), West (1996), White (2000) and Hansen (2001).

The idea of forecast encompassing dates at least to Nelson (1972), and was formalized

and extended by Chong and Hendry (1986) and Fair and Shiller (1990).

The variance-covariance method of forecast combination is due to Bates and Granger

(1969), and the regression interpretation is due to Granger and Ramanathan (1984).

Winkler and Makridakis (1983) document the frequent good performance of simple

averages.  In large part motivated by that finding, Clemen and Winkler (1986) and Diebold and

Pauly (1990) develop forecast combination techniques that feature shrinkage toward the mean,

and Stock and Watson (1998) arrive at a similar end via a very different route.  See also Elliott

and Timmermann (2002).
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Concepts for Review

Evaluation and Comparison of Forecast Accuracy

Unforecastability Principle 

Mean Error (Bias)

Error Variance

Mean Squared Error

Root Mean Squared Error

Mean Absolute Error

Forecast Encompassing

Forecast Combination

Variance-Covariance Method of Forecast Combination

Regression Method of Forecast Combination
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Figure 1
Shipping Volume
Quantitative Forecast and Realization
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Figure 2
Shipping Volume
Judgmental Forecast and Realization
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Figure 3
Quantitative Forecast Error



Fcst4-12-43

Copyright © F.X. Diebold.  All rights reserved.

Figure 4
Judgmental Forecast Error
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Figure 5
Histogram and Related Statistics
Quantitative Forecast Error
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Figure 6
Histogram and Related Statistics
Judgmental Forecast Error
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Table 1
Correlogram, Quantitative Forecast Error

Sample: 1/01/1988 7/18/1997  
Included observations: 499

Acorr.  P. Acorr. Std. Error Ljung-Box p-value
1  0.518   0.518  .045 134.62  0.000
2  0.010 -0.353  .045 134.67  0.000
3 -0.044   0.205  .045 135.65  0.000
4 -0.039 -0.172  .045 136.40  0.000
5  0.025   0.195  .045 136.73  0.000
6  0.057 -0.117  .045 138.36  0.000
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Figure 7
Sample Autocorrelations and Partial Autocorrelations
Quantitative Forecast Error
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Table 2
Correlogram, Judgmental Forecast Error

Sample: 1/01/1988 7/18/1997  
Included observations: 499

Acorr.  P. Acorr. Std. Error Ljung-Box p-value

1  0.495   0.495  .045 122.90  0.000
2 -0.027 -0.360  .045 123.26  0.000
3 -0.045   0.229  .045 124.30  0.000
4 -0.056 -0.238  .045 125.87  0.000
5 -0.033   0.191  .045 126.41  0.000
6  0.087 -0.011  .045 130.22  0.000
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Figure 8
Sample Autocorrelations and Partial Autocorrelations
Judgmental Forecast Error
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Table 3
Quantitative Forecast Error
Regression on Intercept, MA(1) Disturbances

LS // Dependent Variable is EQ
Sample: 1/01/1988 7/18/1997
Included observations: 499
Convergence achieved after 6 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.024770  0.079851 -0.310200  0.7565
MA(1)  0.935393  0.015850  59.01554  0.0000

R-squared  0.468347     Mean dependent var -0.026572
Adjusted R-squared  0.467277     S.D. dependent var  1.262817
S.E. of regression  0.921703     Akaike info criterion -0.159064
Sum squared resid  422.2198     Schwarz criterion -0.142180
Log likelihood -666.3639     F-statistic   437.8201
Durbin-Watson stat  1.988237     Prob(F-statistic)  0.000000

Inverted MA Roots       -.94
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Table 4
Judgmental Forecast Error
Regression on Intercept, MA(1) Disturbances

LS // Dependent Variable is EJ
Sample: 1/01/1988 7/18/1997
Included observations: 499
Convergence achieved after 7 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C  1.026372  0.067191  15.27535  0.0000
MA(1) 0.961524  0.012470  77.10450  0.0000

R-squared   0.483514     Mean dependent var  1.023744
Adjusted R-squared  0.482475     S.D. dependent var  1.063681
S.E. of regression  0.765204     Akaike info criterion -0.531226
Sum squared resid  291.0118     Schwarz criterion -0.514342
Log likelihood -573.5094     F-statistic    465.2721
Durbin-Watson stat  1.968750     Prob(F-statistic)  0.000000

Inverted MA Roots       -.96
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Table 5
Mincer-Zarnowitz Regression
Quantitative Forecast Error

LS // Dependent Variable is VOL
Sample: 1/01/1988 7/18/1997
Included observations: 499
Convergence achieved after 10 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C   2.958191  0.341841  8.653696  0.0000
VOLQ 0.849559  0.016839  50.45317  0.0000
MA(1) 0.912559  0.018638  48.96181  0.0000

R-squared   0.936972     Mean dependent var  19.80609
Adjusted R-squared  0.936718     S.D. dependent var  3.403283
S.E. of regression  0.856125     Akaike info criterion -0.304685
Sum squared resid  363.5429     Schwarz criterion -0.279358
Log likelihood -629.0315     F-statistic     3686.790
Durbin-Watson stat  1.815577     Prob(F-statistic)   0.000000

Inverted MA Roots       -.91

Wald Test:
Null Hypothesis: C(1)=0C(2)=1
F-statistic  39.96862 Probability  0.000000
Chi-square  79.93723 Probability  0.000000
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Table 6
Mincer-Zarnowitz Regression
Judgmental Forecast Error

LS // Dependent Variable is VOL
Sample: 1/01/1988 7/18/1997
Included observations: 499
Convergence achieved after 11 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C   2.592648  0.271740  9.540928  0.0000
VOLJ   0.916576  0.014058  65.20021  0.0000
MA(1)   0.949690  0.014621  64.95242  0.0000

R-squared   0.952896     Mean dependent var  19.80609
Adjusted R-squared  0.952706     S.D. dependent var  3.403283
S.E. of regression  0.740114     Akaike info criterion -0.595907
Sum squared resid  271.6936     Schwarz criterion -0.570581
Log likelihood -556.3715     F-statistic   5016.993
Durbin-Watson stat  1.917179     Prob(F-statistic)  0.000000

Inverted MA Roots       -.95

Wald Test:
Null Hypothesis: C(1)=0C(2)=1
F-statistic  143.8323 Probability  0.000000
Chi-square  287.6647 Probability  0.000000
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Figure 9
Histogram and Related Statistics
Squared Quantitative Forecast Error
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Figure 10
Histogram and Related Statistics
Squared Judgmental Forecast Error
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Figure 11
Loss Differential
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Figure 12
Histogram and Related Statistics
Loss Differential
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Table 7
Loss Differential Correlogram

Sample: 1/01/1988 7/18/1997  
Included observations: 499

Acorr.  P. Acorr. Std. Error Ljung-Box p-value

1  0.357   0.357  .045 64.113  0.000
2 -0.069 -0.226  .045 66.519  0.000
3 -0.050   0.074  .045 67.761  0.000
4 -0.044 -0.080  .045 68.746  0.000
5 -0.078 -0.043  .045 71.840  0.000
6  0.017   0.070  .045 71.989  0.000
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Figure 13
Sample Autocorrelations and Partial Autocorrelations
Loss Differential
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Table 8
Loss Differential
Regression on Intercept with MA(1) Disturbances

LS // Dependent Variable is DD
Sample: 1/01/1988 7/18/1997
Included observations: 499
Convergence achieved after 4 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.585333  0.204737 -2.858945  0.0044
MA(1)   0.472901  0.039526  11.96433  0.0000

R-squared  0.174750     Mean dependent var -0.584984
Adjusted R-squared  0.173089     S.D. dependent var  3.416190
S.E. of regression  3.106500     Akaike info criterion  2.270994
Sum squared resid  4796.222     Schwarz criterion  2.287878
Log likelihood -1272.663     F-statistic   105.2414
Durbin-Watson stat  2.023606     Prob(F-statistic)  0.000000

Inverted MA Roots       -.47
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Table 9
Shipping Volume Combining Regression

LS // Dependent Variable is VOL
Sample: 1/01/1988 7/18/1997
Included observations: 499
Convergence achieved after 11 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C   2.181977  0.259774  8.399524  0.0000
VOLQ    0.291577  0.038346  7.603919  0.0000
VOLJ   0.630551  0.039935  15.78944  0.0000
MA(1)    0.951107  0.014174  67.10327  0.0000

R-squared  0.957823     Mean dependent var  19.80609
Adjusted R-squared  0.957567     S.D. dependent var  3.403283
S.E. of regression  0.701049     Akaike info criterion -0.702371
Sum squared resid  243.2776     Schwarz criterion -0.668603
Log likelihood -528.8088     F-statistic   3747.077
Durbin-Watson stat  1.925091     Prob(F-statistic)  0.000000

Inverted MA Roots       -.95
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Production notes: The bands in Figures 7, 8 and 13 should be dashed, not solid.

 This provides motivation for the potential forecasting gains from shrinkage:  under quadratic loss,
we’d be willing (indeed happy) to accept a small increase in bias in exchange for a large reduction
in variance.



      We speak of modeling in “differences,” as opposed to “levels.”  We also use “differences”1

and “changes” interchangeably.
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Chapter 13

Unit Roots, Stochastic Trends, ARIMA Forecasting Models, and Smoothing

Thus far we’ve handled nonstationarities, such as trend, using deterministic components. 

Now we consider an alternative, stochastic, approach.  Stochastic trend is important insofar as it

sometimes provides a good description of certain business, economic and financial time series,

and it has a number of special properties and implications.  As we’ll see, for example, if we knew

for sure that a series had a stochastic trend, then we’d want to difference the series and then fit a

stationary model to the difference.   The strategy of differencing to achieve stationarity contrasts1

with the approach of earlier chapters, in which we worked in levels and included deterministic

trends.  In practice, it’s sometimes very difficult to decide whether trend is best modeled as

deterministic or stochastic, and the decision is an important part of the science -- and art -- of

building forecasting models.

1.  Stochastic Trends and Forecasting

Consider an ARMA(p,q) process,

with all the autoregressive roots on or outside the unit circle, at most one autoregressive root on

the unit circle, and all moving average roots outside the unit circle.  We say that y has a unit

autoregressive root, or simply a unit root, if one of the p roots of its autoregressive lag-operator
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polynomial is 1, in which case we can factor the autoregressive lag-operator polynomial as

where  is of degree p-1.  Thus y is really an ARMA(p-1,q) process in differences, because

is simply

Note that y is not covariance stationary, because one of the roots of its autoregressive lag-

operator polynomial is on the unit circle, whereas covariance stationarity requires all roots to be

outside the unit circle.  )y, however, is a covariance stationary and invertible ARMA(p-1,q)

process.

You may recall from calculus that we can “undo” an integral by taking a derivative.  By

analogy, we say that a nonstationary series is integrated if its nonstationarity is appropriately

“undone” by differencing.  If only one difference is required (as with the series y above), we say

that the series is integrated of order one, or I(1) (pronounced “eye-one”) for short.  More

generally, if d differences are required, the series is I(d).  The order of integration equals the

number of autoregressive unit roots.  In practice I(0) and I(1) processes are by far the most

important cases, which is why we restricted the discussion above to allow for at most one unit
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      I(2) series sometimes, but rarely, arise, and orders of integration greater than two are almost2

unheard of.

      The random walk was simulated on a computer with  and N(0,1) innovations.3
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root. To get a feel for the behavior of I(1) processes, let’s take a simple and very important2

example, the random walk, which is nothing more than an AR(1) process with a unit coefficient,

The random walk is not covariance stationary, because the AR(1) coefficient is not less than one. 

In particular, it doesn’t display mean reversion; in contrast to a stationary AR(1), it wanders up

and down randomly, as its name suggests, with no tendency to return to any particular point. 

Although the random walk is somewhat ill-behaved, its first difference is the ultimate well-

behaved series:  zero-mean white noise.

As an illustration, we show a random walk realization of length 300, as well as its first

difference, in Figure 1.   The difference of the random walk is white noise, which vibrates3

randomly.  In contrast, the level of the random walk, which is the cumulative sum of the white

noise changes, wanders aimlessly and persistently.

Now let’s consider a random walk with drift,
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Note that the random walk with drift is effectively a model of trend, because on average it grows

each period by the drift, *.  Thus the drift parameter plays the same role as the slope parameter in

our earlier model of linear deterministic trend.  We call the random walk with drift (and of course

also the random walk without drift) a model of stochastic trend, because the trend is driven by

stochastic shocks, in contrast to the deterministic trends considered in Chapter 5.

Just as the random walk has no particular level to which it returns, so too the random walk

with drift has no particular trend to which it returns.  If a shock lowers the value of a random

walk, for example, there is no tendency for it to necessarily rise again -- we expect it to stay

permanently lower.  Similarly, if a shock moves the value of a random walk with drift below the

currently projected trend, there’s no tendency for it to return -- the trend simply begins anew from

the series’ new location.  Thus shocks to random walks have completely permanent effects; a unit

shock forever moves the expected future path of the series by one unit, regardless of the presence

of drift.

For illustration, we show in Figure 2 a realization of a random walk with drift, in levels

and differences.  As before, the sample size is 300 and .  The innovations are N(0,1) white

noise and the drift is *=.3 per period, so the differences are white noise with a mean of .3.  It’s

hard to notice the nonzero mean in the difference, because the stochastic trend in the level, which

is the cumulative sum of N(.3,1) white noise, dominates the scale.

Let’s study the properties of random walks in greater detail.  The random walk is
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Assuming the process started at some time 0 with value , we can write it as

Immediately,

and

In particular note that

so that the variance grows continuously rather than converging to some finite unconditional
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variance.

Now consider the random walk with drift.  The process is

Assuming the process started at some time 0 with value , we have 

Immediately

and

As with the simple random walk, then, the random walk with drift also has the property that
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Just as white noise is the simplest I(0) process, the random walk is the simplest I(1)

process.  And just as I(0) processes with richer dynamics than white noise can be constructed by

transforming white noise, so too can I(1) processes with richer dynamics than the random walk be

obtained by transforming the random walk.  We’re led immediately to the ARIMA(p,1,q) model,

or

where

and all the roots of both lag operator polynomials are outside the unit circle.  ARIMA stands for

autoregressive integrated moving average.  The ARIMA(p,1,q) process is just a stationary and

invertible ARMA(p,q) process in first differences.

More generally, we can work with the ARIMA(p,d,q) model,

or



Fcst4-13-8

      In contrast to random walks, however, the long-run effect of a unit shock to an4

ARIMA(p,1,q) process may be greater or less than unity, depending on the parameters of the
process.
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where

and all the roots of both lag operator polynomials are outside the unit circle.  The ARIMA(p,d,q)

process is a stationary and invertible ARMA(p,q) after differencing d times.  In practice, d=0 and

d=1 are by far the most important cases.  When d=0, y is covariance stationary, or I(0), with mean

.  When d=1, y is I(1) with drift, or stochastic linear trend, of  per period.

   It turns out that more complicated ARIMA(p,1,q) processes behave like random walks

in certain key respects.  First, ARIMA(p,1,q) processes are appropriately made stationary by

differencing.  Second, shocks to ARIMA(p,1,q) processes have permanent effects.   Third, the4

variance of an ARIMA(p,1,q) process grows without bound as time progresses.  The special

properties of I(1) series, associated with the fact that innovations have permanent effects, have

important implications for forecasting.  As regards point forecasting, the permanence of shocks

means that optimal forecasts, even at very long horizons, don’t completely revert to a mean or a

trend.  And as regards interval and density forecasting, the fact that the variance of an I(1) process
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      This is true even if we ignore parameter estimation uncertainty.5
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approaches infinity as time progresses means that the uncertainty associated with our forecasts,

which translates into the width of interval forecasts and the spread of density forecasts, increases

without bound as the forecast horizon grows.5

Let’s see how all this works in the context of a simple random walk, which is an AR(1)

process with a unit coefficient.  Recall that for the AR(1) process,

the optimal forecast is

Thus in the random walk case of , the optimal forecast is simply the current value, regardless

of horizon.  This makes clear the way that the permanence of shocks to random walk processes

affects forecasts:  any shock that moves the series up or down today also moves the optimal

forecast up or down, at all horizons.  In particular, the effects of shocks don’t wash out as the

forecast horizon lengthens, because the series does not revert to a mean.

In Figure 3, we illustrate the important differences in forecasts from deterministic-trend
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      The GNP per capita data are in logarithms.  See Diebold and Senhadji (1996) for details.6

      Note well that the two dashed lines are two different point extrapolation forecasts, not an7

interval forecast.
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and stochastic-trend models for U.S. GNP per capita.   We show GNP per capita 1869-1933,6

followed by the forecasts from the best-fitting deterministic-trend and stochastic-trend models,

1934-1993, made in 1933.  The best-fitting deterministic-trend model is an AR(2) in levels with

linear trend, and the best-fitting stochastic-trend model is an AR(1) in differences (that is, an

ARIMA(1,1,0)) with a drift.   Because 1932 and 1933 were years of severe recession, the7

forecasts are made from a position well below trend.  The forecast from the deterministic-trend

model reverts to trend quickly, in sharp contrast to that from the stochastic-trend model, which

remains permanently lower.  As it happens, the forecast from the deterministic-trend model turns

out to be distinctly better in this case, as shown in Figure 4, which includes the realization.

Now let’s consider interval and density forecasts from I(1) models.  Again, it’s instructive

to consider a simple random walk.  Recall that the error associated with the optimal forecast of an

AR(1) process is

with variance

Thus in the random walk case the error is the sum of h white-noise innovations,
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with variance .  The forecast error variance is proportional to h and therefore grows without

bound as h grows.  An h-step-ahead 95% interval forecast for any future horizon is then

, and an h-step-ahead density forecast is .

Thus far we’ve explicitly illustrated the construction of point, interval and density

forecasts for a simple random walk.  Forecasts from more complicated I(1) models are

constructed similarly.  Point forecasts of levels of ARIMA(p,1,q) processes, for example, are

obtained by recognizing that ARIMA processes are ARMA processes in differences, and we

know how to forecast ARMA processes.  Thus we forecast the changes, cumulate the forecasts of

changes, and add them to the current level, yielding

2.  Unit-Roots:  Estimation and Testing

Least-Squares Regression with Unit Roots

The properties of least squares estimators in models with unit roots are of interest to us,

because they have implications for forecasting.  We’ll use a random walk for illustration, but the

results carry over to general ARIMA(p,1,q) processes.  Suppose that y is a random walk, so that 

but we don’t know that the autoregressive coefficient is one, so we estimate the AR(1) model,
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      The bias in the least-squares estimator in the unit-root and near-unit-root cases was studied8

by Dickey (1976) and Fuller (1976), and is sometimes called the Dickey-Fuller bias. 

Copyright © F.X. Diebold.  All rights reserved.

Two key and offsetting properties of the least squares estimator emerge:  superconsistency and

bias.

First we consider superconsistency.  In the unit root case of , the difference between

 and 1 vanishes quickly as the sample size (T) grows; in fact, it shrinks like .  Thus,

 converges to a non-degenerate random variable.  In contrast, in the covariance

stationary case of , the difference between  and N shrinks more slowly, like , so that 

 converges to a non-degenerate random variable.  We call the extra-fast convergence

in the unit root case superconsistency; we say that the least squares estimator of a unit root is

superconsistent.

Now we consider bias.  It can be shown that the least-squares estimator, , is biased

downward, so that if the true value of N is , the expected value of   is less than .  8

Other things the same, the larger is the true value of N, the larger the bias, so the bias is worst in

the unit root case.  The bias is also larger if an intercept is included in the regression, and larger

still if a trend is included.  The bias vanishes as the sample size grows, as the estimate converges

to the true population value, but the bias can be sizeable in samples of the size that concern us.
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Superconsistency and bias have offsetting effects as regards forecasting.  Superconsistency

is helpful; it means that the sampling uncertainty in our parameter estimates vanishes unusually

quickly as sample size grows.  Bias, in contrast, is harmful, because badly biased parameter

estimates can translate into poor forecasts.  The superconsistency associated with unit roots

guarantees that bias vanishes quickly as sample size grows, but it may nevertheless be highly

relevant in small samples.

Effects of Unit Roots on the Sample Autocorrelation and Partial Autocorrelation Functions

If a series has a unit root, its autocorrelation function isn’t well-defined in population,

because its variance is infinite.  But the sample autocorrelation function can of course be

mechanically computed in the usual way, because the computer software doesn’t know or care

whether the data being fed into it have a unit root.  The sample autocorrelation function will tend

to damp extremely slowly; loosely speaking, we say that it fails to damp.  The reason is that,

because a random walk fails to revert to any population mean, any given sample path will tend to

wander above and below its sample mean for long periods of time, leading to very large positive

sample autocorrelations, even at long displacements.  The sample partial autocorrelation function

of a unit root process, in contrast, will damp quickly:  it will tend to be very large and close to one

at displacement 1, but will tend to be smaller and decay quickly thereafter.

If the properties of the sample autocorrelations and partial autocorrelations of unit root

processes appear rather exotic, the properties of the sample autocorrelations and partial

autocorrelations of differences of unit root processes are much more familiar.  That’s because the

first difference of an I(1)  process, by definition, is covariance stationary and invertible.
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We illustrate the properties of sample autocorrelations and partial autocorrelations of

levels and differences of unit root processes in Figures 5 and 6.  In Figure 5 we show the

correlogram of our simulated random walk.  The sample autocorrelations fail to damp, and the

sample partial autocorrelation is huge at displacement 1, but tiny thereafter.  In Figure 6, we show

the correlogram of the first difference of the random walk.  All the sample autocorrelations and

partial autocorrelations are insignificantly different from zero, as expected, because the first

difference of a random walk is white noise.

Unit Root Tests

In light of the special properties of series with unit roots, it’s sometimes of interest to test

for their presence, with an eye toward the desirability of imposing them, by differencing the data,

if they seem to be present.  Let’s start with the simple AR(1) process,

We can regress  on , and then use the standard t-test for testing , 
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where s is the standard error of the regression.  Note that the  statistic is not the t-statistic

computed automatically by regression packages; the standard t-statistic is for the null of a zero

coefficient, whereas  is the t-statistic for a unit coefficient.  A simple trick, however, coaxes

standard software into printing  automatically.  Simply rewrite the first-order autoregression as

Thus,  is the usual t-statistic in a regression of the first difference of y on the first lag of y.

A key result is that, in the unit root case,  does not have the t-distribution.  Instead it has

a special distribution now called the Dickey-Fuller distribution, named for two statisticians who

studied it extensively in the 1970s and 1980s.  Fuller (1976) presents tables of the percentage

points of the distribution of , which we’ll call the Dickey-Fuller statistic, under the null

hypothesis of a unit root.  Because we’re only allowing for roots on or outside the unit circle, a

one-sided test is appropriate.

Thus far we’ve shown how to test the null hypothesis of a random walk with no drift

against the alternative of a zero-mean, covariance-stationary AR(1).  Now we allow for a nonzero

mean, :, under the alternative hypothesis, which is of potential importance because business and

economic data can rarely be assumed to have zero mean.  Under the alternative hypothesis, the

process becomes a covariance stationary AR(1) process in deviations from the mean,

which we can rewrite as
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where .  If we knew :, we could simply center the data and proceed as before.  In

practice, of course, : must be estimated along with the other parameters.  Although " vanishes

under the unit-root null hypothesis of , it is nevertheless present under the alternative

hypothesis, and so we include an intercept in the regression.  The distribution of the

corresponding Dickey-Fuller statistic, , has been tabulated under the null hypothesis of

; tables appear in Fuller (1976).

Finally, let’s allow for deterministic linear trend under the alternative hypothesis, by

writing the AR(1) in deviations from a linear trend,

or

where  and  .  Under the unit root hypothesis that  we have a

random walk with drift,

which is a stochastic trend, but under the deterministic-trend alternative hypothesis both the
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intercept and the trend enter and so they must be included in the regression.  The random walk

with drift is a null hypothesis that frequently arises in economic applications; stationary deviations

from linear trend are a natural alternative.  The distribution of the Dickey-Fuller statistic ,

which allows for linear trend under the alternative hypothesis,  has been tabulated under the unit

root null hypothesis by Fuller (1976).

Now we generalize the test to allow for higher-order autoregressive dynamics.  Consider

the AR(p) process

which we rewrite as 

where , , and , .  If there is a unit root, then , and y is

simply an AR(p-1) in first differences.  The Dickey-Fuller statistic for the null hypothesis of 

has the same asymptotic distribution as .  Thus, the results for the AR(1) process generalize

(asymptotically) in a straightforward manner to higher-order processes.
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To allow for a nonzero mean in the AR(p) case, write 

or

where , and the other parameters are as above.  Under the null hypothesis of a unit

root, the intercept vanishes, because in that case  The distribution of the Dickey-Fuller

statistic for testing  in this regression is asymptotically identical to that of 

Finally, to allow for linear trend under the alternative hypothesis, write

which we rewrite as
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where 

and

Under the null hypothesis,  and   The Dickey-Fuller statistic for the hypothesis

that  has the  distribution asymptotically.

Now we consider general ARMA representations.  We’ve seen that the original Dickey-

Fuller test for a unit root in AR(1) models is easily generalized to test for a unit root in the AR(p)

case, ; we simply augment the test regression with lagged first differences, which is called an

augmented Dickey-Fuller test, or augmented Dickey-Fuller regression.  Matters are more complex

in the ARMA(p, q) case, however, because the corresponding autoregression is of infinite order. 

A number of tests have been suggested, and the most popular is to approximate the infinite
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autoregression with a finite-order augmented Dickey-Fuller regression.  We let the number of

augmentation lags increase with the sample size, but at a slower rate.  Hall (1994) shows that,

under certain conditions, the asymptotic null distribution of  the Dickey-Fuller statistic with

augmentation lag order selected by SIC is the same as if the true order were known, so that the

SIC provides a useful guide to augmentation lag order selection in Dickey-Fuller regressions.  Ng

and Perron (1995), however, argue that standard t-testing provides more reliable inference. 

Additional research is needed, but it does appear that, unlike when selecting lag orders for

forecasting models, it may be better to use less-harsh degrees-of-freedom penalties, such as those

associated with t-testing or the AIC, when selecting augmentation lag orders in Dickey-Fuller

regressions.

Depending on whether a zero mean, a nonzero mean, or a linear trend is allowed under the

alternative hypothesis, we write either

or
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      See Elliott, Rothenberg and Stock (1996), Dickey and Gonzalez-Farias (1992), and the9

comparisons in Pantula, Gonzalez-Farias and Fuller (1994).
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where k-1 augmentation lags have been included.  The Dickey-Fuller statistics on  continue to

have the , , and  asymptotic distributions under the null hypothesis of  a unit root.  For

selecting the number of augmentation lags, k-1, we can use the SIC or AIC, as well as the t-

statistics on the various lags of , which have the standard normal distribution in large samples,

regardless of whether the unit root hypothesis is true or false.

New tests, with better power than the Dickey-Fuller tests in certain situations, have been

proposed recently.   But power and size problems will always plague unit root tests; power9

problems, because the relevant alternative hypotheses are typically very close to the null

hypothesis, and size problems, because we should include infinitely many augmentation lags in

principle but we can’t in practice.

Thus, although unit root tests are sometimes useful, don’t be fooled into thinking they’re

the end of the story as regards the decision of whether to specify models in levels or differences. 

For example, the fact that we can’t reject a unit root doesn’t necessarily mean that we should

impose it -- the power of unit root tests against alternative hypotheses near the null hypothesis,

which are the relevant alternatives, is likely to be low.  On the other hand, it may sometimes be

desirable to impose a unit root even when the true root is less than one, if the true root is
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      Throughout, we work with the log of the exchange rate, because the change in the log has10

the convenient interpretation of approximate percentage change.  Thus, when we refer to the level
of the exchange rate, we mean the log of the level (lny), and when we refer to the change, we
mean the change of the log exchange rate ()lny).
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nevertheless very close to one, because the Dickey-Fuller bias plagues estimation in levels.  We

need to use introspection and theory, in addition to formal tests, to guide the difficult decision of

whether to impose unit roots, and we need to compare the forecasting performance of different

models with and without unit roots imposed.

In certain respects, the most important part of unit root theory for forecasting concerns

estimation, not testing.  It’s important for forecasters to understand the effects of unit roots on

consistency and small-sample bias.  Such understanding, for example, leads to the insight that at

least asymptotically we’re probably better off estimating forecasting models in levels with trends

included, because then we’ll get an accurate approximation to the dynamics in the data regardless

of the true state of the world, unit root or no unit root.  If there’s no unit root, then of course it’s

desirable to work in levels, and if there is a unit root, the estimated largest root will converge

appropriately to unity, and at a fast rate.  On the other hand, differencing is appropriate only in the

unit root case, and inappropriate differencing can be harmful, even asymptotically.

3.  Application:  Modeling and Forecasting the Yen / Dollar Exchange Rate

Let’s apply and illustrate what we’ve learned by modeling and forecasting the yen / dollar

exchange rate.  For convenience, we call the yen / dollar series y, the log level lny, and the change

in the log level )lny.  We have end-of-month data from 1973.01 through 1996.07; we plot lny in

the top panel of Figure 7, and )lny in the bottom panel.   lny looks very highly persistent;10
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perhaps it has a unit root.  Conversely, )lny looks thoroughly stationary, and in fact rather close

to white noise.  Figure 8, which shows the correlogram for lny, and Figure 9, which shows the

correlogram for the )lny, confirm the impression we gleaned from the plots.  The sample

autocorrelations of lny are all very large and fail to damp, and the first sample partial

autocorrelation is huge while all the others are insignificantly different from zero.  The

correlogram of )lny, however, looks very different.  Both the sample autocorrelation and partial

autocorrelation functions damp quickly; in fact, beyond displacement 1 they’re all insignificantly

different from zero.  All of this suggests that lny is I(1).

Now we fit forecasting models.  We base all analysis and modeling on lny, 1973.01-

1994.12, and we reserve 1995.01-1996.07 for out-of-sample forecasting.  We begin by fitting

deterministic-trend models to lny; we regress lny on an intercept and a time trend, allowing for up

to ARMA(3,3) dynamics in the disturbances.  In Tables 1 and 2 we show the AIC and SIC values

for all the ARMA(p,q) combinations.  The AIC selects an ARMA(3,1) model, while the SIC

selects an AR(2).  We proceed with the more parsimonious model selected by the SIC.  The

estimation results appear in Table 3 and the residual plot in Figure 10; note in particular that the

dominant inverse root is very close to 1 (.96), while the second inverse root is positive but much

smaller (.35).

Out-of-sample forecasts appear in Figures 11-13.  Figure 11 shows the history, 1990.01-

1994.12, and point and interval forecasts, 1995.01-1996.07.  Although the estimated highly

persistent dynamics imply very slow reversion to trend, it happens that the end-of-sample values

of lny in 1994 are very close to the estimated trend.  Thus, to a good approximation, the forecast
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      We considered a variety of augmentation lag orders, and the results were robust -- the unit11

root hypothesis can’t be rejected.  For the record, the SIC selected one augmentation lag, while
the AIC and t-testing selected three augmentation lags. 

      The ARMA(3,2) selected by the AIC is in fact very close to an AR(1), because the two12

estimated MA roots nearly cancel with two of the estimated AR roots, which would leave an
AR(1).
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simply extrapolates the fitted trend.  In Figure 12, we show the history together with a very long-

horizon forecast (through 2020.12), in order to illustrate the fact that the confidence intervals

eventually flatten at plus or minus two standard errors.  Finally, Figure 13 displays the history and

forecast together with the realization.  Most of the realization is inside the 95% confidence

intervals.  

In light of the suggestive nature of the correlograms, we now perform a formal unit root

test, with trend allowed under the alternative hypothesis.  In Table 4 we show the results with

three augmentation lags.   There’s no evidence whatsoever against the unit root; thus, we11

consider modeling )lny.  We regress )lny on an intercept and allow for up to ARMA(3,3)

dynamics in the disturbance.  The AIC values appear in Table 5, and the SIC values in Table 6. 

AIC selects an ARMA(3,2), and SIC selects an AR(1).  Note that the models for lny and )lny

selected by the SIC are consistent with each other under the unit root hypothesis -- an AR(2) with

a unit root in levels is equivalent to an AR(1) in differences -- in contrast to the models selected

by the AIC.  For this reason and of course for the usual parsimony considerations, we proceed

with the AR(1) selected by SIC.  We show the regression results in Table 7 and Figure 14; note

the small but nevertheless significant coefficient of .32.12

Out-of-sample forecasting results appear in Figures 15-17.  In Figure 15 we show the
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freedom, insofar as the decision to impose a unit root was itself based on an earlier estimation (the
augmented Dickey-Fuller test), which is not acknowledged when computing the SIC for the
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history and forecast.  The forecast looks very similar -- in fact, almost identical -- to the forecast

from the deterministic-trend model examined earlier.  That’s because the stochastic-trend and

deterministic-trend models are in fact extremely close to one another in this case; even when we

don’t impose a unit root, we get an estimated dominant root that’s very close to unity.  In Figure

16 we show the history and a very long-horizon forecast.  The long-horizon forecast reveals one

minor and one major difference between the forecasts from the deterministic-trend and stochastic-

trend models.  The minor difference is that, by the time we’re out to 2010, the point forecast from

the deterministic-trend model is a little lower, reflecting the fact that the estimated trend slope is a

bit more negative for the deterministic-trend model than for the stochastic-trend model. 

Statistically speaking, however, the point forecasts are indistinguishable.  The major difference

concerns the interval forecasts:  the interval forecasts from the stochastic trend model widen

continuously as the horizon lengthens, whereas the interval forecasts from the deterministic trend

model don’t.  Finally, in Figure 17 we show the history and forecast together with the realization

1995.01-1996.07.

Comparing the AR(2) with trend in levels (the levels model selected by the SIC) and the

AR(1) in differences (the differences model selected by the SIC), it appears that the differences

model is favored in that it has a lower SIC value.  The AR(1) in differences fits only slightly worse

than the AR(2) in levels -- recall that the AR(2) in levels had a near unit root -- and saves one

degree of freedom.   Moreover, economic and financial considerations suggest that exchange13
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AR(1) in differences.

      As for the trend (drift), it may help as a local approximation, but be wary of too long an14

extrapolation.  See the Exercises, Problems and Complements at the end of this chapter.

      See the Exercises, Problems and Complements of Chapter 5. 15
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rates should be close to random walks, because if the change were predictable, one could make a

lot of money with very little effort, and the very act of doing so would eliminate the opportunity.14

  Ironically enough, in spite of the arguments in favor of the stochastic-trend model for lny,

the deterministic-trend model does slightly better in out-of-sample forecasting on this particular

dataset.  The mean-squared forecast error from the deterministic-trend model is .0107, while that

from the stochastic-trend model is .0109.  The difference, however, is likely statistically

insignificant.

4.  Smoothing

We bumped into the idea of time series smoothing early on, when we introduced simple

moving-average smoothers as ways of estimating trend.   Now we introduce additional15

smoothing techniques and show how they can be used to produce forecasts.

Smoothing techniques, as traditionally implemented, have a different flavor than the

modern model-based methods that we’ve used in this book.  Smoothing techniques, for example,

don’t require “best-fitting models,” and they don’t generally produce “optimal forecasts.”  Rather,

they’re simply a way to tell a computer to draw a smooth line through data, just as we’d do with a

pencil, and to extrapolate the smooth line in a reasonable and replicable way.

When using smoothing techniques, we make no attempt to find the model that best fits the
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data; rather, we force a prespecified model on the data.  Some academics turn their nose at

smoothing techniques for that reason, but such behavior reflects a shallow understanding of key

aspects of applied forecasting -- smoothing techniques have been used productively for many

years, and for good reason.  They’re most useful in situations when model-based methods can’t,

or shouldn’t, be used.  First, available samples of data are sometimes very small.  Suppose, for

example, that we must produce a forecast based on a sample of historical data containing only

four observations.  This scenario sounds extreme, and it is, but such scenarios arise occasionally in

certain important applications, as when forecasting the sales of a newly-introduced product.  In

such cases, available degrees of freedom are so limited as to render any estimated model of

dubious value.  Smoothing techniques, in contrast, require no estimation, or minimal estimation.

Second, the forecasting task is sometimes immense.  Suppose, for example, that each

week we must forecast the prices of 10,000 inputs to a manufacturing process.  Again, such

situations are extreme, but they do occur in practice -- think of how many parts there are in a

large airplane.  In such situations, even if historical data are plentiful (and of course, they might

not be) , there is simply no way to provide the tender loving care required for estimation and

maintenance of 10,000 different forecasting models.  Smoothing techniques, in contrast, require

little attention.  They’re one example of what are sometimes called “automatic” forecasting

methods and are often useful for forecasting voluminous, high-frequency, data.

Finally, smoothing techniques do produce optimal forecasts under certain conditions,

which turn out to be intimately related to the presence of unit roots in the series being forecast. 

That’s why we waited until now to introduce them.  Moreover, fancier approaches produce
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optimal forecasts only under certain conditions as well, such as correct specification of the

forecasting model.  As we’ve stressed throughout, all our models are approximations, and all are

surely false.  Any procedure with a successful track record in practice is worthy of serious

consideration, and smoothing techniques do have successful track records in the situations

sketched above. 

Moving Average Smoothing, Revisited

As a precursor to the more sophisticated smoothing techniques that we’ll soon introduce,

recall the workings of simple moving-average smoothers.  Denote the original data by  and

the smoothed data by .  Then the two-sided moving average is  the

one-sided moving average is  and the one-sided weighted moving average is

  The standard one-sided moving average corresponds to a one-sided weighted

moving average with all weights equal to .  The user must choose the smoothing

parameter, m; the larger is m, the more smoothing is done.

One-sided weighted moving averages turn out to be very useful in practice.  The one-sided

structure means that at any time t, we need only current and past data for computation of the

time-t smoothed value, which means that it can be implemented in real time.  The weighting,
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      We can think of the added white noise as measurement error.16
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moreover, enables flexibility in the way that we discount the past.  Often, for example, we want to

discount the distant past more heavily than the recent past.  Exponential smoothing, to which we

now turn, is a particularly useful and convenient way of implementing such a moving average.

Exponential Smoothing

Exponential smoothing, also called simple exponential smoothing, or single exponential

smoothing, is what’s called an exponentially weighted moving average, for reasons that will be

apparent soon.  The basic framework is simple.  Imagine that a series  is a random walk, 

in which case the level of  wanders randomly up and down, and the best forecast of any future

value is simply the current value.  Suppose, however, that we don’t see ; instead, we see y,

which is  plus white noise,16

where  is uncorrelated with  at all leads and lags.  Then our optimal forecast of any future y is

just our optimal forecast of future , which is current , plus our optimal forecast of future ,

which is 0.  The problem, of course, is that we don’t know current , the current "local level." 
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We do know current and past y, however, which should contain information about current . 

When the data-generating process is as written above, exponential smoothing constructs the

optimal estimate of  -- and hence the optimal forecast of any future value of y -- on the basis of

current and past y.  When the data-generating process is not as written above, the exponential

smoothing forecast may not be optimal, but recent work suggests that exponential smoothing

remains optimal or nearly-optimal under surprisingly broad circumstances.17

As is common, we state the exponential smoothing procedure as an algorithm for

converting the observed series, , into a smoothed series, , and forecasts, :

(1)  Initialize at t=1:  

(2)  Update:  

(3)  Forecast:  .

Referring to the level of , we call  the estimate of the level at time t.  The smoothing

parameter " is in the unit interval,   The smaller is  the smoother the estimated level. 

As  approaches 0, the smoothed series approaches constancy, and as  approaches 1, the

smoothed series approaches point-by-point interpolation.  Typically, the more observations we

have per unit of calendar time, the more smoothing we need; thus we’d smooth weekly data (52

observations per year) more than quarterly data (4 observations per year).  There is no substitute,

however, for a trial-and-error approach involving a variety of values of the smoothing parameter.
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It’s not obvious at first that the algorithm we just described delivers a one-sided moving

average with exponentially declining weights.  To convince yourself, start with the basic

recursion,

and substitute backward for , which yields

where

Suppose,  for example, that "=.5.  Then

and so forth.  Thus moving average weights decline exponentially, as claimed. 

Notice that exponential smoothing has a recursive structure, which can be very convenient
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when data are voluminous.  At any time t, the new time t estimate of the level, , is a function

only of the previously-computed estimate, , and the new observation, .  Thus there’s no

need to re-smooth the entire dataset as new data arrive.

Holt-Winters Smoothing

Now imagine that we have not only a slowly-evolving local level, but also a trend with a

slowly-evolving local slope,

where all the disturbances are orthogonal at all leads and lags.  Then the optimal smoothing

algorithm, named Holt-Winters smoothing after the researchers who worked it out in the 1950s

and 1960s, is

(1)  Initialize at t=2:

.

(2)  Update:
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t = 3, 4, ..., T.

(3)  Forecast:  .

  is the estimated, or smoothed, level at time t, and  is the estimated slope at time t.  The

parameter " controls smoothing of the level, and $ controls smoothing of the slope.  The h-step-

ahead forecast simply takes the estimated level at time T and augments it with h times the

estimated slope at time T.

Again, note that although we’ve displayed the data-generating process for which Holt-

Winters smoothing produces optimal forecasts, when we apply Holt-Winters we don’t assume

that the data are actually generated by that process.  We hope, however, that the actual data-

generating process is close to the one for which Holt-Winters is optimal, in which case the Holt-

Winters forecasts may be close to optimal.

Holt-Winters Smoothing with Seasonality

We can augment the Holt-Winters smoothing algorithm to allow for seasonality with

period s.  The algorithm becomes:

(1)  Initialize at t=s:
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.

(2)  Update:

t = s+1, ..., T.

(3)  Forecast: 

etc.

The only thing new is the recursion for the seasonal, with smoothing parameter (.

Forecasting with Smoothing Techniques

Regardless of which smoothing technique we use, the basic paradigm is the same.  We

plug data into an algorithm that smooths the data and lets us generate point forecasts.  The

resulting point forecasts are optimal for certain data-generating processes, as we indicated for

simple exponential smoothing and Holt-Winters smoothing without seasonality.  In practice, of
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course, we don’t know if the actual data-generating process is close to the one for which the

adopted smoothing technique is optimal; instead, we just swallow hard and proceed.  That’s the

main contrast with the model-based approach, in which we typically spend a lot of time trying to

find a “good” specification.

The “one-size-fits-all” flavor of the smoothing approach has its costs, because surely one

size does not fit all, but it also has benefits in that no, or just a few, parameters need be estimated. 

Sometimes we simply set the smoothing parameter values based upon our knowledge of the

properties of the series being considered, and sometimes we select parameter values that provide

the best h-step-ahead forecasts under the relevant loss function.  For example, under 1-step-ahead

squared-error loss, if the sample size is large enough so that we’re willing to entertain estimation

of the smoothing parameters, we can estimate them as,

where m is an integer large enough such that the start-up values of the smoothing algorithm have

little effect.

In closing this section, we note that smoothing techniques, as typically implemented,

produce point forecasts only.  They may produce optimal point forecasts for certain special data-

generating processes, but typically we don’t assume that those special data-generating processes

are the truth.  Instead, the smoothing techniques are used as “black boxes” to produce point

forecasts, with no attempt to exploit the stochastic structure of the data to find a best-fitting
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model, which could be used to produce interval or density forecasts in addition to point forecasts.

5.  Exchange Rates, Continued

Now we forecast the yen / dollar exchange rate using a smoothing procedure.  In the

ARIMA(p,d,q) models considered earlier, we always allowed for a trend (whether deterministic

or stochastic).  To maintain comparability, we’ll use a Holt-Winters smoother, which allows for

locally linear trend.  We present the estimation results in Table 8.  The estimate of " is large, so

the estimated local level moves closely with the series.  The estimate of $, on the other hand, is

small, so the local slope of the trend is much less adaptive.

The Holt-Winters forecast is simply the trend line beginning at the estimated end-of-period

level, with the estimated end-of-period slope.  Because the estimated slope of the trend at the end

of the sample is larger in absolute value than the corresponding trend slopes in the deterministic-

trend and stochastic-trend models studied earlier, we expect the Holt-Winters point forecasts to

decrease a bit more quickly than those from the ARIMA models.  In Figure 18, we show the

history and out-of-sample forecast.  No confidence intervals appear with the forecast because the

smoothing techniques don’t produce them.  The forecast looks similar to those of the ARIMA

models, except that it drops a bit more quickly, as is made clear by the very long horizon forecast

that we show in Figure 19.  Finally, in Figure 20, we show the realization as well.  For out-of-

sample forecasting, Holt-Winters fares the worst of all the forecasting methods tried in this

chapter; the mean squared forecast error is .0135.
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Exercises, Problems and Complements

1.  (Modeling and forecasting the deutschemark / dollar exchange rate)  On the book’s web page

you’ll find monthly data on the deutschemark / dollar exchange rate for the same sample period as

the yen / dollar data studied in the text.

a.  Model and forecast the deutschemark / dollar rate, in parallel with the analysis in the

text, and discuss your results in detail.

b.  Redo your analysis using forecasting approaches without trends -- a levels model

without trend, a first-differenced model without drift, and simple exponential

smoothing.

c.  Compare the forecasting ability of the approaches with and without trend.

d.  Do you feel comfortable with the inclusion of trend in an exchange rate forecasting

model?  Why or why not?

2.  (Housing starts and completions, continued)  As always, our Chapter 11 VAR analysis of

housing starts and completions involved many judgement calls.  Using the starts and completions

data, assess the adequacy of our models and forecasts.  Among other things, you may want to

consider the following questions:

a.  How would you choose the number of augmentation lags?  How sensitive are the

results of the augmented Dickey-Fuller tests to the number of augmentation lags?

b.  When performing augmented Dickey-Fuller tests, is it adequate to allow only for an

intercept under the alternative hypothesis, or should we allow for both intercept

and trend?
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c.  Should we allow for a trend in the forecasting model? 

d.  Does it make sense to allow a large number of lags in the augmented Dickey-Fuller

tests, but not in the actual forecasting model?

e.  How do the results change if, in light of the results of the causality tests, we exclude

lags of completions from the starts equation, re-estimate by seemingly-unrelated

regression, and forecast?

f.  Are the VAR forecasts of starts and completions more accurate than univariate

forecasts?

3.  (ARIMA models, smoothers, and shrinkage)  From the vantage point of the shrinkage

principle, discuss the tradeoffs associated with “optimal” forecasts from fitted ARIMA models vs.

“ad hoc” forecasts from smoothers.

4.  (Using stochastic-trend unobserved-components models to implement smoothing techniques in

a probabilistic framework)  In the text we noted that smoothing techniques, as typically

implemented, are used as “black boxes” to produce point forecasts.  There is no attempt to exploit

stochastic structure to produce interval or density forecasts in addition to point forecasts.  Recall,

however, that the various smoothers produce optimal forecasts for specific data-generating

processes specified as unobserved-components models.

a.  For what data-generating process is exponential smoothing optimal?

b.  For what data-generating process is Holt-Winters smoothing optimal?

c.  Under the assumption that the data-generating process for which exponential

smoothing produces optimal forecasts is in fact the true data-generating process,
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how might you estimate the unobserved-components model and use it to produce

optimal interval and density forecasts?  Hint:  Browse through Harvey (1989).

d.  How would you interpret the interval and density forecasts produced by the method of

part c, if we no longer assume a particular model for the true data-generating

process?

5.  (Automatic ARIMA modeling)  “Automatic” forecasting software exists for implementing the

ARIMA and exponential smoothing techniques of this and previous chapters without any human

intervention.

a.  What are do you think are the benefits of such software?

b.  What do you think are the costs?

c.  When do you think it would be most useful?

d.  Read Ord and Lowe (1996), who review most of the automatic forecasting software,

and report what you learned.  After reading Ord and Lowe, how, if at all, would

you revise your answers to parts a, b and c above?

6.  (The multiplicative seasonal ARIMA (p,d,q) x (P,D,Q) model)  Consider the forecasting

model,
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a.  The standard ARIMA(p,d,q) model is a special case of this more general model.  In

what situation does it emerge?  What is the meaning of the ARIMA (p,d,q) x

(P,D,Q) notation?

b.  The operator  is called the seasonal difference operator.  What does it do when

it operates on ?  Why might it routinely appear in models for seasonal data?

c.  The appearance of  in the autoregressive lag operator polynomial moves us into

the realm of stochastic seasonality, in contrast to the deterministic seasonality of

Chapter 6, just as the appearance of (1-L) produces stochastic as opposed to

deterministic trend.  Comment.

d.  Can you provide some intuitive motivation for the model?  Hint:  Consider a purely

seasonal ARIMA(P,D,Q) model, shocked by serially correlated disturbances.  Why

might the disturbances be serially correlated?  What, in particular, happens if an

ARIMA(P,D,Q) model has ARIMA(p,d,q) disturbances?

e.  The multiplicative structure implies restrictions.  What, for example, do you get when

you multiply ?

f.  What do you think are the costs and benefits of forecasting with the multiplicative

ARIMA model vs. the “standard” ARIMA model?
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g.  Recall that in Chapter 10 we analyzed and forecasted liquor sales using an ARMA

model with deterministic trend.  Instead analyze and forecast liquor sales using an

ARIMA (p,d,q) x (P,D,Q) model, and compare the results.

7.  (The Dickey-Fuller regression in the AR(2) case)  Consider the AR(2) process,

a.  Show that it can be written as

     where

b.  Show that it can also be written as a regression of  on  and .

c.  Show that if , the AR(2) process is really an AR(1) process in first differences;

that is, the AR(2) process has a unit root.

8.  (Holt-Winters smoothing with multiplicative seasonality)  Consider a seasonal Holt-Winters

smoother, written as

(1)  Initialize at t=s:
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(2)  Update:

t= s+1, ..., T.

(3)  Forecast:
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etc.

a.  The Holt-Winters seasonal smoothing algorithm given in the text is more precisely

called Holt-Winters seasonal smoothing with additive seasonality.  The algorithm

given above, in contrast, is called Holt-Winters seasonal smoothing with

multiplicative seasonality.  How does this algorithm differ from the one given in

the text, and what, if anything, is the significance of the difference?

b.  Assess the claim that Holt-Winters with multiplicative seasonality is appropriate when

the seasonal pattern exhibits increasing variation.

c.  How does Holt-Winters with multiplicative seasonality compare with the use of Holt-

Winters with additive seasonality applied to logarithms of the original data?

9.  (Cointegration)  Consider two series, x and y, both of which are I(1).  In general there is no

way to form a weighted average of x and y to produce an I(0) series, but in the very special case

where such a weighting does exist, we say that x and y are cointegrated.  Cointegration

corresponds to situations in which variables tend to cling to one another, in the sense that the

cointegrating combination is stationary, even though each variable is nonstationary.  Such
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situations arise frequently in business, economics, and finance.  To take a business example, it's

often the case that both inventories and sales of a product appear I(1), yet their ratio (or, when

working in logs, their difference) appears I(0), a natural byproduct of various schemes that adjust

inventories to sales.  Engle and Granger (1987) is the key early research paper on cointegration;

Johansen (1995) surveys most of the more recent developments, with emphasis on maximum

likelihood estimation.

 a.  Consider the bivariate system,

Both x and y are I(1).  Why?  Show, in addition, that x and y are cointegrated. 

What is the cointegrating combination?

b.  Engle and Yoo (1987) show that optimal long-run forecasts of cointegrated variables

obey the cointegrating relationship exactly.  Verify their result for the system at

hand.

10.  (Error-correction)  In an error-correction model, we take a long-run model relating I(1)

variables, and we augment it with short-run dynamics.  Suppose, for example, that in long-run

equilibrium y and x are related by y=bx.  Then the deviation from equilibrium is z=y-bx, and the

deviation from equilibrium at any time may influence the future evolution of the variables, which
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we acknowledge by modeling )x as a function of lagged values of itself, lagged values of )y, and

the lagged value of z, the error-correction term.  For example, allowing for one lag of )x and

one lag of )y on the right side, we write equation for x as

Similarly, the y equation is

So long as one or both of  and   are nonzero, the system is very different from a VAR in first

differences; the key feature that distinguishes the error-correction system from a simple VAR in

first differences is the inclusion of the error-correction term, so that the deviation from equilibrium

affects the evolution of the system.

a.  Engle and Granger (1987) establish the key result that existence of cointegration in a

VAR and existence of error-correction are equivalent -- a VAR is cointegrated if

and only if it has an error-correction representation.  Try to sketch some intuition

as to why the two should be linked.  Why, in particular, might cointegration imply

error correction?

b.  Why are cointegration and error correction of interest to forecasters in business,

finance, economics and government?

c.  Evaluation of forecasts of cointegrated series poses special challenges, insofar as

traditional accuracy measures don’t value the preservation of cointegrating
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relationships, whereas presumably they should.  For details and constructive

suggestions, see Christoffersen and Diebold (1998).

11.  (Forecast encompassing tests for I(1) series)  An alternative approach to testing for forecast

encompassing, which complements the one presented in Chapter 12, is particularly useful in I(1)

environments.  It’s based on forecasted h-step changes.  We run the regression

As before, forecast encompassing corresponds to coefficient values of (1,0) or (0,1).  Under the

null hypothesis of forecast encompassing, the regression based on levels and the regression based

on changes are identical. 

12.  (Evaluating forecasts of integrated series)  The unforecastability principle remains intact

regardless of whether the series being forecast is stationary or integrated:  the errors from optimal

forecasts are not predictable on the basis of information available at the time the forecast was

made.  However, some additional implications of the unforecastability principle emerge in the case

of forecasting I(1) series, including:

a.  If the series being forecast is I(1), then so too is the optimal forecast.

b.  An I(1) series is always cointegrated with its optimal forecast, which means that there

exists an I(0) linear combination of the series and its optimal forecast, in spite of

the fact that both the series and the forecast are I(1). 

c.  The cointegrating combination is simply the difference of the actual and forecasted

values -- the forecast error.  Thus the error corresponding to an optimal forecast of

an I(1) series is I(0), in spite of the fact that the series is not.
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Cheung and Chinn (1999) make good use of these results in a study of the information content of

U.S. macroeconomic forecasts; try to sketch their intuition.  (Hint:  Suppose the error in

forecasting an I(1) series were not I(0).  What would that imply?) 

13.  (Theil’s U-statistic)  Sometimes it’s informative to compare the accuracy of a forecast to that

of a "naive" competitor.  A simple and popular such comparison is achieved by the U statistic,

which is the ratio of the 1-step-ahead MSE for a given forecast relative to that of a random walk

forecast   that is,

One must remember, of course, that the random walk is not necessarily a naive competitor,

particularly for many economic and financial variables, so that values of U near one are not

necessarily "bad."

The U-statistic is due to Theil (1966, p. 28), and is often called “Theil’s U-statistic.” 

Several authors, including Armstrong and Fildes (1995), have advocated using the U statistic and

close relatives for comparing the accuracy of various forecasting methods across series.
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Bibliographical and Computational Notes

We expect random walks, or near random walks, to be good models for financial asset

prices, and they are.  See Malkiel (1999).  More general ARIMA(p,1,q) models have found wide

application in business, finance, economics and government.  Beveridge and Nelson (1981) show

that I(1) processes can always be decomposed into the sum of a random walk component and a

covariance stationary component.  Tsay (1984) shows that information criteria such as the SIC

remain valid for selecting ARMA model orders, regardless of whether a unit autoregressive root

is present.

In parallel to the Nerlove, Grether and Carvalho (1979) treatment of unobserved-

components models with deterministic trend, Harvey (1989) treats specification, estimation and

forecasting with unobserved-components models with stochastic trend, estimated by using state-

space representations in conjunction with the Kalman Filter.

The forecasts of U.S. GNP per capita that we examine in the text, and the related

discussion, draw heavily on Diebold and Senhadji (1996).

Development of methods for removing the Dickey-Fuller bias from the parameters of

estimated forecasting models, which might lead to improved forecasts, is currently an active

research area.  See, among others, Andrews (1993), Rudebusch (1993) and Fair (1996).

In an influential book, Box and Jenkins propose an iterative modeling process which

consists of repeated cycles of model specification, estimation, diagnostic checking, and

forecasting.  (The latest edition is Box, Jenkins and Reinsel, 1994.)  One key element of the Box-

Jenkins modeling strategy is the assumption that the data follow an ARIMA model (sometimes
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called a Box-Jenkins model), 

Thus, although  is nonstationary, it is assumed that its  difference follows a stationary and

invertible ARMA process.  The appropriateness of the Box-Jenkins tactic of differencing to

achieve stationarity depends on the existence of one or more unit roots in the autoregressive lag-

operator polynomial, which is partly responsible for the large amount of subsequent research on

unit root tests.

Dickey-Fuller tests trace to Dickey (1976) and Fuller (1976).  Using simulation

techniques, MacKinnon (1991) obtains highly-accurate estimates of the percentage points of the

various Dickey-Fuller distributions.

Alternatives to Dickey-Fuller unit root tests, called Phillips-Perron tests, are proposed in

Phillips and Perron (1988).  The basic idea of Phillips-Perron tests is to estimate a Dickey-Fuller

regression without augmentation, 

and then to correct the Dickey-Fuller statistic for general forms of serial correlation and/or

theteroskedasticity that might be present in e .  See Hamilton (1994) for detailed discussion of the

Phillips-Perron tests and comparison to augmented Dickey-Fuller tests.

A key question for forecasters is determination of the comparative costs of misspecifying

forecasting models in levels vs. differences, as a function of sample size, forecast horizon, true
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Copyright © F.X. Diebold.  All rights reserved.

value of the dominant root, etc.  Related, we need to learn more about the efficacy for forecasting

of rules such as “impose a unit root unless a Dickey-Fuller test rejects at the five percent level.”  18

Campbell and Perron (1991) make some initial progress in that direction, Diebold and Kilian

(2000) explore the issue in detail and argue that such strategies are likely to be successful, and in

an extensive forecasting competition Stock and Watson (1999) show that such strategies are in

fact successful.

Smoothing techniques were originally proposed as reasonable, if ad hoc, forecasting

strategies; only later were they formalized in terms of optimal forecasts for underlying stochastic-

trend unobserved-components models.  This idea -- implementing smoothing techniques in

stochastic environments via stochastic-trend unobserved-components models -- is a key theme of

Harvey (1989), which also contains references to important earlier contributions to the smoothing

literature, including Holt (1957) and Winters (1960).  The impressive Stamp software of

Koopman, Harvey, Doornik and Shephard (1995) can be used to estimate and diagnose

stochastic-trend unobserved-components models, and to use them to produce forecasts.   Stamp19

stands for “structural time series analyzer, modeller and predictor”; unobserved-components

models are sometimes called structural time series models.
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Concepts for Review

Unit Autoregressive Root

Unit Root

Random Walk, With and Without Drift

Mean Reversion

Shock Persistence

Stochastic and Deterministic Trend

ARIMA(p,d,q) Model

Superconsistency

Dickey-Fuller Distribution 

Unit Root Test with Nonzero Mean Allowed Under the Alternative Hypothesis

Unit Root Test with Deterministic Linear Trend Allowed Under the Alternative Hypothesis

Augmented Dickey-Fuller Test

Exponential Smoothing

Simple Exponential Smoothing

Single Exponential Smoothing

Exponentially Weighted Moving Average

Holt-Winters Smoothing

Holt-Winters Smoothing with Seasonality

Stochastic Seasonality

Cointegration



Fcst4-13-52

Copyright © F.X. Diebold.  All rights reserved.

Error Correction
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Figure 1
Random Walk
Level and Change



Fcst4-13-58

Copyright © F.X. Diebold.  All rights reserved.

Figure 2
Random Walk With Drift
Level and Change
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Figure 3
U.S. Per Capita GNP
History and Two Forecasts
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Figure 4
U.S. Per Capita GNP
History, Two Forecasts, and Realization
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Figure 5
Random Walk, Levels
Sample Autocorrelation Function (Top Panel)
Sample Partial Autocorrelation Function (Bottom Panel)
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Figure 6
Random Walk, First Differences
Sample Autocorrelation Function (Top Panel)
Sample Partial Autocorrelation Function (Bottom Panel)
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Figure 7
Log Yen / Dollar Exchange Rate (Top Panel)
Change in Log Yen / Dollar Exchange Rate (Bottom Panel)
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Figure 8
Log Yen / Dollar Exchange Rate
Sample Autocorrelations (Top Panel)
Sample Partial Autocorrelations (Bottom Panel)
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Figure 9
Log Yen / Dollar Exchange Rate, First Differences
Sample Autocorrelations (Top Panel)
Sample Partial Autocorrelations (Bottom Panel)
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Table 1
Log Yen / Dollar Rate, Levels

AIC Values
Various ARMA Models

MA Order

0 1 2 3

0 -5.171 -5.953 -6.428

AR Order 1 -7.171 -7.300 -7.293 -7.287

2 -7.319 -7.314 -7.320 -7.317

3 -7.322 -7.323 -7.316 -7.308

Table 2
Log Yen / Dollar Rate, Levels

SIC Values
Various ARMA Models

MA Order

0 1 2 3

0 -5.130 -5.899 -6.360

AR Order 1 -7.131 -7.211 -7.225 -7.205

2 -7.265 -7.246 -7.238 -7.221

3 -7.253 -7.241 -7.220 -7.199
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Table 3
Log Yen / Dollar Exchange Rate

Best-Fitting Deterministic-Trend Model

LS // Dependent Variable is LYEN
Sample(adjusted): 1973:03 1994:12
Included observations: 262 after adjusting endpoints
Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C   5.904705  0.136665  43.20570  0.0000
TIME -0.004732  0.000781 -6.057722  0.0000
AR(1)   1.305829  0.057587  22.67561  0.0000
AR(2) -0.334210  0.057656 -5.796676  0.0000

R-squared  0.994468     Mean dependent var  5.253984
Adjusted R-squared  0.994404     S.D. dependent var  0.341563
S.E. of regression  0.025551     Akaike info criterion -7.319015
Sum squared resid  0.168435     Schwarz criterion -7.264536
Log likelihood  591.0291     F-statistic  15461.07
Durbin-Watson stat  1.964687     Prob(F-statistic)  0.000000

Inverted AR Roots        .96        .35
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Figure 10
Log Yen / Dollar Exchange Rate
Best-Fitting Deterministic-Trend Model
Residual Plot
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Figure 11
Log Yen / Dollar Rate
History and Forecast
AR(2) in Levels with Linear Trend
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Figure 12
Log Yen / Dollar Rate
History and Long-Horizon Forecast
AR(2) in Levels with Linear Trend
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Figure 13
Log Yen / Dollar Rate
History, Forecast and Realization
AR(2) in Levels with Linear Trend
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Table 4
Log Yen / Dollar Exchange Rate

Augmented Dickey-Fuller Unit Root Test

Augmented Dickey-Fuller -2.498863 1%   Critical Value -3.9966
Test Statistic 5%   Critical Value -3.4284

    10% Critical Value -3.1373

Augmented Dickey-Fuller Test Equation
LS // Dependent Variable is D(LYEN)
Sample(adjusted): 1973:05 1994:12
Included observations: 260 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.  

LYEN(-1) -0.029423  0.011775 -2.498863  0.0131
D(LYEN(-1))   0.362319  0.061785  5.864226  0.0000
D(LYEN(-2)) -0.114269  0.064897 -1.760781  0.0795
D(LYEN(-3))  0.118386  0.061020  1.940116  0.0535
C  0.170875  0.068474  2.495486  0.0132
@TREND(1973:01) -0.000139  5.27E-05 -2.639758  0.0088

R-squared   0.142362     Mean dependent var -0.003749
Adjusted R-squared  0.125479     S.D. dependent var  0.027103
S.E. of regression  0.025345     Akaike info criterion -7.327517
Sum squared resid  0.163166     Schwarz criterion -7.245348
Log likelihood  589.6532     F-statistic   8.432417
Durbin-Watson stat  2.010829     Prob(F-statistic)  0.000000



Fcst4-13-73

Copyright © F.X. Diebold.  All rights reserved.

Table 5
Log Yen / Dollar Rate, Changes

AIC Values
Various ARMA Models

MA Order

0 1 2 3

0 -7.298 -7.290 -7.283

AR Order 1 -7.308 -7.307 -7.307 -7.302

2 -7.312 -7.314 -7.307 -7.299

3 -7.316 -7.309 -7.340 -7.336

Table 6
Log Yen / Dollar Rate, Changes

SIC Values
Various ARMA Models

MA Order

0 1 2 3

0 -7.270 -7.249 -7.228

AR Order 1 -7.281 -7.266 -7.252 -7.234

2 -7.271 -7.259 -7.238 -7.217

3 -7.261 -7.241 -7.258 -7.240
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Table 7
Log Yen / Dollar Exchange Rate

Best-Fitting Stochastic-Trend Model

LS // Dependent Variable is DLYEN
Sample(adjusted): 1973:03 1994:12
Included observations: 262 after adjusting endpoints
Convergence achieved after 3 iterations

Variable Coefficient Std. Error t-Statistic Prob.  

C -0.003697  0.002350 -1.573440  0.1168
AR(1)  0.321870  0.057767  5.571863  0.0000

R-squared   0.106669     Mean dependent var -0.003888
Adjusted R-squared  0.103233     S.D. dependent var  0.027227
S.E. of regression  0.025784     Akaike info criterion -7.308418
Sum squared resid  0.172848     Schwarz criterion -7.281179
Log likelihood  587.6409     F-statistic   31.04566
Durbin-Watson stat  1.948933     Prob(F-statistic)  0.000000

Inverted AR Roots        .32
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Figure 14
Log Yen / Dollar Exchange Rate
Best-Fitting Stochastic-Trend Model
Residual Plot
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Figure 15
Log Yen / Dollar Rate
History and Forecast
AR(1) in Differences with Intercept
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Figure 16
Log Yen / Dollar Rate
History and Long-Horizon Forecast
AR(1) in Differences with Intercept
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Figure 17
Log Yen / Dollar Rate
History, Forecast and Realization
AR(1) in Differences with Intercept
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Table 8
Log Yen / Dollar Exchange Rate

Holt-Winters Smoothing

Sample: 1973:01 1994:12
Included observations: 264
Method: Holt-Winters, No Seasonal
Original Series: LYEN
Forecast Series: LYENSM

Parameters: Alpha  1.000000
Beta  0.090000

Sum of Squared Residuals  0.202421
Root Mean Squared Error  0.027690

End of Period Levels: Mean  4.606969
Trend -0.005193
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Figure 18
Log Yen / Dollar Rate
History and Forecast
Holt-Winters Smoothing
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Figure 19
Log Yen / Dollar Rate
History and Long-Horizon Forecast
Holt-Winters Smoothing
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Figure 20
Log Yen / Dollar Rate
History, Forecast and Realization
Holt-Winters Smoothing
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Chapter 14

Volatility Measurement, Modeling and Forecasting

The celebrated Wold decomposition makes clear that every covariance stationary series

may be viewed as ultimately driven by underlying weak white noise innovations.  Hence it is no

surprise that every forecasting model discussed in this book is driven by underlying white noise. 

To take a simple example, if the series  follows an AR(1) process, then

where  is white noise.  In some situations it is inconsequential whether  is weak or strong

white noise, that is, whether   is independent, as opposed to merely serially uncorrelated. 

Hence, so to simplify matters we sometimes assume strong white noise,

Throughout this book, we have thus far taken that approach, sometimes explicitly and sometimes

implicitly.

When  is independent, there is no distinction between the unconditional distribution of

 and the distribution of  conditional upon its past, by definition of independence.  Hence  is

both the unconditional and conditional variance of .  The Wold decomposition, however, does

not require that  be serially independent; rather it requires only that  be serially uncorrelated.

If  is dependent, then its unconditional and conditional distributions will differ.  We

denote the unconditional innovation distribution by

We are particularly interested in conditional dynamics characterized by heteroskedasticity, or
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 In principle, aspects of the conditional distribution other than the variance, such as1

conditional skewness, could also fluctuate.  Conditional variance fluctuations are by far the most
important in practice, however, so we assume that fluctuations in the conditional distribution of 
are due exclusively to fluctuations in .
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time-varying volatility.  Hence we denote the conditional distribution by

where .  The conditional variance  will in general evolve as  evolves,

which focuses attention on the possibility of time-varying innovation volatility.1

Allowing for time-varying volatility is crucially important in certain economic and financial

contexts.  The volatility of financial asset returns, for example, is often time-varying.  That is,

markets are sometimes tranquil and sometimes turbulent, as can readily be seen by examining the

time series of stock market returns in Figure 1, to which we shall return in detail.  Time-varying

volatility has important implications for financial risk management, asset allocation and asset

pricing, and it has therefore become central part of the emerging field of financial econometrics. 

Quite apart from financial applications, however, time-varying volatility also has direct

implications for interval and density forecasting in a wide variety of applications:  correct

confidence intervals and density forecasts in the presence of volatility fluctuations require time-

varying confidence interval widths and time-varying density forecast spreads.  The forecasting

models that we have considered thus far, however, do not allow for that possibility.  In this

chapter we do so.

1.  The Basic ARCH Process

Consider the general linear process,
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We will work with various cases of this process.

Suppose first that  is strong white noise,   Let us review some results

already discussed for the general linear process, which will prove useful in what follows.  The

unconditional mean and variance of y are  and  which are both

time-invariant, as must be the case under covariance stationarity.  However, the conditional mean

of y is time-varying:   where the information set is

  The ability of the general linear process to capture covariance stationary

conditional mean dynamics is the source of its power.

Because the volatility of many economic time series varies, one would hope that the

general linear process could capture conditional variance dynamics as well, but such is not the

case for the model as presently specified:  the conditional variance of y is constant at

  This potentially unfortunate restriction manifests itself in the

properties of the h-step-ahead conditional prediction error variance.  The minimum mean squared

error forecast is the conditional mean,

and so the associated prediction error is
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which has a conditional prediction error variance of

The conditional prediction error variance is different from the unconditional variance, but it is not

ttime-varying:  it depends only on h, not on the conditioning information S .  In the process as

presently specified, the conditional variance is not allowed to adapt to readily available and

potentially useful conditioning information.

So much for the general linear process with iid innovations.  Now we extend it by allowing

 to be weak rather than strong white noise, with a particular nonlinear dependence structure. 

In particular, suppose that, as before,

but now suppose as well that

Note that we parameterize the innovation process in terms of its conditional density, 
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 In particular,  depends on the previous p values of  via the distributed lag .2
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which we assume to be normal with a zero conditional mean and a conditional variance that

tdepends linearly on p past squared innovations.  g  is serially uncorrelated but not serially

independent, because the current conditional variance  depends on the history of .   The2

stated regularity conditions are sufficient to ensure that the conditional and unconditional

tvariances are positive and finite, and that y  is covariance stationary.

The unconditional moments of  are constant and are given by  and 

  The important result is not the particular formulae for the

unconditional mean and variance, but the fact that they are fixed, as required for covariance

stationarity.  As for the conditional moments of , its conditional variance is time-varying,

and of course its conditional mean is zero by construction.

Assembling the results to move to the unconditional and conditional moments of y as

opposed to , it is easy to see that both the unconditional mean and variance of y are constant

(again, as required by covariance stationarity), but that both the conditional mean and variance are

time-varying:
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 The variance of the disturbance in a model of household expenditure, for example, may3

depend on income.
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Thus, we now treat conditional mean and variance dynamics in a symmetric fashion by allowing

for movement in each, as determined by the evolving information set .

In the above development,  is called an ARCH(p) process, and the full model sketched is

an infinite-ordered moving average with ARCH(p) innovations, where ARCH stands for

autoregressive conditional heteroskedasticity.  Clearly  is conditionally heteroskedastic, because

its conditional variance fluctuates.  There are many models of conditional heteroskedasticity, but

most are designed for cross-sectional contexts, such as when the variance of a cross-sectional

regression disturbance depends on one or more of the regressors.   However, heteroskedasticity is3

often present as well in the time-series contexts relevant for forecasting, particularly in financial

markets.  The particular conditional variance function associated with the ARCH process,

is tailor-made for time-series environments, in which one often sees volatility clustering, such that

large changes tend to be followed by large changes, and small by small, of either sign.  That is,

one may see persistence, or serial correlation, in volatility dynamics (conditional variance

dynamics), quite apart from persistence (or lack thereof) in conditional mean dynamics.  The

ARCH process approximates volatility dynamics in an autoregressive fashion; hence the name

autoregressive conditional heteroskedasticity.  To understand why, note that the ARCH

conditional variance function links today’s conditional variance positively to earlier lagged ’s,
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 By “pure” we mean that we have allowed only for conditional variance dynamics, by4

setting .  We could of course also introduce conditional mean dynamics, but doing so would
only clutter the discussion while adding nothing new.
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so that large ’s in the recent past produce a large conditional variance today, thereby increasing

the likelihood of a large  today.  Hence ARCH processes are to conditional variance dynamics

precisely as standard autoregressive processes are to conditional mean dynamics.

The ARCH process may be viewed as a model for the disturbance in a broader model, as

was the case when we introduced it above as a model for the innovation in a general linear

process.  Alternatively, if there are no conditional mean dynamics of interest, the ARCH process

may be used for an observed series.  It turns out that financial asset returns often have negligible

conditional mean dynamics but strong conditional variance dynamics; hence in much of what

follows we will view the ARCH process as a model for an observed series, which for convenience

we will sometimes call a “return.”

2.  The GARCH Process

Thus far we have used an ARCH(p) process to model conditional variance dynamics.  We

now introduce the GARCH(p,q) process (GARCH stands for generalized ARCH), which we shall

subsequently use almost exclusively.  As we shall see, GARCH is to ARCH (for conditional

variance dynamics) as ARMA is to AR (for conditional mean dynamics).  

The pure GARCH(p,q) process is given by4



Fcst4-14-8

Copyright © F.X. Diebold.  All rights reserved.

tThe stated conditions ensure that the conditional variance is positive and that y  is covariance

stationary.

Back substitution on  reveals that the GARCH(p,q) process can be represented as a

restricted infinite-ordered ARCH process,

which precisely parallels writing an ARMA process as a restricted infinite-ordered AR.  Hence the

GARCH(p,q) process is a parsimonious approximation to what may truly be infinite-ordered

ARCH volatility dynamics.

It is important to note a number of special cases of the GARCH(p,q) process.  First, of

course, the ARCH(p) process emerges when   Second, if both "(L) and $(L) are zero,

then the process is simply iid Gaussian noise with variance T.  Hence, although ARCH and

GARCH processes may at first appear unfamiliar and potentially ad hoc, they are in fact much

more general than standard iid white noise, which emerges as a potentially highly-restrictive

special case.

Here we highlight some important properties of GARCH processes.  All of the discussion
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of course applies as well to ARCH processes, which are special cases of GARCH processes. 

First, consider the second-order moment structure of GARCH processes.  The first two

unconditional moments of the pure GARCH process are constant and given by  and

while the conditional moments are  and of course

In particular, the unconditional variance is fixed, as must be the case under covariance

stationarity, while the conditional variance is time-varying.  It is no surprise that the conditional

variance is time-varying – the GARCH process was of course designed to allow for a time-

varying conditional variance – but it is certainly worth emphasizing:  the conditional variance is

itself a serially correlated time series process.

Second, consider the unconditional higher-order (third and fourth) moment structure of

GARCH processes.  Real-world financial asset returns, which are often modeled as GARCH

processes, are typically unconditionally symmetric but leptokurtic (that is, more peaked in the

center and with fatter tails than a normal distribution).  It turns out that the implied unconditional

distribution of the conditionally Gaussian GARCH process introduced above is also symmetric

and leptokurtic.  The unconditional leptokurtosis of GARCH processes follows from the

persistence in conditional variance, which produces clusters of “low volatility” and “high

volatility” episodes associated with observations in the center and in the tails of the unconditional

distribution, respectively.  Both the unconditional symmetry and unconditional leptokurtosis agree
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nicely with a variety of financial market data.  

Third, consider the conditional prediction error variance of a GARCH process, and its

dependence on the conditioning information set.  Because the conditional variance of a GARCH

process is a serially correlated random variable, it is of interest to examine the optimal h-step-

ahead prediction, prediction error, and conditional prediction error variance.  Immediately, the h-

step-ahead prediction is  and the corresponding prediction error is 

This implies that the conditional variance of the prediction error,

depends on both h and , because of the dynamics in the conditional variance.  Simple

calculations reveal that the expression for the GARCH(p, q) process is given by 

In the limit, this conditional variance reduces to the unconditional variance of the process,

tFor finite h, the dependence of the prediction error variance on the current information set S  can

be exploited to improve interval and density forecasts.

Fourth, consider the relationship between  and .  The relationship is important: 
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 Put differently, the GARCH process approximates conditional variance dynamics in the5

same way that an ARMA process approximates conditional mean dynamics.
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GARCH dynamics in  turn out to introduce ARMA dynamics in .   More precisely, if  is a5

GARCH(p,q) process, then  has the ARMA representation

where  is the difference between the squared innovation and the conditional variance

at time t.  To see this, note that if  is GARCH(p,q), then  

Adding and subtracting  from the right side gives

Adding  to each side then gives

so that

Thus,  is an ARMA([max(p,q)], p) process with innovation , where .   is

covariance stationary if the roots of "(L)+$(L)=1 are outside the unit circle.

Fifth, consider in greater depth the similarities and differences between  and .  It is

worth studying closely the key expression, , which makes clear that  is effectively

a “proxy” for , behaving similarly but not identically, with  being the difference, or error.  In

particular,  is a noisy proxy:   is an unbiased estimator of , but it is more volatile.  It seems
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reasonable, then, that reconciling the noisy proxy  and the true underlying  should involve

some sort of smoothing of .  Indeed, in the GARCH(1,1) case  is precisely obtained by

exponentially smoothing .  To see why, consider the exponential smoothing recursion, which

gives the current smoothed value as a convex combination of the current unsmoothed value and

the lagged smoothed value,

Back substitution yields an expression for the current smoothed value as an exponentially

weighted moving average of past actual values:

where

Now compare this result to the GARCH(1,1) model, which gives the current volatility as a linear

combination of lagged volatility and the lagged squared return,

   

Back substitution yields

          

so that the GARCH(1,1) process gives current volatility as an exponentially weighted moving

average of past squared returns.
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Sixth, consider the temporal aggregation of GARCH processes.  By temporal aggregation

we mean aggregation over time, as for example when we convert a series of daily returns to

weekly returns, and then to monthly returns, then quarterly, and so on.  It turns out that

convergence toward normality under temporal aggregation is a feature of real-world financial

asset returns.  That is, although high-frequency (e.g., daily) returns tend to be fat-tailed relative to

the normal, the fat tails tend to get thinner under temporal aggregation, and normality is

approached.  Convergence to normality under temporal aggregation is also a property of

covariance stationary GARCH processes.  The key insight is that a low-frequency change is

simply the sum of the corresponding high-frequency changes; for example, an annual change is the

sum of the internal quarterly changes, each of which is the sum of its internal monthly changes,

and so on.  Thus, if a Gaussian central limit theorem can be invoked for sums of GARCH

processes, convergence to normality under temporal aggregation is assured.  Such theorems can

be invoked if the process is covariance stationary.

In closing this section, it is worth noting that the symmetry and leptokurtosis of the

unconditional distribution of the GARCH process, as well as the disappearance of the

leptokurtosis under temporal aggregation, provide nice independent confirmation of the accuracy

of GARCH approximations to asset return volatility dynamics, insofar as GARCH was certainly

not invented with the intent of explaining those features of financial asset return data.  On the

contrary, the unconditional distributional results emerged as unanticipated byproducts of allowing

for conditional variance dynamics, thereby providing a unified explanation of phenomena that

were previously believed unrelated.
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 In the GARCH model studied thus far, only the square of last period’s return affects the6

current conditional variance; hence its sign is irrelevant.

 For expositional convenience, we will introduce all GARCH extensions in the context of7

GARCH(1,1), which is by far the most important case for practical applications.  Extensions to
the GARCH(p,q) case are immediate but notationally cumbersome.
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3.  Extensions of ARCH and GARCH Models

There are numerous extensions of the basic GARCH model.  In this section, we highlight

several of the most important.  One important class of extensions allows for asymmetric response;

that is, it allows for last period’s squared return to have different effects on today’s volatility,

depending on its sign.   Asymmetric response is often present, for example, in stock returns.6

Asymmetric Response

The simplest GARCH model allowing for asymmetric response is the threshold GARCH,

or TGARCH, model.   We replace the standard GARCH conditional variance function,7

with

where

The dummy variable D keeps track of whether the lagged return is positive or negative.  When the

lagged return is positive (good news yesterday), D=0, so the effect of the lagged squared return
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 Negative shocks appear to contribute more to stock market volatility than do positive8

shocks.  This is called the leverage effect, because a negative shock to the market value of equity
increases the aggregate debt/equity ratio (other things the same), thereby increasing leverage.   

 The absolute “size” of news is captured by , and the sign is captured by9

.
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on the current conditional variance is simply ". In contrast, when the lagged return is negative

(bad news yesterday), D=1, so the effect of the lagged squared return on the current conditional

variance is "+(.  If (=0, the response is symmetric and we have a standard GARCH model, but if

(�0 we have asymmetric response of volatility to news.  Allowance for asymmetric response has

proved useful for modeling “leverage effects” in stock returns, which occur when (<0.8

Asymmetric response may also be introduced via the exponential GARCH (EGARCH)

model,

Note that volatility is driven by both size and sign of shocks; hence the model allows for an

asymmetric response depending on the sign of news.   The log specification also ensures that the9

conditional variance is automatically positive, because  is obtained by exponentiating ;

hence the name “exponential GARCH.” 

Exogenous Variables in the Volatility Function

Just as ARMA models of conditional mean dynamics can be augmented to include the

effects of exogenous variables, so too can GARCH models of conditional variance dynamics.  We

simply modify the standard GARCH volatility function in the obvious way, writing
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 Extension to allow multiple exogenous variables is straightforward.10
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where ( is a parameter and x is a positive exogenous variable.   Allowance for exogenous10

variables in the conditional variance function is sometimes useful.  Financial market volume, for

example, often helps to explain market volatility.

Regression with GARCH disturbances and GARCH-M

Just as ARMA models may be viewed as models for disturbances in regressions, so too

may GARCH models.  We write

Consider now a regression model with GARCH disturbances of the usual sort, with one additional

twist:  the conditional variance enters as a regressor, thereby affecting the conditional mean.  We

write

This model, which is a special case of the general regression model with GARCH disturbances, is

called GARCH-in-Mean (GARCH-M).  It is sometimes useful in modeling the relationship

between risks and returns on financial assets when risk, as measured by the conditional variance,
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 One may also allow the conditional standard deviation, rather than the conditional11

variance, to enter the regression.

  is sometimes called the “long-run” variance, referring to the fact that the12

unconditional variance is the long-run average of the conditional variance. 

Copyright © F.X. Diebold.  All rights reserved.

varies.11

Component GARCH

Note that the standard GARCH(1,1) process may be written as

where  is the unconditional variance.   This is precisely the GARCH(1,1) model12

introduced earlier, rewritten it in a slightly different but equivalent form.  In this model, short-run

volatility dynamics are governed by the parameters " and $, and there are no long-run volatility

dynamics, because  is constant.

Sometimes we might want to allow for both long-run and short-run, or persistent and

transient, volatility dynamics in addition to the short-run volatility dynamics already incorporated. 

To do this, we replace  with a time-varying process, yielding

where the time-varying long-run volatility, , is given by

This “component GARCH” model effectively lets us decompose volatility dynamics into long-run

(persistent) and short-run (transitory) components, which sometimes yields useful insights. The
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 It turns out, moreover, that under suitable conditions the component GARCH model13

introduced here is covariance stationary, and equivalent to a GARCH(2,2) process subject to
certain nonlinear restrictions on its parameters.

 The precise form of the likelihood is complicated, and we will not give an explicit14

expression here, but it may be found in various of the surveys mentioned in the Bibliographical
and Computational Notes at the end of the chapter.
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persistent dynamics are governed by , and the transitory dynamics are governed by  and .13

Mixing and Matching

In closing this section, we note that the different variations and extensions of the GARCH

process may of course be mixed.  As an example, consider the following conditional variance

function:

This is a component GARCH specification, generalized to allow for asymmetric response of

volatility to news via the sign dummy D, as well as effects from the exogenous variable x.

4.  Estimating, Forecasting and Diagnosing GARCH Models

Recall that the likelihood function is the joint density function of the data, viewed as a

function of the model parameters, and that maximum likelihood estimation finds the parameter

values that maximize the likelihood function.  This makes good sense:  we choose those

parameter values that maximize the likelihood of obtaining the data that were actually obtained.  It

turns out that construction and evaluation of the likelihood function is easily done for GARCH

models, and maximum likelihood has emerged as the estimation method of choice.   No closed-14

form expression exists for the GARCH maximum likelihood estimator, so we must maximize the
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 Routines for maximizing the GARCH likelihood are available in a number of modern15

software packages such as Eviews.  As with any numerical optimization, care must be taken with
startup values and convergence criteria to help insure convergence to a global, as opposed to
merely local, maximum.
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likelihood numerically.  15

Construction of optimal forecasts of GARCH processes is simple.  In fact, we derived the

key formula earlier but did not comment extensively on it.  Recall, in particular, that 

In words, the optimal h-step-ahead forecast is proportional to the optimal 1-step-ahead forecast. 

The optimal 1-step-ahead forecast, moreover, is easily calculated:  all of the determinants of 

are lagged by at least one period, so that there is no problem of forecasting the right-hand side

variables.  In practice, of course, the underlying GARCH parameters " and $ are unknown and so

must be estimated, resulting in the feasible forecast  formed in the obvious way.

In financial applications, volatility forecasts are often of direct interest, and the GARCH

model delivers the optimal h-step-ahead point forecast, .  Alternatively, and more generally,

we might not be intrinsically interested in volatility; rather, we may simply want to use GARCH

volatility forecasts to improve h-step-ahead interval or density forecasts of , which are crucially

dependent on the h-step-ahead prediction error variance, .  Consider, for example, the case

of interval forecasting.  In the case of constant volatility, we earlier worked with Gaussian ninety-

five percent interval forecasts of the form
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 Note well, however, that the converse is not true.  That is, if  displays persistence, it16

does not necessarily follow that the conditional variance displays persistence.  In particular,
neglected serial correlation associated with conditional mean dynamics may cause serial
correlation in  and hence also in .  Thus, before proceeding to examine and interpret the
correlogram of  as a check for volatility dynamics, it is important that any conditional mean
effects be appropriately modeled, in which case  should be interpreted as the disturbance in an
appropriate conditional mean model.
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where  denotes the unconditional h-step-ahead standard deviation (which also equals the

conditional h-step-ahead standard deviation in the absence of volatility dynamics).  Now,

however, in the presence of volatility dynamics we use

The ability of the conditional prediction interval to adapt to changes in volatility is natural and

desirable:  when volatility is low, the intervals are naturally tighter, and conversely.  In the

presence of volatility dynamics, the unconditional interval forecast is correct on average but likely 

incorrect at any given time, whereas the conditional interval forecast is correct at all times.  

The issue arises as to how to detect GARCH effects in observed returns, and related, how

to assess the adequacy of a fitted GARCH model.  A key and simple device is the correlogram of

squared returns, .  As discussed earlier,  is a proxy for the latent conditional variance; if the

conditional variance displays persistence, so too will .   Once can of course also fit a GARCH16

model, and assess significance of the GARCH coefficients in the usual way.

Note that we can write the GARCH process for returns as 

 where
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Equivalently, the standardized return, v, is iid,

This observation suggests a way to evaluate the adequacy of a fitted GARCH model:  standardize

returns by the conditional standard deviation from the fitted GARCH model, , and then check

for volatility dynamics missed by the fitted model by examining the correlogram of the squared

standardized return, .  This is routinely done in practice.

5.  Application:  Stock Market Volatility

We model and forecast the volatility of daily returns on the New York Stock Exchange

(NYSE) from January 1, 1988 through December 31, 2001, excluding holidays, for a total of

3531 observations.  We estimate using observations 1-3461, and then we forecast observations

3462-3531.

In Figure 1 we plot the daily returns, .  There is no visual evidence of serial correlation

in the returns, but there is evidence of serial correlation in the amplitude of the returns.  That is, 

volatility appears to cluster:  large changes tend to be followed by large changes, and small by

small, of either sign.

In Figure 2 we show the histogram and related statistics for .  The mean daily return is

slightly positive.  Moreover, the returns are approximately symmetric (only slightly left skewed)

but highly leptokurtic.  The Jarque-Bera statistic indicates decisive rejection of normality.

In Figure 3 we show the correlogram for .  The sample autocorrelations are tiny and



Fcst4-14-22

 In the Exercises, Problems and Complements at the end of this chapter we model the17

conditional mean, as well as the conditional variance, of returns.

  In the Exercises, Problems and Complements at the end of this chapter we also examine18

ARCH(p) models with p>5.
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usually insignificant relative to the Bartlett standard errors, yet the autocorrelation function shows

some evidence of a systematic cyclical pattern, and the Q statistics (not shown), which cumulate

the information across all displacements, reject the null of weak white noise.  Despite the weak

serial correlation evidently present in the returns, we will proceed for now as if returns were weak

white noise, which is approximately, if not exactly, the case.17

In Figure 4 we plot .  The volatility clustering is even more evident than it was in the

time series plot of returns.  Perhaps the strongest evidence of all comes from the correlogram of

, which we show in Figure 5: all sample autocorrelations of  are positive, overwhelmingly

larger than those of the returns themselves, and statistically significant.

As a crude first pass at modeling the stock market volatility, we fit an AR(5) model

directly to ; the results appear in Table 1.  It is interesting to note that the t-statistics on the

lagged squared returns are often significant, even at long lags, yet the  of the regression is low,

reflecting the fact that  is a very noisy volatility proxy.

As a more sophisticated second pass at modeling NYSE volatility, we fit an ARCH(5)

model to ; the results appear in Table 2.  The lagged squared returns appear significant even at

long lags.  The correlogram of squared standardized residuals shown in Figure 6, however,

displays some remaining systematic behavior, indicating that the ARCH(5) model fails to capture

all of the volatility dynamics, potentially because even longer lags are needed.18
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 For comparability with the earlier-computed GARCH estimated conditional standard19

deviation, we actually show the square root of exponentially smoothed .
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In Table 3 we show the results of fitting a GARCH(1,1) model.  All of the parameter

estimates are highly statistically significant, and the “ARCH coefficient” (") and “GARCH

coefficient” ($) sum to a value near unity (.987), with $ substantially larger then ", as is

commonly found for financial asset returns.  We show the correlogram of squared standardized

GARCH(1,1) residuals in Figure 7.  All sample autocorrelations are tiny and inside the Bartlett

bands, and they display noticeably less evidence of any systematic pattern than for the squared

standardized ARCH(5) residuals.

In Figure 8 we show the time series of estimated conditional standard deviations implied

by the estimated GARCH(1,1) model.  Clearly, volatility fluctuates a great deal and is highly

persistent.  For comparison we show in Figure 9 the series of exponentially smoothed ,

computed using a standard smoothing parameter of .05.   Clearly the GARCH and exponential19

smoothing volatility estimates behave similarly, although not at all identically.  The difference

reflects the fact that the GARCH smoothing parameter is effectively estimated by the method of

maximum likelihood, whereas the exponential smoothing parameter is set rather arbitrarily.

Now, using the model estimated using observations 1-3461, we generate a forecast of the

conditional standard deviation for the out-of-sample observations 3462-3531.  We show the

results in Figure 10.  The forecast period begins just following a volatility burst, so it is not

surprising that the forecast calls for gradual volatility reduction.  For greater understanding, in

Figure 11 we show both a longer history and a longer forecast.  Clearly the forecast conditional
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standard deviation is reverting exponentially to the unconditional standard deviation (.009), per

the formula discussed earlier.
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Exercises, Problems and Complements

1.  (Removing conditional mean dynamics before modeling volatility dynamics)  In the application

in the text we noted that NYSE stock returns appeared to have some weak conditional mean

dynamics, yet we ignored them and proceeded directly to model volatility.

a.  Instead, first fit autoregressive models using the SIC to guide order selection, and then

fit GARCH models to the residuals.  Redo the entire empirical analysis reported in

the text in this way, and discuss any important differences in the results.

b.  Consider instead the simultaneous estimation of all parameters of AR(p)-GARCH

models.  That is, estimate regression models where the regressors are lagged

dependent variables and the disturbances display GARCH.  Redo the entire

empirical analysis reported in the text in this way, and discuss any important

differences in the results relative to those in the text and those obtained in part a

above.

2.  (Variations on the basic ARCH and GARCH models).  Using the stock return data, consider

richer models than the pure ARCH and GARCH models discussed in the text.

a.  Estimate, diagnose and discuss a threshold GARCH(1,1) model.

b.  Estimate, diagnose and discuss an EGARCH(1,1) model.

c.  Estimate, diagnose and discuss a component GARCH(1,1) model.

d.  Estimate, diagnose and discuss a GARCH-M model.

3.  (Empirical performance of pure ARCH models as approximations to volatility dynamics)

Here we will fit pure ARCH(p) models to the stock return data, including values of p larger than



Fcst4-14-26

Copyright © F.X. Diebold.  All rights reserved.

p=5 as done in the text, and contrast the results with those from fitting GARCH(p,q) models.

a.  When fitting pure ARCH(p) models, what value of p seems adequate?  

b.  When fitting GARCH(p,q) models, what values of p and q seem adequate?  

c.  Which approach appears more parsimonious?

4.  (Direct modeling of volatility proxies)  In the text we fit an AR(5) directly to a subset of the

squared NYSE stock returns.  In this exercise, use the entire NYSE dataset.

a.  Construct, display and discuss the fitted volatility series from the AR(5) model.

b.  Construct, display and discuss an alternative fitted volatility series obtained by

exponential smoothing, using a smoothing parameter of .10, corresponding to a

large amount of smoothing, but less than done in the text.

c.  Construct, display and discuss the volatility series obtained by fitting an appropriate

GARCH model.  

d.  Contrast the results of parts a, b and c above.

e.  Why is fitting of a GARCH model preferable in principle to the AR(5) or exponential

smoothing approaches?

5.  (GARCH volatility forecasting)  You work for Xanadu, a luxury resort in the tropics.  The

daily temperature in the region is beautiful year-round, with a mean around 76 (Fahrenheit!) and

no conditional mean dynamics.  Occasional pressure systems, however, can cause bursts of

temperature volatility.  Such volatility bursts generally don’t last long enough to drive away

guests, but the resort still loses revenue from fees on activities that are less popular when the

weather isn’t perfect.  In the middle of such a period of high temperature volatility, your boss gets
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worried and asks you make a forecast of volatility over the next ten days.  After some

experimentation, you find that daily temperature  follows 

11111 , 

where  follows a GARCH(1,1) process,

.

a.  Estimation of your model using historical daily temperature data yields ,

, and .  If yesterday’s temperature was 92 degrees, generate point

forecasts for each of the next ten days conditional variance.

b.  According to your volatility forecasts, how many days will it take until volatility drops

enough such that there is at least a 90% probability that the temperature will be

within 4 degrees of 76?

c.  Your boss is impressed by your knowledge of forecasting, and asks you if your model

can predict the next spell of bad weather.  How would you answer him?

6. (Assessing volatility dynamics in observed returns and in standardized returns)  In the text we

sketched the use of correlograms of squared observed returns for the detection of GARCH, and

squared standardized returns for diagnosing the adequacy of a fitted GARCH model. 

Examination of Ljung-Box statistics is an important part of a correlogram analysis.  McLeod and

Li (1983) show that the Ljung-Box statistics may be legitimately used on squared observed

returns, in which case it will have the usual  distribution under the null hypothesis of

independence.  Bollerslev and Mikkelson (1996) argue that one may also use the Ljung-Box

statistic on the squared standardized returns, but that a better distributional approximation is
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obtained in that case by using a  distribution, where k is the number of estimated GARCH

parameters, to account for degrees of freedom used in model fitting.

7.  (Allowing for leptokurtic conditional densities)  Thus far we have worked exclusively with

conditionally Gaussian GARCH models, which correspond to 

or equivalently, to normality of the standardized return, .

a.  The conditional normality assumption may sometimes be violated.  However,

Bollerslev and Wooldridge (1992) show that GARCH parameters are consistently

estimated by Gaussian maximum likelihood even when the normality assumption is

incorrect.  Sketch some intuition for this result.

b.  Fit an appropriate conditionally Gaussian GARCH model to the stock return data. 

How might you use the histogram of the standardized returns to assess the validity

of the conditional normality assumption?  Do so and discuss your results.

c.  Sometimes the conditionally Gaussian GARCH model does indeed fail to explain all of

the leptokurtosis in returns; that is, especially with very high-frequency data, we

sometimes find that the conditional density is leptokurtic.  Fortunately, leptokurtic

conditional densities are easily incorporated into the GARCH model.  For example,

in Bollerslev’s (1987) conditionally Student’s-t GARCH model, the conditional

density is assumed to be Student’s t, with the degrees-of-freedom d treated as
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another parameter to be estimated.  More precisely, we write

What is the reason for dividing the Student’s t variable, , by its standard

deviation, ?  How might such a model be estimated?

8.  (Optimal prediction under asymmetric loss)  In the text we stressed GARCH modeling for

improved interval and density forecasting, implicitly working under a symmetric loss function. 

Less obvious but equally true is the fact that, under asymmetric loss, volatility dynamics can be

exploited to produce improved point forecasts, as shown by Christoffersen and Diebold (1996,

1997).  The optimal predictor under asymmetric loss is not the conditional mean, but rather the

conditional mean shifted by a time-varying adjustment that depends on the conditional variance. 

The intuition for the bias in the optimal predictor is simple -- when errors of one sign are more

costly than errors of the other sign, it is desirable to bias the forecasts in such a way as to reduce

the chance of making an error of the more damaging type.  The optimal amount of bias depends

on the conditional prediction error variance of the process because, as the conditional variance

grows, so too does the optimal amount of bias needed to avoid large prediction errors of the more

damaging type.

9.  (Multivariate GARCH models)  In the multivariate case, such as when modeling a set of
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returns rather than a single return, we need to model not only conditional variances, but also

conditional covariances.

a.  Is the GARCH conditional variance specification introduced earlier, say for the 

return,

still appealing in the multivariate case?  Why or why not?

b.  Consider the following specification for the conditional covariance between  and j-

th returns:

Is it appealing?  Why or why not?

c.  Consider a fully general multivariate volatility model, in which every conditional

variance and covariance may depend on lags of every conditional variance and

covariance, as well as lags of every squared return and cross product of returns. 

What are the strengths and weaknesses of such a model?  Would it be useful for

modeling, say, a set of five hundred returns?  If not, how might you proceed?
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Bibliographical and Computational Notes

This chapter draws upon the survey by Diebold and Lopez (1995), which may be

consulted for additional details.  Other broad surveys include Bollerslev, Chou and Kroner (1992),

Bollerslev, Engle and Nelson (1994), Taylor (2005) and Andersen et al. (2007).

Engle (1982) is the original development of the ARCH model.  Bollerslev (1986) provides

the important GARCH extension, and Engle (1995) contains many others.  Diebold (1988) shows

convergence to normality under temporal aggregation.  

TGARCH traces to Glosten, Jagannathan and Runkle (1993), and EGARCH to Nelson

(1991).  Engle, Lilien and Robins (1987) introduce the GARCH-M model, and Engle and Lee

(1999) introduce component GARCH.

Recently, methods of volatility measurement, modeling and forecasting have been

developed that exploit the increasing availability of high-frequency financial asset return data.  For

a fine overview, see Dacorogna et al. (2001), and for more recent developments see Andersen,

Bollerslev, Diebold and Labys (2003) and Andersen, Bollerslev and Diebold (2006).  For insights

into the emerging field of financial econometrics, see Diebold (2001) and many of the other

papers in the same collection.
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Concepts for Review

Heteroskedasticity

Time-varying volatility

ARCH(p) process

Volatility clustering

GARCH(p,q) process

Volatility dynamics 

Financial econometrics

Asymmetric response

Threshold GARCH

Exponential GARCH

GARCH-in-mean

Component GARCH

Student’s-t GARCH

Multivariate GARCH
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Figure 1
Time Series Plot
NYSE Returns
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Figure 2
Histogram and Related Diagnostic Statistics
NYSE Returns
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Figure 3
Correlogram
NYSE Returns
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Figure 4
Time Series Plot
Squared NYSE Returns



Fcst4-14-40

Copyright © F.X. Diebold.  All rights reserved.

Figure 5
Correlogram
Squared NYSE Returns
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Table 1
AR(5) Model

Squared NYSE Returns

Dependent Variable: R2

Method: Least Squares

Sample(adjusted): 6 3461

Included observations: 3456 after adjusting endpoints

Variable Coefficient Std. Error t-Statistic Prob.  

C 4.40E-05 3.78E-06 11.62473 0.0000

R2(-1) 0.107900 0.016137 6.686547 0.0000

R2(-2) 0.091840 0.016186 5.674167 0.0000

R2(-3) 0.028981 0.016250 1.783389 0.0746

R2(-4) 0.039312 0.016481 2.385241 0.0171

R2(-5) 0.116436 0.016338 7.126828 0.0000

R-squared 0.052268     Mean dependent var 7.19E-05

Adjusted R-squared 0.050894     S.D. dependent var 0.000189

S.E. of regression 0.000184     Akaike info criterion -14.36434

Sum squared resid 0.000116     Schwarz criterion -14.35366

Log likelihood 24827.58     F-statistic 38.05372

Durbin-Watson stat 1.975672     Prob(F-statistic) 0.000000
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Table 2
ARCH(5) Model
NYSE Returns

Dependent Variable: R

Method: ML - ARCH (Marquardt)

Sample: 1 3461

Included observations: 3461

Convergence achieved after 13 iterations

Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.  

C 0.000689 0.000127 5.437097 0.0000

       Variance Equation

C 3.16E-05 1.08E-06 29.28536 0.0000

ARCH(1) 0.128948 0.013847 9.312344 0.0000

ARCH(2) 0.166852 0.015055 11.08281 0.0000

ARCH(3) 0.072551 0.014345 5.057526 0.0000

ARCH(4) 0.143778 0.015363 9.358870 0.0000

ARCH(5) 0.089254 0.018480 4.829789 0.0000

R-squared -0.000381     Mean dependent var 0.000522

Adjusted R-squared -0.002118     S.D. dependent var 0.008541

S.E. of regression 0.008550     Akaike info criterion -6.821461

Sum squared resid 0.252519     Schwarz criterion -6.809024

Log likelihood 11811.54     Durbin-Watson stat 1.861036
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Figure 6
Correlogram
Squared Standardized ARCH(5) Residuals
NYSE Returns
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Table 3
GARCH(1,1) Model

NYSE Returns

Dependent Variable: R

Method: ML - ARCH (Marquardt)

Sample: 1 3461

Included observations: 3461

Convergence achieved after 19 iterations

Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.  

C 0.000640 0.000127 5.036942 0.0000

       Variance Equation

C 1.06E-06 1.49E-07 7.136840 0.0000

ARCH(1) 0.067410 0.004955 13.60315 0.0000

GARCH(1) 0.919714 0.006122 150.2195 0.0000

R-squared -0.000191     Mean dependent var 0.000522

Adjusted R-squared -0.001059     S.D. dependent var 0.008541

S.E. of regression 0.008546     Akaike info criterion -6.868008

Sum squared resid 0.252471     Schwarz criterion -6.860901

Log likelihood 11889.09     Durbin-Watson stat 1.861389
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Figure 7
Correlogram
Squared Standardized GARCH(1,1) Residuals
NYSE Returns



Fcst4-14-46

Copyright © F.X. Diebold.  All rights reserved.

Figure 8
Estimated Conditional Standard Deviation
GARCH(1,1) Model
NYSE Returns
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Figure 9
Estimated Conditional Standard Deviation
Exponential Smoothing
NYSE Returns
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Figure 10
Conditional Standard Deviation
History and Forecast
GARCH(1,1) Model
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Figure 11
Conditional Standard Deviation
Extended History and Extended Forecast
GARCH(1,1) Model
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