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 INTERNATIONAL ECONOMIC REVIEW
 Vol. 39, No. 4, November 1998

 EVALUATING DENSITY FORECASTS WITH APPLICATIONS TO
 FINANCIAL RISK MANAGEMENT*

 BY FRANcIs X. DIEBOLD, TODD A. GUNTHER,

 AND ANTHONY S. TAYt'

 Department of Economics, University of Pennsylvania, and NBER, U. S.A.
 Department of Economics, University of Pennsylvania, U.S.A.

 Department of Economics and Statistics,

 National University of Singapore, Singapore

 Density forecasting is increasingly more important and commonplace, for

 example in financial risk management, yet little attention has been given to the

 evaluation of density forecasts. We develop a simple and operational frame-

 work for density forecast evaluation. We illustrate the framework with a

 detailed application to density forecasting of asset returns in environments with

 time-varying volatility. Finally, we discuss several extensions.

 1. INTRODUCTION

 Prediction occupies a distinguished position in econometrics, as it does in all the

 sciences. Hence, evaluating predictive ability is a fundamental concern. Reviews of

 the forecast evaluation literature, such as Diebold and Lopez (1996), reveal that
 most attention has been paid to evaluating point forecasts. In fact, the bulk of the

 literature focuses on point forecasts, while conspicuously smaller sub-literatures

 interval forecasts (Chatfield 1993, Christoffersen 1998) and probability forecasts

 (Wallis 1993, Clemen et al., 1995).
 Particularly little attention has been given to evaluating density forecasts. At least

 three factors explain this neglect. First, analytic construction of density forecasts has

 historically required restrictive and sometimes dubious assumptions, such as linear

 * Manuscript received October 1996.
 E-mail: fdiebold@mail.sas.upenn.edu

 1 Thorough and repeated readings and comments from two referees and Ken West drastically
 improved this paper, but remaining inadequacies are ours alone. Helpful discussion was also

 provided by participants at the University of California San Diego Conference on Time Series

 Analysis of High-Frequency Financial Data, the NBER/NSF Time Series Seminar, the LSE

 Financial Markets Group Conference on Empirical Finance, the European and North American

 meetings of the Econometric Society, and Computational Finance '97, as well as seminar partici-

 pants at Harvard/MIT, Michigan, Penn, Princeton, NYU; the Federal Reserve Bank of Kansas City,

 and the Federal Reserve Bank of Atlanta. We are especially grateful for helpful comments from

 Gary Chamberlain, John Geweke, Eric Ghysels, Clive Granger, Jin Hahn, Bruce Hansen, Andrew

 Harvey, Jerry Hausman, Hashem Pesaran, Gleb Sandmann, Neil Shephard, Jim Stock, Ian Tonks,

 Casper De Vries, Ken Wallis, Mark Watson, and Tao Zha. For support we thank the National

 Science Foundation, the Sloan Foundation, the University of Pennsylvania Research Foundation,

 and the National University of Singapore.
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 864 DIEBOLD, GUNTHER, TAY

 dynamics, Gaussian innovations and no parameter estimation uncertainty. Recent

 work using numerical and simulation techniques to construct density forecasts,

 however, has reduced our reliance on such assumptions. In fact, improvements in

 computer technology have rendered the provision of credible density forecasts

 increasingly straightforward, in both classical and Bayesian frameworks.2

 Second, until recently there was little demand for density forecasts; historically,

 point and interval forecasts seemed adequate for most users' needs. Again, however,

 recent developments have changed the status quo, particularly in quantitative

 finance. The booming area of financial risk management, for example, is effectively

 dedicated to providing density forecasts of portfolio values and to tracking certain

 aspects of the densities, such as value at risk. The day will soon arrive in which risk

 management will routinely entail nearly real-time issuance and evaluation of such

 density forecasts.

 Finally, the problem of density forecast evaluation appears difficult. Although it is

 possible to adapt techniques developed for the evaluation of point, interval and

 probability forecasts to the evaluation of density forecasts, such approaches lead to

 incomplete evaluation of density forecasts. For example, using Christoffersen's

 (1998) method for evaluating interval forecasts, we can evaluate whether the series
 of 90% prediction intervals corresponding to a series of density forecasts is correctly

 conditionally calibrated but that leaves open the question of whether the corre-

 sponding prediction intervals at other confidence levels are correctly conditionally

 calibrated. Correct conditional calibration of density forecasts corresponds to the

 simultaneous correct conditional calibration of all possible interval forecasts, the

 assessment of which seems a daunting task.

 In light of the increasing importance of density forecasts, and lack of attention

 paid to them in the literature, we propose methods for evaluating density forecasts.

 Our evaluation methods are based on an integral transform that turns out to have a

 long history, dating at least to Rosenblatt (1952). Independent work by Crnkovic and

 Drachman (1996) is also closely related, as is that of Granger and Pesaran (1996),

 who study decision making guided by probability forecasts defined over discrete

 outcomes.

 We proceed as follows. In Section 2, we present a statement and discussion of the

 problem, and we provide decision-theoretic motivation for the density forecast

 evaluation methods that we introduce subsequently in Section 3. In Section 4, we

 provide a detailed simulation example of density forecast evaluation in an environ-

 ment with time-varying volatility. In Section 5, we use our tools to evaluate density

 forecasts of U.S. S&P 500 daily stock returns. We conclude in Section 6.

 2. DENSITY FORECASTS, LOSS FUNCTIONS AND ACTION CHOICES:

 IMPLICATIONS FOR DENSITY FORECAST EVALUATION

 Studying the relationships among density forecasts, loss functions and action

 choices will help to clarify what can and cannot be hoped for when evaluating

 density forecasts, and it will also suggest productive directions for density forecast

 2See, for example, Efron and Tibshirani (1993), and Gelman et al. (1995).
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 EVALUATING DENSITY FORECASTS 865

 evaluation. We first show that the problem of density forecast evaluation is intrinsi-

 cally linked to the forecast user's loss function, which would appear to bode poorly

 for our quest for a universally applicable approach to density forecast evaluation.

 We then show that, contrary to first impressions, all is not lost: the analysis suggests

 an important approach to density forecast evaluation, which we pursue in subse-

 quent sections.

 The Decision Environment. Let {ft(ytjlt)}t" 1 be the sequence of conditional
 densities governing a series Yt, where Qt = {Yt- 1, Yt- 2, }, and let {pt(ytIlt)}t_ 1 be
 a corresponding sequence of 1-step-ahead density forecasts.3 Finally, let {yt}7,1
 denote the corresponding series of realizations.4 The forecast user has a loss

 function L(a,y), where a refers to an action choice, and chooses an action to
 minimize expected loss computed using the density believed to be the data generat-

 ing process. If the user believes that the density forecast p(y) is the correct density,
 then he chooses an action a* such that5

 a*(p(y)) = argmin L(a, y)p(y) dy.
 aeA

 The action choice defines the loss L(a*, y) faced for every realization of the process

 y -f(y). This loss is a random variable and possesses a probability distribution that
 depends only on the action choice.

 Expected loss with respect to the true data generating process is

 E[L(a*,y)] = JL(a*,y)f(y) dy.

 The effect of the density forecast on the user's expected loss is easily seen. Different

 density forecasts will, in general, lead to different action choices and hence different

 distributions of loss. The better a density forecast, the lower its expected loss,

 computed with respect to the true data generating process.

 Ranking Two Forecasts. Suppose the user has the option of choosing between

 two forecasts in a given period, denoted by pj(y) and Pk(Y), where the subscript
 refers to the forecast. The user will weakly prefer forecast pj(y) to forecast Pk(Y) if

 JL(a>,y)f(y) dy< ?L(a*,y)f(y) dy,

 3 For notational convenience, we will often not indicate the information set and simply write

 f,(y,) and pt(yt), but the dependence on fl, should be understood. Moreover, because in this section
 we consider the relationships among density forecasts, loss functions and actions in a one-period

 context, we temporarily drop the time subscripts for notational convenience.

 4 We indulge in the standard abuse of notation, which favors convenience over precision, by
 failing to distinguish between random variables and their realizations. The meaning will be clear

 from context.

 S We assume a unique minimizer, a sufficient condition for which is that A be compact and that

 L be strictly convex in a.
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 866 DIEBOLD, GUNTHER, TAY

 where aj* denotes the action that minimizes expected loss when the user bases the

 action choice on forecast j.
 Ideally, we would like to find a ranking of forecasts with which all users agree,

 regardless of their loss function. Unfortunately, such a ranking does not exist. More

 precisely, there does not exist a ranking r of arbitrary density forecasts pj and Pk,
 both distinct from f, such that for all loss functions L(a, y),

 ? t/k L(a7,y)f(y)dy fL(a*,y)f(y)dy.

 To see why, simply notice that it is easy to find a pair of loss functions L1 and L2, a

 density function f governing y, and a pair of forecasts, pj and Pk, such that

 fLj(a*,y)f(y) dy< fLj(a7',y)f(y) dy,

 while

 fL2(a*,y)f(y) dy> L2(aa, y)f(y) dy.

 That is, user 1 does better on average under forecast k, while user 2 does better

 under forecast j. Suppose, for example, that the true density function is N(O, 1), and
 suppose that user l's loss function is L1(a, y) = (y - a)2 and user 2's loss function is

 L2(a, y) = (y2 _ a)2. The optimal action choices are then fyp(y) dy and fy2p(y) dy.
 That is, user 1 bases his action choice on the mean, with higher expected loss

 occurring with larger errors in the forecast mean, while the actions and expected
 losses of user 2 depend on the error in the forecast of the uncentered second

 moment. In this context, consider two forecasts: forecast j is N(O, 2) and forecast k
 is N(1, 1). User 1 prefers forecast j, because it leads to an action choice implying
 lower expected loss, but user 2 prefers forecast k for the same reason.

 To repeat: there is no way to rank two incorrect density forecasts such that all

 users will agree with the ranking.6 However, it is easy to see that if a forecast
 coincides with the true data generating process, then it will be preferred by all

 forecast users, regardless of loss function.7 More formally, suppose that pj(y) =f(y),
 so that a7' minimizes the expected loss with respect to the true distribution. Then

 JL(a>, y)f(y) dy < fL(a*, y)f(y) dy, Vk,

 which follows immediately from the fact that a7 minimizes expected loss over all
 possible actions, including those which might be chosen under alternative density
 forecasts.

 6

 The result is analogous to Arrow's celebrated impossibility theorem. The ranking effectively

 reflects a social welfare function, which does not exist.

 7Granger and Pesaran (1996) independently arrive at a similar result in the context of probability

 forecasting.

This content downloaded from 
�������������16ffff:ffff:ffff:ffff:ffff on Thu, 01 Jan 1976 12:34:56 UTC 

All use subject to https://about.jstor.org/terms



 EVALUATING DENSITY FORECASTS 867

 Although simple, the insight that f(y) dominates all other forecasts for all users

 regardless of loss function is not vacuous. In particular, it suggests a useful direction

 for evaluating density forecasts. Regardless of loss function, we know that the

 correct density is weakly superior to all forecasts, which suggests that we evaluate

 forecasts by assessing whether the forecast densities are correct, that is, whether

 1pt(yt Qt)}t-~ 1 = {ft(y,Ifb)}t- 1. If not, we know that some users, depending on their
 loss functions, could potentially be better served by a different density forecast. We

 now develop that idea in detail.

 3. EVALUATING DENSITY FORECASTS

 The task of determining whether {p,(y,LQt)}t I 1 = { appears difficult,
 perhaps hopeless, because {ft(ytIQt)}t" 1 is never observed, even after the fact.
 Moreover, and importantly, the true density ft(ytlQt) may exhibit structural change,
 as indicated by its time subscript. As it turns out, the challenges posed by these

 subtleties are not insurmountable.

 The Probability Integral Transform. Our methods are based on the relationship

 between the data generating process, f,(yt), and the sequence of density forecasts,
 Pt(Yt), as related through the probability integral transform, zt, of the realization of
 the process taken with respect to the density forecast. The probability integral

 transform is simply the cumulative density function corresponding to the density

 Pt(Yt) evaluated at yt,

 z= fpt(u) du

 = Pt(Yt)

 The density of zt, qt(zt), is of particular significance. Assuming that dpt- 1(zt)/dzt is
 continuous and nonzero over the support of Yt, then, because Pt(Yt)= dPt(yt)=dyt
 and Yt = Pt- (zt), zt has support on the unit interval with density

 qt( zt) = t | d zt|ft(Pt- 1( zt))

 ft(Pt l(zt))

 pt(pt-l(z 1)) -

 Note, in particular, that if pt(yt) = ft(yt), then qt(zt) is simply the U(O, 1) density.
 Now we go beyond the one-period characterization of the density of z when

 pt(yt) = f(yt), and characterize both the density and dependence structure of the

 entire z sequence when Pt(Yt) =ft(yt).

 PROPOSITION. Suppose {Yt}t1j is generated from {ft(ytLQt)}t[i1 where Qt =
 {Yt- 1, Yt- 2, . . }- If a sequence of density forecasts {pt(yt)}t' 1 coincides with
 {ft(ytIlt)}t1 1, then under the usual condition of a nonzero Jacobian with continuous
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 868 DIEBOLD, GUNTHER, TAY

 partial derivatives, the sequence of probability integral transforms of {yjt}t 1 with respect
 to {pt(Yt)}'1 1 is i.i.d. U(O, 1). That is,

 U(O , 1). t=i 1 Ud

 PROOF. The joint density of {yt}ti 1 can be decomposed as

 f ( Yms* Y1lQ1) =fn(Y,n7l.. l?) tL-AYInx-1fni-1) ... flYllfl ) -

 We therefore compute the joint density of {z,}t-11 using the change of variables
 formula:

 q(zl Z2, .. I Zn

 dzl d zM

 = . . .tanfil ( Pln 1(zm ) Qm )tm-1 i(PPm-1 (Zin-1 ) | Qm- 1 ..
 dYm dym

 dz1 dzin

 x xti(Pi (lll

 dyi dY2 dYn)

 dZ1 8Z2 dZm

 * xfi(ll(p l)u,

 because the Jacobian of the transformation is lower triangular. Thus we have

 fm(P T (zm)1lm) J m-1)(Pm- t(Z1-1) n

 q( Zms *S 11 ) m(Pm l(m)) Pm -1(pnz-l Zzin - 1))

 f (p- l( )Q

 Pl(pl l(Z,))

 Under the assumed conditions, each of the ratios above is a U(O,1) density, the

 product of which yields an m-variate U(O, 1) distribution for {zj}t' ,. Because the
 joint distribution is the product of the marginals, we have that {z,}11 is distributed
 i.i.d. U(O, 1). El

 The intuition for the above result may perhaps be better understood from the
 perspective of Christoffersen (1998), who shows that a correctly conditionally cali-
 brated interval forecast will provide a hit sequence that is distributed i.i.d. Bernoulli,
 with the desired success probability.8 If a sequence of density forecasts is correctly
 conditionally calibrated, then every interval will be correctly conditionally calibrated

 8 The 'hit' series is 1 if the realization is contained in the forecast interval, and 0 otherwise.

This content downloaded from 
�������������165.123.34.86 on Mon, 09 Jan 2023 15:13:22 UTC������������� 

All use subject to https://about.jstor.org/terms



 EVALUATING DENSITY FORECASTS 869

 and will generate an i.i.d. Bernoulli hit sequence. This fact manifests itself in the

 i.i.d. uniformity of the corresponding probability integral transforms.

 Practical Application. The theory developed thus far suggests that we evaluate

 density forecasts by assessing whether the probability integral transform series,

 {fz}yt 1, is i.i.d. U(O, 1). Simple tests of i.i.d. U(O, 1) behavior are readily available, such
 as those of Kolmogorov-Smirnov and Cramer-vonMises. Alone, however, such tests

 are not likely to be of much value in the practical applications that we envision,

 because they are not constructive; that is, when rejection occurs, the tests generally

 provide no guidance as to why. If, for example, a Kolmogorov-Smirnov test rejects

 the hypothesis of i.i.d. U(O, 1) behavior, is it because of violation of unconditional

 uniformity, violation of i.i.d., or both? Moreover, even if we know that rejection

 comes from violation of uniformity, we would like to know more: What, precisely, is

 the nature of the violation of uniformity, and how important is it? Similarly, even if

 we know that rejection comes from a violation of i.i.d., what precisely is its nature? Is

 z heterogeneous but independent, or is z dependent? If z is dependent, is the

 dependence operative primarily through the conditional mean, or are higher ordered

 conditional moments, such as the variance, relevant? Is the dependence strong and

 important, or is i.i.d. an economically adequate approximation, even if strictly false?

 Hence we adopt less formal, but more revealing, graphical methods, which we

 supplement with more formal tests. First, as regards unconditional uniformity, we

 suggest visual assessment using the obvious graphical tool, a density estimate. Simple

 histograms are attractive in the present context because they allow straightforward

 imposition of the constraint that z has support on the unit interval, in contrast to

 more sophisticated procedures such as kernel density estimates with the standard

 kernel functions. We visually compare the estimated density to a U(O, 1), and we
 compute confidence intervals under the null hypothesis of i.i.d. U(O, 1) exploiting the

 binomial structure, bin-by-bin.

 Second, as regards evaluating whether z is i.i.d., we again suggest visual assess-

 ment using the obvious graphical tool, the correlogram, supplemented with the usual

 Bartlett confidence intervals. The correlogram assists with the detection of particu-

 lar dependence patterns in z and can provide useful information about the deficien-

 cies of density forecasts. For example, serial correlation in the z series indicates that

 conditional mean dynamics have been inadequately captured by the forecasts.

 Because we are interested in potentially sophisticated nonlinear forms of depen-

 dence, not simply linear dependence, we examine not only the correlogram of

 (z - z), but also those of powers of (z - 2). Examination of the correlograms of
 (z - 2), (z - Z)2, (z - Z)3, and (z - z)4 should be adequate; it will reveal dependence
 operative through the conditional mean, conditional variance, conditional skewness,

 or conditional kurtosis.

 4. APPLICATION TO A SIMULATED, GARCH PROCESS

 Before proceeding to apply our density forecast evaluation methods to real data, it

 is useful to examine their efficacy on simulated data, for which we know the true

 data-generating process, We examine a simulated sample of length 8000 from the
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 870 DIEBOLD, GUNTHER, TAY

 t-GARCH(1, 1) process (Bollerslev 1987):

 Yt 8 t(6)

 ht= 0.01 + 0.13y7- 1 + 0.86ht- 1-

 Both the sample size and the parameter values are typical for financial asset

 returns.9 Throughout, we split the sample in half and use the 'in-sample' observa-
 tions 1 through 4000 for estimation, and the 'out-of-sample' observations 4001

 through 8000 for density forecast evaluation.

 We will examine the usefulness of our density forecast evaluation methods in

 assessing four progressively better density forecasts. To establish a benchmark, we
 first evaluate forecasts based on the naive and incorrect assumption that the process

 is i.i.d. N(0, 1).1o That is, in each of the periods 4001-8000, we simply issue the
 forecast 'N(0, 1).'

 In Figure la we show two histograms of z, one with 20 bins and one with 40

 bins.1" The histograms have a distinct, nonuniform 'butterfly' shape-a hump in the
 middle and two wings on the sides-indicating that too many of the realizations fall

 in the middle and tails of the forecast densities relative to what we would expect if

 the data were really i.i.d. normal. This is exactly what we hope the histograms would
 reveal, given that the data-generating process is known to be unconditionally
 leptokurtic.

 In Figure lb we show the correlograms of (z - 2), (z - 2)2, (Z - 2)3 and (z - 2)4.12
 The strong serial correlation in (z - 2)2 (and hence (z - 2)4) makes clear another
 key deficiency of the N(0, 1) forecasts-they fail to capture the volatility dynamics
 operative in the process. Again, this is what we hope the correlograms would reveal,
 given our knowledge of the true data-generating process.

 Second, we evaluate forecasts produced under the incorrect assumption that the
 process is i.i.d. but not necessarily Gaussian. We estimate the unconditional distribu-

 tion from observations 1 through 4000, freeze it, and then issue it as the density
 forecast in each of the periods 4001 through 8000. Figures 2a and 2b contain the
 results. The z histogram is now almost perfect (as it must be, apart from estimation
 error, which is small in a sample of size 4000), but the correlograms correctly
 continue to indicate neglected volatility dynamics.

 Third, we evaluate forecasts that are based on a GARCH(1, 1) model estimated
 under the incorrect assumption that the conditional density is Gaussian. We use

 observations 1 through 4000 to estimate the model, freeze the estimated model, and

 9The conditional variance function intercept of 0.01 is arbitrary but inconsequential; it simply
 amounts to a normalization of the unconditional variance to 1 (0.01/(1 - 0.13 - 0.86)).

 10 The process as specified does have mean zero and variance 1, but it is neither i.i.d. nor
 unconditionally Gaussian.

 11 The dashed lines superimposed on the histogram are approximate 95% confidence intervals for
 the individual bin heights under the null that z is i.i.d. U(0, 1).

 12 The dashed lines superimposed on the correlograms are Bartlett's approximate 95% confi-

 dence intervals under the null that z is i.i.d.
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 * Figure la: z is the probability integral transform of y with respect to density forecasts produced

 under the incorrect assumption that y is i.i.d. N(O, 1). See text for details.

 ' Figure lb: Panels (a) to (d) show sample autocorrelations of (z - z), (z - Z)2, (z - Z)3 and

 (z-Z)4.
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 * Figure 2a: z is the probability integral transform of y with respect to density forecasts produced
 under the incorrect assumption that y is i.i.d. with density equal to the unconditional density
 estimated over periods 1-4000. See text for details.

 tFigure 2b: Panels (a) to (d) show sample autocorrelations of (z - 2), (Z -_ )2, (z - ) and
 (Z _-)4.

This content downloaded from 
�������������165.123.34.86 on Mon, 09 Jan 2023 15:13:22 UTC������������� 

All use subject to https://about.jstor.org/terms



 EVALUATING DENSITY FORECASTS 873

 then use it to make (time-varying) density forecasts from 4001 through 8000. Figures

 3a and 3b contain the z histograms and correlograms. The histograms are closer to

 uniform than those of Figure la, but they still display slight peaks at either end and

 a hump in the middle. We would expect to see such a reduction, but not elimination,

 of the butterfly pattern, because allowance for conditionally Gaussian GARCH

 effects should account for some, but not all, unconditional leptokurtosis.13 The

 correlograms now show no evidence of neglected conditional volatility dynamics,

 again as expected because the conditionally Gaussian GARCH model delivers

 consistent estimates of the conditional variance parameters, in spite of the fact that

 the conditional density is misspecified (Bollerslev and Wooldridge, 1992), so that the

 estimated model tracks the volatility dynamics well.

 Finally, we forecast with an estimated correctly-specified t-GARCH(1, 1) model.

 We show the z histogram and correlograms in Figures 4a and 4b. Because we are

 forecasting with a correctly specified model, estimated using a large sample, we

 would expect that the histogram and correlograms would fail to find flaws with the

 density forecasts, which is the case.

 In closing this section, we note that at each step of the above simulation exercise,

 our density forecast evaluation procedures clearly and correctly revealed the strengths

 and weaknesses of the various density forecasts. The results, as with all simulation

 results, are specific to the particular data-generating process examined, but the

 process and the sample size were chosen to be realistic for the leading applications

 in high-frequency finance. This gives us confidence that the procedures will perform

 well on real financial data, to which we now turn, and for which we do not have the

 luxury of knowing the true data-generating process.

 5. APPLICATION TO DAILY S & P 500 RETURNS

 We study density forecasts of daily value-weighted S&P 500 returns, with divi-

 dends, from 02/03/62 through 12/29/95. As before, we split the sample into
 in-sample and out-of-sample periods for model estimation and density forecast

 evaluation. There are 4133 in-sample observations (07/03/62-12/29/78) and 4298
 out-of-sample observations (01/02/79-12/29/95). As before, we assess a series of
 progressively more sophisticated density forecasts.

 As in the simulation example, we begin with an examination of N(0, 1) density
 forecasts, in spite of the fact that high-frequency financial data are well-known to be

 unconditionally leptokurtic and conditionally heteroskedastic.'4 In Figures Sa and Sb
 we show the histograms and correlograms of z. The histograms have the now-familiar

 butterfly shape, indicating that the S&P realizations are leptokurtic relative to the

 N(0, 1) density forecasts, and the correlograms of (z)2 and (z-z)4 indicate that
 the N(0, 1) forecasts are severely deficient, because they neglect strong conditional
 volatility dynamics.

 Next, we generate density forecasts using an apparently much more sophisticated

 model. Both the Akaike and Schwarz information criteria select an MA(1)-

 13 Recall that the data generating process is conditionally, a well as unconditionally, fat-tailed.
 14 See, among many others, Bollerslev et al. (1992).
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 * Figure 3a: z is the probability integral transform of y with respect to density forecasts produced
 under the incorrect assumption that y is a conditionally Gaussian GARCH(1, 1) process with
 parameters equal to those estimated over periods 1-4000. See text for details.

 Figure 3b: Panels (a) to (d) show sample autocorrelations of (z-z), (z-Z)2, (Z-Z)f and
 (Z -)4.
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 ESTIMATES OF THE AUTOCORRELATION FUNCTIONS OF POWERS OF Z

 * Figure 4a: Histogram of z series produced from forecasts of simulated t-GARCH(1, 1) series
 based on estimated t-GARCH model. We estimate parameters over 1-4000 and forecast over

 4001-8000.

 Figure 4b: Panels (a) to (d) show sample autocorrelations of (z _z~) (z _ z)2, (z -z)3 and
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 ESTIMATES OF THE AUTOCORRELATION FUNCTIONS OF POWERS OF ZZ

 * Figure 5a: z is the probability integral transform of y with respect to density forecasts produced

 under the assumption that y is i.i.d. normal. See text for details.

 Figure 5b: Panels (a) to (d) show sample autocorrelations Of (z -z), (z - Z)2, (Z -z)3 and
 (z-_ )4.
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 FIGURE 6B

 ESTIMATES OF THE AUTOCORRELATION FUNCTIONS OF POWERS OF Zt

 * Figure 6a: z is the probability integral transform of y with respect to density forecasts produced
 under the assumption that y is a conditionally Gaussian MA(M)-GARCH(1, 1) process with parame-
 ters equal to those estimated from 07/03/62 to 12/29/78. See text for details.

 t Figure 6b: Panels (a) to (d) show autocorrelations of (z _ z), (z _ Z)2, (z - Z)3 and (z -Z).
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 FIGURE 7B

 ESTIMATES OF THE AUTOCORRELATION FUNCTIONS OF POWERS OF Zt

 * Figure 7a: z is the probability integral transform of y with respect to density forecasts produced
 under the assumption that y is a conditionally Student's t MA(1)-GARCH(1, 1) process with
 parameters equal to those estimated from 07/03/62 to 12/29/78. See text for details.

 t Figure 7b: Panels (a) to (d) show sample autocorrelations of (z - z), (z - _)2, (Z - Z)3 and
 (Z - )4.
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 GARCH(1, 1) model for the in-sample data, which we estimate, freeze, and use to

 generate out-of-sample density forecasts. Figures 6a and 6b contain the z histograms

 and correlograms. The histograms are closer to uniform and therefore improved,

 although they still display a slight butterfly pattern. The correlograms look even

 better; all evidence of neglected conditional volatility dynamics has vanished.

 Finally, we estimate and then forecast with an MA(1)-t-GARCH(1, 1) model. We

 show the z histogram and correlograms in Figures 7a and 7b. The histogram is

 improved, albeit slightly, and the correlograms remain good.

 6. CONCLUDING REMARKS

 Let us begin by tying up a couple of loose ends. First, note that notwithstanding

 the classical feel of most of our discussion, our methods are equally applicable to

 Bayesian forecasts issued as predictive probability densities. Superficially, it might

 appear that strict Bayesians would have little interest in our evaluation methods, on

 the grounds that conditional on a particular sample path and specification of the

 prior and likelihood, the predictive density simply is what it is, so that there is

 nothing to evaluate. But such is not the case. A misspecified likelihood, for example,

 can lead to poor forecasts, whether classical or Bayesian, and density forecast

 evaluation can help us to flag misspecified likelihoods. It comes as no surprise,

 therefore, that model checking by comparing predictions to data is emerging as an

 integral part of modern Bayesian data analysis and forecasting, as highlighted for

 example in Gelman et al. (1995), and our methods are very much in that spirit.

 Second, we wish to emphasize that our decision to ignore parameter estimation

 uncertainty was intentional. In our framework, the forecasts are the primitives, and

 we do not require that they be based on a model. This is useful because many

 density forecasts of interest do not come from models. Such is the case, for example,

 with the survey density forecasts of inflation recorded in the Survey of Professional

 Forecasters since 1968; for a description of those forecasts and evaluation using our

 methods, see Diebold et al. (1998a).15 A second and very important example of
 model-free density forecasts is provided by the recent finance literature, which

 shows how to use options written at different strike prices to extract a model-free

 estimate of the market's risk-neutral density forecast of returns on the underlying

 asset (e.g., Ait-Sahalia and Lo, 1998; Soderlind and Svensson, 1997). Moreover, many
 density forecasts based on estimated models already incorporate the effects of

 parameter estimation uncertainty; Bayesian predictive density forecasts are a leading

 example, as are classical density forecasts computed using appropriate bootstrap

 techniques. Finally, it would seem that samples of the size typically available in

 high-frequency finance are often so large as to render negligible the effects of
 parameter estimation uncertainty, as for example in our simulation study. At the

 15 Diebold et al. (1998a) also augment the methods proposed here with resampling procedures to
 approximate better the finite-sample distributions of the test statistics of interest in small macroeco-

 nomic, as opposed to financial, samples.

This content downloaded from 
�������������165.123.34.86 on Mon, 09 Jan 2023 15:13:22 UTC������������� 

All use subject to https://about.jstor.org/terms



 880 DIEBOLD, GUNTHER, TAY

 same time, we readily acknowledge that many model-based density forecasts do not

 explicitly account for parameter estimation uncertainty, and the sample size some-

 times is small; for such situations it may be useful to extend our methods to account

 for parameter estimation uncertainty, in a fashion precisely analogous to West's

 (1996), and West and McCracken's (1998) extensions of Diebold and Mariano

 (1995).16

 Now let us sketch several promising directions for future research. First, it is

 apparent that our methods can be used to improve defective density forecasts, in a

 fashion parallel to standard procedures for improving defective point forecasts.

 Recall that in the case of defective point forecasts we can regress the y's on the 9's

 (the point forecasts), and use the estimated relationship to construct improved point

 forecasts.17 Similarly, in the context of density forecasts that are defective in that

 they produce an i.i.d. but nonuniform z sequence, we can exploit the fact that (in

 period m + 1, say)

 fm+l(Ym?+) pmp+(ym.+)qm.+(P(Ym+?))

 Pm.+ 1(y.+ 1)qn+ 1(Zm+ ?)

 Thus, if we know qm+ 1(z, + 1), we would know the actual distribution fn. + i(Y,, +?).
 Because qm ?+ (zm+?) is unknown, we can estimate qfm+?(zm+?) using the historical
 series of {z,}rn 1, and we can use that estimate to construct an improved estimate,
 fm+?(Ym+?), of the true distribution. Standard density estimation techniques can be
 used to produce the estimate qm +l(zn +? ).18

 Second, our methods may be generalized to handle multi-step-ahead density

 forecasts, so long as we make provisions for serial correlation in z, in a fashion to

 the usual MA(h - 1) structure for optimal h-step ahead point forecast errors. It may
 prove most effective to partition the z series into groups for which we expect i.i.d.

 uniformity if the density forecasts were indeed correct. For instance, for correct

 2-step ahead forecasts, the sub-series {Z1Z, Z3 z5, ... } and {Z2, Z4 Z6 ... } should each
 be i.i.d. U(O, 1), although the full series would not be i.i.d. U(0, 1). If a formal test is
 desired, it may be obtained via Bonferroni bounds, as suggested in a different

 context by Campbell and Ghysels (1995). Under the assumption that the z series is

 (h - 1)-dependent, each of the following h sub-series will be i.i.d.: {z1, Zl+h,
 Zl+2 *... }, {Z2, Z2+h, Z2+2h, ... * * . * *{Zh, Z211 Z3h ... }. Thus, a test with size bounded
 by a can be obtained by performing h tests, each of size a/h, on each of the h

 sub-series of z, and rejecting the null hypothesis of i.i.d. uniformity if the null is

 16 It would be similarly interesting to see whether and how the decision-theoretic background that
 we sketch, which requires that agents use density forecasts as if they were known to be the true

 conditional density, in a fashion similar to West et al. (1993), would change if parameter estimation

 uncertainty were acknowledged.

 17Such a regression is sometimes called a Mincer-Zarnowitz regression, after Mincer and
 Zarnowitz (1969).

 18 In finite samples, of course, there is no guarantee that the 'improved' forecast will actually be
 superior to the original, because it is based on an estimate of q rather than the true q, and the

 estimate could be very poor. In the large samples typical in high-frequency finance, however, very
 precise estimation should be possible.
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 rejected for any of the h sub-series. With the huge high-frequency datasets now

 available in finance, such sample splitting, although inefficient, is not likely to cause
 important power deterioration.

 Third, the principle that governs the univariate techniques in this paper extends to

 the multivariate case, as shown in Diebold et al., (1996). Suppose that the variable of
 interest y is now an (N x 1) vector, and that we have on hand m multivariate
 forecasts and their corresponding multivariate realizations. Further suppose that we

 are able to decompose each period's forecasts into their conditionals, that is, for
 each period's forecasts we can write

 P(Ylt, Y2t, ....*, YNt I 't - 1)

 :_p(YNt1YN-1,ti ... IYit, (t- ) ..P(Y2tlYlt I (t- 1)P(Y1t1(Dt- 1)

 where D-t now refers to the past history of (Ylt, Y2t' ... , YN1). Then for each period
 we can transform each element of the multivariate observation (Ylt Y2t, ... , YN) by
 its corresponding conditional distribution. This procedure will produce a set of N z

 series that will be i.i.d. U(O, 1) individually, and also when taken as a whole, if the
 multivariate density forecasts are correct. Note that we will have N! sets of z series,
 depending on how the joint density forecasts are decomposed, giving us a wealth of

 information with which to evaluate the forecasts. In addition, the univariate formula

 for the adjustment of forecasts, discussed above, can be applied to each individual

 conditional, yielding

 f(Ylt,Y2t, ... , YNtIkt-1)

 N

 = 1[p(yit1yi-1 t, * ,Y11, 't-I)q(P(yitlyi-, t,...,ylt,('t-1))]
 i= 1

 =P(Y1t, Y2t, .. * ,YNt1(Dt-1)q(z1t, Z2t, *, Z1Vt1(t-1)-

 Fourth, we note that our methods may be related to the idea of predictive

 likelihood, which is based not on the joint density of the sample (the likelihood), but
 rather the joint density of future observations, conditional upon the sample (the
 predictive likelihood).19'20 Moreover, Clements and Hendry (1993) establish a close
 link between predictive likelihood and a measure of the accuracy of point forecasts
 that they propose, the generalized forecast error second moment. Investigation of
 the relationships among such methods and ours is beyond the scope of this paper
 but appears to be a promising direction for future research.

 Fifth, real-time monitoring of adequacy of density forecasts using CUSUM and

 other recursive techniques should be a simple matter, because under the adequacy
 hypothesis the z series is i.i.d. U(O, 1), which is free of nuisance parameters, thereby
 enabling trivial calculation of CUSUM bounds.

 Finally, if we have information regarding the user's loss function, we should be
 able to evaluate density forecasts under the relevant loss function, as done in other

 19 For a concise introduction to predictive likelihood, see Bj0rnstad (1990).
 20 We thank a referee for making this observation.
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 forecasting contexts by Diebold and Mariano (1995) and Christoffersen and Diebold

 (1996, 1997, 1998).
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