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FURTHER RESULTS ON FORECASTING AND MODEL 
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SUMMARY 

We make three related contributions. First, we propose a new technique for solving prediction problems 
under asymmetric loss using piecewise-linear approximations to the loss function, and we establish 
existence and uniqueness of the optimal predictor. Second, we provide a detailed application to optimal 
prediction of a conditionally heteroscedastic process under asymmetric loss, the insights gained from 
which are broadly applicable. Finally, we incorporate our results into a general framework for recursive 
prediction-based model selection under the relevant loss function. 

1. INTRODUCTION 

Proper specification of the loss function is crucial in empirical work (e.g. McCloskey, 1985). 
Nowhere is this more evident than in forecasting. It is widely acknowledged that textbook 
favourites such as mean squared prediction error, although mathematically convenient, are not 
flexible enough to capture the loss structures that often face actual forecasters. 

In spite of the need for a practical forecasting framework that incorporates realistic loss 
functions, until recently one was forced to favour mathematical convenience over 
realism-quite simply, there was no alternative. But modem computing power has changed the 
situation dramatically, as computations that were infeasible not long ago are now done in a few 
seconds on a desktop computer. 

Thus, we have three related objectives in this paper. First, we propose a forecasting 
framework that exploits modem computational capabilities to find optimal forecasts under 
general loss structures, in spite of the fact that the optimal predictor does not exist in closed 
form except in very special cases. One approach, taken in Christoffersen and Diebold (1996), is 
to approximate the optimal predictor. Here we take a different and complementary 
approach-instead of approximating the optimal predictor for the exact loss function, we find 
the exactly optimal predictor for an approximate loss function. 

Second, we provide a detailed application to the optimal prediction of a GARCH(1,l) process 
under a prediction-error loss function linear on each side of the origin.' Conveniently for our 
illustrative application, the optimal predictor does have an analytic closed-form expression 
under that loss function, as shown by Christoffersen and Diebold (1996). But the insights gained 
are relevant for any attempt at optimal prediction under asymmetric loss, whether by the 
methods of this paper or our earlier one. 

' A prediction-error loss function, L ( . ) ,  is a loss function defined directly on the prediction error, y - j .  
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562 P. F. CHFUSTOFFERSEN AND F. X. DIEBOLD 

Finally, we show how optimal prediction under asymmetric loss can be combined with related 
techniques for estimation and forecast accuracy comparison under asymmetric loss to produce a 
flexible framework for forecast model selection. 

2. CLOSED-FORM OPTIMAL PREDICTORS TYPICALLY DON’T EXIST 

To see the difficulty associated with analytic solution, even for very simple loss functions, 
consider the following natural generalization of quadratic loss (‘quadquad’ loss), in which loss 
is quadratic on each side of the origin, but positive errors cost more than negative errors (or 
conversely) : 

Conditionally expected loss is 
m 

E~“!‘(yr+h - f r + h ) }  = a j j , + ,  (yf+h -ft+h)’f(Yt+h1Qr) d Y f + h  +b/ ’ ‘+h  a (Yr+h -j~+h)~f(Yr+hI~r>dyr+h 

Differentiating with respect to the predictor, we obtain the first-order condition 
m Q j j , + ,  ( Y , + h  -f,+h)f(Yr+hlnr>dYr+h +b/:?Yr+* -fr+h)f(Yr+hInr)dYr+h=O 

It is clear that analytic solution of this first-order condition is impossible in general. Moreover, 
even in cases as highly structured as conditional normality, analytic solution remains impossible 
except for very special cases.’ To see this, rewrite the first-order condition as 

a(1 - F ( f r + h  I Rr))(Ebr+h I (Yt+h>jr+h)l - ?t+h) -k bF(Y^r+h I nr)(E[yt+h 1 (Yt+h<jr+h)l - j t + h )  = 

Under conditional normality, expressions for the truncated expectations are available. Inserting 

yields3 
these, using F( f r+h  I nr) = @ ( t r + h  I 11, where t r + h  I r = ( j r + h  -pr+h I r ) / O t + h  I 1 9  and terms 

( a - b ) $ ( 6 t + h I  t ) ‘ r + h l  r +  ( a - b ) @ ( t t + h l  t ) ( Y ” t + h l  f-pt+hl r ) - a ( j r + h - p t + h I  t ) = O  

Thus, although conditional normality does yield some simplification, closed-form analytic 
solution remains impossible. 

Existence and uniqueness of the optimal predictor are easily established under conditional 
normality, however. Denote the first-order condition that defines the optimal predictor by 
g ( j , + , , )  = 0. Existence follows from 

and 

* Newey and Powell (1987) give an analytic solution in the uniform case. 
Notice that for n = b the conditional mean is, of course, optimal. 
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FORECASTING AND MODEL SELECTION UNDER ASYMMETRIC LOSS 563 

together with continuity of the first-order condition. The two limits are easily verified; 
immediately, 

lim g(jt+h) = 
% +  ,,+- 

and 

lim g(jf+h) = +m 

For uniqueness we need that g ’ ( j f + h )  be strictly negative everywhere. This too is easily verified; 
using @ ‘ ( x )  = - x @ ( x ) ,  the @ ( * )  terms cancel, and we obtain 

f,+,,+== 

g’ ( j f c h )  = -a(1 - @ ( 6 f + h  I t ) )  - b@(6t+h I t >  

which is strictly negative everywhere, because a>O, b>O and @(.) is a cumulative density 
function. 

When the optimal predictor exists and is unique, numerical algorithms (nonlinear equation 
solution algorithms in conjunction with numerical integration) can be used to compute the 
optimal predictor reliably. We now turn to a convenient and flexible class of loss functions for 
which it is easy to show that the optimal predictor exists and is unique, even in conditionally 
non-Gaussian cases. 

3. PIECEWISE-LINEAR APPROXIMATION OF THE LOSS FUNCTION 

Consider a piecewise-linear loss function L( .  ) constructed by concatenating linear segments, 
such that the loss of zero is zero and loss is increasing on each side of the origin. This may 
actually be the relevant loss function, or it may be used to approximate more complicated 
prediction-error loss f~nct ions.~ 

Conditionally expected loss is 

for I ,  J 3 2. The first line denotes the pieces on the positive side of the origin and the second line 
the negative, i.e. a,a0,  Vi and d C 0 ,  Vj .  The ci’s and c”s denote the breakpoints between 
segments, with c1 < ck < 0 and 0 < ck < cl, v l >  k. To ensure zero loss at the origin we impose 
b, = b’ = co = co = 0. To ensure that neighbouring segments connect at the breakpoints we 
impose b, = bi-l + ( a i - l  - U ~ ) C ~ - ~ ,  i = 2,3 ,  . . . , I ,  and similarly b’ = b’-’ + (a’-’ - u’)c’-’, 
j = 2 , 3  ,..., J. 

The number of segments is at the discretion of the user. 
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5 6 4  P. F. CHRISTOFFERSEN AND F. X. DIEBOLD 

Differentiating with respect to the predictor, j , + h ,  and using Leibniz’s rule we obtain 

j =  1 

I- 1 

- 1 a’ (F( ( j ,+h  + C ’ - ’ ) l ~ ~ )  - F ( Y , + h  + C’)IRf)) - a J F ( u ( + h  + CJ-l In,) = 0 
j =  1 

This first-order condition defines the optimal predictor. After some manipulation all density 
terms cancel, leaving 

I- 1 -c a j ( F ( ( j t + h  + c i ) lQf )  - F ( ( y f + h  + ci- l )  In,)> - a / ( 1  - F ( ( ? f f + h  + cI- l  I Q f > >  
i =  1 

J- 1 -1 a’(F(( j t+h + C ’ - ’ ) l Q f )  - F ( ( y ” , + h  + c’) I a()) - aJF((?f f+h + c’-’) I f i t )  = 0 
j =  1 

or equivalently (after a small amount of manipulation), 
I J 

(ai - a i - l ) F ( ( j f + h  + ci-l)lQf) + 
i = 2  j =  2 

( u J - l  - f f ’ ) F ( ( y f + h  + ci-’) In,> 

+(a 1 - a ’ ) F ( ( y ” f + h )  I Q f >  - = 

This first-order condition cannot be solved analytically, but it can be solved numerically, given 
the conditional cumulative density function F (  Y r + h  I Q f ) .  Sufficient conditions for existence and 
uniqueness of the solution are given in the following proposition. 

Proposition I f  
(1) a i > a i - , ,  i = 2 , 3 ,  ..., I and & ‘ d , j = 2 , 3 ,  ..., f 
(2) f( Y I Q) ’ 0, VY 
(3) a, > for some i, or a‘-’ > a’, for some j ,  
then a solution to the first-order condition exists and is unique. 

Proof Denote the first-order condition by g(j,+,,) = 0. We shall show that 

lim d j f + h )  > 
. $+h- ) -  

and 
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FORECASTING AND MODEL SELECTION UNDER ASYMMETRIC LOSS 565 

so that the first-order condition has at least one root, by continuity of g ( - ) .  Immediately, 

lim g ( j r + h )  = -aJ 
y!+h*O0 

and 

These limits are strictly positive and negative, respectively, by condition (3) in conjunction with 
the fact that the ai’s are all non-negative and the aj’s are all non-positive. Now we establish 
uniqueness by showing that g’ (j,+n) > 0, t l j t + h .  Immediately, 

g ’ ( j r + h >  = 
I J 

( a i  - U i -  I)f((jr+h + ci-  1) I - ai)f((r”r+h + c j - l )  I -k a 1 ) f ( 9 1 + h  I n f >  

i = 2  j = 2  

Notice that all terms are non-negative from condition (1) in conjunction with the fact that the 
ui’s are all non-negative and the d’s are all non-positive, and because f(.) is a density function. 
Conditions (2) and (3) are sufficient to guarantee strict positivity, by guaranteeing that at least 
one term is strictly positive, but, of course, they are not necessary. QED 

4. FORECASTING A CONDITIONALLY HETEROSCEDASTIC PROCESS UNDER 
ASYMMETRIC LOSS 

Here we illustrate our methods by predicting a simple conditionally-Gaussian GARCH( 1 , l )  
process under linlin loss. The GARCH( 1 , l )  process is 

Yr+,  = &,+1 & , + I  I Q, - N(O, 4+1 I ,> 
4+, ,= w +  a&:+ /?4I f - l  w ,  a,  B>o,  a+ /?< I 

Linlin loss, for which where there is only one linear piece on each side of the origin, is a special 
case of piecewise-linear loss (ai = a, for all i, and a’ = a’ ,  for all j ,  which in turn implies bi = 0 
and 6‘= 0 for all i and j ) .  In Figure 1 we show various parameterizations of the linlin loss 
function superimposed for reference on a symmetric, quadratic loss function. The first-order 
condition that defines the optimal predictor collapses to (a, - d ) F ( j , + h  I Q,) - a, = 0, which 
actually yields a closed form for the optimal predictor, j , + h = F - l ( a l / ( a , -  a ’ ) [  fir).’ 
Throughout, we normalize the unconditional variance to 1 by taking w = (1 - a - B ) ,  and we set 
the GARCH parameters at a = 0.2 and /? = 0.75, which are typical of estimates reported in the 
literature. We set the linlin loss parameters at a, = 0.95 and a1 = -0.05, corresponding to high 
asymmetry, which is useful for pedagogical purposes. 

For h = 1 the conditional density is Gaussian so the optimal predictor is easily calculated as 

We will compare the conditionally expected linlin loss of the optimal predictor to that of two com- 
petitors. The fmt competitor is the pseudo-optimal predictor, y t + h  = a,@-’(a,/(al- a’)) = 1-65, 
which ignores conditional heteroscedasticity, and the second is the conditional mean predictor, 
j , + h  = &+h I , = 0, which ignores both loss asymmetry and conditional heteroscedasticity. 

See Christoffersen and Diebold (1996) for more detailed discussion of optimal prediction under linlin loss. 
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566 P. F. CHRISTOFFERSEN AND F. X. DIEBOLD 

Asym. = .65 Asym. = .75 

/” 

-2 0 2 -2 0 2 

Asym. = .05 Asym. = .95 

Figure 1. Various linlin loss functions with quadratic loss superimposed for reference. 
Notes to figure: Asym = u , / (u ,  - u ’ ) ,  where a, and a’ are Linlin loss parameters such that L ( x )  = a, x ,  if 

x > O ;  and L ( x )  = - a l x ,  if X S O .  

Note that the optimal predictor acknowledges loss asymmetry and the possibility of 
conditional heteroscedasticity through a possibly time-varying adjustment to the conditional 
mean, thereby providing a direct link from conditional heteroscedasticity to optimal point 
prediction, rather than simply to interval prediction. The conditional mean, in contrast, is 
always suboptimal as it incorporates no adjustment. The pseudo-optimal predictor is 
intermediate in that it incorporates only a constant adjustment for asymmetry; thus, it is fully 
optimal only in the conditionally homoscedastic case D : + ~  , = D:, V f ,  h. 

In Figure 2, we show a realization of the GARCH(1,l) process, together with the real-time 
linlin-optimal, pseudo-optimal and conditional mean predictors. It is apparent that the optimal 
predictor injects more bias when conditional volatility is high, reflecting the fact that it accounts 
for both loss asymmetry and conditional heteroscedasticity. This conditionally optimal amount 
of bias is sometimes more and sometimes less than the constant bias associated with the pseudo- 
optimal predictor, which accounts for loss asymmetry but not conditional heteroscedasticity. 
Finally, of course, the conditional mean injects no bias, as it accounts for neither loss 
asymmetry nor conditional heteroscedasticity. 

It is worth mentioning that the ‘optimal’ predictor used here is truly optimal only for h = 1, 
because conditional normality holds only for h = 1. But, although the ‘optimal’ predictor used in 
this example is in fact only an approximation to the optimal predictor when h > 1 (it is in fact an 
improved pseudo-optimal predictor), one expects it to perform better than the ‘constant 
adjustment’ pseudo-optimal predictor, because it explicitly adapts to the time-varying 
conditional variance. Recognizing the abuse of language, we shall continue to refer to it as the 
‘optimal predictor’ and to use the predictor formula for h > 1 .6 

Baillie and Bollerslev (1992) suggest a Cornish-Fisher expansion to approximate the conditional distribution for 
h > 1, but such extensions are beyond the scope of the present example. 
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FORECASTING AND MODEL SELECTION UNDER ASYMMETRIC LOSS 567 

4 ,  I 

J 
100 200 300 400 500 

Figure 2. GARCH( 1, 1) realization with linlin optimal, pseudo-optimal and conditional mean predictors. 
Notes to figure: The linlin loss parameters are set to Q, = 0-95 and a' = 0-05, so that .,/(a, - a ' )  = 0-95. 
The GARCH(1,l) parameters are set to a = 0.2 and B=O.75. The dotted line is the GARCH(1,l) 
realization. The horizontal line at zero is the conditional mean predictor, the horizontal line at 1-65 is the 

pseudo-optimal predictor, and the time-varying solid line is the optimal predictor. 

Computation of conditionally expected linlin loss requires conditioning on an initial value of 
u:+, I ,  and the results will, of course, vary with the value adopted. We set the initial conditional 
variance equal to the unconditional variance plus one standard deviation of the conditional 
variance, o:+~ I = Calculation of var(u:+, I I ) ,  the variance of the conditional 
variance, is straightforward but somewhat tedious. We have v a r ( ~ ; + ~  I ,) = E[(CT;+~ I ,)2] - (c$)', 
but recall that = 3(a:+, I J 2 ,  so that (a:+, I r>2  = (E,~f',,)/3. Thus, 

by the law of iterated expectations, and as shown by Bollerslev (1986) the requisite 
unconditional fourth moment is 

- 3(1 -a-/3)(1 +,+#I) - 3wz(1 +a +j3) 
(1 -a  -j3)(1 -j3'- 2a/? - 3a2) 

Eefl+, = 
1 -B'- 2aB - 3a2 

because we set w = (1 - a - j3). The normalization of w implies that c$ = 1, and we get 

2 a 
Var(Cff+llf) = 

1-j32-2aj3-3a2 

Computation of conditionally expected linlin loss also requires an expression for ul+h I ,, 
which enters the expression for the optimal linlin predictor. Using results from Baillie and 
Bollerslev (1992), it is easy to show that for the GARCH(1,l) process, 

'Note that it would be uninformative to set u;+, , , equal to the unconditional variance, u2, because that would obscure 
the difference between the optima1 and pseudo-optimal predictors. Thus, we want to set u,+, I , away from 4, but not so 
far away as to be atypical. Hence the choice of one conditional standard deviation. 

i 
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2.5 
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- 

1.351 
I 

1.3- 

1.25. 

1.2. 

1.15- 

1.1. 

1.05. 

' t  
10 20 30 40 50 

0.951 
0 

Forecast Horizon 

Figure 3. Ratio of conditionally expected linlin loss of pseudo-optimal and optimal redictors. 
Notes to figure: The linlin loss parameters are set to aI = 0.95 and = -0.05, so that a , [a ,  - a ' )  = 0.95. 

The GARCH(1,l) parameters are set to a = 0.2 and B = 0.75. 

I 

10 20 30 40 
Forecast Horizon 

Figure 4. Ratio of conditionally expected linlin loss of conditional mean and optimal predictors. 
Notes to figure: The linlin loss parameters are set to a1 = 0.95 and a' = -0.05. so that a, / (a ,  - a ' )  = 0.95. 

The GARCH( 1 , l )  parameters are set to a = 0.2 and B = 0.75. 

Because of the conditional non-normality when h > 1 ,  we do not rely on the formulas 
derived in Christoffersen and Diebold (1996) to compute the conditionally expected losses 
of the optimal, pseudo-optimal, and conditional-mean predictors. Instead, we compute them 
by simulation. At each of 20,000 replications, we draw a GARCH( 1, 1) realization of length 
50, with the conditional variance initialized as discussed above, and we compute the loss of 
each of the three predictors at each of the 50 horizons. Finally, we average across 
replications. 
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FORECASTING AND MODEL SELECTION UNDER ASYMMETRIC LOSS 569 

In Figure 3 we show the conditionally expected linlin loss of the pseudo-optimal predictor 
relative to that of the optimal predictor, across prediction horizons. The increase in conditionally 
expected loss from ignoring the conditional variance dynamics-that is, the increase in 
conditionally expected loss from using the pseudo-optimal as opposed to the optimal 
predictor-is as high as 35% for short horizons. Of course, as the prediction horizon increases, 
the cost of ignoring the conditional variance dynamics decreases, and the ratio of conditionally 
expected losses converges to 1. 

In Figure 4 we show the conditionally expected linlin loss of the conditional mean relative to 
that of the optimal predictor. Although the cost of ignoring the conditional variance dynamics 
still decreases with horizon, the ratio of conditionally expected losses does not approach 1, 
because the conditional mean predictor ignores loss asymmetry in addition to conditional 
heteroscedasticity. The failure of the conditional mean to acknowledge the loss asymmetry 
affects predictive performance at all horizons. 

5. MODEL SELECTION UNDER THE RELEVANT LOSS FUNCTION 

The prediction techniques developed here can be used in recursive prediction-based procedures 
for model selection and non-nested hypothesis testing under the relevant loss function. This also 
involves estimation under the relevant loss function, as in Weiss and Andersen (1984) and 
Weiss (1996). Important related work along those lines, under a Kullback-Liebler distance 
metric (one-step-ahead squared-error loss), is reported in Vuong (1989) and Phillips (1994). 

First, assume prediction-error loss with known optimal predictor of the form 

E f + h = p f + h  +f(', Y f + h l  f ( e ) )  

where 6 is the vector of loss function parameters, 8 is the vector of model parameters, Y r + h  I ,(O) 
is the vector of higher order moments, and f(-) might be an explicit function or it might be 
given implicitly by a first-order condition.' 

Let the initial estimation sample run from t = 1, ..., T*, so that the 'holdout sample' used for 
comparing predictive performance runs from t = I" + 1, .. ., T. Then proceed as follows to 
recursively re-estimate and predict over the holdout sample: 

(1) Using numerical optimization, find for model j :  

as discussed in Weiss and Andersen (1984) and Weiss (1996). 
(2) Calculate the loss of the h-step-ahead prediction error at time T*, 

'!"= L( YT*+h - j ' , .+h>  

(3) Use terminal estimation date T* + 1. Repeat steps (1) and (2) to get 

L!Z= L( yT* + 1 + h - Y'Tt +1+ h )  

(4) Repeat steps (1)- (3) until the terminal estimation date is T - h. Then form the average loss 

*The separation of conditional mean and higher-order dynamics is guaranteed by a proposition in Christoffersen and 
Diebold (1996), who build on an earlier result of Granger (1969). The proposition follows from the loss function being 
defined directly on prediction errors. 
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for model j as 

P. F. CHFUSTOFFERSEN AND F. X. DIEBOLD 

T - h - T * + I  

( 5 )  Repeat steps (1)- (4) for all models j = 1,2, . . . , J. If desired, use one of the tests in Diebold 
and Mariano (1995) or West (1996) to assess the statistical significance of the difference of 
the models’ predictive ability under the relevant loss function. 

Second, suppose the form of the optimal predictor is unknown, in which case the algorithm 
must be augmented with a step that estimates the form of the predictor. This situation could be 
brought about by an intractable loss function, perhaps not defined on the prediction errors. In the 
conditionally Gaussian case, we form the predictor as an expansion in the first two conditional 
moments (here, for example, we adopt a second-order expansion, but higher-order terms could, 
of course, be included): 

j r + h ( B ,  = B O  + Blpr+h I + B Z U r + h  I + B 3 ( U i + h  I + 

8 4 ( p l + h  I + BS(pf+h 1 r ( e ) c r + h  I r ( @ ) )  

Step (1) of the algorithm simply becomes more complicated; the others are unchanged. Step (1) 
becomes: 

(1 ’ ) Using numerical optimization, find for model j :  

Finally, if the form of the optimal predictor is unknown and the conditional density is non- 
Gaussian, again only step (1) changes. We form the predictor as an expansion in the conditional 
moments, but moments above the second will need to be included. Hansen’s (1994) 
autoregressive conditional density approach may help to achieve parsimony. 

6. SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH 
We have studied prediction under asymmetric loss and its role in a broader framework for model 
selection. The discussion consisted of three parts. First, we suggested a flexible yet tractable 
piecewise-linear approximation to the loss function, and we established existence and 
uniqueness of the optimal predictor. This approach to optimal prediction under asymmetric loss 
complements the one proposed by Christoffersen and Diebold (1996). 

Second, we provided a detailed application to prediction of a GARCH( 1 , l )  process under 
linlin loss, which clearly illustrated the fact that higher-order conditional moments (that is, 
conditional moments beyond the conditional mean) are relevant for point prediction under 
asymmetric loss. Under asymmetric loss and conditional normality, for example, the conditional 
variance plays a key role in optimal point prediction. Thus, as in Granger (1981) (although for 
very different reasons), one can ’forecast white noise’ under asymmetric loss. 

Third, we showed how our results on optimal prediction under asymmetric loss could be 
combined with results on estimation and forecast accuracy comparison under asymmetric loss to 
produce a unified and general framework for forecast model selection under the relevant loss 
function. 

As for future work, it will be of interest to examine the usefulness of our parametric 
prediction and model selection procedures in applied forecasting, and to compare their 

 10991255, 1996, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1099-1255(199609)11:5<
561::A

ID
-JA

E
406>

3.0.C
O

;2-S by U
niversity O

f Pennsylvania, W
iley O

nline L
ibrary on [03/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FORECASTING AND MODEL SELECTION UNDER ASYMMETRIC LOSS 57 1 

performance to White’s (1992) non-parametric predi~tor.~ We conjecture that our approach will 
perform well, as much of the literature suggests that simple, tightly parameterized-but 
nevertheless sophisticated-models tend to perform best in out-of-sample prediction. lo 
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