Reprinted from: Baldev Raj (ed.) (1989) i
: . + Advances in Econometri
Modeling. Needham, Mass.: Kluwer Academic Publishers. pp. 29f:§3 #nd

CHAPTER 2

RANDOM WALKS VERSUS FRACTIONAL INTEGRATION:

POWER COMPARISONS OF SCALAR AND JOINT TESTS OF
THE VARIANCE-TIME FUNCTION

FRANCIS X. DIEBOLD *

Board of Governors of the Federal Reserve System
Division of Research and Statistics

20th and Constitution Ave., NW

Washington, DC 20551

USA.

ABSTRACT. A class of tests for the detection of deviations from random-walk behavior in observed time
series is examined. The tests are based on the variance-time function, which maps integers k into the
variance of k-th differences of a time series. Both simple and joint null hypotheses are considered, and
exact finite-sample critical values are tabulated. The power of the tests against fracuonally-integrated
alternatives, which are argued to have interesting variance-time function interpretations and potenual
importance in economics, is evaluated.

1. Introduction
Consider an observed time series (x)lo. Denote the variances of the k-th differenced series

(Arx}, (Agx).....[Aex),...,(Agkx) by of.0i..... oi.....0%. respectively. Then, under the
random walk null hypothesis, we have:

o} =20}
o} =30t
ok =Ko},
or:
2t 3ot _ | _Kkot_,
o} of ok

It is well known that if a time series follows a random walk, then the variance of its k-th difference
is a linear function of k, i.e., the variance-time function grows linearly. Conversely, if a time series
is white noise, then the variance-time function is horizontal at 2¢*. It may also be shown that the
properties of the variance-time functions of random walk and white noise processes also hold for
I(1) and 1(0) processes, respectively, for large &, as emphasized in Cochrane (1988).! In other
words, I(1) (e.g., ARIMA) processes have variance-time functions which eventually grow linearly
in k, and 1(0) (e.g., ARMA) processes have variance-time functions which become flat.

These facts have been exploited at least since Working (1949) in attempts to determine the
nature of asset price fluctuations. More recently, authors such as Campbell and Mankiw (1987),
Cochrane (1988), Fama and French (1988), Huizinga (1986), Lo and MacKinlay (1988), and
Poterba and Summers (1987) have used the variance-time function or closely related constructs to
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examine long-run mean reversion in both real and financial variables. Explicit hypothesis tests
regarding the shape of this function have been proposed and used. The tests are nondirectional, in
that they are not directed against a particular altemative, and the null hypotheses are simple, as
opposed to composite. It is hoped that the nondirectional nature of the tests will yield power
against a variety of (unspecified) altemnatives.

The goals of this paper are modest. We focus on the random walk null hypothesis, as opposed
to the more general null hypothesis of a unit root in a higher-ordered autoregressive lag-operator
polynomial. While the random walk null is obviously too restrictive for some applications (e.g..
explorations of the properties of aggregate output fluctuations), it may be quite appropriate for
others, particularly those related to asset-price dynamics. We focus on similarly simple
alternative hypotheses of fractional integration.

In Section 2 we introduce the class of fractionally-integrated time-series processes and study its
properties in terms of the variance-time function, which can grow at increasing or decreasing
rates. We motivate this result from a number of perspectives, note that it cannot be achieved with
finite ARIMA representations, and argue that the fractionally-integrated process may be useful in
macroeconomics and financial economics. In Section 3 we propose a joint test for random-walk
behavior, which makes use of multiple points of the variance-time function, and we contrast it to
the non-joint tests that have appeared in the literature. Exact finite-sample fractiles are tabulated
under a normality assumption. It is hoped, of course, that the joint test will have greater power
than its non-joint counterparts; this is investigated in Section 4, where the power properties of the
various simple and joint tests are evaluated against a range of fractionally-integrated alternatives.
The paper therefore extends the work of Lo and MacKinlay (1987), by providing a power
evaluation of new as well as existing tests against what may prove to be a useful class of
alternatves. In Section 5 we offer our conclusions.

2. Fractionally-Integrated ARIMA Processes

In this section we introduce the class of fractionally-integrated time-series models and provide a
brief review of their properties in order to fix ideas and establish notation.? In the subsequent
Monte Carlo power comparisons of scalar and joint tests of the variance-time function, the
alternatives are fractionally integrated. This choice is not accidental; we argue that such processes
possess long-memory properties likely to make them useful for modeling both real economic
series — like aggregate output, and asset prices — like exchange rates. They provide generalized
approximations to low-frequency components in economic time series; in particular, the knife-
edged ‘unit root’ phenomenon arises as a special, and potentially restrictive, case. Consider a
simple generalization of a random walk:

(1-LYx,=¢,, (1)

where d takes values in the real, as opposed to integer, numbers. The process is stationary and
invertible if de (-1/2, 1/2); since d need not take integer value, we refer to the process as
fractionally integrated. Clearly d =1 yields a random walk, while d =0 corresponds t0 white
s 3
noise.
We call the process (1) a pure fractional noise, in order to distinguish it from its natural
generalization - the fractionally integrated ARIMA (ARFIMA) process:

D(L)Y(1-L)*x = O(L)E, (2)
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where:
DL)=1-¢iL~ - ~4,L?
&L)=1-8,L- - -8,L?
& ~(0.62),

all roots of ®(L) and &(L) lie outside the unit circle, and 4 takes values in the real numbers. In this
paper we are concemed only with deviations from random walk behavior that can be represented
as pure fractional noise; such alternatives are natural against the random-walk null. The fractional
difference operator (1 -L)* may be expanded as:

(I‘L)d'—‘l—dL-i—d(dz' l)LZ_d(d ;}f(d—Z)Lg*’ (3)
Econometricians typically have considered only integer values of d4; writing the model as in (1),
however, makes clear the arbitrary nature of the integer d restricion. The possibility of a
graduated range of persistence effects may be entertained in a natural (and general) way by
allowing for fractional integration.*

The intuition of fractional integration emerges clearly in the frequency domain. A series (x)
displays long memory if its pseudo-spectrum increases without limit as angular frequency tends
L0 zero:

fimfio =

ARFIMA processes have pseudo-spectra that behave like A as & — 0. I(1) processes emerge as a
special case, corresponding to d = 1; their pseudo-spectra behave like 12 near the origin. Note,
however, the wider range of spectral behavior near the origin that becomes possible when the
‘integer 4’ restriction is relaxed, which gives the ARFIMA class the potential to provide superior
approximations to low-frequency dynamics.

In the time domain, fractional integration imparts ‘long memory,” which is associated with
significant dependence between observations widely separated in time.’> The usual ARMA
process is a short-memory process, and the autocorrelations decline exponentially:

px(t)~r®, O0<r<l, T—oee.
For the ARFIMA process (2), the autocorrelation function has a slower hyperbolic decline:
px(M) -4, T,

Additional time-domain motivation is achieved by considering the behavior of expanding sums,
which we denote Sy, of T contiguous observations on a pure fractionally integrated process. It is
easy to see that the growth of the variance of such sums depends on 4, such that

var(S7) = O(T"*%).

Thus, for example, if d = 0 so that Sy is a random walk, then the variance grows at the familiar rate
O(T).® This result has direct implications for the behavior of fractionally-integrated processes in
terms of the variance-time function: its growth behavior is O(k*™"). Thus for example if d < 172,
then the variance-time function becomes flat, while if 1/2 <d < 1or 1 <d <372, then the variance-
time function eventually grows at decreasing and increasing rates, respectively.

The time-domain behavior of fractionally integrated processes is also nicely illustrated by the
calibration of k-step-ahead prediction intervals, for increasing k. The behavior of such intervals
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for the common trend-stationary and difference-stationary cases is strikingly different and well
known.” In particular, prediction intervals for trend-stationary processes eventually become
constant around trend, while those for difference-stationary processes grow continuously around
drift, at the rate O(k '?). The uncertainty associated with forecasts of fractionally integrated
processes, on the other hand, grows at rate O (k*?), which can be faster or slower than the I(1)
case, providing a natural generalization. The point is simply that while many economic series do
appear to have long memory, it needn’t be associated with a unit autoregressive root.® Thus, the
uncertainty associated with k-step ahead forecasts might reasonably be expected to be
continuously increasing in k, but at a rate different from that associated with a unit root.

3. Joint Diagnostic Tests Based on the Variance-Time Function
The variance-time function can be exploited to obtain tests for random walk behavior. Simple
scalar asymptotic tests of the individual points of the variance-time function:

of=ko}, £=12,....K (4)

under the null hypothesis of linearity have recently been proposed by Cochrane (1988) and Lo and
MacKinlay (1988), and their finite-sample distributions have been tabulated under a normality
assumption by Diebold (1988). The test statistics are given by:

If drift is assumed to be zero we use:

a2 _ 1 T 3 - —
= T—k+1) E("'“‘H) , k=12,....K, (s)

and denote the resulting statistic R 1(k); if drift is estimated we use:
&2__,l_£(x x, _k‘)z k_]. 2 K (6)
t—(T—k-l-l),:i ¢ =Xk —KH)", =1,2,...,.K, 6

where:

%= b

K= T E.l(xc Xi1)s
and we denote the resulting statistic R2(k). Fractiles of R1(k) are presented in Table I for various
(T, k) combinations, and fractiles of R2(k) for the same (T, k) combinations are given in Diebold
(1988) and reproduced for convenience in Table I1.° The sample size, 7, in all tables corresponds
to the number of available first-differenced observations. Thus, the ‘levels’ sample contains 7 + 1
observations. The tabulated critical values correspond to use of differencing intervals of
k=1,2,4,8,16 and 32; sample sizes were accordingly chosen to be divisible by 32. Interpolation
may be used to obtain critical values for other sample sizes. Note also that the variance estimator
in this paper are not corrected for finite-sample bias; for our purposes, since we are tabulating
exact finite-sample distributions, such corrections are unnecessary.
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TABLE I. Fractiles of R 1

R1(2)

;‘RACI‘ILES: 0.005 0025 0050 0.100 0250 0.750 0900 0950 0975 0.995
64 0756 0.799 0825 0860 0921 1.092 1.193 1260 1321 1461
96 0790 0831 0855 0.881 0935 1.075 1.152 1201 1246 1339
128 0815 0854 0870 0897 0943 1064 1.128 1.172 1212 1303
160 0827 0865 0884 0907 0949 1.058 1.115 1.149 1.184 1.251
192 0843 0876 0.893 0915 0952 1.053 1104 1.137 1166 1.231
256 0861 0889 0907 0924 0959 1044 108 1.115 1138 1.188
512 0898 0919 0932 0946 0970 1031 1059 1078 1.094 1.125
1024 0927 0942 0950 0961 0979 1021 1042 1.055 1068 1.093
2048 0946 0959 0965 0972 0985 1.015 1.029 1.038 1.045 1.062
4096 0961 0970 0975 0980 0990 1.011 1.021 1.027 1033 1043
R1(4)

FRACTILES: 0.005 0025 0050 0.100 0250 0.750 0900 0950 0975 0995
T:

64 0580 0654 0699 0758 0865 1.197 1400 1.547 1709 2.030
96 0634 0709 0748 0798 0.888 1.157 1308 1413 1512 1.727
128 0672 0.744 0777 0819 0901 1.133 1259 1.347 1440 1.606
160 0706 0760 0792 0834 0911 1119 1228 1301 1370 1.505
192 0720 0778 0810 0.848 0917 1.108 1208 1273 L 338 1444
256 0749 0806 0833 0867 0928 1088 1175 1230 1281 1.383
512 0815 0858 0878 0902 0947 1059 1119 1154 1186 1248
1024 0865 0894 0909 0929 0963 1041 1082 1106 1130 1176
2048 0901 0925 0936 0949 0973 1.028 1056 1072 1088 1.114
4096 0927 0946 0953 0963 0981 1021 1.039 1050 1062 1.082
R1(8) '

FRACTILES: 0.005 0025 0050 0.100 0250 0.750 0900 0950 0975 0.995
T:

64 0426 0522 0581 0655 0813 1376 1775 2.069 2379 3.075
96 0497 0584 0636 0710 0842 1285 1.566 1.772 1976 2465
128 0546 0629 0676 0734 0858 1232 1460 1618 1785 2.128
160 0584 0651 0699 0758 0869 1207 1399 1.528 1655 1.956
192 0607 0677 0720 0775 0878 1.182 1359 1482 1597 1.825
256 0644 0713 0750 0.800 0894 1152 1L 300 1397 1494 1673
512 0730 0787 0816 0853 0919 1099 1198 L 264 1.319 1418
1024 0792 0839 0863 089 0942 1066 1. 133 1.175 1214 1.285
2048 0848 0881 0900 0922 0958 1046 1.091 1.117 1.142 1.191
4096 0888 0915 0929 0943 0970 1033 1 061 1080 1097 1.129
R1(16)

FRACTILES: 0.005 0025 0050 0.100 0250 0.750 0900 0950 0975 0.995
Te

64 0296 0385 0450 0543 0.765 1.748 2567 3254 3992 5871
96 0366 0461 0525 0607 0795 1.5 18 2074 2473 2943 3985
128 0414 0504 0560 0641 0812 1410 1840 2.132 2471 3218
160 0451 0.535 0592 0667 0.827 1352 1703 1959 2210 2828
192 0481 0566 0621 0694 0835 1314 1618 1.833 2056 2541
256 0528 0612 0659 0724 0853 1257 1507 1676 1.834 2204
512 0631 0703 0742 0792 08%0 L 162 1318 1424 1514 1.736
1024 0714 0770 0804 0844 0915 L 106 1204 1277 1338 1.460
2048 0783 0830 0853 0886 0940 1 072 1140 1.181 1221 1303
4096 0842 0877 089 0919 O 956 1.049 1094 1.123 1148 1200
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R1(32)
FRACTILES: 0.005 0.025 0050 0.100 025 0750 0900 0950 0975 0995
"[‘-

64 0.179 0263 0333 0449 0742 2751 4802 6534 8500 13567
96 0.255 0337 0405 0.506 0756 2045 3258 4218 5340 7991
128 0288 0385 0449 0548 0.769 1.781 2646 3356 4.072 5592
160 0330 0421 0484 0579 0.778 1.635 2340 2860 3441 4871
192 0354 0453 0509 0601 0785 1549 2135 2581 3.080 4.218
256 0404 0500 0556 0632 0807 1433 1890 2235 2586 3442
512 0522 0606 0655 0718 0850 1256 1.523 1.698 1.893  2.268
1024 0.626 0691 0734 0.786 0.887 1.167 1327 1433 1520 1.724
2048 0.704 0768 0.801 0843 0915 1.110 1214 1280 1339 1468
4096 0.781 0826 0855 0.885 00938 1.073 1.140 1.184 1.228 1.303

TABLE II. Fractiles of R 2

R2(2)

FRACTILES: 0.005 0.025 0050 0.100 0250 0.750 0900 00950 0.975 0.995
T:

64 0.767 0810 0.837 0871 0934 1.112 1217 1286 1.353 1.486
96 0799 0.839 0862 0.890 0944 1.087 1164 1217 1264 1.356
128 0821 0858 0877 0903 0950 1.073 1.138 1.183 1.227 1.313
160 0830 0869 0.889 0912 0954 1064 1.122 1157 1.193 1.256
192 0847 0879 0.897 0919 0957 1058 1.112 1.144 1.173 1.238
256 0864 0892 0910 0928 0962 1049 1.093 1119 1.144 1,194
512 0901 0921 0934 0948 0972 1.033 1062 1.080 109 1128
1024 0928 0943 0951 0961 0980 1023 1.043 1056 1.069 1.093
2048 0947 0959 0965 0973 0985 1016 1.029 1038 1046 1.063
4096 0962 0970 0975 0980 099 1011 1021 1028 1.033 1043
R2(4)

FRACTILES: 0.005 0.025 0050 0.100 025 0750 0900 0950 0975 0.995
1

64 0605 0680 0732 0794 0906 1264 1487 1.635 1806 2202
96 0651 0730 0.770 0.820 0916 1.193 1353 1467 1.573 1.785
128 0684 0759 0794 0837 0923 1.162 1294 1387 1481 1.653
160 0.716 0773 0807 0.847 0928 1.141 1254 1328 1400 1542
192 0728 0788 0.823 0.861 0931 1.127 1229 1294 1361 1474
256 0.757 0815 0.842 0877 0939 1.101 1.187 1244 1296 1407
512 0821 0863 0882 0907 0953 1065 1126 1162 1194 1258
1024 0.867 0.895 0912 0932 0965 1044 1085 1110 1.133 1.180
2048 0901 0926 0937 0951 0974 1030 1058 1074 1090 1117
4096 0928 0946 0954 0964 0982 1.022 1040 1051 1062 1.083
R2(8)

FRACTILES 0.005 0025 0050 0.100 0250 0750 0900 0950 0975 0995
T

64 0477 0580 0646 0730 0914 1569 2035 2347 2692 3581
96 0525 0631 0685 0759 0906 1399 1706 1937 2.150  2.639
128 0574 0663 0710 0773 0906 1306 1558 1742 1915 2307
160 0601 0679 0726 0788 0908 1264 1465 1609 1741  2.056
192 0623 0701 0745 0.803 0912 1228 1417 1542 1657 1.902
256 0653 0732 0.771 0821 0918 1.186 1337 1437 1534 1727
512 0738 0796 0826 0862 0932 1117 1215 1284 1338 1445
1024 0796 0.844 0869 0897 0948 1075 1141 1184 1222 1295
2048 0849 0884 0903 0925 0961 1050 1.095 1.122 1148 1197

4096 0890 0916 0930 0945 0972 1035 1063 1.082 1.099 1132
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R2(16)
FRACTILES: 0.005 0025 0050 0.100 0250 0.750 0900 0950 0975 0.995
T

64 0381 0507 0588 0712 1007 2313 3374 4219 5082 6832
96 0419 0540 0612 0720 0939 1829 2463 2988 3549 4839
128 0454 0556 0629 0723 0919 1620 2.101 2454 2833 3646
160 0479 0585 0644 0732 0908 1.501 1.891 2.170 2448  3.116
192 0509 0614 0670 0750 0906 1431 1758 2007 2244 2777
256 0552 0643 0696 0767 0906 1338 1602 1783 1950 2343
512 0651 0720 0762 0816 0915 1195 1365 1470 1564 1810
1024 0723 0781 0815 0856 0930 1.125 1227 1300 1360 1478
2048 0789 0835 0858 0893 0947 1081 1.149 1.190 1231 1315
4096 0843 0881 0899 0922 0960 1052 1098 1.126 1.I51 1204
R2(32)

FRACTILES: 0.005 0.025 0050 0.100 0250 0.750 0900 0.950 0975 0.995
T:

64 0455 0632 0745 0939 1460 4412 7281 9.603 11926 17481
96 0362 0.508 0604 0.755 1.133 3.008 4500 5.669 6947 9988
128 0366 0488 0584 0714 1015 2386 3492 428 5217 7.138
160 0384 0509 0585 0707 0959 2.048 2909 3578 4239 5838
192 0411 0531 0609 0712 0940 1864 2561 3.120 3657 4987
256 0452 0560 0626 0716 0914 1648 2155 2571 2945  3.886
512 0554 0640 0694 0759 0903 1346 1.629 1.824 2025 2440
1024 0.639 0710 0757 0809 0912 1207 1376 1480 1.570  1.801
2048 0.712 0.781 0814 0855 0929 1.128 1232 1299 1.363 1.482
4096 0.786 0.830 0860 0.892 0945 1.082 1.150 1.193 1.234 1.315

Due to the potential power advantages of a joint test of:

20 3o Ko?

—=—==—7=1L (N
a3 g3 0% '

as opposed to the sequence of component ‘scalar’ tests (4), availability of a joint test may be

useful. It is well known (e.g., Snedecor and Cochrane, 1980) that the negative of twice the log

likelihood ratio for testing equality of variances from independent samples is given by:

2
2 K Ok

J=SIng -3, | Wln | — },
k=1 k

where:

&i is as defined earlier in (5) or (6), depending on whether drift is estimated, and £ (+) rounds down
to the nearest integer. Under the null (7) and independence of the samples from which the 6, are
calculated, /%, xk.,. In the present context, this limiting result is invalid due to sample
dependence. The null distribution is easily characterized (in small as well as large samples) by
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Monte Carlo, however; tabulations corresponding to the cases of zero drift and estimated drift
appear in Tables III and IV. In accordance with earlier notation, they are denoted /1 and /2. The
tabulated critical values for the J statistics are for joint tests of five points on the variance-time
function corresponding to use of differencing intervals of k = 1,2, 4, 8, 16 and 32.'°

TABLE III. Fractiles of J 1

FRACTILES: 0.005 0025 0.050 0.100 0250 0750 0900 0950 0975 0.995
f i

64 0079 0.172 0.248 0369 0.727 2809 4.794 6272 7.776 11.103
96 0.067 0.146 0222 0340 0650 2678 4621 6070 7621 11.121
128 0072 0150 0213 0323 0639 2606 4559 6008 7.542 10.990
160 0.067 0.137 0203 0317 0635 2633 4505 6.005 7673 11206
192 0066 0.136 0205 0314 0634 2592 4531 609 7.578 11.574
256 0065 0.136 0201 0308 0598 2600 4492 5930 7533 11.134
512 0061 0.128 0.184 0293 0.582 2494 4375 5873 7491 11292
1024 0.051 0.126 0.183 0.286 0.580 2460 4440 6.027 7.587 11.179
2048 0056 0.130 0.184 0279 0557 2453 4352 5941 7577 11970
4096 0053 0.116 0.177 0286 0564 2371 4292 5897 7438 11.152

TABLE IV, Fractiles of J 2

FRACTILES: 0.005 0.025 0.050 0.100 0250 0.750 0900 0950 0975 0.995
T:

64 0.086 0.187 0281 0429 0874 3513 5579 7.064 8548 12382
96 0071 0.161 0242 0382 0776 3244 5259 6920 8.647 12.006
128 0076 0.151 0222 0354 0.734 3.094 5262 6.815 8599 12051
160 0073 0.153 0232 0352 0714 3046 5116 6768 8291 11954
192 0.066 0.149 0220 0335 0683 2897 4977 6686 8301 12277
256 0.069 0.147 0209 0326 0658 2786 4917 6487 B8.120 11.711
512 0064 0.130 0.196 0311 0610 2603 4628 6.137 7842 11.986
1024 0052 0.121 0.183 0284 0587 2571 4542 6.181 7830 11275
2048 0057 0.126 0.185 0278 0562 2496 4425 5993 7630 11985
4096 0.055 0.114 0.177 0288 0.563 2387 4280 5901 749 11.267

4. Monte Carlo Power Evaluation

We consider fractionally-integrated data-generating processes, as discussed above. We use 4
values of 0.3,0.45,0.6,0.7,0.8,0.9,1.0,1.1,1.2, and 1.3. In all cases the innovation variance o7 is held
fixed at 1.0. Sample sizes of T =64,128 and 256 are examined, with N = 1000 replications
performed for each sample size.

Samples of size T from the ARFIMA process (1) with d = 0.3 and d = 0.45 (stationary parameter
configurations) are formed as follows. First, a vector, v, consisting of T N(0, 1) deviates is
generated using IMSL subroutine GGNML. Then the desired TxT data covariance matrix (I) is
constructed. This is simply the Toeplitz matrix formed from the autocovariances, which are given
by:

r(1-2d)I'(d +1) ot
C@r(1-d)(1-d+1) -

where ['(+) is the gamma function. We next obtain the Choleski factorization of £, £=PP’, where
P is lower triangular, using IMSL subroutine LUDECP. Finally the sample, x, is generated as

W(1) =
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x = Pv.!! Construction of x in this way eliminates dependence on presample startup values, which
can be particularly problematic with long-memory models. For the nonstationary parameter
configurations 4 = 0.6,0.7,0.8,09, 1.0, 1.1, 1.2, and 1.3, we generate fractional noise with parameter
d* =d-1, which yields observations on (1-L)x,. Then, taking xo =0, we construct the sample
{xy,--.,xr) by cumulating.

TABLE V. Sample Powers of Variance-Time Function Tests, Two-Tailed, No Estimated Drift

d
03 0.45 0.6 0.7 0.8 09 1.0 1.1 12 1.3

T=64

R1(2) 9598 8591 6476 4558 2636 10,18 0510 1523 4757 8187
R1(4) 0101 9799 819 5973 3047 1120 0511 1827 52,63 8388
R1(8) 01,01 9901 8493 59,74 3045 11,19 05,11 19.27 50,60 79385
R1(16) 0101 9899 7688 4864 2336 09,16 0510 1624 4251 70,76
R1(32) 01,01 9197 57,74 3448 1727 08,14 0511 1320 3240 5563
J 01,01 9901 8392 5468 2436 09,16 0510 12,18 3442 6572

T=128

R1(2) 01,01 9901 9296 7486 4558 1727 0510 2632 7479 9898
R1(4) 01,01 01,01 9901 9297 61,75 2233 0510 2939 7784 9898
R1(8) 0101 01,01 0101 9498 6577 2435 0511 2937 7582 9597
RI1(16) 01,01 0101 9901 909 5670 1728 06,11 2636 6673 9194
R1(32) 0101 0101 9799 7887 4154 1422 0611 2229 5664 8185
J1 01,001 01,01 01,001 9397 5872 1828 0611 2129 6168 9193

T=256

RI1(2) 0101 0101 0101 0101 7786 3343 0510 41,53 9598 0101
R1(4) 0101 0101 0101 01001 9095 3950 0509 5362 9798 0101
R1(8) 0101 0101 01,01 0101 929 3550 0409 5162 9597 0101
RI1(16) 0101 0101 0101 0101 8995 3143 0510 4655 9194 9901
R1(32) 0101 0101 0101 0101 7889 2335 0409 3644 818 9798
J1 0100 01,01 01,01 0101 9196 3143 0509 3846 9193 9901

Note: Each cell of the table has two entries, separated by a comma. The first is estimated power for a 5%
level test, while the second is estimated power for a 10% level test. The data-generating process is:

Ax, = (1-L)* ¢, g, “N(O,1).

At each Monte Carlo replication i = 1, ..., N, the processes corresponding to each of the various d
values are constructed using the same vector v of random numbers, to aid in variance-reduction.
Each test at each replication is assigned a 1 if rejection occurs, and 0 otherwise. After completion
of the N replications the power estimates are computed as the relative rejection frequencies. The
power estimates are asymptotically normally distributed around the true power p, with variance
p(1-p)/N; thus, +1.96 [p(1-p)/N]"? provides an estimate of the approximate 95 percent
confidence interval.'2

Estimated powers for two-tailed R 1 and J 1 tests are presented in Table V, for which the true
data-generating process (DGP) is:"?

Ax,=(1 “L)d_lsl (8)
€ “N@O,1).

Note first that power equals nominal size dnder the null of d =1 for all tests and sample sizes,
which must be the case since we are using exact finite-sample critical values. The power curves of
all tests are asymmetric around d = 1; power grows more quickly for d > 1 than ford < 1. Power
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of all tests grows rapidly with sample size as well.

For each sample size, a consistent power pattern emerges for the five two-sided R 1(+) tests.
Power is generally highest for R 1(4) or R1(8), with R 1(2), R 1(16) and R 1(32) displaying somewhat
less power. The power of the two-sided joint test J1 is generally less than that of the best R 1
statistic, but greater than that of the worst R 1 statistic.

TABLE V1. Sample Powers of Variance-Time Function Tests, Lower-Tailed, No Estumated Drift

d
0.3 0.45 0.6 0.7 0.8 09 1.0 14 1.2 1.3

T=64

R1(2) 00,00 0000 0000 0000 0000 0102 0510 2235 5769 8792
R1(4) 00,00 0000 0000 0000 0000 0001 0511 2638 6273 8893
R1(8) 0000 0000 0000 0000 0000 0001 0510 2637 6069 8590
R1(16) 0000 0000 0000 0000 0000 0001 0410 2332 5061 7683
RI1(32) 0000 0000 0000 0000 0000 0002 0510 1827 4050 62,71
1 0000 0000 0000 0000 0000 0306 0510 0407 01,02 0001

T=128

R1(2) 00,00 0000 0000 0000 0000 0001 0409 3248 7986 98,99
R1(4) 0000 0000 0000 0000 0000 0001 0509 3951 8490 9899
R1(8) 0000 0000 0000 0000 0000 0000 0510 3649 8188 9798
R1(16) 00,00 0000 0000 0000 0000 0001 0510 3443 738l 9496
R1(32) 00,00 0000 0000 0000 0000 0000 0510 2840 6472 8589
11 0000 0000 0000 0000 0000 0205 0508 0205 0001 0000

T=256

R1(2) 0000 0000 0000 0000 0000 0000 0610 5363 9899 0101
R1(4) 00,00 00,00 0000 0000 0000 0000 0510 6273 9899 0101
RI1(8) 0000 00,00 0000 0000 0000 0000 0409 61,74 9799 0101
RI1(16) 0000 00,00 0000 0000 0000 0000 0409 5466 9497 0101
R1(32) 0000 0000 0000 0000 0000 0000 0408 4456 8691 9899
J1 00,00 0000 0000 0000 0102 0000 0509 0102 0000 0000

Note: Each cell of the table has two entries, separated by a comma. The first is estimated power fora 5%
level test, while the second is estimated power for a 10% level test. The data-generating process is:

Ax,=(1-L)* g, g “@N(O,1).

The above results may appear to bode poorly for the J1 test, but such is not the case. In the
absence of prior information on the nature of allowable deviations of d from 1.0, the R 1(+) tests
should be used in two-tailed mode, but J 1 should always be used as a one-tailed test (specifically,
upper-tailed), which yields considerable power gains. The intuition is straightforward. By virtue
of the definitions of the R 1(+) and J 1 statistics, one-sided lower-tailed R 1(+) tests will have power
only against alternatives for which 4 > 1, and one-sided upper-tailed R 1(+) tests will have power
only against altematives for which 4 < 1. Conversely, one-sided upper-tailed J 1 tests will have
power against all alternatives.' These assertions are clearly illustrated in Tables V1 and VII. The
lower-tailed R 1(¢) tests in Table VI have no power against alternatives for which d < 1, and the
lower-tailed J(+) tests have no power against any altermnatives. The upper-tailed R 1(+) tests of
Table VII have no power against alternatives for whichd > 1, while the upper-tailed J 1 tests have
power against all altemnatives. Comparison of the power of upper-tailed J 1 tests and two-tailed
R 1 tests reveals the superiority of the joint test, for all d and T values." To solidify these ideas
consider a representative case: d =0.7 and T = 64. To test the null that 4 equals one against the
alternative of 4 not equal to one, use of the the two-sided R 1(+) tests and the one-sided upper-tailed
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J1 test is appropriate. From Table V, we see that the power of the R 1(+) tests (at the 5% level)
ranges from 0.34 (R 1(32)) to 0.59 (R 1(8)), while Table VII reports the power of /1 as 0.68.

TABLE VII. Sample Powers of Variance-Time Function Tests, Upper-Tailed, No Estimated Drift

d
03 0.45 0.6 0.7 08 0.9 1.0 | | 1.2 1.3

T=64

R1(2) 9899 9196 7687 5873 3652 1728 0510 0103 00,00 00,00
R1(4) 01,01 9901 909 7385 4763 2032 0611 0103 0000 0000
R1(8) 01,01 0101 9398 7487 4561 1931 0611 0103 0001 0000
R1(16) 0101 9901 889 6481 3653 1627 06,11 0204 0001 0000
R1(32) 0101 9799 7488 4866 2742 1423 06,11 0205 01,02 000!
J1 0101 01,01 9297 6881 3551 1323 0510 1421 41,50 71,78

T=128

R1(2) 0101 0101 9699 8693 5872 2739 0511 0001 0000 0000
R1(4) 0101 01,01 0101 9799 7587 3349 0511 0001 0000 0000
R1(8) 0101° 01,01 0101 9899 7789 3548 0610 0002 0000 0000
R1(16) 0101 0101 0101 9698 7083 2844 06,11 0203 0000 0000
R1(32) 0101 01,01 0101 879 5472 2236 0611 0103 0001 0000
J1 0101 01,01 0101 9799 7283 2638 0611 2634 6876 9395

T=256

R1(2) 0101 0101 0101 9801 8692 4356 0510 0000 0000 0000
R1(4) 0101 0101 0101 0101 9598 5066 0409 0000 0000 0000
R1(8) 0101 0101 0101 0101 9699 5065 0509 0000 0000 0000
R1(16) 01,01 01,01 0101 0101 9599 4360 0510 0000 0000 00,00
R1(32) 0101 0101 01,00 01,01 8995 3552 0510 0000 0000 0000
n 0101 0101 0101 0101 9699 4255 0509 4656 9396 01,01

Note: Each cell of the table has two entries, separated by a comma. The first is estimated power for a 5%
level test, while the second is estimated power for a 10% level test. The data-generating process 1s:

Ax,=(1-L)Y e, g “N@O,1).

Variations on the above themes are explored in Tables VIII-X1.!6 The R2(+) and J 2 are evaluated
in Table VIII, while the DGP is still the no-drift model (8). As expected, there is a consistent (but
very slight) power loss for all tests in Table VIII, since a drift has been needlessly estimated. The
result is of practical importance: since only a slight power loss occurs, it is clear that little penalty
is incurred when drift is needlessly estimated.

In Table IX, the true DGP displays drift:

Ax, = 1.0+ (1-L)* g, (9)
g “N(O, 1),

but the no-drift R 1(-) and J 1 test statistics are used. It is at once apparent that severe penalties, in
terms of departures of empirical from nominal test sizes, are incurred when drift is incorrectly
assumed to be zero.

In Table X the gower properties of the estimated-drift statistics R 2(+) and J 2 are evaluated for
DGP (9); thus, the scenario corresponds to the correct inclusion of drift. As expected, power is
qualitatively the same as in Table V, which corresponds to the correct exclusion of drift."”

Finally, in Table XI, the effects of violation of the normality assumption on empirical test size
are investigated. The DGP is:
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Ax,=(1-L)*™" [sign(e)*(e?))
g “4NO, 1),

which has leptokurtic (but symmetric) innovations. All tests appear quite robust; empirical size
stays very close to nominal size.

TABLE VIII. Sample Powers of Variance-Time Function Tests, Two-Tailed, Estimated Drift

d
03 0.45 0.6 0.7 08 0.9 1.0 J W 1.2 1.3

T=128

R2(2) 01,01 99,01 8895 70,82 4256 1324 0509 21,30 66,73 9597
R2(4) 01,01 01,01 9899 8893 5470 1729 0510 2535 73,81 9697
R2(8) 01,01 0101 99,01 8894 5469 1627 0509 2433 68,76 9295
R2(16) 01,01 0101 9899 8391 4360 1422 0409 1928 5464 8287
R2(32) 0101 01,01 9096 6478 3145 09,17 04,10 1523 4151 6573
J2 01,01 01,01 01,01 9195 5569 1524 0510 08,14 3241 7280

Note: Each cell of the table has two entries, separated by a comma. The first is esumated power for a 5%
level test, while the second is estimated power for a 10% level test. The data-generating process is:

Ax,=(1-L)* ¢, g “NO,1).

TABLE IX. Empirical Sizes of Variance-Time Function Tests, No Estimated Drift

Upper-tailed Lower-tailed Two-sided
T=128
R1(2) 00,00 01,01 01,01
R1(4) 00,00 01,01 01,01
R1(8) 00,00 01,01 01,01
R1(16) 00,00 01,01 01,01
R1(32) 00,00 01,01 01,01
J1 01,01 00,00 01,01

Note: Each cell of the table has two entries, separated by a comma. The first is esimated power for a 5%
level test, while the second is estimated power for a 10% level test. The data-generating process is:

Ax,=1.0+(1-L)* g, g, “@N(0,1).

TABLE X. Sample Powers of Variance-Time Function Tests, Two-Tailed Tests, Estimated Drift

d
0.3 0.45 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

T=128

R2(2) 0101 9999 919 7283 4457 1625 0510 2129 66,74 94,96
R2(4) 0101 01,01 9999 8995 5670 1728 0409 2636 7381 9697
R2(8) 01001 01,01 9901 8995 5670 1626 06,10 2634 68,75 9295
R2(16) 0101 01,01 9899 8191 4258 1523 0811 2030 53,65 83.88
R2(32) 0101 01,01 919 6379 3046 10,18 04,10 1422 3950 66,74
12 0101 01,01 0101 9195 5569 1526 0510 0713 3041 72,80

Note: Each cell of the table has two entries, separated by a comma. The first is esumated power fora 5%
level test, while the second is estimated power for a 10% level test. The data-generating process is:

Ax,=1.0+(1-L)* g, g “4N(©O,1).
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TABLE XI. Empirical Sizes of Variance-Time Function Tests, No Estimated Drift

- Upper-tailed Lower-tailed Two-tailed
R1(2) 06,10 05,10 06,11
R1(4) 05,11 05,10 06,10
R1(8) 06,11 04,10 05,10
RI1(16) 05,11 04,08 05,10
R1(32) 05,10 05,10 04,09
J1 04,09 05,09 04,09

Note: Each cell of the table has two entries, separated by a comma. The first is estimated power for a 5%
level test, while the second is estimated power for a 10% level test. The data-generating process is:
Ax=(1-LY*'[sign(e)*€h)] & ¥NQO.1).

5. Concluding Remarks

It is argued that the class of fractionally-integrated processes may prove useful in empirical
economics, due to its ability to approximate a wide range of low-frequency dynamics, and the
power properties of tests based on the variance-time function against fractionally-integrated
alternatives are examined. All test comparisons are performed using exact finite-sample fractiles,
which are presented in tabular form. A new joint test is proposed and found to be more powerful
than currently popular tests based on scalar variance ratios. Finally, some preliminary evidence
indicates that the variance-time tests may display robustness to fat-tailed innovations.

If a particular time series does in fact possess long memory, but not a unit root, it is natural to
ask whether a researcher would be able to detect such deviation from unit-root behavior using
conventional tests.'"® Formally, the problem amounts to determining the power properties of
various unit-root tests against fractionally-integrated alternatives. One such test has been
examined in the present paper, for the simplest null (random walk) against a very simple
alternative (pure fractional integration). Others, such as the Dickey-Fuller tests and their relatives,
are examined in Diebold and Rudebusch (1988b).

Finally, we note that the spectral procedure of Geweke and Porter-Hudak (1983) for estimating
(posssibly) fractionally-integrated models holds promise as a unit root test against fractional as
well as nonfractional altematives. The semiparametric nature of the first-stage d estimate makes
such an approach particularly attractive — consistent and asymptotically normal estimates of 4 are
obtained independent of the potentially infinite-dimensional nuisance parameter in &~ Lysw).*®

Notes

* The author expresses appreciation to two referees for constructive and useful comments. He would
also like to thank Anil Bera, Rob Engle, Tarhan Feyzioglu, Roger Koenker, Jim Nason, Marc Nerlove,
Fallaw Sowell, Pravin Trivedi, Jim Stock, Sam Yoo, and especially Glenn Rudebusch, all of whom
provided useful input, but who are not to be held responsible for the outcome. The views expressed are
solely those of the author; they do not necessarily reflect those of the Federal Reserve System or ils
staff.

1. I(1) and 1(0) denote, respectively, integrated processes of order one and zero. (1) processes are
commonly referred to as ‘difference stationary’, or ‘homogeneous nonstationary of order one," and are
made stationary by taking a first difference. The leading example of an I(1) process is the finite-
ordered ARIMA, while the stationary finite-ordered ARMA is a commonly-encountered 1(0) process.
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For purposes of_ this paper, we use I(1) to denote a finite-ordered ARIMA (p, 1, ¢) process with a
positive, real, unit autoregressive root.

For in-depth treatments of various aspects of these processes, see Granger and Joyeux (1980), Hosking
(1981), Geweke and Porter-Hudak (1983), Li and McLeod (1986), Brockwell and Davis (1987),
Sowell (1987), and Diebold and Nerlove (1989), inter alia.

The range 1/2 <d < 3/2 may be of special interest in economics, due to the local generalization of
unit-root behavior that it permits. Such processes are stationary in first differences, since the first-
differennated series will be fractionally integrated of order d°, where -1/2 < 4"* < 1/2.

Note, however, that the spectrum of the first difference of a fractionally-integrated series is 0 if d < 1
and = if d > 1. In the time domain, this corresponds to the fact that the sum of (infinitely many)
coefficients of the moving-average representation of the first difference of a fractionally-integrated
series is 0 if d < 1 and = if d > 1. Thus, fractional integration allows for richer cumulative impulse-
response effects only at finite horizons — but these are, of course, the horizons of greatest economic
interest.

In particular, fractionally-integrated processes are not strong mixing. Thus, the assumptions
underlying much of the asymptotic theory recently popularized in econometrics (e.g., White (1984),
inter alia) do not hold. Under suitable regularity conditions, however, they are stationary, ergodic,
regular, and weak mixing, so that (weaker) asymptotic results are available. See Graf, et al. (1984),
Samarov and Taqqu (1988), and Gourieroux et al. (1987).

Stock (1988) develops a class of unit-root tests based upon these ideas.

7. See Dickey, Bell and Miller (1986) and Stock and Watson (1988) for nice expositions.
8. Furthermore, standard unit root tests (e.g., the Dickey-Fuller tests and their relatives) may have low

10.

11.
12.

13,

14,
15:

16.

) I

18.

19.

power against fractionally-integrated alternatives, as argued by Diebold and Rudebusch (1988b).

The fractiles given in Diebold (1988) are based on 25000 replications and are therefore somewhat
more accurate than those given here, which are based on 10000 replications. A detailed description of
the procedures used to tabulate the various test statistics is given in the appendix.

Different sets of points on the variance-time function may be jointly tested by first temporally
aggregating the data to the desired degree.

Quick calculation verifies that cov(x) = PP’ =Z.

For N = 1000, the maximum width of the estimated confidence interval (occurring when p = 1/2) is
+0.03.

Use of the R 1 and J 1 tests exploits the knowledge that drift is not present; in practice such information

may be uncommon. Alternative scenarios are subsequently explored, such as allowance for a
nonexisting drift, or failure to allow for an existing drift.

This is analogous to the standard x? test, which could be used if the samples were independent.

If, however, prior information is available indicating that a one-sided alternative (eitherd < lord > 1)
is appropriate, then maximal power may be attained by using the appropriate one-sided R 1(+) test.
Such prior information is rarely available.

Tables VIII-XI report results for two-sided tests only, for comparison with Table V. It should be kept in
mind that, in practice, the J1 and J2 tests would never be used in two-sided mode. Our intent is

comparison of relative powers, however, so that,for example, comparison of the power of /2 in Table
VIII and J 1 in Table V does convey useful information.

Power is slightly reduced in Table X, however, due to the loss of one degree of freedom in estimating
the drift.

Note, for example, that the Dickey-Fuller tests allow for fractional integration neither under the null
nor under the alternative.

For an application to aggregate output dynamics, see Diebold and Rudebusch (1988a).
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Appendix: Details of Numerical Procedure

The simulation for each of the test statistics is executed as follows. Consider first R1(k) , the
scalar test statistic for the no-drift case. A sample of T N(0, 1) deviates is generated by IMSL
subroutine GGNML; these are the values of A x,. A distributional assumption is of course
necessary for finite-sample tabulation. In some economic contexts the normality assumption may
be inappropriate, but judicious choice of sampling frequency will usually enable its approximate
satisfaction. For example, while daily stock returns are known to be leptokurtic, monthly returns
are approximately normal. Furthermore, as argued in the text, the test sizes appear robust (o
innovation non-normality.

The level series is obtained by cumulating the A, x, series from an initial value of 0. Then &? is
calculated, imposing the zero-drift restriction. Next, the data are k-th differenced and 5y is
calculated, again imposing the zero-drift restriction, and the test statistic is formed. This is
repeated 10000 times, whereupon the resulting sequence of 10000 values of the test statistic is
ordered and the fractiles extracted. This is repeated for all of the various (T, k) pairs that are
tabulated. An identical procedure is followed when drift is allowed, except that the sample &-
variances are for data centered around an estimated mean, as discussed in the text. The true (but
unknown) mean, y, is maintained at 0. The joint test statistics J 1 and ;2 are tabulated in similar
fashion, using k values of 2, 4, 8, 16 and 32.

Precision of the fractile estimates may be evaluated using the well-known result (e.g., Rao,
1973) that the sample fractiles are asymptotically normal. Specifically, the p-th fractile of a
distribution function F is any value §, such that: '

P(x<d,)2p
P(x ;8’) _)__. q L
where ¢ = 1 -p. If F(x) has a density function f continuous in x, §, is unique, and f(3,) > 0, then:

128 _s1d y_ pQa-p)
n'?@,-8,)4, X N[O. o) },

where n is the number of replications upon which the fractile estimates are based. The fact that
the asymptotic standard error depends on the height of the unknown density function f and 3, is
inconvenient, but f may be estimated by nonparametric methods in order to obtain estimated
standard errors. Altematively, nonasymptotic distribution-free fractile confidence intervals may
be obtained as in David (1981) or Rohatgi (1984). Let Xy, . ... X () be the order statistic for the
sample of replications, and let x =, be the population fractile which we are attempting (0
estimate (i.e., F(x)=p, 0 < p < 1, is uniquely solved by x =v,). It may then be shown that:

s-1 )
P[U,E(X(r),X(,))] 2 n(r,s,n,p)= Z(’Dp'(l _p)n_l :
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