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Abstract
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activity, inflation, and the monetary policy instrument). Our goal is to provide a

characterization of the dynamic interactions between the macroeconomy and the yield curve.
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curve and evidence for a reverse influence as well. We also relate our results to the expectations
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1. Introduction

Macroeconomists, financial economists, and market participants all have
attempted to build good models of the yield curve, yet the resulting models are
very different in form and fit. In part, these differences reflect the particular modeling
demands of various researchers and their different motives for modeling the yield
curve (e.g., interest rate forecasting or simulation, bond or option pricing, or market
surveillance). Still, an unusually large gap is apparent between the yield curve models
developed by macroeconomists, which focus on the role of expectations of inflation
and future real economic activity in the determination of yields, and the models
employed by financial economists, which eschew any explicit role for such
determinants. This paper takes a step toward bridging this gap by formulating
and estimating a yield curve model that integrates macroeconomic and financial
factors.

Many other recent papers have also modeled the yield curve, and they can be
usefully categorized by the extent and nature of the linkages permitted between
financial and macroeconomic variables. Many yield curve models simply ignore
macroeconomic linkages. Foremost among these are the popular factor models that
dominate the finance literature—especially those that impose a no-arbitrage
restriction. For example, Knez et al. (1994), Duffie and Kan (1996), and Dai and
Singleton (2000) all consider models in which a handful of unobserved factors
explain the entire set of yields. These factors are often given labels such as ‘‘level,’’
‘‘slope,’’ and ‘‘curvature,’’ but they are not linked explicitly to macroeconomic
variables.

Our analysis also uses a latent factor model of the yield curve, but we also
explicitly incorporate macroeconomic factors. In this regard, our work is more
closely related to Ang and Piazzesi (2003), Hördahl et al. (2002), and Wu
(2002), who explicitly incorporate macro determinants into multi-factor yield
curve models. However, those papers only consider a unidirectional macro
linkage, because output and inflation are assumed to be determined independently
of the shape of the yield curve, but not vice versa. This same assumption is
made in the vector autoregression (VAR) analysis of Evans and Marshall (1998,
2001) where neither contemporaneous nor lagged bond yields enter the equa-
tions driving the economy. In contrast to this assumption of a one-way macro-
to-yields link, the opposite view is taken in another large literature typified by
Estrella and Hardouvelis (1991) and Estrella and Mishkin (1998), which assumes
a yields-to-macro link and focuses only on the unidirectional predictive power of
the yield curve for the economy. The two assumptions of these literatures—
one-way yields-to-macro or macro-to-yields links—are testable hypotheses that are
special cases of our model and are examined below. Indeed, we are particularly
interested in analyzing the potential bidirectional feedback from the yield curve to
the economy and back again. Some of the work closest to our own allows a
feedback from an implicit inflation target derived from the yield curve to help
determine the dynamics of the macroeconomy, such as Kozicki and Tinsley (2001),
Dewachter and Lyrio (2002), and Rudebusch and Wu (2003). In our analysis, we
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allow for a more complete set of interactions in a general dynamic, latent factor
framework.

Our basic framework for the yield curve is a latent factor model, although
not the usual no-arbitrage factor representation typically used in the finance
literature. Such no-arbitrage factor models often appear to fit the cross-section
of yields at a particular point in time, but they do less well in describing the dyna-
mics of the yield curve over time (e.g., Duffee, 2002; Brousseau, 2002). Such a
dynamic fit is crucial to our goal of relating the evolution of the yield curve over
time to movements in macroeconomic variables. To capture yield curve dynamics,
we use a three-factor term structure model based on the classic contribution of
Nelson and Siegel (1987), interpreted as a model of level, slope, and curvature,
as in Diebold and Li (2002). This model has the substantial flexibility required
to match the changing shape of the yield curve, yet it is parsimonious and easy to
estimate. We do not explicitly enforce the no-arbitrage restriction. However, to
the extent that it is approximately satisfied in the data—as is likely for the U.S.
Treasury bill and bond obligations that we study—it will also likely be
approximately satisfied in our estimates, as our model is quite flexible and gave a
very good fit to the data. Of course, there may be a loss of efficiency in not imposing
the restriction of no arbitrage if it is valid, but this must be weighed against the
possibility of misspecification if transitory arbitrage opportunities are not eliminated
immediately.

In Section 2, we describe and estimate a basic ‘‘yields-only’’ version of our
model—that is, a model of just the yield curve without macroeconomic variables. To
estimate this model, we introduce a unified state-space modeling approach that lets
us simultaneously fit the yield curve at each point in time and estimate the underlying
dynamics of the factors. This one-step approach improves upon the two-step
estimation procedure of Diebold and Li (2002) and provides a unified framework in
which to examine the yield curve and the macroeconomy.

In Section 3, we incorporate macroeconomic variables and estimate a ‘‘yields-
macro’’ model. To complement the nonstructural nature of our yield curve
representation, we also use a simple nonstructural VAR representation of the
macroeconomy. The focus of our examination is the nature of the linkages between
the factors driving the yield curve and macroeconomic fundamentals.

In Section 4, we relate our framework to the expectations hypothesis,
which has been studied intensively in macroeconomics. The expectation hypo-
theses of the term structure is a special case of our model that receives only limited
support.

We offer concluding remarks in Section 5.
2. A yield curve model without macro factors

In this section, we introduce a factor model of the yield curve without
macroeconomic variables, which is useful for two key reasons. First, metho-
dologically, such a model proves to be a convenient vehicle for introducing the
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state-space framework that we use throughout the paper. Second, and sub-
stantively, the estimated yields-only model serves as a useful benchmark to
which we subsequently compare our full model that incorporates macroeconomic
variables.
2.1. A factor model representation

The factor model approach expresses a potentially large set of yields of various
maturities as a function of just a small set of unobserved factors. Denote the set of
yields as yðtÞ; where t denotes maturity. Among practitioners and especially central
banks,1 a very popular representation of the cross-section of yields at any point in
time is the Nelson and Siegel (1987) curve:

yðtÞ ¼ b1 þ b2
1� e�lt

lt

� �
þ b3

1� e�lt

lt
� e�lt

� �
, (1)

where b1; b2; b3 and l are parameters.2 Moreover, as shown by Diebold and Li
(2002), the Nelson–Siegel representation can be interpreted in a dynamic fashion as a
latent factor model in which b1; b2; and b3 are time-varying level, slope, and
curvature factors and the terms that multiply these factors are factor loadings.3

Thus, we write

ytðtÞ ¼ Lt þ St

1� e�lt

lt

� �
þ Ct

1� e�lt

lt
� e�lt

� �
, (2)

where Lt;St; and Ct are the time-varying b1;b2; and b3: We illustrate this
interpretation with our empirical estimates below.

If the dynamic movements of Lt;St; and Ct follow a vector autoregressive process
of first order, then the model immediately forms a state-space system.4 The transition
equation, which governs the dynamics of the state vector, is

Lt � mL

St � mS

Ct � mC

0
B@

1
CA ¼

a11 a12 a13
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0
B@

1
CA

Lt�1 � mL

St�1 � mS

Ct�1 � mC

0
B@

1
CAþ

ZtðLÞ

ZtðSÞ

ZtðCÞ

0
B@

1
CA, (3)
1As described in documentation from the Bank for International Settlements (1999), many central banks

have adopted the Nelson–Siegel yield curve (or some slight variant) for fitting bond yields.
2Our Nelson–Siegel yield curve (1) corresponds to Eq. (2) of Nelson and Siegel (1987). Their notation

differs from ours in a potentially confusing way: they use m for maturity and 1=t for the constant l:
3More precisely, Diebold and Li show that b2 corresponds to the negative of slope as traditionally

defined (‘‘long minus short yields’’). For ease of discussion, we prefer simply to call b2; and hence St;
‘‘slope,’’ so we define slope as ‘‘short minus long.’’

4As is well-known, ARMA state vector dynamics of any order may be readily accommodated in state-

space form. We maintain the VAR(1) assumption only for transparency and parsimony.
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t ¼ 1; . . . ;T : The measurement equation, which relates a set of N yields to the three
unobservable factors, is

ytðt1Þ

ytðt2Þ

..

.

ytðtNÞ

0
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t ¼ 1; . . . ;T : In an obvious vector/matrix notation, we write this state-space
system as

ðf t � mÞ ¼ Aðf t�1 � mÞ þ Zt, (5)

yt ¼ Lf t þ et. (6)

For linear least-squares optimality of the Kalman filter, we require that the white
noise transition and measurement disturbances be orthogonal to each other and to
the initial state:

Zt

et

 !
�WN

0

0

� �
;

Q 0

0 H

� �� �
, (7)

Eðf 0Z
0
tÞ ¼ 0, (8)

Eðf 0e
0
tÞ ¼ 0. (9)

In much of our analysis, we assume that the H matrix is diagonal and the Q matrix is
non-diagonal. The assumption of a diagonal H matrix, which implies that the
deviations of yields of various maturities from the yield curve are uncorrelated, is
quite standard. For example, in estimating the no-arbitrage term structure models,
i.i.d. ‘‘measurement error’’ is typically added to the observed yields. This assumption
is also required for computational tractability given the large number of observed
yields used. The assumption of an unrestricted Q matrix, which is potentially non-
diagonal, allows the shocks to the three term structure factors to be correlated.

In general, state-space representations provide a powerful framework for analysis
and estimation of dynamic models. The recognition that the Nelson–Siegel form is
easily put in state-space form is particularly useful because application of the
Kalman filter then delivers maximum-likelihood estimates and optimal filtered and
smoothed estimates of the underlying factors. In addition, the one-step Kalman filter
approach of this paper is preferable to the two-step Diebold–Li approach, because
the simultaneous estimation of all parameters produces correct inference via
standard theory. The two-step procedure, in contrast, suffers from the fact that the
parameter estimation and signal extraction uncertainty associated with the first step
is not acknowledged in the second step. Finally, the state-space representation paves
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the way for possible future extensions, such as allowance for heteroskedasticity,
missing data, and heavy-tailed measurement errors, although we do not pursue those
extensions in the present paper.

At this point, it is also perhaps useful to explicitly contrast our approach with
others that have been used in the literature. A completely general (linear) model of
yields would be an unrestricted VAR estimated for a set of yields. One potential
drawback to such a representation is that the results may depend on the particular
set of yields chosen. A factor representation, as above, can aggregate information
from a large set of yields. One straightforward factor model is a VAR estimated with
the principal components formed from a large set of yields. (See Evans and Marshall
(1998, 2001) for VAR term structure analyses.) Such an approach restricts the
factors to be orthogonal to each other but does not restrict the factor loadings at all.
In contrast, our model allows correlated factors but restricts the factor loadings
through limitations on the set of admissible yield curves. For example, the
Nelson–Siegel form guarantees positive forward rates at all horizons and a discount
factor that approaches zero as maturity increases. Such economically-motivated
restrictions likely aid in the analysis of yield curve dynamics.5 Alternative restrictions
could also be imposed. The most popular alternative is the no-arbitrage restriction,
which enforces the consistency of the evolution of the yield curve over time with the
absence of arbitrage opportunities. However, there is mixed evidence on the extent to
which these restrictions enhance inference. (Compare, for example, Ang and Piazzesi
(2003) and Duffee (2002).)
2.2. Yields-only model estimation

We examine U.S. Treasury yields with maturities of 3, 6, 9, 12, 15, 18, 21, 24, 30,
36, 48, 60, 72, 84, 96, 108 and 120 months. The yields are derived from bid/ask
average price quotes, from January 1972 through December 2000, using the
unsmoothed Fama and Bliss (1987) approach, as described in Diebold and Li (2002).
They are measured as of the beginning of each month; this timing convention is
immaterial for the yields-only model but will be more important when macro
variables are introduced.

As discussed above, the yields-only model forms a state-space system, with a
VAR(1) transition equation summarizing the dynamics of the vector of latent state
variables, and a linear measurement equation relating the observed yields to the state
vector. Many parameters must be estimated. The ð3� 3Þ transition matrix A

contains 9 free parameters, the ð3� 1Þ mean state vector m contains three free
parameters, and the measurement matrix L contains one free parameter, l:
Moreover, the transition and disturbance covariance matrix Q contains six free
parameters (one disturbance variance for each of the three latent level, slope and
5Accumulated experience—as well as formal Bayes/Stein theory—leads naturally to the celebrated

parsimony or shrinkage principle as a strategy for avoiding data mining and in-sample overfitting. This is

the broad insight that imposition of sensible restrictions, which must of course degrade in-sample fit, is

often a crucial ingredient for the production of useful models for analysis and forecasting.
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curvature factors and three covariance terms), and the measurement disturbance
covariance matrix H contains 17 free parameters (one disturbance variance for each
of the 17 yields). All told, then, 36 parameters must be estimated by numerical
optimization—a challenging, but not insurmountable, numerical task.

For a given parameter configuration, we use the Kalman filter to compute optimal
yield predictions and the corresponding prediction errors, after which we proceed to
evaluate the Gaussian likelihood function of the yields-only model using the
prediction-error decomposition of the likelihood. We initialize the Kalman filter
using the unconditional mean (zero) and unconditional covariance matrix of the
state vector.6 We maximize the likelihood by iterating the Marquart and
Berndt–Hall–Hall–Hausman algorithms, using numerical derivatives, optimal
stepsize, and a convergence criterion of 10�6 for the change in the norm of the
parameter vector from one iteration to the next. We impose non-negativity on all
estimated variances by estimating log variances; then we convert to variances by
exponentiating and compute asymptotic standard errors using the delta method. We
obtain startup parameter values by using the Diebold–Li two-step method to obtain
the initial transition equation matrix, initializing all variances at 1.0, and initializing
l at the value given in Diebold and Li (2002).

In the first panel of Table 1 we present estimation results for the yields-only model.
The estimate of the A matrix indicates highly persistent own dynamics of Lt;St; and
Ct; with estimated own-lag coefficients of 0.99, 0.94 and 0.84, respectively. Cross-
factor dynamics appear unimportant, with the exception of a minor but statistically
significant effect of St�1 on Lt: The estimates also indicate that persistence decreases
(as measured by the diagonal elements of A), and transition shock volatility increases
(as measured by the diagonal elements of Q), as we move from Lt to St to Ct:
The remaining estimates appear sensible; the mean level is approximately 8 percent,
the mean slope is approximately �1:5 percent, and the mean curvature is
insignificantly different from 0.7 In the second and third panel of Table 1 we report
the estimated Q matrix and two tests of its diagonality. There is only one individually
significant covariance term, and the off-diagonal elements of the matrix (tested
jointly as a group) are only marginally significant.8 Finally, the estimated l of 0.077
implies that the loading on the curvature factor is maximized at a maturity of 23.3
months.

The yields-only model fits the yield curve remarkably well. The first two columns
of Table 2 contain the estimated means and standard deviations of the measure-
ment equation residuals, expressed in basis points, for each of the 17 maturities that
we consider. The mean error is negligible at all maturities (with the possible
exception of 3 months), and in the crucial middle range of maturities from 6 to 60
6For details of Kalman filtering and related issues such as initialization of the filter, see Harvey (1981) or

Durbin and Koopman (2001).
7Recall that we define slope as short minus long, so that a negative mean slope means that yields tend to

increase as maturity lengthens.
8Not surprisingly, when we estimate the model with the restriction that the Q matrix is diagonal, the

point estimates and standard errors of the elements of the A matrix are little changed from Table 1.
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Table 1

Yields-only model parameter estimatesa

Lt�1 St�1 Ct�1 m

Lt 0.99 0.03 �0.02 8.02

(0.01) (0.01) (0.01) (1.67)

St �0.03 0.94 0.04 �1.44

(0.02) (0.02) (0.03) (0.60)

Ct 0.03 0.02 0.84 �0.42

(0.03) (0.02) (0.03) (0.54)

Estimated Q matrixb

Lt St Ct

Lt 0.09 �0.01 0.04

(0.01) (0.01) (0.02)

St 0.38 0.01

(0.03) (0.03)

Ct 0.80

(0.07)

Tests for diagonality of Q matrixc

Test statistic P-value

Likelihood ratio 6.75 0.08

Wald 7.65 0.05

aEach row presents coefficients from the transition equation for the respective state variable. Bold

entries denote parameter estimates significant at the 5 percent level. Standard errors appear in parentheses.
bBold entries denote parameter estimates significant at the 5 percent level. Standard errors appear in

parentheses.
cBoth test statistics are Chi-square with 3 degrees of freedom.

F.X. Diebold et al. / Journal of Econometrics 131 (2006) 309–338316
months, the average standard deviations is just 8.7 basis points. The average
standard deviations increase at very short and very long maturities but nevertheless
remain quite small.9
9As an additional check of model adequacy, we also tried four- and five-factor extended models, as in

Björk and Christensen (1999). The extensions provided negligible improvement in model fit. These results

are consistent with Dahlquist and Svensson (1996) who compare the Nelson and Siegel model with a more

complex functional form and also find no improvement to using the latter.
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Table 2

Summary statistics for measurement errors of yields

Maturity Yields-only model Yields-macro model

Mean Standard deviation Mean Standard deviation

3 �12.64 22.36 �12.53 22.21

6 �1.34 5.07 �1.26 4.84

9 0.49 8.11 0.54 8.15

12 1.31 9.87 1.33 9.88

15 3.71 8.71 3.72 8.76

18 3.59 7.29 3.58 7.31

21 3.23 6.51 3.22 6.47

24 �1.40 6.39 �1.42 6.35

30 �2.65 6.06 �2.68 6.08

36 �3.24 6.59 �3.27 6.61

48 �1.85 9.70 �1.87 9.73

60 �3.29 8.03 �3.29 8.01

72 1.97 9.14 1.99 9.11

84 0.69 10.37 0.72 10.38

96 3.49 9.04 3.53 9.16

108 4.19 13.64 4.25 13.74

120 �1.31 16.45 �1.25 16.57

Note: We report the means and standard deviations of the measurement errors, expressed in basis points,

for yields of various maturities measured in months.
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Fig. 1. Estimates of level, slope, and curvature in yields-only model.

F.X. Diebold et al. / Journal of Econometrics 131 (2006) 309–338 317
We use the Kalman smoother to obtain optimal extractions of the latent level,
slope and curvature factors. In Fig. 1, we plot these three estimated factors together
for comparative assessment, and in Figs. 2–4 we plot the respective factors in
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Fig. 2. Yields-only model level factor and empirical counterparts.
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Fig. 3. Yields-only model slope factor and empirical counterparts.
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isolation of each other, but together with various empirical proxies and potentially
related macroeconomic variables.10

The level factor displays very high persistence in Fig. 1 and is of course positive—
in the neighborhood of 8 percent. In contrast, the slope and curvature are less
persistent and assume both positive and negative values. The unconditional
variances of the slope and curvature factors are roughly equal but are composed
differently: slope has higher persistence and lower shock variance, whereas curvature
10In each case, the latent factor extractions are based on full-sample parameter estimates.
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has lower persistence and higher shock variance. Interestingly, slope and curvature
appear related at business cycle frequencies. The simple correlation is 0.25, but the
correlation at business cycle frequencies is 0.55 and at very low frequencies is
�0:07:11

In Fig. 2 we show the estimated level and two closely linked comparison series: a
common empirical proxy for level (namely, an average of short-, medium- and long-
term yields, ðytð3Þ þ ytð24Þ þ ytð120ÞÞ=3), and a measure of inflation (the 12-month
percent change in the price deflator ðPtÞ for personal consumption expenditures,
namely, 100� ðPt � Pt�12Þ=Pt�12). The high 0.80 correlation between L̂t and ðytð3Þ þ
ytð24Þ þ ytð120ÞÞ=3 supports our interpretation of Lt as a level factor. The correlation
between L̂t and actual inflation, which is 0.43, is consistent with a link between the
level of the yield curve and inflationary expectations, as suggested by the Fisher
equation. This link is a common theme in the recent macro-finance literature,
including Kozicki and Tinsley (2001), Dewachter and Lyrio (2002), Hördahl et al.
(2002), and Rudebusch and Wu (2003).

In Fig. 3 we show the estimated slope and two comparison series, to which the
slope factor is closely linked: a standard empirical slope proxy ðytð3Þ � ytð120ÞÞ; and
an indicator of macroeconomic activity (demeaned capacity utilization). The high
0.98 correlation between Ŝt and ytð3Þ � ytð120Þ lends credibility to our interpretation
of St as a slope factor. The correlation between Ŝt and capacity utilization, which is
0.39, suggests that yield curve slope, like yield curve level, is intimately connected to
the cyclical dynamics of the economy.

Finally, in Fig. 4 we show the estimated curvature together with a standard
empirical curvature proxy, 2ytð24Þ � ytð3Þ � ytð120Þ; to which Ct is closely linked
11More precisely, the correlation between Hodrick–Prescott ‘‘cycles’’ (deviations from trends) in b2 and
b3 is 0.55, and the correlation between Hodrick–Prescott ‘‘trends’’ in b2 and b3 is �0:07:
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with a correlation of 0.96, which again lends credibility to our interpretation of Ct as
a curvature factor. Unfortunately, as shown in our combined yields-macro model in
the next section, we know of no reliable macroeconomic links to Ct:
3. A yield curve model with macro factors

Given the ability of the level, slope, and curvature factors to provide a good
representation of the yield curve, it is of interest to relate them to macroeconomic
variables. This can be done readily in an expanded version of the above state-space
framework. In the next five subsections, we analyze the dynamic interactions
between the economy and the yield curve, and we assess their importance.

3.1. The yields-macro model: specification and estimation

We wish to characterize the relationships among L̂t; Ŝt; Ĉt and the macroeconomy.
Our measures of the economy include three key variables: manufacturing capacity
utilization ðCUtÞ; the federal funds rate ðFFRtÞ; and annual price inflation ðINFLtÞ:

12

These three variables represent, respectively, the level of real economic activity
relative to potential, the monetary policy instrument, and the inflation rate, which
are widely considered to be the minimum set of fundamentals needed to capture
basic macroeconomic dynamics.13

A straightforward extension of the yields-only model adds the three macro-
economic variables to the set of state variables and replaces Eqs. (5)–(7) with

ðf t � mÞ ¼ Aðf t�1 � mÞ þ Zt, (5
0

)

yt ¼ Lf t þ et, (6
0

)

Zt

et

 !
�WN

0

0

� �
;

Q 0

0 H

� �� �
, (7

0

)

where f 0t ¼ ðLt;St;Ct;CUt;FFRt; INFLtÞ and the dimensions of A;m; Zt and Q are
increased as appropriate.14 This system forms our yields-macro model, to which we
will compare our earlier yields-only model.15 Our baseline yields-macro model
continues to assume a non-diagonal Q matrix and a diagonal H matrix. Producing
impulse responses from this model requires an identification of the covariances given
12The variable INFL is the 12-month percent change in the price deflator for personal consumption

expenditures, and FFR is the monthly average funds rate.
13See, for example, Rudebusch and Svensson (1999) and Kozicki and Tinsley (2001).
14L is now N � 6; but the three rightmost columns contain only zeros, so that the yields still load only

on the yield curve factors. This form is consistent with the view that only three factors are needed to distill

the information in the yield curve.
15We have maintained a first-order VAR structure for simplicity and tractability. However, based on

some limited exploration of second-order models, it appears that our results are robust to this assumption

as well.
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by the off-diagonal elements of the Q matrix. Following common practice, we do this
by assuming a particular recursive causal ordering of the variables; namely, we order
the variables Lt;St;Ct;CUt; INFLt;FFRt: We order the term structure factors prior
to the macro variables because they are dated at the beginning of each month.16

In the first panel of Table 3 we display the estimates of the parameters of the
yields-macro model, which contains the crucial macro and term structure
interactions.17 Individually, many of the off-diagonal elements appear insignificant;
however, as we discuss below, key blocks of coefficients appear jointly significant.
The estimated Q matrix is provided in the second panel of Table 3. Several of the off-
diagonal covariances appear significant individually. The Wald and likelihood ratio
tests reported in the third panel clearly reject the diagonality of the Q matrix.

The time series of estimates of the level, slope, and curvature factors in the yields-
macro model are very similar to those obtained in the yields-only model. Thus, as
shown in the third and fourth columns of Table 2, the means and standard
deviations of the measurement errors associated with the yields-macro model are
essentially identical to those of the yields-only model. In particular, the mean errors
are again negligible, and in the important 6- to 60-month maturity range, the average
standard deviation is just 8.6 basis points.
3.2. Macroeconomic and yield curve impulse response functions

We examine the dynamics of the complete yields-macro system via impulse
response functions, which we show in Fig. 5, along with 90 percent confidence
intervals. We will consider four groups of impulse responses in turn: macro responses
to macro shocks, macro responses to yield curve shocks, yield curve responses to
macro shocks, and yield curve responses to yield curve shocks.

The responses of the macro variables to macro shocks match the typical impulse
responses produced in small estimated macro models of the kind commonly used in
monetary policy analysis (e.g., Rudebusch and Svensson, 1999). The macro variables
all show significant persistence.18 In addition, an increase in the funds rate depresses
capacity utilization over the next few years, similar to the aggregate demand
response in Rudebusch and Svensson (1999). The funds rate, in turn, rises with
capacity utilization and—albeit with only marginal significance—with inflation in a
fashion broadly consistent with an estimated Federal Reserve monetary policy
reaction function. Finally, inflation exhibits a clear aggregate supply response to
16As discussed below, we also examined the robustness of our results to alternative identification

strategies. In particular, we obtained similar results for a model with a diagonal Q matrix, which is neutral

with respect to ordering of the variables. We also obtained similar results using end-of-period yield data

and ordering the variables as CUt; INFLt;FFRt;Lt;St;Ct:
17The own-lag coefficient of CUt rounds to 1.00 but actually is just less than one, and stationarity is

assured since the largest eigenvalue of the A matrix is 0.98.
18The interpretation of the persistence of FFR—the policy rate manipulated by the Fed—is open to

some debate. However, Rudebusch (2002) argues that it does not indicate ‘‘interest rate smoothing’’ or

‘‘monetary policy inertia’’; instead, it reflects serially correlated unobserved factors to which the Fed

responds.
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Table 3

Yields-macro model parameter estimatesa

Lt�1 St�1 Ct�1 CUt�1 FFRt�1 INFLt�1 m

Lt 0.90 �0.06 �0.02 �0.01 0.08 0.01 7.56

(0.04) (0.04) (0.01) (0.01) (0.04) (0.01) (1.75)

St �0.43 0.48 0.03 0.03 0.38 0.03 �1.53

(0.07) (0.07) (0.04) (0.02) (0.06) (0.03) (0.49)

Ct 0.14 0.12 0.84 0.01 �0.09 0.00 �0.49

(0.12) (0.12) (0.04) (0.02) (0.10) (0.04) (0.59)

CUt 0.07 �0.02 0.00 1.00 �0.07 �0.02 80.73

(0.08) (0.08) (0.04) (0.02) (0.07) (0.02) (0.79)

FFRt 0.00 �0.09 0.01 0.05 0.99 0.05 6.53

(0.09) (0.09) (0.03) (0.03) (0.07) (0.04) (2.06)

INFLt �0.04 �0.04 �0.01 0.03 0.04 0.99 4.18

(0.04) (0.04) (0.01) (0.00) (0.03) (0.01) (1.13)

Estimated Q matrixb

Lt St Ct CUt FFRt INFLt

Lt 0.09 �0.02 0.05 0.04 0.03 0.01

(0.01) (0.02) (0.03) (0.02) (0.02) (0.00)

St 0.30 0.01 0.08 0.22 �0.01

(0.03) (0.04) (0.02) (0.03) (0.01)

Ct 0.81 0.04 0.17 0.00

(0.09) (0.04) (0.04) (0.01)

CUt 0.37 0.15 0.02

(0.03) (0.04) (0.01)

FFRt 0.45 0.00

(0.03) (0.01)

INFLt 0.05

(0.00)

F.X. Diebold et al. / Journal of Econometrics 131 (2006) 309–338322
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Fig. 5. Impulse responses of the yields-macro model.

Tests for diagonality of Q matrixc

Test statistic P-value

Likelihood ratio 307.89 0.00

Wald 209.21 0.00

aEach row presents coefficients from the transition equation for the respective state variable. Bold

entries denote parameter estimates significant at the 5 percent level. Standard errors appear in parentheses.
bBold entries denote parameter estimates significant at the 5 percent level. Standard errors appear in

parentheses.
cBoth test statistics are Chi-square with 15 degrees of freedom.

Table 3 (continued)
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increased capacity utilization and, over time, declines in response to a funds rate
increase.19

The yield curve components add some interesting elements to the macro responses.
The macro variables have negligible responses to shocks in the curvature factor. In
contrast, an increase in the slope factor is followed by an almost one-to-one response
in the funds rate. That is, there is a close connection between the slope factor and the
instrument of monetary policy. However, there are two interpretations of such a
connection. On the one hand, the Fed may be reacting to yields (which are measured
at the beginning of the month) in setting the funds rate. On the other hand, given the
institutional frictions of monetary policy decision-making (e.g., the 6-week spacing
between policy meetings and the requirement for committee approval), it is likely
that yields are reacting to macroeconomic information in anticipation of Fed
actions. That is, to the extent the Fed has established a predictable policy reaction to
macroeconomic information, movements in bond markets may often appear to
predate those of the Fed.

Finally, an increase in the level factor raises capacity utilization, the funds rate,
and inflation. Recall from Fig. 2 the close connection between inflation and the level
factor. The macro responses exhibited in Fig. 5 are consistent with the above
interpretation of the level factor as the bond market’s perception of long-run
inflation. Under this interpretation, an increase in the level factor—that is, an
increase in future perceived inflation—lowers the ex ante real interest rate when
measured as FFRt � Lt; which is followed by a near-term economic boom.20

However, during our sample, the Fed has apparently accommodated only a small
portion of the expected rise in inflation. The nominal funds rate rises significantly in
response to the level shock, damping utilization, and limiting the rise in inflation to
only about 40% of the initial shock to the level.

Now consider the response of the yield curve to the macro variables. While the
curvature factor shows very little response, the slope factor responds directly to
positive shocks in all three macro variables. For example, an increase in the funds
rate almost immediately pushes up the slope factor so the yield curve is less positively
sloped (or more negatively sloped). Positive shocks to utilization, and to a lesser
extent inflation, also induce similar though more delayed movements in the tilt.
These reactions are consistent with a monetary policy response that raises the short
end of the term structure in response to positive output and inflation surprises.
However, shocks to the macro variables also affect the level of the term structure. In
particular, surprises to actual inflation appear to give a long-run boost to the level
factor. Such a reaction is consistent with long-inflation expectations not being firmly
anchored, so a surprise increase in inflation (or even in real activity) feeds through to
an expectation of higher future inflation, which raises the level factor.21 A positive
19There is a marginally-significant initial upward response of inflation to the funds rate—a so-called

‘‘price puzzle’’—which is typical in small VARs of this kind.
20An ex post FFRt � INFLt does not appear to be appropriate, as a positive shock to inflation does not

boost economic activity (see Rudebusch and Svensson, 1999).
21Gurkaynak et al. (2003) and Rudebusch and Wu (2003) discuss such a mechanism.
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shock to the funds rate is also followed by a small temporary jump in the level factor.
In principle, a surprise increase in the monetary policy rate could have two quite
different effects on inflation expectations. On the one hand, if the central bank has a
large degree of credibility and transparency, then a tightening could indicate a lower
inflation target and a likely lowering of the level factor. Alternatively, a surprise
tightening could indicate that the central back is worried about overheating and
inflationary pressures in the economy—news that would boost future inflation
expectations and the level factor. Evidently, over our sample, the latter effect has
dominated.

Finally, consider the block of own-dynamics of the term structure factors. The
three factors exhibit significant persistence. Most off-diagonal responses are
insignificant; however, a surprise increase in the level factor, which we interpret as
higher inflation expectations, is associated with loosening of policy as measured by
the slope factor and a lowering of the short end of the term structure relative to the
long end.22
3.3. Macroeconomic and yield curve variance decompositions

Variance decompositions provide a popular metric for analyzing macro and yield
curve interactions. Table 4 provides variance decompositions of the 1-, 12-, and 60-
month yields at forecast horizons of 1, 12, and 60 months. Decompositions are
provided for both the yields-only and the yields-macro models. At a 1-month
horizon, very little of the variation in rates is driven by the macro factors (8, 4, and 2
percent for the 1-, 12-, and 60-month yield, respectively). This suggests a large
amount of short-term idiosyncratic variation in the yield curve that is unrelated to
macroeconomic fundamentals. However, at longer horizons, the macro factors
quickly become more influential, and at a 60-month horizon, they account for about
40 percent of the variation in rates. This contribution is similar to the results in Ang
and Piazzesi’s (2003) macro model. A comparison of yields-only and yields-macro
decompositions shows that the variance accounted for by the slope factor falls
notably with the addition of the macro variables. That is, movements in yields that
had been attributed to shocks to slope are now traced to shocks to output, inflation,
and monetary policy.23 In contrast, the variance contributions from level and
curvature are little changed on balance.

Table 5 examines the variance decompositions for the macroeconomic variables
based on the joint yields-macro model and a ‘‘macro-only’’ model, which is a simple
first-order VAR for CU, FFR, INFL. In the yields-macro model, the term structure
factors account for very little of the variation in capacity utilization or inflation.
Yield curve factors do predict a substantial fraction of movements in the funds rate,
22Overall then, in important respects, this analysis improves on the usual monetary VAR, which

contains a flawed specification of monetary policy (Rudebusch, 1998). In particular, the use of level, slope,

and the funds rate allows a much more subtle and flexible description of policy.
23This result is consistent with the tilt of the yield curve being driven by counter-cyclical monetary

policy, as in Rudebusch and Wu (2003).
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Table 4

Variance decompositions, yields

Horizon L S C CU FFR INFL

1-Month yield

Yields-only model 1 0.17 0.83 0.00 — — —

12 0.17 0.82 0.01 — — —

60 0.17 0.82 0.02 — — —

Yields-macro model 1 0.15 0.75 0.02 0.01 0.07 0.00

12 0.19 0.34 0.04 0.15 0.28 0.01

60 0.34 0.13 0.09 0.31 0.12 0.02

12-Month yield

Yields-only model 1 0.31 0.54 0.15 — — —

12 0.31 0.62 0.07 — — —

60 0.28 0.68 0.04 — — —

Yields-macro model 1 0.30 0.44 0.22 0.00 0.04 0.00

12 0.33 0.22 0.13 0.11 0.21 0.01

60 0.41 0.08 0.12 0.28 0.09 0.03

60-Month yield

Yields-only model 1 0.69 0.13 0.17 — — —

12 0.67 0.28 0.05 — — —

60 0.51 0.48 0.02 — — —

Yields-macro model 1 0.68 0.09 0.21 0.00 0.02 0.00

12 0.66 0.06 0.08 0.04 0.15 0.01

60 0.52 0.02 0.10 0.24 0.08 0.04

Note: Each entry is the proportion of the forecast variance (at the specified forecast horizon) for a 1-, 12-

or 60-month yield that is explained by the particular factor.

F.X. Diebold et al. / Journal of Econometrics 131 (2006) 309–338326
but as noted above, this may reflect the adjustment of bond markets to new
information before the Fed can react.

Taken together, the variance decompositions suggest that the effects of the yield
curve on the macro variables are less important than the effects of the macro
variables on the yield curve. To interpret this result correctly, it is important to note
that an interest rate—the federal funds rate—is also included among the macro
variables. That is, we are asking what would the yield curve add to a standard small
macro model, such as the Rudebusch and Svensson (1999) model. We are not
arguing that interest rates do not matter, but that, for our specification and sample,
the funds rate is perhaps, to a rough approximation, a sufficient statistic for interest
rate effects in macrodynamics, which is a conclusion consistent with Ang et al.
(2003).
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Table 5

Variance decompositions, macroeconomic variables

Horizon L S C CU FFR INFL

CU

Macro-only model 1 — — — 1.00 0.00 0.00

12 — — — 0.89 0.10 0.01

60 — — — 0.61 0.27 0.12

Yields-macro model 1 0.05 0.06 0.00 0.89 0.00 0.00

12 0.10 0.03 0.02 0.73 0.12 0.01

60 0.12 0.05 0.05 0.50 0.18 0.10

FFR

Macro-only model 1 — — — 0.00 1.00 0.00

12 — — — 0.04 0.95 0.01

60 — — — 0.34 0.64 0.02

Yields-macro model 1 0.03 0.37 0.06 0.04 0.50 0.00

12 0.16 0.23 0.04 0.17 0.39 0.01

60 0.32 0.10 0.09 0.31 0.16 0.02

INFL

Macro-only model 1 — — — 0.00 0.00 1.00

12 — — — 0.21 0.00 0.78

60 — — — 0.53 0.26 0.21

Yields-macro model 1 0.02 0.00 0.00 0.04 0.00 0.94

12 0.04 0.00 0.03 0.29 0.01 0.63

60 0.09 0.05 0.12 0.44 0.11 0.20

Note: Each entry is the proportion of the forecast variance (at the specified forecast horizon) for capacity

utilization, funds rate and inflation that is explained by the particular factor.

F.X. Diebold et al. / Journal of Econometrics 131 (2006) 309–338 327
3.4. Formal tests of macro and yield curve interactions

The coefficient matrix A and the covariance matrix Q shown in Table 3 are crucial
for assessing interactions between macroeconomic variables and the term. We begin
by partitioning the 6� 6 A matrix into four 3� 3 blocks, as

A ¼
A1 A2

A3 A4

 !
, (10)

and similarly for the 6� 6 Q matrix,

Q ¼
Q1 Q2

QT
2 Q3

 !
, (11)
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Table 6

Tests of macro-yield interactions

No interaction No macro to yields No yields to macro

A2 ¼ 0;A3 ¼ 0 and Q2 ¼ 0 A2 ¼ 0 A3 ¼ 0 and Q2 ¼ 0

Number of restrictions 27 9 18

Likelihood ratio statistic 362.11 107.13 258.66

(0.00) (0.00) (0.00)

Wald statistic 452.41 93.78 345.76

(0.00) (0.00) (0.00)

Note: P-values appear in parentheses. A2; A3 and Q2 refers to the relevant blocks of A and Q matrices as

explained in the text. All test statistics in each column is a Chi-squared with the degrees of freedom equal

to the number of restrictions.

F.X. Diebold et al. / Journal of Econometrics 131 (2006) 309–338328
where the superscript T denotes transpose. We attribute all the covariance given by
the block Q2 to the effect of yield curve variables on the macro variables, as the latter
come before the former in the recursive ordering we employ. As such, there are two
links from yields to the macroeconomy in our setup: the contemporaneous link given
by Q2; and the effects of lagged yields on the macroeconomy embodied in A2:
Conversely, links from the macroeconomy to yields are embodied in A3:

We report in Table 6 the results of likelihood ratio and Wald tests of several key
restrictions on the A and Q matrices. Both tests overwhelmingly reject the ‘‘no
interaction’’ hypothesis of A2 ¼ A3 ¼ Q2 ¼ 0: Interestingly, less severe restrictions
allowing for unidirectional but not bidirectional links are similarly rejected. In
particular, we reject both the hypothesis of ‘‘no macro to yields’’ link ðA2 ¼ 0Þ and
the hypothesis of ‘‘no yields to macro’’ link ðA3 ¼ Q2 ¼ 0Þ:We conclude that there is
clear statistical evidence in favor of a bidirectional link between the macroeconomy
and the yield curve.

3.5. Robustness to an alternative identification strategy

Our results above are based on a recursive ordering of the variables. In this
section, we estimate a version of the yields-macro model with a diagonal Q matrix.
Imposition of the diagonality constraint allows us to sidestep issues of structural
identification and highlight macro-finance linkages, without being tied to particular
orderings or other identification schemes, which have been so contentious in the so-
called ‘‘structural’’ VAR literature. In Table 7, we provide estimates of A and the
diagonal elements of Q, which are very close to those reported in Table 3. Next we
repeat the linkage tests and report the results in Table 8. Because we now maintain
the assumption of diagonal Q throughout, the hypotheses tested correspond to
restrictions only on the A matrix. Interestingly, we find considerably less evidence
in favor of a yields to macro link than in the ‘‘non-diagonal Q’’ case reported in
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Table 7

Parameter estimates, yields-macro model, diagonal Q

Lt�1 St�1 Ct�1 CUt�1 FFRt�1 INFLt�1 m Qii

Lt 0.89 �0.07 �0.02 �0.01 0.08 0.02 7.60 0.09

(0.03) (0.04) (0.02) (0.01) (0.03) (0.02) (1.13) (0.01)

St �0.41 0.50 0.03 0.03 0.36 0.03 �1.48 0.30

(0.07) (0.07) (0.04) (0.01) (0.06) (0.03) (0.35) (0.03)

Ct 0.17 0.15 0.84 0.01 �0.12 0.00 �0.43 0.84

(0.12) (0.12) (0.04) (0.02) (0.10) (0.04) (0.61) (0.08)

CUt 0.09 0.00 0.00 1.00 �0.08 �0.02 80.72 0.37

(0.08) (0.08) (0.03) (0.01) (0.07) (0.02) (1.17) (0.03)

FFRt 0.02 �0.06 0.02 0.05 0.97 0.05 6.61 0.42

(0.08) (0.09) (0.03) (0.02) (0.06) (0.05) (1.30) (0.03)

INFLt �0.04 �0.03 �0.01 0.03 0.04 0.99 4.28 0.05

(0.03) (0.03) (0.01) (0.00) (0.02) (0.01) (1.43) (0.00)

Note: Each row represents the transition equation for the respective state variable. Bold entries denote

parameter estimates significant at the 5 percent level. Standard errors appear in parentheses.

Table 8

Tests of transition matrix restrictions, diagonal Q

No interaction No macro to yields No yields to macro

A2 ¼ 0 and A3 ¼ 0 A2 ¼ 0 A3 ¼ 0

LR 123.81 101.94 24.85

(0.00) (0.00) (0.00)

Wald 249.23 115.34 12.50

(0.00) (0.00) (0.19)

Note: P-values appear in parentheses.

F.X. Diebold et al. / Journal of Econometrics 131 (2006) 309–338 329
Table 6: the Wald test statistic of the null hypothesis of no yields to macro link has a
p-value of 0.19.

We also compute the impulse responses for this version of the model. In Fig. 6 we
show both point and interval estimates of the impulse responses from the earlier-
reported non-diagonal Q version of the yields-macro model, along with the point
estimates of the impulse responses from the diagonal Q version for comparison.
With only a few exceptions out of 36 impulse response functions (e.g. the responses
of capacity utilization and funds rate to a shock in slope), the differences are
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Fig. 6. Impulse responses of yields-macro model with a diagonal Q (dashed lines) and a non-diagonal Q

(solid lines with solid confidence intervals).
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negligible. The same is of course also true for the variance decompositions, which we
show for the diagonal Q model in Table 9, and which are close to those reported
earlier for the non-diagonal Q version, with the possible exception of the significantly
lower contribution of yield curve variables to the variation in the funds rate. This
result is in line with the weak yield-to-macro linkage already documented for this
version of the model.
4. Examining the expectations hypothesis

It is useful to contrast our representation of the yield curve with others that have
appeared in the literature. Here we relate our yield curve modeling approach to the
traditional macroeconomic approach based on the expectations hypothesis.

The expectations hypothesis of the term structure states that movements in long
rates are due to movements in expected future short rates. Any term or risk premia
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Table 9

Variance decompositions, yields-macro model, diagonal Q

Horizon L S C CU FFR INFL

1-Month yield

1 0.23 0.62 0.00 0.00 0.14 0.00

12 0.11 0.16 0.00 0.09 0.63 0.01

60 0.23 0.08 0.07 0.35 0.24 0.03

12-Month yield

1 0.33 0.37 0.22 0.00 0.08 0.00

12 0.23 0.11 0.10 0.07 0.49 0.01

60 0.29 0.07 0.11 0.31 0.18 0.04

60-Month yield

1 0.67 0.06 0.23 0.00 0.03 0.00

12 0.54 0.05 0.08 0.01 0.31 0.01

60 0.37 0.07 0.11 0.25 0.15 0.06

CU

1 0.00 0.00 0.00 1.00 0.00 0.00

12 0.03 0.00 0.00 0.78 0.17 0.00

60 0.05 0.01 0.02 0.55 0.28 0.08

FFR

1 0.00 0.00 0.00 0.00 1.00 0.00

12 0.04 0.01 0.00 0.10 0.83 0.01

60 0.20 0.04 0.07 0.34 0.33 0.02

INFL

1 0.00 0.00 0.00 0.00 0.01 0.98

12 0.00 0.03 0.04 0.20 0.03 0.70

60 0.03 0.02 0.08 0.48 0.19 0.20

Note: Each entry is the proportion of the forecast variance (at the specified forecast horizon) for a 1-, 12-

or 60-month yield and capacity utilization, funds rate and inflation that is explained by the particular

factor.
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are assumed to be constant through time. In terms of our notation above, which
pertains to the pure discount bond yields in our data set, the theoretical bond yield
consistent with the expectations hypothesis is

ytðtÞ
EH
� ð1=tÞ

Xt�1
i¼0

Etytþið1Þ þ ct, (12)

where c is a term premium that may vary with the maturity t but assumed to be
constant through time.
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The expectations hypothesis has long been a key building block in macro-
economics both in casual inference and formal modeling (see, for example, Fuhrer
and Moore (1995), or Rudebusch (1995)). However, various manifestations of the
failure of the expectations hypothesis have been documented at least since Macaulay
(1938). Campbell and Shiller (1991) and Fuhrer (1996) provide recent evidence on
the failure of the expectations hypothesis, and we use their methodology to examine
it in the context of our model. Specifically, we compare the theoretical bond yields,
ytðmÞ

EH ; constructed via (12) under the assumption that the expectations hypothesis
holds, with the actual bond yields ytðmÞ: We construct the expected future 1-month
yields by iterating forward the estimated yields-macro model using Eq. (50) and the
measurement equation (60) for ytð1Þ; and then we compute the theoretical bond yields
at each point in time using Eq. (12).

In Fig. 7, we show for six maturities ðm ¼ 3; 12; 24; 36; 60; 120Þ the theoretical
yields implied by the expectations hypothesis, together with the actual yields. As in
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Fig. 7. Actual yields (solid) and yields implied by the expectations hypothesis (dashed).
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Fuhrer (1996), throughout our sample there are large deviations between the
theoretical and actual yields, especially at longer maturities.24 Nevertheless, the
actual and theoretical rates move together most of the time. Over the entire
sample, for example, the correlation between the actual 10-year and 1-month yield
spread, ytð120Þ � ytð1Þ; and the theoretical spread, ytð120Þ

EH
� ytð1Þ; is 0.60.

Furthermore, during certain periods the actual and theoretical rates move very
closely together. This partial success of the expectations hypothesis is consistent
with Fuhrer (1996) and Kozicki and Tinsley (2001), who argue that much of the
apparent failure of the expectations hypothesis reflects the assumption of a
constant Fed reaction function—and in particular a constant inflation target—
over the entire sample. Indeed, the expectations hypothesis fits much better during
the second half of the sample, when inflation expectations were likely better
anchored.
5. Summary and conclusions

We have specified and estimated a yield curve model that incorporates both yield
factors (level, slope, and curvature) and macroeconomic variables (real activity,
inflation, and the stance of monetary policy). The model’s convenient state-space
representation facilitates estimation, the extraction of latent yield-curve factors, and
testing of hypotheses regarding dynamic interactions between the macroeconomy
and the yield curve. Interestingly, we find strong evidence of macroeconomic effects
on the future yield curve and somewhat weaker evidence of yield curve effects on
future macroeconomic developments. Hence, although bidirectional causality is
likely present, effects in the tradition of Ang and Piazzesi (2003) seem relatively more
important than those in the tradition of Estrella and Hardouvelis (1991), Estrella
and Mishkin (1998), and Stock and Watson (2000). Of course, market yields do
contain important predictive information about the Fed’s policy rate. We also relate
our yield curve modeling approach to a traditional macroeconomic approach based
on the expectations hypothesis. The results indicate that the expectations hypothesis
may hold reasonably well during certain periods, but that it does not hold across the
entire sample.

From a finance perspective, our analysis is unusual in that we do not impose
no-arbitrage restrictions. However, such an a priori restriction may in fact be
violated in the data due to illiquidity in thinly traded regions of the yield curve, so
imposing it may be undesirable. Also, if the no-arbitrage restriction does indeed
hold for the data, then it will at least approximately be captured by our fitted
yield curves, because they are flexible approximations to the data. Nevertheless,
in future work, we hope to derive the no-arbitrage condition in our framework and
explore whether its imposition is helpful for forecasting, as suggested by Ang and
Piazzesi (2003).
24Not surprisingly, a formal statistical test along the lines of Krippner (2002) rejects the restrictions

placed by the expectations hypothesis on the yields-macro model.
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Appendix A. Calculation of impulse response functions and variance decompositions

In this appendix, we describe the computation of the impulse response functions
(IRFs) and variance decompositions (VDs) for our models. All models in the paper
can be written in VAR(1) form,

yt ¼ mþ Ayt�1 þ et, (A.1)

where yt is an m� 1 vector of endogenous variables, m is the constant vector and A is
the m�m transition matrix. The residuals et follow

et � Nð0;OÞ, (A.2)

where O is a (potentially non-diagonal) variance-covariance matrix. In order to find
the IRFs and VDs, we must write the VAR(1) in moving average (MA) form. Letting
Im denote the m�m identity matrix, the unconditional mean of y is c ¼ ðIm �

AÞ�1m; and we can write the system as

ðyt � cÞ ¼ mþ Aðyt�1 � cÞ þ et. (A.3)

Assuming that A satisfies the conditions for covariance stationarity, we can write the
MA representation of the VAR as

ðyt � cÞ ¼ C0St þC1St�1 þC2St�2 þ � � � ¼
X1
i¼0

Ciet�i, (A.4)

where C0 ¼ Im and Ci ¼ Ai for i ¼ 1; 2; . . . :
A.1. Impulse-response functions

We define the IRF of the system as the responses of the endogenous variables to
one unit shocks in the residuals. One would often see responses to a ‘‘one standard
deviation’’ shock instead of the ‘‘one unit’’ shock that we use. Because all the
variables we use in our analysis are in percentage terms we find it more instructive to
report results from one percentage point shocks to the residuals.
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A.1.1. Diagonal O
The response of yi

t to a one unit shock to ej
t�k is

qyi
t=qe

j
t�k ¼ ðCkÞij , (A.5)

where ðCkÞij is the ði; jÞ element of the corresponding matrix. To compute the
asymptotic standard errors of the IRFs, we follow Lütkepohl (1990). Let a ¼ vecðAÞ

and s ¼ vecðOÞ: Suppose that

ffiffiffiffi
T
p â� a

ŝ� s

� �
* N

0

0

� �
;

Sa 0

0 Ss

 !" #
. (A.6)

Then the asymptotic distribution of the IRFs can be derived usingffiffiffiffi
T
p

vecðĈk �CÞ* Nð0;GkSaG0kÞ, (A.7)

where

Gk ¼ qvecðCkÞ=qa0 ¼
Xk�1
i¼0

ðA0Þk�1�i
�Ci. (A.8)

A.1.2. Non-diagonal O
When O is non-diagonal, we cannot compute the IRFs using the original residuals,

et: We use a Cholesky decomposition to obtain a lower-triangular matrix P that
satisfies O ¼ PP0 to define nt ¼ P�1et: The transformed residuals have an identity
covariance matrix, Eðntn0tÞ ¼ P�1OP�1

0
¼ P�1PP0P�1

0

¼ Im: The response of yt to a
one unit shock to nj

t�k is

qyt=qn
j
t�k ¼ Ckpj=

ffiffiffiffiffiffi
Ojj

p
, (A.9)

where pj is the jth column of P and Ojj is the ðj; jÞ element of the original variance
covariance matrix.

To compute the asymptotic standard errors of the IRFs, assume that (A.6) holds
where now s ¼ vechðOÞ:Denote by Yk a matrix whose ði; jÞth element is the response
of the ith variable in period t to a one standard deviation shock to the jth variable in
period t-k; that is, the jth column of Yk is given by Ckpj : Then the asymptotic
distribution of Yk can be derived usingffiffiffiffi

T
p

vecðŶk �YÞ* Nð0;CkSaC0k þ C̄kSsC̄
0

kÞ, (A.10)

where

C0 ¼ 0; Ck ¼ ðP
0 � ImÞGk; k ¼ 1; 2; . . . , (A.11)

C̄k ¼ ðIm �CkÞH ; k ¼ 0; 1; 2; . . . , (A.12)

H ¼ qvecðPÞ=qs0 ¼ L0mfLmðIm2 þ KmmÞðP� ImÞL
0
mg
�1, (A.13)

Lm is a matrix such that vechðF Þ ¼ LkvecðF Þ; Kmm is a matrix such that KmmvecðGÞ ¼

vecðG0Þ; and Gk is as defined in (A.8).
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A.2. Variance decompositions

The contribution of the jth variable to the mean squared error (MSE) of the s-
period-ahead forecast, under the assumption of diagonal O is

MSEjðsÞ ¼ varðej
tÞ½I jI

0
j þC1I jI

0
jC
0
1 þ � � � þCs�1I jI

0
jC
0
s�1�, (A.14)

while for the non-diagonal case it is

MSEjðsÞ ¼ ½pjp
0
j þC1pjp

0
jC
0
1 þ � � � þCs�1pjp

0
jC
0
s�1�. (A.15)

The MSE is given by

MSEðsÞ ¼
Xk

j¼1

MSEjðsÞ, (A.16)

where both MSE and MSEj are m�m matrices. We define the VD at horizon s as
the fraction of MSE of the ith variable due to shocks to the jth variable:

VDC
j
iðsÞ ¼MSE

j
iiðsÞ=MSEiiðsÞ, (A.17)

where MSEii and MSE
j
iiðsÞ denote the ði; iÞ elements of the respective matrices.

To compute the VD of the yields, we combine the result above with the
measurement equation for the yields,

mt ¼ b1 þ aðtÞb2 þ gðtÞb3, (A.18)

where aðtÞ and gðtÞ follow from Eq. (1). The contribution of the jth variable to the
MSE of the s-period ahead forecast of the yield at maturity t is given by

~MSE
j
ðs; tÞ ¼MSE

j
11ðsÞ þ aðtÞ2MSE

j
22ðsÞ þ gðtÞ2MSE

j
33ðsÞ

þ 2aðtÞMSE
j
12ðsÞ þ 2gðtÞMSE

j
13ðsÞ þ 2aðtÞgðtÞMSE

j
23ðsÞ,

ðA:19Þ

where we assume that the factors b1;b2 and b3 are the first three elements of the
vector y: Similarly, the MSE of the s-period ahead forecast of the yield at maturity t
is given by

~MSEðs; tÞ ¼
Xk

j¼1

~MSE
j
ðs; tÞ (A.20)

and the VD of the yield with maturity t is the MSE of the yield due to the jth variable
at horizon s:

~VDC
j

iðs; tÞ ¼ ~MSE
j

iiðs; tÞ= ~MSEiiðs; tÞ. (A.21)
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