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ABSTRACT

A large literature over several decades reveals both extensive concern with
the question of time-varying betas and an emerging consensus that betas are
in fact time-varying, leading to the prominence of the conditional CAPM.
Set against that background, we assess the dynamics in realized betas,
vis-d-vis the dynamics in the underlying realized market variance and in-
dividual equity covariances with the market. Working in the recently pop-
ularized framework of realized volatility, we are led to a framework of
nonlinear fractional cointegration: although realized variances and covar-
iances are very highly persistent and well approximated as fractionally
integrated, realized betas, which are simple nonlinear fimctions of those
realized variances and covariances, are less persistent and arguably best
modeled as stationary I(0) processes, We conclude by drawing implications
for asset pricing and portfolio managenent,
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1. INTRODUCTION

One of the key insights of asset pricing theory is also one of the simplest:
only systematic risk should be priced. Perhaps not surprisingly, however,
there is disagreement as to the sources of systematic risk. In the one-factor
capital asset pricing model (CAPM), for example, systematic risk is deter-
mined by covariance with the market (Sharpe, 1963; Lintner, 1965a, b),
whereas, in more elaborate pricing models, additional empirical character-
istics such as firm size and book-to-market are seen as proxies for another
set of systematic risk Factors {(Fama & French, 1993).!

As with most important scientific models, the CAPM has been subject to
substantial criticism (e.g., Fama & French, 1992). Nevertheless, to paraphrase
Mark Twain, the reports of its death are greatly exaggerated. In fact, the one-
factor CAPM remains alive and well at the frontier of both academic research
and industry applications, for at least two reasons. First, recent work reveals
that it often works well — despite its wrinkles and warts — whether in
traditional incarnations (e.g., Ang & Chen, 2003) or more novel variants
(e.g., Cohen, Polk, & Vuolteenaho, 2002; Campbell & Vuolteenaho, 2004},
Second, competing multi-factor pricing models, although providing improved
statistical fit, involve factors whose economic interpretations in terms of sys-
tematic risks remain unclear, and moreover, the stability of empirically mo-
tivated multi-factor asset pricing relationships often appears tenuous when
explored with true out-of-sample data, suggesting an element of data mining.”

In this paper, then, we study the one-factor CAPM, which remains central
to financial economics nearly a half century after its introduction. A key
question within this setting is whether stocks’ systematic risks, as assessed by
their correlations with the market, are constant over time — i.e., whether
stocks' market betas are constant. And if betas are not constant, a central
issue becomes how to understand and formally characterize their persistence
and predictability vis-d-vis their underlying components.

The evolution of a large literature over several decades reveals both ex-
tensive concern with this question and, we contend, an eventual implicit
consensus that betas are likely time-varying.” Several pieces of evidence
support our contention. First, leading texts echo it, For example, Huang
and Litzenberger (1988) assert that “It is unlikely that risk premiums and
betas on individual assets are stationary over time” (p. 303). Second,
exphcitly dynamic betas are often modeled nonstructurally via time-varving
parameter regression, in a literature tracing at least to the early “return to
normality” model of Rosenberg (1973), as implemented in the CAPM by
Schaefer Broaley, Hodges, and Thomas (1975). Third, even in the absence of
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explicit allowance for time-varying betas, the CAPM is typically esti-
mated using moving estimation windows, usually of 5-10 years, presum-
ably to guard against beta variation (e.g., Fama, 1976; Campbell, Lo, &
MacKinlay, 1997). Fourth, theoretical and empirical inquiries in asset pric-
ing are often undertaken in conditional, as opposed to unconditional,
framewaorks, the essence of which is to allow for time-varying betas, pre-
sumably because doing so is viewed as necessary for realism,

The motivation for the conditional CAPM comes from at least two sources.
First, from a theoretical perspective, financial economic considerations sug-
gest that betas may vary with conditioning variables, an idea developed the-
oretically and empirically in a large literature that includes, among many
others, Dybvig and Ross (1985), Hansen and Richard (1987), Ferson, Kandel,
and Stambaugh (1987), Ferson and Harvey (1991), Jagannathan and Wang
(1996), and Wang (2003)."* Second, from a different and empirical perspective,
the financial econometric volatility literature (see Andersen, Bollerslev, &
Diebold, 2005, for a recent survey) has provided extensive evidence of wide
fluctuations and high persistence in asset market conditional variances, and in
individual equity conditional covariances with the market. Thus, even from a
purely statistical viewpoint, market betas, which are ratios of time-varying
conditional covariances and variances, might be expected to display persistent
Auctuations, as in Bollerslev, Engle, and Wooldridge (1988). In fact, unless
some special cancellation occurs — in a way that we formalize — betas would
inherit the persistence features that are so vividly present in their constituent
components.

Set against this background, we assess the dynamics in betas vis-d-vis the
widely documented persistent dynamics in the underlying variance and co-
variances. We proceed as follows: In Section 2, we sketch the framework,
both economic and econometric, in which our analysis is couched. In
Section 3, we present the empirical results with an emphasis on analysis of
persistence and predictability, In Section 4, we formally assess the uncer-
tainty in our beta estimates. In Section 5, we offer summary, conclusions,
and directions for future research.

2. THEORETICAL FRAMEWORK

Our approach has two key components. First, in keeping with the recent move
toward nonparametric volatility measurement, we cast our analysis within
the framework of realized variances and covariances, or equivalently, empir-
ical quadratic variation and covariation. That is, we do not entertain a null
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hypothesis of period-by-period constant betas, but instead explicitly allow for
continuous evolution in betas. Our “realized betas™ are (continuous-record)
consistent for realizations of the underlying ratio between the integrated stock
and market return covariance and the integrated market variance.” Second, we
work in a flexible econometric framework that allows (or — without imposing —
fractional integration and/or cointegration between the market variance and
individual equity covariances with the market.

2.4, Realized Quarterly Variances, Covariances, and Betas

We provide estimates of quarterly betas, based on nonparametric realized
quarterly market variances and individual equity covariances with the mar-
ket. The quarterly frequency is appealing from a substantive financial eco-
nomic perspective, and it also provides a reasonable balance between
efficiency and robustness to microstructure noise. Specifically, we produce
our gquarterly estimates using underlying daily returns, as in Schwert (1989),
so that the sampling frequency is quite high relative to the quarterly horizon
of interest, yet low enough so that contamination by microstructure noise is
not a serious concern for the highly liquid stocks that we study. The daily
frequency further allows us to utilize a long sample of data, which is not
available when sampling more frequently.

Suppose that the logarithmic N = | vector price process, p, follows a
multivariate continuous-time stochastic volatility diffusion,

dp, = p,di + QdW, (1)

where W, denotes a standard N-dimensional Brownian motion, and both
the process for the N = N positive definite diffusion matrix, €, and the
N-dimensional instantaneous drift, pu,, are strictly stationary and jointly in-
dependent of the W, process. For our purposes it is helpful to think of the
Nth element of p, as containing the log price of the market and the ith
element of p, as containing the log price of the ith individual stock included
in the analysis, so that the corresponding covariance matrix contains both
the market variance, say r.ri,li = Lwwys, and the individual equity covariance
with the market, &, = . Then, conditional on the sample path
realization of u, and €1, the distribution of the continuously compounded

h-period return, Fong = Pyn — P 18

& L
r.'+.|':.b1”’{#.r+:-nr+r}l:=u ¥ (./IJ‘ HygedT, ./L: ﬂrwdf) (2)
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where o{ +;-ﬂr+r}“_.;. denotes the o-field generated by the sample Patha of
Hes: and Q.. for 0<t<h. The integrated diffusion matrix [ €Q,.d 2
therefore provides a natural measure of the true latent i-period volatility.®
The requirement that the innovation process, W, is independent of the drift
and diffusion processes is rather strict and precludes, for example, the
asymmetric relations between return innovations and volatility captured by
the so-called leverage or volatility feedback effects. However, from the re-
sults in Meddahi (2002), Barndorff-Nielsen and Shephard (2003), and
Andersen, Bollerslev, and Meddahi (2004), we know that the continuous-
record asymptotic distribution theory for the realized covariation continues
to provide an excellent dppmxtmﬂlmn for empirical high-frequency real-
ized volatility measures.” As such, even if the conditional return distri-
bution result (2) does not apply in full generality, the evidence presented
below, based exclusively on the realized volatility measures, remains trust-
worthy in the presence of asymmetries in the return innovation—volatility
relations.

By the theory of quadratic variation, we have that under weak regularity
conditions, and regardless of the presence of leverage or volatility feedback
effects, that

7
Z Tijdd * Fripap — / Q. dr — 0 {3)
f=l,, .,[.I'i.l"lfl] o

almost surely for all ¢ as the sampling frequency of the returns increases, or
& — 0. Thus, by summing sufficiently finely sampled high-frequency returns,
it is possible to construct ex-post realized volatility measures for the integrated
latent volatilities that are asymptotically free of measurement error, This
contrasts sharply with the common use of the cross-product of the h-period
retUrns, roppp + Moy 4. 5 a simple ex post (co)variability measure, Although the
squared return (innovation) over the forecast horizon provides an unbiased
estimate for the integrated volatility, it is an extremely noisy estimator, and
predictable variation in the true latent volatility process is typically dwarfed
by measurement error. Moreover, for longer horizons any conditional mean
dependence will tend to contaminate this variance measure, In contrast, as the
sampling frequency is lowered, the impact of the drift term vanishes, thus
effectively annihilating the mean.

These assertions remain valid if the underlying continuous time process
in Eq. (1) contains jumps, so long as the price process is a special semi-
martingale, which will hold il it is arbitrage-free. Of course, in this case the
limit of the summation of the high-frequency returns will involve an additional
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jump component, but the interpretation of the sum as the realized A-period
return volatility remains intact.

Finally, with the realized market variance and realized covariance be-
tween the market and the individual stocks in hand, we can readily define
and empirically construct the individual equity “realized betas.” Toward
that end, we introduce some formal notation. Using an initial subscript to
indicate the corresponding element of a vector, we denote the realized mar-

ket volatility by .
D Fimeiad @
j.=|....,[.fr.l'L‘|.]

2 i
Vo preh =

and we denote the realized covariance between the market and the ith in-
dividual stock return by

ﬁ.«M.;..«-Hr = Z Fiita+ia.a PN +A4 (3}
J=lafhia)

We then define the associated realized beta as

b i?'.Uod’.:,.'+.l'r

ﬂr'..f,H.l'r T (6)
LITRREY

Under the assumptions invoked for Eq. (1), this realized beta measure is
consistent for the true underlying integrated beta in the following sense:

ﬁf Q{r‘.‘.‘}.:ﬁdt (7)
_{;I ﬂf.‘h’.’v’],r+ AT

almaost surely for all ¢ as the sampling frequency increases, or A — 0,

A number of comments are in order. First, the integrated return covar-
iance matrix, j;l Q,.dr, is treated as stochastic, so both the integrated
market variance and the integrated covariances of individual equity returns
with the market over [¢, t+h] are ex ante, as of time ¢, unobserved and
governed by a non-degenerate (and potentially unknown) distribution.
Moreover, the covariance matrix will generally vary continuously and ran-
domly over the entire interval, so the integrated covariance matrix shouldl be
interpreted as the average realized covariation among the retwrn series.
Second, Eq. (3) makes it clear that the realized market volatility in (4) and
the realized covariance in (5) are continuous-record consistent estimators of
the (random) realizations of the underlying integrated market volatility and
covariance, Thus, as a corollary, the realized beta will be consistent for the
integrated beta, as stated in (7). Third, the general representation here

lﬁu.:+}: e ﬁ!.r.;+ﬁ ==
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encompasses the standard assumption of a constant beta over the meas-
urement or estimation horizon, which is attained for the degenerate case of
the £, process being constant throughout each successive h-period meas-
urement interval, or £, = ). Fourth, the realized beta estimation procedure
in Eq. (4)-(6) is implemented through a simple regression (without a con-
stant term) of individual high-frequency stock returns on the corresponding
market return. Nonetheless, the interpretation is very different from a
standard regression, as the Ordinary Least Square (OLS) point estimate
now represents a consistent estimator of the ex post realized regression
coefficient obtained as the ratio of unbiased estimators of the average re-
alized covariance and the realized market variance. The associated contin-
uous-record asymptotic theory developed by Barndorff-Nielsen and
Shephard (2003) explicitly recognizes the diffusion setting underlying this
regression interpretation and hence Tacilitates the construction of standard
errors [or our beta estimators,

2.2, Nowlinear Fractional Cointegration: A Common Long-Mentory
Feature in Variances and Covarviances

The possibility of common persistent components is widely recognized in
modern multivariate time-series econometrics. It is also important for our
analysis, because there may be common persistence features in the under-
lying variances and covariances from which betas are produced.

The idea of a common feature is a simple generalization of the well-
known cointegration concept. If two variables are integrated but there exists
a function [ of them that is not, we say that they are cointegrated, and we
call f the conintegrating function. More generally, if’ two variables have
property X but there exists a function of them that does not, we say that
they have common feature X, A key situation is when X corresponds to
persisience, in which case we call the function of the two variables that
eliminates the persistence the copersistence function. It will prove useful to
consider linear and nonlinear copersistence functions in turn.

Most literature focuses on linear copersistence functions, The huge co-
integration literature pioneered by Granger (1981) and Engle and Granger
(1987) deals primarily with linear common long-memory /(1) persistence fea-
tures. The smaller copersistence literature started by Engle and Kozicki {1993)
deals mostly with linear common short-memory {0} persistence features. The
idea of fractional cointegration, suggested hy Engle and Granger {1987} and
developed by Cheung and Lai (1993) and Robinson and Marinucci, (2001),
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among others, deals with linear common long-memory Iid) persistence
features, 0<d<1/2.

Our interest is closely related but different. First, it centers on nonlinear
copersistence functions, because betas are ratios. There is little literature on
nonlinear common persistence features, although they are implicitly treated
in Granger (1995). We will be interested in nonlinear common long-memory
I(d) persistence features, 0<d<1/2, effectively corresponding to nonlinear
fractional cointegration.”

Second, we are interested pnmanly in the case of known cointegrating
relationships. That is, we may not know whether a given stock’s covariance
with the market is fractionally cointegrated with the market variance, but if
it is, then there is a good financial economic reason (i.e., the CAPM) to
suspect that the cointegrating function is the ratio of the covariance to the
variance. This provides great simplification. In the integer-cointegration
framework with known cointegrating vector under the alternative, for ex-
ample, one could simply test the cointegrating combination for a unit root,
or test the significance of the error-correction term in a complete error-
correction model, as in Horvath and Watson (1995). We proceed in anal-
ogous fashion, examining the integration status (generalized to allow for
fractional integration) of the realized market variance, realized individual
equity covariances with the market, and realized market betas.

Our realized beta series are unfortunately relatively short compared to
the length required for formal testing and inference procedures regarding
(fractional) cointegration, as the fractional integration and cointegration
estimators proposed by Geweke and Porter-Hudak (1983), Robinson and
Marinueci (2001), and Andrews and Guggenberger (2003) tend to behave
quite erratically in small samples. In addition, there is considerable meas-
urement noise in the individual beta series so that influential outliers may
have a detrimental impact on our ability to discern the underlying dynamics.
Hence, we study the nature of the long range dependence and short-run
dynamics in the realized volatility measures and realized betas through in-
tentionally less formal but arguably more informative graphical means, and
via some robust procedures that utilize the joint information across many
series, to which we now turn,

3. EMPIRICAL ANALYSIS

We examine primarily the realized quarterly betas constructed from daily
returns. We focus on the dynamic properties of market betas vis-i-vis the
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dynamic properties of their underlying covariance and variance components.
We quantify the dynamics in a number of ways, including explicit measurement
of the degree of predictability in the tradition of Granger and Newbold {1986},

3.1. Dynamics of Quarterly Realized Variance, Covariances and Betas

This section investigates the realized quarterly betas constructed from daily
returns obtained from the Center for Research in Security Prices from J uly
1962 to September 1999. We take the market return r,,, to be the 30 Dow
Jones Industrial Average (DJIA), and we study the subset of 25 DJIA stocks
as of March 1997 with complete data from July 2, 1962 to September 17, 1999,
as detailed in Table 1. We then construct quarterly realized DJIA variances,
mdividual equity covariances with the market, and betas, 1962:3-1999:3 {149
observations).

1!1 Fig. 1, we provide a time-series plot of the quarterly realized market
variance, with fall 1987 included (top panel) and excluded (bottom panel). It
1s clear that the realized variance is quite persistent and, moreover, that the
fall 1987 volatility shock is unlike any other ever recorded, in that volatility
reverts to its mean almost instantaneously. In addition, our subsequent
wrrllputaticn of asymptotic standard errors reveals that the uncertainty as-
sociated with the fall 1987 beta estimate is enormous, to the point of ren-
dering it entirely uninformative. In sum, it is an exceptional outlier with
Po[&nliuily large influence on the analysis, and it is measured with huge
imprecision. Hence, following many other authors, we drop the fall 1987
observation from this point onward.

In Figs. 2 and 3, we display time-series plots of the 25 quarterly realized
covariances and realized betas,” Like the realized variance, the realized co-
variances appear highly persistent. The realized betas, in contrast, appear
noticeably less persistent. This impression is confirmed by the statistics
pre&gnled in Table 2: the mean Ljung—Box Q-statistic (through displacement
12) 1s 84 for the realized covariance, but only 47 for the realized beta,
although both are of course significant relative to a 3*(12) distribution.'®

The impression of reduced persistence in realized betas relative to realized
covariances is also confirmed by the sample autocorrelation functions for
the realized market variance, the realized covariances with the market, and
the realized betas shown in Fig. 4."' Most remarkable is the close corre-
spondence between the shape of the realized market variance correlogram
and the realized covariance correlograms. This reflects an axlnmrdiﬁary
high degree of dependence in the correlograms across the individual realized
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Table 1. The Dow Jones Thirty.

Company Name Ticker Data Range

Alcoa Inc, AA O7/02/1962 to 09/17/1999
Allied Capital Corporation ALD 07/02/1962 to 0R/17/1999
American Express Co, AXF O5/31/1977 to 09/17/199%
Bowing Co. BA 07/02/1962 to 09/17/1999
Caterpillar Inc. CAT 070271962 1o 09/17/1999
Chevron Corp. CHYVY 070271962 10 09/17/1999
DuPont Co. DD 070271962 to D9/17/1999
Walt Disnev Co, (] B 07/02/1962 to 09/17/1999
Eastman Kodak Co. EK 0702/ 1962 to 0917199
General Electric Co. GE 07/02/1962 to 09/17/1999
General Motors Corp. GM 07/02/19%62 to 09/17/1999
Groodvear Tire & Rubber Co, GT 07/02/1962 to 09/17/1999
Hewlett—Packard Co, HWP 077021962 to 09/17/199%
International Business Machines Corp, 1BM 07/02/1962 to 09/17/1999
International Paper Co. | {od 07/02/1962 to 09/17/1999
Johnson & Johnson JNI D7/02/1962 to 09171999
JP Morgan Chase & Co. JPM" 03/05/1969 to 09/17/1999
Coca-Cola Co. KO D7/02/1962 to 09/17/1599
MecDonald’s Corp. MCD* 07/05/1966 Lo 09/17/1969
Minnesota Mining & Manufacturing Co. MMM 0702/ 1962 to 09/17/1999
Philip Morns Co. MO 07/02/1962 to 09171999
Merck & Co. MRE 07/02/1962 1o 09/17/1999
Procter & Gamble Co, PG 07002/ 1962 to 0%/17/1999
Sears, Rocbuck and Co. 3 070271962 to O9/17/1999
AT&T Corp. T 07/02/1962 to D%/17/1999
Travelers Group Ine, TRV 10/29/ 1986 to 09/17/1999
Union Carbide Corp. UK 07/02/1962 to 09/17/1999
United Technologies Corp. uUTx 070271962 1o 09/17/1999
Wal-Mart Stores Inc. WMT 11/20/1972 to 09/17/1999
Exxon Corp. KON 07/02/1962 to 09/17/1999

Nate; A summary of company names and tickers, and the range of the data are examined, We
use the Dow Jones Thirty as of March 1997,
*Stocks with incomplete data, which we exclude from the analysis,

covariances with the market, as shown in Fig. 5. In Fig. 4, it makes the
median covariance correlogram appear as a very slightly dampened version
of that for the market variance. This contrasts sharply with the lower and
gently declining pattern for the realized beta autocorrelations. Intuitively,
movements of the realized market variance are largely reflected in move-
ments of the realized covariances; as such, they largely “cancel” when we
form ratios (realized betas). Consequently, the correlation structure across
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Table 2. The Dynamics of Quarterly Realized Market Variance,
Covariances and Betas.

2, 0 ADF' ADF*  ADF ADF*
1.09.50 =5159 =31792 4014 =3.428
O Fey Fir) e

@  ADF' ADF  ADF ADF 0 ADF ADF  ADF  ADF
Min, 47765 —6.188 —4.651 —4.621 —4.023 66340 —B658 —6.750 —5.482 —5252
0.10 58005 —58E0 —4.383 —4469 —3BM 15026 —T.445 —6.419 —5.426 —4.877
025 69.948 —5602 —4.239 —4.352 =3.742 26267 —6425 =5.376 —5.047 —4.294
0.50 84190 —5.478 —4.078 —4.179 —3.631 46593 —612d4 —5.026 3896 —3728
0.75 100,19 —5.235 —3979 —4.003 —3438 66842 —5431 —4.188 —3.724 —3313
090 11928 —4915 3777 —3738 —3253 0667 —4701 -3404 —3225 —2080
Max. 15096 —4.499 —3.336 —3690 ~2986 13471 —4600 —3.315 —2.808 —2.493
Mean B7.044 —5435 —4.085 —4.159 —3580 53771 —6.000 —4925 —4.245 —3.838
8D, 24507 —0386 0272 0250 0239 35780 1026 0999 0802 0.729

Note: Summary on the aspects of the time-series dependence structure of quarterly realized
market variance, covariances, and realized betas, 0 denotes the Ljung-Box portmantenu sta-
tistic for up to 1 2th-order autocorrelation, and ADF denotes the avgmented Dickey-Fuller unit
root test, with ntercept and with { augmentation lags. The sample covers the period from [%62:3
through 1999:3, with the 1987:4 outlier excluded, for a total of 148 observations. We calculate
the quarterly realized variance, covariances, and betas from daily returns.

The work of Andersen et al. (2001a) and Andersen et al. (2003), as well as
that of many other authors, indicates that asset return volatilities are well-
described by a pure fractional noise process, typically with the degree of
integration around = (.4." That style of analysis is mostly conducted on
high-frequency data. Very little work has been done on long memory in
equity variances, market covariances, and market betas at the quarterly fre-
quency, and it is hard to squeeze accurate information about & directly from
the fairly limited quarterly sample. It is well-known, however, that if a flow
variable is f{d), then it remains o) under temporal aggregation. Hence, we
can use the results of analyses of high-frequency data, such as Andersen et al,
{2003}, to help us analyze the quarterly data. After some experimentation,
and in keeping with the typical finding that d = (.4, we setiled on = 0.42,

In Fig. 7, we graph the sample autocorrelations of the quarterly realized
market variance, the median realized covariances with the market, and the
median realized betas, all prefiltered by (1—L)"**. It is evident that the dy-
namics in the realized variance and covariances are effectively annihilated by
filtering with (1—L)"*?, indicating that the pure fractional noise process with
d =042 is indeed a good approximation to their dynamics. Interestingly,
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Fig. 4. Sample Autocorrelations of Quarterly Realized Market Variance, Median
Sample Autocorrelations of Quarterly Realized Covariances and Median Sample Au-
tocorrelations of Quarterly Realized Betas. Note: The First 36 Sample Autocorrelations
cd_' Quarterly Realized Market Variance, the Medians across Individual Stocks of the
First 36 Sample Autocorrelations of Quarterly Realized Covariances and the Medians
across Individual Stocks of the First 36 Sample Autocorrelations of Quarterly Realized
Betas are Shown. The Dashed Lines Denote Bartlett's Approximate 95 Percent Con-
fidence Band in the White Noise Case. Q@ Denotes the Ljung-Box Portmanteau Statistic
for up to 12th-Order Autocorrelation. The Sample Covers the Period from 1962:3
through 1999:3, with the 1987:4 Outlier Excluded, for a Total of 148 Observations. We
Calculate the Quarterly Realized Variance, Covariances, and Betas fram Dhaily Returns,

however, filtering the realized betas with (1—L)*** appears to produce over-
alf{.fferem.-ing, as evidenced by the fact that the first autocorrelation of the frac-
tionally differenced betas is often negative. Compare, in particular, the median
sample autocorrelation function for the prefiltered realized covariances to the
median sample autocorrelation function for the prefiltered realized betas. The
difference is striking in the sense that the first autocorrelation coefficient for
the betas is negative and much larger than those for all of the subsequent lags,
Recall that the standard error band for the median realized beta (not shown in
the lower panels, as it depends on the unknown cross-sectional dependence
structure} should be considerably narrower than for the other series in Fig. 7,
LI.""S. likely rendering the first-order correlation coefficient for the beta serics
significantly negative. This finding can be seen to be reasonably consistent
across the individual prefiltered covariance and beta correlation functions
displayed in Figs. 8§ and 9.

If fractional differencing of the realized betas by (1—L/°* may be “too
much,” then the question naturally arises as to how much differencing is **just
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for a Total of 148 Observations. We Calculate the Quarterly Realized Covariances from Daily Returns.
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Table 3. Inverted Roots of AR(p) Models for Quarterly Realized Betas,

0 5 8015 30 25 30 35 40

Stock  Inverted Roots {and Modulus of Dominant Inverted Root)
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Note: The inverted roots and modulus of the dominant root of the autoregressive lag operator & Bl i:_i A | !i; i B il | _:-JE_.
polynomials (1 — W - tIJ,LPL where @y, d, .. ..&’,. are the least-squires estimates i __:3_ it q : & E PR :.E E P
of the parameters of AR(p) models fit to the realized betas, with p selected by the AIC are = = i | _E]: - 5 _i?_;l; H = EII
shown, The sample covers the period from 1962:3 through 1999:3, with the 1987:4 outlier (= la E[ ], il i ¥ e H g .’?j
excluded, for a total of 148 observations. We calculate the quarterly realized variance, covar- b bmmTEoa mmoaoat P s
£ : : eocoagg S oo g R EIGDGﬁi?a cocdogg
innces, and betas from daeily returns,
—8 | § —— 5
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Regardless of the details, the basic idea of predictability measurement 1s == | : e z | : 3& : : ; gl i
simply to compare the expected loss of a short-horizon forecast to the ex- LTy i 'i L Bim i P Bl g E { it
pected loss of a very long-horizon forecast. The former will be much smaller e 4 {1" 2 1 | | Bile i 1 | %_. -
than the latter if the series is highly predictable, as the available conditioning | ( Fi-8 iq i8] iF J: 2 =l iq
information will then be very valuable. The Granger-Newbold measure, 2233353 33853331 I3353s% 238z331

which is the canonical case of the Diebold-Kilian measure (corresponding
to L({e) = ¢°, univariate €, and k = o0) compares the |-step-ahead forecast
error variance to that of the oo-step-ahead forecast error variance, i.e., the
unconditional variance of the series being forecast (assuming that it is finite).

Fdt

(Y]

'iipﬂ'_}, where

.o Wy are the Least Squares Estimates of the Parameters of A R(p) Models Fit to the Realized betas, with p Selected by
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In what follows, we use predictability measures to provide additional insight
into the comparative dynamics ol the realized variances and covariances versus
the realized betas. Given the strong evidence of fractional integration in the
realized market variance and covariances, we maintain the pure fractional noise
process for the quarterly realized market variance and the realized covariances,
namely ARFIMA(D, 0.42, 0). We then calculate the Granger-Newbold pre-
dictability G{/) analytcally, conditional upon the ARFIMA(0, 0.42, () dynam-
ics, and we graph it in Fig. 11 for j = 1,..., 7 quarters,"* The graph starts out as
high as 0.4 and decays only slowly over the first seven quarters. If the realized
beta likewise follows a pure fractional noise process but with a smaller degree
of integration, say ARFIMA(D, 0.20, 0), which we argued was plausible, then
the implied predictability is much lower, as also shown in Fig. 11. As we also
argued, however, the integration status of the realized betas is difficult to de-
termine. Hence, for the realized betas we also compute Granger-INewbold
predictability using an estimated AR(p) sieve approximation to produce esti-
mates of var(e, . ;) and var(x,}; this approach is valid regardless of whether the
true dynamics are short-memory or long-memory. In Fig. 12 we plot the beta
predictabilities, which remain noticeably smaller and more quickly decaying
than the covariance predictabilities, as is further clarified by comparing the
median beta predictability, also included in Fig. 11, to the market variance and
equity covariances predictability. 1t is noteworthy that the shorter-run ,beta
predictability - up to about four quarters — implied by the 4 R(p) dynamics is
considerably higher than for the 0.200 dynamics. Due to the long-memory
feature of the f{0.20) process this eventually reverses beyond five quarters.

4. ASSESSING PRECISION: INTERVAL ESTIMATES
OF BETAS

Thus far, we have largely abstracted from the presence of estimation error in
the realized betas. It is possible to assess the (time-varying) estimation error
directly using formal continuous-record asymptotics.

4.1, Continwous-Record Asymptotic Standard Errors
We first use the multivariate asymptotic theory recently developed by

Barndorff-Nielsen and Shephard (2003) to assess the precision of our re-
alized betas which are, of course, estimates of the underlying integrated
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be[ux._ T]’]!s helps us in thinking about separating “news from noise” when
examining temporal movements in the series,
From the discussion above, realized beta for stock i in quarter f is simply
W,
Z.,-=| Fiie¥ i

.IE}” =

N 2 » 10
H (10}

where ry, is the return of stock i on da i

: ¥y J of quarter ¢, r,,;, the return of the
DJIIA on IFIE}' 7 nlf_quartn?g t, and N, the number of units {e.é.'. days) into which
?uarler tis Eartatl_uncFl. Under appropriate regularity conditions that allow
OF non-stationarity in the series, Barndorff-Nielsen and Shephard (2003)
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In Fig. 13, we plot the pointwise 95 percent confidence intervals for the
quarterly betas. They are quite wide, indicating that daily sampling is not
adequate to drive out all measurement error. They are, given the width of
the bands, moreover, consistent with the conjecture that there is only limited
(short range) dependence in the realized beta series. )

The continuous record asymptotics discussed above directly points to the
advantage of using finer sampled data for improved beta measurements.
However, the advent of reliable high-frequency intraday data is, unfortu-
nately, a relatively recent phenomenon and we do not have access to such
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Using an AR(p) Model, with the Autoregressive Lag Order p Determined by the AIC, and Plot P;forj =1, ...

rl
=g

T {ARSH

Calculate the Quarterly Realized Betas from Dailv Returns.

- { . | A | > data for the full 1962:3-1999:3 sample period used in the empirical analysis so
. g g Ig : far. Noneth?Ims, to see how the reduction in measurement error afforded by
- I .'l "3 - Ehf.l‘ use .Df finer sample intradaily data manifests itself empirically in more
| = ,ll . ,." - I /| reliable inference, we reproduce in Fig. 14 the pointwise 95 percent confidence
1L - |§E et R TETTEN bands for the quarterly betas over the shorter 1993:1-1999:3 sample. These

bands may be compared directly to the corresponding quarterly realized beta
standard error bands over the identical time span based on a | 5-min sampling
scheme reported in Fig. 15" The improvement is readily visible in the
narrowing of the bands. It is also evident from Fig. 15 that there is quite
pronounced positive dependence in the realized quarterly beta measures. In

var(e.y; ) fvar(y,), Where var{e,)

Fig. 12, Predictability of Betas Based on AR(p) Sieve Approximation of Dynamics. Note: We Deline Predictability as
Covers the Period from 1962:3 through 1999:3, with the 1987:4 Outlier Excluded, for a Total of 148 Observations. We
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Ninety-Five Percent Confidence Intervals for Quarterly Beta, Short Sample, 15-Min Sampling. Note: The Time
the Realized Quarterly Betas from 15-min Returns.
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other words, the high-frequency beta measures importantly complement the
results for the betas obtained from the lower frequency daily data, by more
clearly highlighting the dynamic evolution of individual security betas. In the
web appendix to this paper (www.ssc.upenn.edu/~fdiebold), we perform a
preliminary analysis of realized betas computed from high-frequency data
over the shorter 7-year sample period. The results are generally supportive of
the findings reported here, but the relatively short sample available for the
analysis invariably limits the power of our tesls for fractional integration and
nonlinear cointegration. In the concluding remarks to this paper. we also
sketch a new and powerful econometric framework that we plan to pursue in
future, much more extensive, work using underlying high-frequency data,

4.2. HAC Asympiotic Standard Errors

As noted previously, the quarterly realized betas are just regression co-
efficients computed guarter-by-quarter from CAPM regressions using intra-
quarter daily data, One could obtain consistent estimates of the standard
errors of those quarterly regression-based betas using HAC approaches,
such as Newey-West, under the very stringent auxiliary assumption that the
period-by-period betas are constant, For comparison to the continuous-
record asymptotic bands discussed above, we also compute these HAC
standard error bands.

In Fig. 16, we provide the Newey-West 35 percent confidence intervals for
the quarterly realized betas. Comparing the figure to Fig. 13, there is not
much difference in the assessment of the estimation uncertainly inherent in
the quarterly beta measures obtained from the two alternative procedures
based on daily data. However, as noted above, there are likely important
gains to be had from moving to high-frequency intraday data.

5. SUMMARY, CONCLUDING REMARKS, AND
DIRECTIONS FOR FUTURE RESEARCH

We have assessed the dynamics and predictability in realized betas, relative
to the dynamics in the underlying market variance and covariances with the
market. Key virtues of the approach include the fact that it does not require
an assumed volatility model, and that it does not require an assumed model
of time variation in beta. We find that, although the realized variances and
covariances fluctuate widely and are highly persistent and predictable (as is
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well-known), the realized betas, which are simple non-linear functions of the
realized variances and covariances, display much less persistence and pre-
dictability.

The empirical literature on systematic risk measures, as captured by beta,
is much too large to be discussed in a sensible fashion here. Before closing,
however, we do want to relate our approach and results to the literature on
latent factor models and two key earlier papers that have important im-
plications for the potential time variation of betas and the further use of the
techniques developed here.

First, our results are closely linked to the literature on the latent factor
volatility model, as studied by a number of authors, including Diebold and
Nerlove (1989), Harvey, Ruiz, and Shephard (1994), King, Sentana, and
Wadhwani (1994), Fiorentini, Sentana, and Shephard (1998), and Jacquier
and Marcus (2000). Specifically, consider the model,

re=pBS +vu. Filde~©0h) (15a)
Uiy Eflr{[l, mf.z}, cov(oytye) = 0, Yisj, 1 (15hb)
where i, j=1,..., N,and t=1,..., T. The ith and jth time-f conditional

{on h,) variances, and the #jth conditional covariance, for arbitrary f and j,
are then given by

hy = FPh+wf, hy= ﬂ‘fh, + fr}f-. covy, = B, 8h (16}

Assume, as is realistic in financial contexts, that all betas are nonnegative, and
consider what happens as h, increases, say: all conditional variances increase,
and all pairwise conditional covariances increase. Hence, the market variance
increases, and the covariances of individual equities with the market increase.
Two observations are immediate: (1) both the market variance and the co-
variances of individual eguities with the market are time-varying, and
(2) because the market variance moves together with the covariances of in-
dividual equities with the market, the market betas may not vary as much —
indeed in the simple one-factor case sketched here, the betas are constant, by
construction! The upshot is that wide fluctuations in the market variance and
individual equity covariances with the market, yet no variation in betas, is
precisely what one expects to see in a latent (single) factor volatility model. It
is also, of course, quite similar to what we found in the data: wide variation
and persistence in market variance and individual equity covariances with the
market, yet less variation and persistence in betas. Notice, also the remarkable
similarity in the correlograms for the individual realized covariances in Fig. 5.
This is another indication of a strong coherence in the dynamic evolution of

Quarterly Betas from Daily Returns.

Ninety-Five Percent Confidence Intervals for Quarterly Beta, Long Sample, Daily Sampling (Newey—West). Note:

The Time Series of Newey-Wesl 95 Percent Confidence Intervals for the Underlying Quarterly Integrated Beta. The Sample

Covers the Period from 1962:3 through 1999:3, with the 1987:4 Outlier Excluded are Shown. We Calculate the Realized

Fig. I6.
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the individual covariances, consistent with the presence of one dominant
underlying factor.

Second, our results also complement and expand upon those of Braun
et al. (1995), who study the discrepancy in the time series behavior of betas
relative to the underlying variances and covariances for 12 industry port-
folios using bivariate Exponential Generalized Autoregressive Conditional
Heteroskedasticity (EGARCH) models. They also find variation and peér-
sistence in the conditional variances and covariances, and less variation and
persistence in betas, Moreover, they find the strong asymmetric relationship
between return innovations and future return volatility to be entirely absent
in the conditional betas.'” Hence, at the portfolio level they document sim-
ilar qualitative behavior between the variances and covariances relative to
the betas as we do. However, their analysis is linked directly to a specific
parametric representation, it studies industry portfolios, and it never
contemplates the hypothesis that the constituent components of beta -
variances and covariances — may be of a long memory form. This latter
point has, of course, been forcefully argued by numerous subsequent stud-
ies. Consequently, our investigation can be seen as a substantive extension
of their findings performed in a fully nonparametric fashion.

Third, our results nicely complement and expand upon those of Ghysels
(1998), who argues that the constant beta CAPM, as bad as it may be, is
nevertheless not as bad as some popular conditional CAPMs, We provide
some insight into why allowing for time-varying betas may do more harm
than good when estimated from daily data, even if the true underlving betas
display significant short memory dynamics: it may not be possible to es-
timate reliably the persistence or predictability in individual realized betas,
so good in-sample fits may be spurious artifacts of data mining.'® We also
establish that there should be a real potential for the use of high-frequency
intraday data to resolve this dilemma.

In closing, therefore, let us sketch an interesting framework for future
research using high-frequency intraday data, which will hopefully deliver
superior estimates of integrated volatilities by directly exploiting insights
from the continuous-record asymptotics of Barndorff-Nielsen and Shephard
{2003). Consider the simple state-space representation;

Bio= B+ i (17a)

Bie=ao+aify_ + v (17b)
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The measurement Equation (17a) links the observed realized beta to the
unobserved true underlying integrated beta by explicitly introducing a nor-
mally distributed error with the asymptotically valid variance obtained from
the continuous-record distribution of Barndorff-Nielsen and Shephard
{2003), The transition Equation (17b) is a standard first-order autoregres-
sion with potentially time-varying error variance.'” The simplest approach
would be to let v, have a constant variance, but it is also straightforward to
let the variance change with the underlying variability in the realized beta
measure, so that the beta innovations become more volatile as the constit-
uent parts, the market variance and the covanance of the stock return with
the market, increase. This approach directly utilizes the advantages of high-
frequency intraday beta measurements by incorporating estimates of the
measurement errors to alleviate the errors-n-variables problem, while ex-
plicitly recognizing the heteroskedasticity in the realized beta series. We look
forward to future research along these lines.

NOTES

1. The Roll (1977) critigue is also relevant. That is, even if we somehow knew
what factor(s) should be priced, it is not clear that the factor proxies measured in
practice would correspond to the factor required by the theory,

2. See Keim and Hawawini (1999) for a good discussion of the difficulty
of interpreting additional empirically motivated factors in terms of sysiematic
risk.

3. There are of course qualifications, notably Ghysels (1998), which we discuss
subsequently.

4. The idea of conditioning in the CAPM is of course not unrelated to the idea of
multi-factor pricing mentioned earlier.

5. The underlyving theory and related empirical strategies are developed in
Andersen, Bollerslev, Diebold, and Labys (2001b, 2003), Andersen, Bollerslev,
Diebold, and Ebens {2001a), Andersen and Bollerslev (1998), and Barndorff-Nielsen
and Shephard (2003). Here, we sketch only the basics; for a more rigorous treatment
in the framework of special semimartingales, see the survey and unification by
Andersen et al. (2005).

6. This notion of integrated volatility already plays a central role in the stochastc
volatility option pricing literature, in which the price of an option typically depends on
the distribution of the integrated volatility process for the underlying asset over the life
of the option. See, for example, the well-known contribution of Hull and White (1987).
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7. Formal theoretical asymptotic justification for this finding has very recently
been provided by Barndorff-Nielsen and Shephard (2004).

8. One could, of course, altempt a linear cointegration approach by taking logs of
the realized volatilities and covariances, but there is no theoretical reason to expect
all covariances to be positive, and our realized covariance measures are indeed
sometimes negative, making logarithmic transformations problematic,

9. We compute the guarterly realized variance, covariances, and betas from
slightly different numbers of observations due to the different numbers of trading
days across the quarters.

10, Note also that the Dickey-Fuller statistics indicate that unit roots are not
present in the market variance, individual equity covariances with the market, or
market betas, despite their persisient dynamics,

11. For the realized covariances and realized betas, we show the median auto-
correlations functions.

12, The standard error band (under the null of an i.i.d. series) indicated in Fig. 4 is
only valid for the realized market variance. It should be lower for the two other
series, reflecting the effective averaging in constructing the median values. In fact, it
should be considerably lower for the beta series due to the near uncorrelated nature
of the underlying beta dynamics, while the appropriate reduction for the covariance
series would be less because of the strong correlation across the series. We cannot be
more precise on this point without imposing some direct assumptions on the cor-
relation structure across the individual series.

13. A partial list of references not written by the present authors includes
Breidt, Crato, and de Lima (1998), Comte and Renault {1998), Harvey (1998),
and Robinson (20013, as well as many of the earlier papers cited in Baillie
(1996),

14. Note that only one figure is needed, despite the many different realized co-
variances, because all &) are identical, as all processes are assumed (o be
ARFIMA(D, 0,42, (0},

15. N has a time subscript because the number of trading days varies slightly
across quarters.

16, The high-frequency tick-by-tick data underlying the |5-min returns was ob-
tained from the TAQ (Trade And Quotation) database. We refer the reader to the
weh appendix to this paper, available at www ssc.upenn.edu/ fdiebold, for a more
detailed description of the data capture, return construction, and high-frequency
beta measurements.

17. In contrast, on estimating a similar EGARCH model for individual daily
stock returns, Cho and Engle (20007 find that daily company specific betas do re-
spond asymmetrically to good and bad news.

18, Chang and Weiss (1991) argue that a strictly stationary Autoregressive
Moving Average (ARMA) (1,1) model provides an adequate representation for
most individual quarterly beta series. Their sample size is smaller than ours, however,
and their estimated betas are assumed to be constant over each quarter. Also,
they de not provide any separate consideration of the persistence of the market
variance or the individual covariances with the market,

19. Generalization to dn arbitrary ARMA process or other stationary structures
for the evelution in the true betas is, of course, straightforward.
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