FURTHER RESULTS ON FORECASTING AND MODEL SELECTION UNDER ASYMMETRIC LOSS

PETER F. CHRISTOFFERSEN AND FRANCIS X. DIEBOLD
Department of Economics, University of Pennsylvania, 3718 Locust Walk, Philadelphia, PA 19104-6297, USA

SUMMARY
We make three related contributions. First, we propose a new technique for solving prediction problems under asymmetric loss using piecewise-linear approximations to the loss function, and we establish existence and uniqueness of the optimal predictor. Second, we provide a detailed application to optimal prediction of a conditionally heteroscedastic process under asymmetric loss, the insights gained from which are broadly applicable. Finally, we incorporate our results into a general framework for recursive prediction-based model selection under the relevant loss function.

1. INTRODUCTION
Proper specification of the loss function is crucial in empirical work (e.g. McCloskey, 1985). Nowhere is this more evident than in forecasting. It is widely acknowledged that textbook favourites such as mean squared prediction error, although mathematically convenient, are not flexible enough to capture the loss structures that often face actual forecasters.

In spite of the need for a practical forecasting framework that incorporates realistic loss functions, until recently one was forced to favour mathematical convenience over realism—quite simply, there was no alternative. But modern computing power has changed the situation dramatically, as computations that were infeasible not long ago are now done in a few seconds on a desktop computer.

Thus, we have three related objectives in this paper. First, we propose a forecasting framework that exploits modern computational capabilities to find optimal forecasts under general loss structures, in spite of the fact that the optimal predictor does not exist in closed form except in very special cases. One approach, taken in Christoffersen and Diebold (1996), is to approximate the optimal predictor. Here we take a different and complementary approach—instead of approximating the optimal predictor for the exact loss function, we find the exactly optimal predictor for an approximate loss function.

Second, we provide a detailed application to the optimal prediction of a GARCH(1,1) process under a prediction-error loss function linear on each side of the origin. Conveniently for our illustrative application, the optimal predictor does have an analytic closed-form expression under that loss function, as shown by Christoffersen and Diebold (1996). But the insights gained are relevant for any attempt at optimal prediction under asymmetric loss, whether by the methods of this paper or our earlier one.

A prediction-error loss function, \(L(\cdot) \), is a loss function defined directly on the prediction error, \(y - \hat{y} \).

CCC 0883-7252/96/050561-11
© 1996 by John Wiley & Sons, Ltd.

Received May 1995
Revised May 1996
Finally, we show how optimal prediction under asymmetric loss can be combined with related techniques for estimation and forecast accuracy comparison under asymmetric loss to produce a flexible framework for forecast model selection.

2. CLOSED-FORM OPTIMAL PREDICTORS TYPICALLY DON’T EXIST

To see the difficulty associated with analytic solution, even for very simple loss functions, consider the following natural generalization of quadratic loss (‘quadquad’ loss), in which loss is quadratic on each side of the origin, but positive errors cost more than negative errors (or conversely):

\[L(y_{t+h} - \hat{y}_{t+h}) = \begin{cases} a(y_{t+h} - \hat{y}_{t+h})^2 & \text{if } y_{t+h} - \hat{y}_{t+h} > 0 \\ b(y_{t+h} - \hat{y}_{t+h})^2 & \text{if } y_{t+h} - \hat{y}_{t+h} \leq 0 \end{cases} \]

Conditionally expected loss is

\[E_t[L(y_{t+h} - \hat{y}_{t+h})] = a \int_{\hat{y}_{t+h}}^{\infty} (y_{t+h} - \hat{y}_{t+h})^2 f(y_{t+h} | \Omega_t) \, dy_{t+h} + b \int_{-\infty}^{\hat{y}_{t+h}} (y_{t+h} - \hat{y}_{t+h})^2 f(y_{t+h} | \Omega_t) \, dy_{t+h} \]

Differentiating with respect to the predictor, we obtain the first-order condition

\[a \int_{\hat{y}_{t+h}}^{\infty} (y_{t+h} - \hat{y}_{t+h}) f(y_{t+h} | \Omega_t) \, dy_{t+h} + b \int_{-\infty}^{\hat{y}_{t+h}} (y_{t+h} - \hat{y}_{t+h}) f(y_{t+h} | \Omega_t) \, dy_{t+h} = 0 \]

It is clear that analytic solution of this first-order condition is impossible in general. Moreover, even in cases as highly structured as conditional normality, analytic solution remains impossible except for very special cases. To see this, rewrite the first-order condition as

\[a(1 - F(\hat{y}_{t+h} | \Omega_t)) E[y_{t+h} | (y_{t+h} > \hat{y}_{t+h})] - b F(\hat{y}_{t+h} | \Omega_t) E[y_{t+h} | (y_{t+h} < \hat{y}_{t+h})] = 0 \]

Under conditional normality, expressions for the truncated expectations are available. Inserting these, using \(F(\hat{y}_{t+h} | \Omega_t) = \Phi(\xi_{t+h} | \sigma_{t+h} \Omega_t) \), where \(\xi_{t+h} = (y_{t+h} - \mu_{t+h} | \Omega_t) / \sigma_{t+h} \), and cancelling terms yields

\[(a-b) \Phi(\xi_{t+h} | \sigma_{t+h} \Omega_t) + (a-b) \Phi(\xi_{t+h} | \sigma_{t+h} \Omega_t) (\hat{y}_{t+h} - \mu_{t+h} | \Omega_t) - a(\hat{y}_{t+h} - \mu_{t+h} | \Omega_t) = 0 \]

Thus, although conditional normality does yield some simplification, closed-form analytic solution remains impossible.

Existence and uniqueness of the optimal predictor are easily established under conditional normality, however. Denote the first-order condition that defines the optimal predictor by \(g(\hat{y}_{t+h}) = 0 \). Existence follows from

\[\lim_{\hat{y}_{t+h} \to -\infty} g(\hat{y}_{t+h}) < 0 \]

and

\[\lim_{\hat{y}_{t+h} \to +\infty} g(\hat{y}_{t+h}) > 0 \]

2 Newey and Powell (1987) give an analytic solution in the uniform case.

3 Notice that for \(a = b \) the conditional mean is, of course, optimal.
together with continuity of the first-order condition. The two limits are easily verified; immediately,

$$\lim_{\hat{y}_{t+h} \to -\infty} g(\hat{y}_{t+h}) = -\infty$$

and

$$\lim_{\hat{y}_{t+h} \to +\infty} g(\hat{y}_{t+h}) = +\infty$$

For uniqueness we need that $g'(\hat{y}_{t+h})$ be strictly negative everywhere. This too is easily verified; using $\phi'(x) = -x\phi(x)$, the $\phi(\cdot)$ terms cancel, and we obtain

$$g'(\hat{y}_{t+h}) = -a(1 - \Phi(\xi_{t+h}|\tau)) - b\Phi(\xi_{t+h}|\tau)$$

which is strictly negative everywhere, because $a > 0$, $b > 0$ and $\Phi(\cdot)$ is a cumulative density function.

When the optimal predictor exists and is unique, numerical algorithms (nonlinear equation solution algorithms in conjunction with numerical integration) can be used to compute the optimal predictor reliably. We now turn to a convenient and flexible class of loss functions for which it is easy to show that the optimal predictor exists and is unique, even in conditionally non-Gaussian cases.

3. PIECEWISE-LINEAR APPROXIMATION OF THE LOSS FUNCTION

Consider a piecewise-linear loss function $L(\cdot)$ constructed by concatenating linear segments, such that the loss of zero is zero and loss is increasing on each side of the origin. This may actually be the relevant loss function, or it may be used to approximate more complicated prediction-error loss functions.4

Conditionally expected loss is

$$E_t[L(y_{t+h} - \hat{y}_{t+h})]$$

$$= \sum_{i=1}^{I-1} \int_{\hat{y}_{t+h} + c_i}^{\hat{y}_{t+h} + c_i} (a_i(y_{t+h} - \hat{y}_{t+h})f(y_{t+h} | \Omega_t) dy_{t+h} + \int_{\hat{y}_{t+h} + c_i}^{\hat{y}_{t+h} + c_{i-1}} (a_i(y_{t+h} - \hat{y}_{t+h}) + b_i)f(y_{t+h} | \Omega_t) dy_{t+h}$$

$$+ \sum_{j=1}^{J-1} \int_{\hat{y}_{t+h} + c'_j}^{\hat{y}_{t+h} + c'_j} (a'_j(y_{t+h} - \hat{y}_{t+h}) + b'_j)f(y_{t+h} | \Omega_t) dy_{t+h}$$

$$+ \int_{\hat{y}_{t+h} + c'_{J-1}}^{\hat{y}_{t+h} + c'_{J-1}} (a'_J(y_{t+h} - \hat{y}_{t+h}) + b'_J)f(y_{t+h} | \Omega_t) dy_{t+h}$$

for $I, J \geq 2$. The first line denotes the pieces on the positive side of the origin and the second line the negative, i.e. $a_i \geq 0$, $\forall i$ and $a'_{j} \leq 0$, $\forall j$. The c_i's and c'_j's denote the breakpoints between segments, with $c^1 < c^k < 0$ and $0 < c_i < c_1$, $\forall 1 > k$. To ensure zero loss at the origin we impose $b_1 = b_1 = c_0 = c_0 = 0$. To ensure that neighbouring segments connect at the breakpoints we impose $b_1 = b_1 + (a_{i-1} - a_i)c_{i-1}$, $i = 2, 3, \ldots, I$, and similarly $b'_{j} = b'_{j-1} + (a'_{j-1} - a'_j)c'_{j-1}$, $j = 2, 3, \ldots, J$.

4 The number of segments is at the discretion of the user.
Differentiating with respect to the predictor, \hat{y}_{t+h}, and using Leibniz's rule we obtain

\[
\sum_{i=1}^{l-1} (a_i c_i + b_i) f(\hat{y}_{t+h} + c_i | \Omega_i) - \sum_{i=1}^{l-1} (a_i c_{i-1} + b_i) f(\hat{y}_{t+h} + c_{i-1} | \Omega_i) - (a_i c_i + b_i) f(\hat{y}_{t+h} + c_i | \Omega_i)
\]

\[
- \sum_{i=1}^{l-1} a_i (F(\hat{y}_{t+h} + c_i | \Omega_i) - F(\hat{y}_{t+h} + c_{i-1} | \Omega_i)) - a_i (1 - F(\hat{y}_{t+h} + c_{i-1} | \Omega_i))
\]

\[
+ \sum_{j=1}^{J-1} (a_j c_{j-1} + b_j f(\hat{y}_{t+h} + c_j^{-1} | \Omega_i) + (a_j c_j^{-1} + b_j) f(\hat{y}_{t+h} + c_j^{-1} | \Omega_i)
\]

\[
- \sum_{j=1}^{J-1} (a_j c_j^{-1} + b_j) f(\hat{y}_{t+h} + c_j^{-1} | \Omega_i)
\]

\[
- \sum_{j=1}^{J-1} a_j (F(\hat{y}_{t+h} + c_j^{-1} | \Omega_i) - F(\hat{y}_{t+h} + c_j | \Omega_i)) - a_j F(\hat{y}_{t+h} + c_j^{-1} | \Omega_i) = 0
\]

This first-order condition defines the optimal predictor. After some manipulation all density terms cancel, leaving

\[
\sum_{i=1}^{l-1} a_i (F(\hat{y}_{t+h} + c_i | \Omega_i) - F(\hat{y}_{t+h} + c_{i-1} | \Omega_i)) - a_i (1 - F(\hat{y}_{t+h} + c_{i-1} | \Omega_i))
\]

\[
- \sum_{j=1}^{J-1} a_j (F(\hat{y}_{t+h} + c_j^{-1} | \Omega_i) - F(\hat{y}_{t+h} + c_j | \Omega_i)) - a_j F(\hat{y}_{t+h} + c_j^{-1} | \Omega_i) = 0
\]

or equivalently (after a small amount of manipulation),

\[
\sum_{i=2}^{l} (a_i - a_{i-1}) F(\hat{y}_{t+h} + c_{i-1} | \Omega_i) + \sum_{j=2}^{J} (a_j - a_j^{-1}) F(\hat{y}_{t+h} + c_j^{-1} | \Omega_i)
\]

\[
+ (a_1 - a_1^{-1}) F(\hat{y}_{t+h} | \Omega_i) - a_1 = 0
\]

This first-order condition cannot be solved analytically, but it can be solved numerically, given the conditional cumulative density function $F(\hat{y}_{t+h} | \Omega_i)$. Sufficient conditions for existence and uniqueness of the solution are given in the following proposition.

Proposition If:

1. $a_i \geq a_{i-1}, i = 2, 3, \ldots, l$ and $a_{l-1} \geq a_j, j = 2, 3, \ldots, J$
2. $f(y | \Omega) > 0, \forall y$
3. $a_i > a_{i-1}$ for some i, or $a_j^{-1} > a_j$, for some j,

then a solution to the first-order condition exists and is unique.

Proof Denote the first-order condition by $g(\hat{y}_{t+h}) = 0$. We shall show that

\[
\lim_{\hat{y}_{t+h} \to -\infty} g(\hat{y}_{t+h}) > 0
\]

and

\[
\lim_{\hat{y}_{t+h} \to +\infty} g(\hat{y}_{t+h}) < 0
\]
so that the first-order condition has at least one root, by continuity of \(g(\cdot) \). Immediately,

\[
\lim_{\hat{y}_{t+h} \to 0} g(\hat{y}_{t+h}) = -a'
\]

and

\[
\lim_{\hat{y}_{t+h} \to \infty} g(\hat{y}_{t+h}) = -a_f
\]

These limits are strictly positive and negative, respectively, by condition (3) in conjunction with the fact that the \(a_i \)’s are all non-negative and the \(a_j \)’s are all non-positive. Now we establish uniqueness by showing that \(g'(\hat{y}_{t+h}) > 0 \), \(\forall \hat{y}_{t+h} \). Immediately,

\[
g'(\hat{y}_{t+h}) = \sum_{i=2}^{l} (a_i - a_{i-1}) f((\hat{y}_{t+h} + c_{i-1}) | \Omega_i) + \sum_{j=2}^{l} (a^{i-1} - a^{i}) f((\hat{y}_{t+h} + c_{j} | \Omega_j) + (a_i - a_j) f(\hat{y}_{t+h} | \Omega_j)
\]

Notice that all terms are non-negative from condition (1) in conjunction with the fact that the \(a_i \)’s are all non-negative and the \(a_j \)’s are all non-positive, and because \(f(\cdot) \) is a density function. Conditions (2) and (3) are sufficient to guarantee strict positivity, by guaranteeing that at least one term is strictly positive, but, of course, they are not necessary.

QED

4. FORECASTING A CONDITIONALLY HETEROSCEDASTIC PROCESS UNDER ASYMMETRIC LOSS

Here we illustrate our methods by predicting a simple conditionally-Gaussian GARCH\((1,1)\) process under linlin loss. The GARCH\((1,1)\) process is

\[
\begin{align*}
y_{t+1} &= \varepsilon_{t+1} \quad \varepsilon_{t+1} | \Omega_t \sim N(0, \sigma^2_{t+1} | \Omega_t) \\
\sigma^2_{t+1} | \Omega_t &= \omega + \alpha \varepsilon^2_t + \beta \sigma^2_t | \Omega_t \quad \omega, \alpha, \beta > 0, \alpha + \beta < 1
\end{align*}
\]

Linlin loss, for which there is only one linear piece on each side of the origin, is a special case of piecewise-linear loss (\(a_i = a_i \) for all \(i \), and \(a_j = a_j \) for all \(j \), which in turn implies \(b_i = 0 \) and \(b_j = 0 \) for all \(i \) and \(j \)). In Figure 1 we show various parameterizations of the linlin loss function superimposed for reference on a symmetric, quadratic loss function. The first-order condition that defines the optimal predictor collapses to \((a_1 - a_f) F(\hat{y}_{t+h} | \Omega_t) - a_f = 0 \), which actually yields a closed form for the optimal predictor, \(\hat{y}_{t+h} = F^{-1}(a_1/(a_1 - a_f) | \Omega_t) \).

Throughout, we normalize the unconditional variance to 1 by taking \(\omega = (1 - \alpha - \beta) \), and we set the GARCH parameters at \(\alpha = 0.2 \) and \(\beta = 0.75 \), which are typical of estimates reported in the literature. We set the linlin loss parameters at \(a_1 = 0.95 \) and \(a_f = -0.05 \), corresponding to high asymmetry, which is useful for pedagogical purposes.

For \(h = 1 \) the conditional density is Gaussian so the optimal predictor is easily calculated as

\[
\hat{y}_{t+1} = F^{-1} \left(\frac{a_1}{a_1 - a_f} | \Omega_t \right) = \sigma_{t+1} | \Omega_t \Phi^{-1} \left(\frac{a_1}{a_1 - a_f} \right) = 1.65 \sigma_{t+1} | \Omega_t
\]

We will compare the conditionally expected linlin loss of the optimal predictor to that of two competitors. The first competitor is the pseudo-optimal predictor, \(\hat{y}_{t+h} = \sigma_{h} \Phi^{-1}(a_1/(a_1 - a_f)) = 1.65 \), which ignores conditional heteroscedasticity, and the second is the conditionally mean predictor, \(\hat{y}_{t+h} = \mu_{t+h} | \Omega_t = 0 \), which ignores both loss asymmetry and conditional heteroscedasticity.

\footnote{See Christoffersen and Diebold (1996) for more detailed discussion of optimal prediction under linlin loss.
Asym. = .65

Asym. = .75

Asym. = .85

Asym. = .95

Figure 1. Various linlin loss functions with quadratic loss superimposed for reference.

Notes to figure: Asym = \(a_1/(a_1 - a') \), where \(a_1 \) and \(a' \) are Linlin loss parameters such that \(L(x) = a_1 x \), if \(x > 0 \); and \(L(x) = -a' x \), if \(x < 0 \).

Note that the optimal predictor acknowledges loss asymmetry and the possibility of conditional heteroscedasticity through a possibly time-varying adjustment to the conditional mean, thereby providing a direct link from conditional heteroscedasticity to optimal point prediction, rather than simply to interval prediction. The conditional mean, in contrast, is always suboptimal as it incorporates no adjustment. The pseudo-optimal predictor is intermediate in that it incorporates only a constant adjustment for asymmetry; thus, it is fully optimal only in the conditionally homoscedastic case \(\sigma^2_{t+h|t} = \sigma^2_n \), \(\forall t, h \).

In Figure 2, we show a realization of the GARCH(1,1) process, together with the real-time linlin-optimal, pseudo-optimal and conditional mean predictors. It is apparent that the optimal predictor injects more bias when conditional volatility is high, reflecting the fact that it accounts for both loss asymmetry and conditional heteroscedasticity. This conditionally optimal amount of bias is sometimes more and sometimes less than the constant bias associated with the pseudo-optimal predictor, which accounts for loss asymmetry but not conditional heteroscedasticity. Finally, of course, the conditional mean injects no bias, as it accounts for neither loss asymmetry nor conditional heteroscedasticity.

It is worth mentioning that the 'optimal' predictor used here is truly optimal only for \(h = 1 \), because conditional normality holds only for \(h = 1 \). But, although the 'optimal' predictor used in this example is in fact only an approximation to the optimal predictor when \(h > 1 \) (it is in fact an improved pseudo-optimal predictor), one expects it to perform better than the 'constant adjustment' pseudo-optimal predictor, because it explicitly adapts to the time-varying conditional variance. Recognizing the abuse of language, we shall continue to refer to it as the 'optimal predictor' and to use the predictor formula for \(h > 1 \).

\[^6 \text{Baillie and Bollerslev (1992) suggest a Cornish–Fisher expansion to approximate the conditional distribution for} \quad h > 1, \text{ but such extensions are beyond the scope of the present example.} \]
Computation of conditionally expected linlin loss requires conditioning on an initial value of \(\sigma_{t+1|t}^2 \), and the results will, of course, vary with the value adopted. We set the initial conditional variance equal to the unconditional variance plus one standard deviation of the conditional variance, \(\sigma_{t+1|t}^2 = \sigma_t^2 + \text{var}(\sigma_{t+1|t}^2) \).\(^7\) Calculation of \(\text{var}(\sigma_{t+1|t}^2) \), the variance of the conditional variance, is straightforward but somewhat tedious. We have \(\text{var}(\sigma_{t+1|t}^2) = E[(\sigma_{t+1|t}^2)^2] - (\sigma_t^2)^2 \), but recall that \(E_t^4 = 3(\sigma_{t+1|t}^2)^2 \), so that \((\sigma_{t+1|t}^2)^2 = (E_t^4) / 3 \). Thus,

\[
\text{var}(\sigma_{t+1|t}^2) = \frac{E_t^4}{3} - (\sigma_t^2)^2
\]

by the law of iterated expectations, and as shown by Bollerslev (1986) the requisite unconditional fourth moment is

\[
E_t^4 = \frac{3\omega^2(1 + \alpha + \beta)}{(1 - \alpha - \beta)(1 - \beta^2 - 2\alpha\beta - 3\alpha^2)} = \frac{3(1 - \alpha - \beta)(1 + \alpha + \beta)}{1 - \beta^2 - 2\alpha\beta - 3\alpha^2}
\]

because we set \(\omega = (1 - \alpha - \beta) \). The normalization of \(\omega \) implies that \(\sigma_t^2 = 1 \), and we get

\[
\text{var}(\sigma_{t+1|t}^2) = \frac{\alpha}{1 - \beta^2 - 2\alpha\beta - 3\alpha^2}
\]

Computation of conditionally expected linlin loss also requires an expression for \(\sigma_{t+h|t}^2 \), which enters the expression for the optimal linlin predictor. Using results from Baillie and Bollerslev (1992), it is easy to show that for the GARCH(1, 1) process,

\[
\sigma_{t+h|t}^2 = \sqrt{\sigma_t^2 + (\sigma_{t+1|t}^2 - \sigma_t^2)(\alpha + \beta)^{h-1}}
\]

\(^7\) Note that it would be uninformative to set \(\sigma_{t+1|t}^2 \) equal to the unconditional variance, \(\sigma_t^2 \), because that would obscure the difference between the optimal and pseudo-optimal predictors. Thus, we want to set \(\sigma_{t+1|t}^2 \) away from \(\sigma_t^2 \), but not so far away as to be atypical. Hence the choice of one conditional standard deviation.
Figure 3. Ratio of conditionally expected linlin loss of pseudo-optimal and optimal predictors.
Notes to figure: The linlin loss parameters are set to \(a_i = 0.95 \) and \(a^1 = -0.05 \), so that \(a_i/(a_i - a^1) = 0.95 \). The GARCH(1, 1) parameters are set to \(\alpha = 0.2 \) and \(\beta = 0.75 \).

Figure 4. Ratio of conditionally expected linlin loss of conditional mean and optimal predictors.
Notes to figure: The linlin loss parameters are set to \(a_i = 0.95 \) and \(a^1 = -0.05 \), so that \(a_i/(a_i - a^1) = 0.95 \). The GARCH(1, 1) parameters are set to \(\alpha = 0.2 \) and \(\beta = 0.75 \).

Because of the conditional non-normality when \(h > 1 \), we do not rely on the formulas derived in Christoffersen and Diebold (1996) to compute the conditionally expected losses of the optimal, pseudo-optimal, and conditional-mean predictors. Instead, we compute them by simulation. At each of 20,000 replications, we draw a GARCH(1, 1) realization of length 50, with the conditional variance initialized as discussed above, and we compute the loss of each of the three predictors at each of the 50 horizons. Finally, we average across replications.
In Figure 3 we show the conditionally expected loss of the pseudo-optimal predictor relative to that of the optimal predictor, across prediction horizons. The increase in conditionally expected loss from ignoring the conditional variance dynamics—that is, the increase in conditionally expected loss from using the pseudo-optimal as opposed to the optimal predictor—is as high as 35% for short horizons. Of course, as the prediction horizon increases, the cost of ignoring the conditional variance dynamics decreases, and the ratio of conditionally expected losses converges to 1.

In Figure 4 we show the conditionally expected loss of the conditional mean relative to that of the optimal predictor. Although the cost of ignoring the conditional variance dynamics still decreases with horizon, the ratio of conditionally expected losses does not approach 1, because the conditional mean predictor ignores loss asymmetry in addition to conditional heteroscedasticity. The failure of the conditional mean to acknowledge the loss asymmetry affects predictive performance at all horizons.

5. MODEL SELECTION UNDER THE RELEVANT LOSS FUNCTION

The prediction techniques developed here can be used in recursive prediction-based procedures for model selection and non-nested hypothesis testing under the relevant loss function. This also involves estimation under the relevant loss function, as in Weiss and Andersen (1984) and Weiss (1996). Important related work along those lines, under a Kullback–Liebler distance metric (one-step-ahead squared-error loss), is reported in Vuong (1989) and Phillips (1994).

First, assume prediction-error loss with known optimal predictor of the form

\[\hat{y}_{t+h} = \mu_{t+h},(\theta) + f(\delta, \gamma_{t+h},(\theta)) \]

where \(\delta \) is the vector of loss function parameters, \(\theta \) is the vector of model parameters, \(\gamma_{t+h},(\theta) \) is the vector of higher order moments, and \(f(\cdot) \) might be an explicit function or it might be given implicitly by a first-order condition.\(^8\)

Let the initial estimation sample run from \(t = 1, \ldots, T^* \), so that the ‘holdout sample’ used for comparing predictive performance runs from \(t = T^* + 1, \ldots, T \). Then proceed as follows to recursively re-estimate and predict over the holdout sample:

1. Using numerical optimization, find for model \(j \):

\[\hat{\theta} = \arg \min_\theta \frac{1}{T^*-h} \sum_{t=1}^{T^*-h} L(y_{t+h} - \hat{y}_{t+h}(\theta)) \]

2. Calculate the loss of the \(h \)-step-ahead prediction error at time \(T^* \),

\[L_1 = L(y_{T^*+h} - \hat{y}_{T^*+h}) \]

3. Use terminal estimation date \(T^* + 1 \). Repeat steps (1) and (2) to get

\[L_2 = L(y_{T^*+1+h} - \hat{y}_{T^*+1+h}) \]

4. Repeat steps (1)–(3) until the terminal estimation date is \(T - h \). Then form the average loss

\(^8\) The separation of conditional mean and higher-order dynamics is guaranteed by a proposition in Christoffersen and Diebold (1996), who build on an earlier result of Granger (1969). The proposition follows from the loss function being defined directly on prediction errors.
for model j as

$$L_j = \frac{1}{T - h - T^* + 1} \sum_{i=1}^{T-h-T^*+1} L_i^j$$

(5) Repeat steps (1)–(4) for all models $j = 1, 2, \ldots, J$. If desired, use one of the tests in Diebold and Mariano (1995) or West (1996) to assess the statistical significance of the difference of the models’ predictive ability under the relevant loss function.

Second, suppose the form of the optimal predictor is unknown, in which case the algorithm must be augmented with a step that estimates the form of the predictor. This situation could be brought about by an intractable loss function, perhaps not defined on the prediction errors. In the conditionally Gaussian case, we form the predictor as an expansion in the first two conditional moments (here, for example, we adopt a second-order expansion, but higher-order terms could, of course, be included):

$$y_{t+h}(\beta, \theta) = \beta_0 + \beta_1 \mu_{t+h|t}(\theta) + \beta_2 \sigma_{t+h|t}(\theta) + \beta_3 (\sigma_{t+h|t}(\theta))^2 + \beta_4 (\mu_{t+h|t}(\theta))^2 + \beta_5 (\mu_{t+h|t}(\theta) \sigma_{t+h|t}(\theta))$$

Step (1) of the algorithm simply becomes more complicated; the others are unchanged. Step (1) becomes:

(1') Using numerical optimization, find for model j:

$$\{\hat{\beta}, \hat{\theta}\} = \arg\min_{\{\beta, \theta\}} \frac{1}{T^* - h} \sum_{t=1}^{T^* - h} L(y_{t+h} - \hat{y}_{t+h}(\beta, \theta))$$

Finally, if the form of the optimal predictor is unknown and the conditional density is non-Gaussian, again only step (1) changes. We form the predictor as an expansion in the conditional moments, but moments above the second will need to be included. Hansen’s (1994) autoregressive conditional density approach may help to achieve parsimony.

6. SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH

We have studied prediction under asymmetric loss and its role in a broader framework for model selection. The discussion consisted of three parts. First, we suggested a flexible yet tractable piecewise-linear approximation to the loss function, and we established existence and uniqueness of the optimal predictor. This approach to optimal prediction under asymmetric loss complements the one proposed by Christoffersen and Diebold (1996).

Second, we provided a detailed application to prediction of a GARCH(1, 1) process under LINLIN loss, which clearly illustrated the fact that higher-order conditional moments (that is, conditional moments beyond the conditional mean) are relevant for point prediction under asymmetric loss. Under asymmetric loss and conditional normality, for example, the conditional variance plays a key role in optimal point prediction. Thus, as in Granger (1981) (although for very different reasons), one can ‘forecast white noise’ under asymmetric loss.

Third, we showed how our results on optimal prediction under asymmetric loss could be combined with results on estimation and forecast accuracy comparison under asymmetric loss to produce a unified and general framework for forecast model selection under the relevant loss function.

As for future work, it will be of interest to examine the usefulness of our parametric prediction and model selection procedures in applied forecasting, and to compare their
performance to White’s (1992) non-parametric predictor.\(^9\) We conjecture that our approach will perform well, as much of the literature suggests that simple, tightly parameterized—but nevertheless sophisticated—models tend to perform best in out-of-sample prediction.\(^{10}\)

ACKNOWLEDGEMENTS

Helpful discussion was provided by Adolf Buse, Hashem Pesaran, Dale Poirrier, Enrique Sentana, Jim Stock, Ken Wallis, participants at the UCSD Conference on Multivariate Financial Econometrics, the NBER/NSF Forecasting Seminar, the World Congress of the Econometric Society, and numerous university seminars. All remaining inadequacies are ours alone. We thank the National Science Foundation, the Sloan Foundation, the University of Pennsylvania Research Foundation and the Barbara and Edward Netter Fellowship for support.

REFERENCES

\(^9\) White develops his non-parametric prediction procedure under linlin loss, but it is readily extended to other loss functions.

\(^{10}\) See, for example, Zellner (1992).