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Predictive Modeling, Volatility, and Risk

Management in Financial Markets: In

Memory of Peter F. Christoffersen (Part I)

Francis X. Diebold1, René Garcia2 and Kris Jacobs3

1University of Pennsylvania, 2University of Montreal and 3University of Houston

Peter F. Christoffersen left us in 2018, much too soon, at the age of fifty-one years. He

was a world-renowned financial econometrics researcher, educator, lecturer, administra-

tor (including hosting the 2014 SoFiE conference at the University of Toronto), and pub-

lic servant (including the U.S. Federal Reserve System’s Model Validation Committee,

charged with reviewing the models used for bank supervision and regulation). If Peter

was an esteemed colleague, he was equally a dear friend. His unbridled optimism,

relaxed personality, and remarkable humility endeared him to all who knew him.

We honor Peter’s path-breaking research in this special issue. Peter’s style is marked by

a masterful blend of intuition, theoretical rigor, and always, empirical relevance. It influ-

enced and inspired countless others in academics and industry, worldwide. It has four basic,

and highly intertwined, organizational themes:

1. Predictive models and their evaluation (e.g., his classic early work on evaluating the

conditional calibration of interval forecasts, Christoffersen 1998—one of the

International Economic Review’s ten most-cited papers since its founding in 1960)

2. Financial market risk measurement and management (e.g., his celebrated text,

Christoffersen 2003)

3. Asset return volatility modeling and forecasting (e.g., his survey, Andersen et al. 2013)

4. Financial derivative markets with emphasis on options (e.g., Christoffersen et al. 2009,

one of his many widely cited papers).

We humbly offer this two-part special issue as a tribute to Peter. The included papers re-

flect his style and interests, not only methodologically as characterized above, but also in

their wide variety of substantive applications, clearly testifying to the depth and breadth of

the Christoffersen legacy.
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The Term Structures of Expected Loss and

Gain Uncertainty*

Bruno Feunou1, Ricardo Lopez Aliouchkin2, Roméo Tédongap3

and Lai Xu4

1Bank of Canada, 2Syracuse University, 3ESSEC Business School and 4Syracuse University

Address correspondence to Bruno Feunou, Bank of Canada, 234 Wellington Street, Ottawa, Ontario,

Canada K1A 0G9, or e-mail: feun@bankofcanada.ca

Received August 23, 2019; revised August 23, 2019; accepted April 16, 2020

Abstract

We document that the term structures of risk-neutral expected loss and gain uncer-
tainty on S&P 500 returns are upward sloping on average. These shapes mainly re-
flect the higher premium required by investors to hedge downside risk and the belief
that potential gains will increase in the long run. The term structures exhibit sub-
stantial time-series variation with large negative slopes during crisis periods.
Through the lens of a flexible Jump-Diffusion framework, we evaluate the ability of
existing reduced-form option pricing models to replicate these term structures. We
stress that three ingredients are particularly important: (i) the inclusion of jumps; (ii)
disentangling the price of negative jump risk from its positive analog in the stochas-
tic discount factor specification; and (iii) specifying three latent factors.

Key words: Quadratic payoff, quadratic loss, quadratic gain, quadratic risk premium, options

JEL classification: G12

Financial economists have long agreed that to better understand asset returns, and also un-

certainty about these returns, it is necessary to break them down into several components,

each reflecting a different aspect through which an investment opportunity can be per-

ceived, analyzed, and evaluated. Since a return (r) can be classified as either a loss (– l) if

nonpositive or a gain (g) if nonnegative, it is natural to break it down into these two com-

ponents, formally r ¼ g� l , where l ¼ max 0;�rð Þ and g ¼ max 0; rð Þ. This decomposition

* We would like to thank the editor Francis X. Diebold and two anonymous referees for their helpful

comments, which greatly improved the article. Feunou gratefully acknowledges financial support

from the the Canadian Derivatives Institute (CDI). Lopez Aliouchkin and Tédongap acknowledge the

research grant from the Thule Foundation’s Skandia research programs on “Long-Term Savings.”

The views expressed in this article are those of the authors and do not necessarily reflect those of

the Bank of Canada.

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved.

For permissions, please email: journals.permissions@oup.com
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of returns also leads to a similar decomposition of return uncertainty into loss and gain

components, namely loss uncertainty and gain uncertainty (also referred to as downside

and upside, respectively, or in the most recent literature as bad and good, respectively. See,

for example, Barndorff-Nielsen, Kinnebrock, and Shephard, 2010, Patton and Sheppard,

2015, Bekaert, Engstrom, and Ermolov, 2015, and Kilic and Shaliastovich, 2019, just to

name a few). Likewise, investment returns are assessed over a given horizon, which, to-

gether with the maturity of the payoff, is among the key elements that guide investment

choices.

We argue that expectations of (per-period) asset returns uncertainty and its loss and

gain components across different investment horizons (i.e., their respective term structures)

are critical for understanding market views about short- and long-term loss and gain poten-

tial. When dealing with expectations of asset returns uncertainty, it is also important to dis-

tinguish between physical and risk-neutral expectations. On the one hand, physical

expectations of uncertainty measure the degree to which investors anticipate that they

could be wrong about their returns forecast. On the other hand, risk-neutral expectations

of uncertainty additionally indicate how much investors are willing to pay for risk hedging

or would require for risk compensation. The shape of the term structure of risk-neutral

expectations of loss (gain) uncertainty reflects both the expected path of future loss (gain)

volatility and different risk premia associated with downside (upside) risk at different

maturities.

The primary goal of this article is to provide an empirical investigation of physical and

risk-neutral expectations of loss uncertainty and gain uncertainty across different invest-

ment horizons. The main challenge resides in estimating or measuring these expectations

using available financial data. Since current period uncertainty on a future period return is

not observed, a large body of the literature relies on model-free measures that can readily

be computed using realized returns. A popular measure of uncertainty is the realized vari-

ance that cumulates higher frequency squared returns over the investment horizon. We as-

sume we observe returns at regular intra-month time intervals of length d. The monthly

realized return rt�1;t and the monthly realized variance RVt�1;t are defined by aggregating

rt�1þjd and r2
t�1þjd, respectively:

rt�1;t ¼
X1=d
j¼1

rt�1þjd and RVt�1;t ¼
X1=d
j¼1

r2
t�1þjd; (1)

where 1=d is the number of higher-frequency returns in a monthly period (e.g., d ¼ 1=21

for daily returns) and rt�1þj=21 denotes the jth daily return of the monthly period starting

from day t – 1 and ending on day t. The loss component of realized variance cumulates

higher-frequency squared losses, lt�1þjd, while the gain component sums up higher-

frequency squared gains, gt�1þjd, that is,

RVl
t�1;t ¼

X1=d
j¼1

l2t�1þjd and RVg
t�1;t ¼

X1=d
j¼1

g2
t�1þjd: (2)

Thus, the realized variance is the sum of its loss and gain components.

As thoroughly discussed in Feunou et al. (2019), estimating or measuring risk-neutral

expectations of the loss and gain realized variance is not feasible, nor are loss and gain vari-

ance swaps traded such that their strikes could then be observed measures for these risk-

474 Journal of Financial Econometrics
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neutral expectations. To illustrate this difficulty, consider the risk-neutral expectation of

the monthly realized variance based on daily returns. It is the sum of risk-neutral expecta-

tions of daily squared returns, EQ½r2
t�1þjd�, each of which would be computable in theory,

for example, using the formula of Bakshi, Kapadia, and Madan (2003) for the price of the

quadratic contract. Empirically, this would require data on one-day-to-maturity out-of-the-

money options, which are not currently available. The same applies to risk-neutral expecta-

tions of the monthly loss and gain realized variance. It is therefore important to rely on a

measure of asset returns uncertainty for which the unobserved expectations of loss and gain

components can be consistently estimated or measured from the data. The quadratic payoff

is one of such measures and is the focus in this article.

The quadratic payoff is the square of the realized return over the investment horizon;

that is, the monthly quadratic payoff is simply defined as the squared monthly realized re-

turn, r2
t�1;t. The quadratic payoff and the realized variance are therefore related as follows:

r2
t�1;t ¼ RVt�1;t þ 2RAt�1;t; where RAt�1;t ¼

X1=d�1

i¼1

X1=d�i

j¼1

rt�1þjdrt�1þjdþid; (3)

and RAt�1;t can be defined as the realized autocovariance. Like the realized variance, the

quadratic payoff is also a model-free measure of the asset returns uncertainty. The loss

component of the quadratic payoff (or quadratic loss) is the squared loss, while the gain

component (or quadratic gain) is the squared gain over the investment horizon. Formally

and in monthly terms, this means l2t�1;t and g2
t�1;t, respectively. Also similar to the realized

variance, the quadratic payoff is the sum of its loss and gain components. Contrary to the

realized variance, both physical and risk-neutral expectations of quadratic loss and gain for

various horizons can be consistently estimated or measured from the data. We provide full

details in Online Appendix Section A.1. We therefore rely on the quadratic payoff as the

measure of asset returns uncertainty when analyzing the term structure of expected loss un-

certainty and gain uncertainty.

Using a large panel of S&P 500 Index options data with time to maturity ranging from

1 month to 12 months, we build model-free risk-neutral expected quadratic loss and gain

term structures. Our methodology follows from Bakshi, Kapadia, and Madan (2003) and is

similar to that used to compute the VIX index. Likewise, using high-frequency S&P 500

Index return data and relying on a state-of-the-art variance forecasting model considered

by Bekaert and Hoerova (2014), we build physical expected quadratic loss and gain term

structures. We ask to what extent variations in these term structures reflect changes in the

anticipated path of future loss and gain uncertainty and, therefore, the extent to which they

reflect changes in the risk premia.

Our results reveal new important findings. First, the average term structure of the phys-

ical expected quadratic loss is downward sloping (with a slope of �4.73 percentage square

units), while the average term structure of the risk-neutral expected quadratic loss is up-

ward sloping (with a slope of 3.63 percentage square units). This means that, on average,

investors anticipate that the (per-period) loss potential decreases with the investment hori-

zon; yet, at the same time on the market, hedging the long-term loss potential of stocks is

more expensive than hedging the short-term loss potential. Second, the average term struc-

ture of the physical expected quadratic gain is upward sloping (with a slope of 7.09 percent-

age square units), while the average term structure of the risk-neutral expected quadratic

Feunou et al. j Term Structures of Expected Loss and Gain Uncertainty 475
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gain is slightly upward sloping and almost flat (with a slope of 1.01 percentage square

units). Likewise, this means that, on average, investors foresee that the (per-period) gain po-

tential increases with the investment horizon; yet, at the same time on the market, speculat-

ing on the short-term gain potential of stocks is almost as costly as speculating on the long-

term gain potential.

Our estimates of physical and risk-neutral expectations of quadratic loss and quadratic

gain allow us to compute the associated risk premia by taking the appropriate difference be-

tween the physical and risk-neutral expectations. We follow Feunou et al. (2019) and meas-

ure the loss quadratic risk premium (QRP) as the risk-neutral minus the physical expected

quadratic loss. It is the premium paid for downside risk hedging and thus a measure of

downside risk. Likewise, we measure the gain QRP as the physical minus the risk-neutral

expected quadratic gain. It is the premium received for upside risk compensation and thus a

measure of upside risk. We subsequently analyze the term structures of loss and gain QRPs,

and we find that both term structures are upward sloping (with slopes of 8.36 and 6.09 per-

centage square units, respectively). Therefore, on average, the (per-period) downside and

upside risks are both higher for long-term investments relative to short-term investments in

stocks, and since the equity premium is a remuneration of both types of risk, this confirms

the upward-sloping average term structure of the equity premium found elsewhere in the

literature.

The secondary goal of this article is to evaluate whether leading option pricing models

that predominantly appear to be special cases of the model of Andersen, Fusari, and

Todorov (2015) (henceforth AFT) are able to replicate the actual term structures of the

risk-neutral expected quadratic loss and gain. Key features of the three-factor AFT model

are its flexibility and its ability to completely disentangle the negative from the positive

jump dynamics. To enhance our understanding of the model ingredients underlying the

statistical properties of the quadratic loss and gain, we also estimate several restricted var-

iants of the AFT model. These include, among others, the two-factor diffusion model of

Christoffersen, Heston, and Jacobs (2009) (denoted as the baseline model AFT0) and a ver-

sion of the AFT model where the negative and positive jump dynamics are equal (denoted

by AFT3). The AFT3 model essentially represents the vast majority of option and variance

swaps models studied in the literature so far (see, e.g., Bates, 2012, Christoffersen, Jacobs,

and Ornthanalai, 2012, Eraker, 2004, Chernov et al., 2003, Huang and Wu, 2004,

Amengual and Xiu, 2018, and Ait-Sahalia, Karaman, and Mancini, 2015).1 We find that

accounting for jumps in asset prices is essential for the model to fit the term structure of the

risk-neutral expected quadratic loss and gain. The AFT0 model overestimates the risk-

neutral expected quadratic gain and underestimates the risk-neutral expected quadratic

loss, but is able to fit the term structure of the risk-neutral expected quadratic payoff. We

also find that a jump process rather than a diffusion process is the most important in fitting

the term structure of the risk-neutral expected quadratic loss, while it appears to be the op-

posite for the term structure of the risk-neutral expected quadratic gain.

1 Some authors consider asymmetry in the jump size distribution (see, e.g., Amengual and Xiu, 2018).

However, the jump size distribution is assumed to be constant and the time variation in jumps

comes through the jump intensity, which is assumed to be the same regardless of the sign of the

jump.
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The AFT model is primarily used for the risk-neutral dynamics of asset prices, and we

further couple it with a pricing kernel specification that maps the risk-neutral dynamics

into the physical dynamics. All parameters are estimated to maximize the joint likelihood

of risk-neutral expected quadratic loss and gain across the term structure together with the

second and third risk-neutral cumulants of asset returns. We examine the ability of various

pricing kernel specifications in matching the actual dynamics of the term structures of phys-

ical expected quadratic loss and gain. This is equivalent to matching the actual term struc-

tures of loss and gain QRP. Our results unequivocally point to the importance of

disentangling the price of negative jumps from the price of positive jumps. In other words,

a restricted version of the pricing kernel imposing the same price for the negative and posi-

tive jump risk is unable to match the dynamics of the loss and gain QRP together. This

restricted version represents the vast majority of pricing kernels studied in the literature

(see, e.g., Eraker, 2004, Santa-Clara and Yan, 2010, Christoffersen, Jacobs, and

Ornthanalai, 2012, and Bates, 2012) and highlights its inability to account for the actual

joint dynamics of the loss and gain QRP.

Our article is related to the recent literature that analyzes the term structure of variance

swaps. Ait-Sahalia, Karaman, and Mancini (2015) and Amengual and Xiu (2018) specify

reduced-form models for the term structure of total variance. Dew-Becker et al. (2017) in-

vestigate the ability of existing structural models to fit the observed term structure of vari-

ance swaps. We contribute to this literature by investigating the term structures of the two

variance components. Our article also relates to another strand of the literature document-

ing the importance of analyzing loss and gain components of variance (risk-neutral or phys-

ical) and VRP. Barndorff-Nielsen, Kinnebrock, and Shephard (2010) provide theoretical

arguments supporting the splitting of the total realized variance into loss and gain

components.

The remainder of the article is organized as follows. Section 1 introduces definitions

and notations of all quantities, the data, and the methodology for constructing the risk-

neutral and physical term structure of expected quadratic loss and gain, and presents key

empirical facts that any economically sound model should be able to replicate. Section 2

introduces the AFT model and provides some details on its properties, including the

implied closed form for both the risk-neutral and physical expectation of the quadratic

loss and gain. Section 3 provides details on the estimation of the AFT model. Section 4

evaluates the ability of the AFT model and its variants to fit the empirical facts. Section 5

concludes.

1 Methodology, Data, and Preliminary Analysis

In this section, we start by introducing the quadratic payoff and its loss and gain compo-

nents, namely, the quadratic loss and the quadratic gain. Next, we introduce a heuristic the-

oretical framework to understand the difference between the quadratic loss and the

quadratic gain. We discuss the methodology to measure the risk-neutral and physical

expectations of the quadratic payoff, the quadratic loss and the quadratic gain, over a given

investment horizon. For the purpose of computing these term structures, we present the

data and provide descriptive statistics. Finally, we provide a preliminary analysis based on

principal components extracted from these term structures.

Feunou et al. j Term Structures of Expected Loss and Gain Uncertainty 477

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/18/3/473/5856826 by O

xford U
niversity Press U

SA user on 29 D
ecem

ber 2021



1.1 Definitions

Let St denote the S&P 500 Index price at the end of day t, and for any investment horizon

s, let rt;tþs denote its (log) return from end of day t to end of day t þ s, given by

rt;tþs ¼ ln Stþs=Stð Þ. Both the log return rt;tþs and the quadratic payoff r2
t;tþs are subject to a

gain–loss decomposition as follows:

rt;tþs ¼ gt;tþs � lt;tþs and r2
t;tþs ¼ g2

t;tþs þ l2t;tþs; (4)

where the gain gt;tþs ¼ max 0; rt;tþsð Þ and the loss lt;tþs ¼ max 0;�rt;tþsð Þ represent the posi-

tive and negative parts of the asset payoff, respectively. In other words, the gain and loss

are nonnegative amounts flowing in and out of an average investor’s wealth, respectively.

Since a positive gain and a positive loss cannot occur simultaneously, we observe that

gt;tþs � lt;tþs ¼ 0: This gain–loss decomposition of an asset’s payoff is exploited in an asset

pricing context by Bernardo and Ledoit (2000).

Our goal in this article is to study how the time series dynamics of risk-neutral expecta-

tions EQ
t ½l2t;tþs� and EQ

t ½g2
t;tþs�, and of the physical expectations EP

t ½l2t;tþs� and EP
t ½g2

t;tþs�, vary

with the investment horizon s, where the exponents Q and P indicate that the values are

under the risk-neutral and the physical measures, respectively. Knowledge of these term

structures can be relevant in various risk management contexts. Indeed, one can learn about

investors’ anticipations of the degree of loss and gain uncertainty every day for each invest-

ment horizon, and also how much investors are willing to pay for hedging risk or would re-

quire for compensation of the associated risks over a given investment horizon.

Given the risk-neutral and physical expectations of the same random quantity, one

can readily take their difference to measure the associated risk premium. Following

Feunou et al. (2019), we define the difference between the risk-neutral and physical expect-

ations of the quadratic payoff as the QRP, where the loss and gain components, called

loss QRP and gain QRP and denoted by QRPl
t sð Þ and QRPg

t sð Þ, respectively, are formally

given by

QRPl
t sð Þ � EQ

t l2t;tþs

h i
� EP

t l2t;tþs

h i
and QRPg

t sð Þ � EP
t g2

t;tþs

h i
� EQ

t g2
t;tþs

h i
: (5)

Equation (5) shows that the loss QRP (QRPl) represents the premium paid for the insur-

ance against fluctuations in loss uncertainty, while the gain QRP (QRPg) is the premium

earned to compensate for the fluctuations in gain uncertainty. Thus, the (net) QRP

(QRP � QRPl �QRPg) represents the net cost of insuring fluctuations in loss uncertainty,

that is, the premium paid for the insurance against fluctuations in loss uncertainty net of

the premium earned to compensate for the fluctuations in gain uncertainty. Our study of

the term structures of the risk-neutral and physical expected quadratic loss and gain natur-

ally leads to examining the term structures of the loss and gain QRPs.

1.2 Decomposing the Quadratic Payoff into Loss and Gain: A Theory

For simplicity, let us denote the risk-neutral and physical expectations as the following:

lQþ
n t; sð Þ � EQ

t gn
t;tþs

� �
; lQ�

n t; sð Þ � EQ
t lnt;tþs

� �
; and lQ

n t; sð Þ � EQ
t rn

t;tþs

� �
; (6)

lPþ
n t; sð Þ � EP

t gn
t;tþs

� �
; lP�

n t; sð Þ � EP
t lnt;tþs

� �
; and lP

n t; sð Þ � EP
t rn

t;tþs

� �
: (7)

478 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/18/3/473/5856826 by O

xford U
niversity Press U

SA user on 29 D
ecem

ber 2021



To understand the difference between lQþ
2 t; sð Þ and lQ�

2 t; sð Þ, we follow Proposition 2

of Duffie, Pan, and Singleton (2000),

lQ�
2 t; sð Þ ¼

EQ
t r2

t;tþs

h i
þ KQ t; sð Þ

2
; lQþ

2 t; sð Þ ¼
EQ

t r2
t;tþs

h i
� KQ t; sð Þ

2
; (8)

where KQ t; sð Þ; the wedge between the risk-neutral expected quadratic loss and gain, is

given by

KQ t; sð Þ ¼
2

p

ðþ1
0

Im u 2ð Þ
t;s �ivð Þ

� �
v

dv; (9)

with ut;sð�Þ being the time-t conditional risk-neutral moment-generating function of rt;tþs

and uð2Þt;s ð�Þ its second-order derivative, and ImðÞ refers to the imaginary coefficient of

a complex number. From Equation (8), it is apparent that studying the term structure

of lQ�
2 ðt; sÞ and lQþ

2 ðt; sÞ amounts to studying the term structure of the quadratic

payoff EQ
t ½r2

t;tþs� and the term structure of KQðt; sÞ: Several papers in the literature have al-

ready dealt successfully with EQ
t ½r2

t;tþs�; and the consensus seems to be that a two-factor dif-

fusion model provides a good statistical representation (see Christoffersen, Heston, and

Jacobs, 2009). We now try to understand conceptually the potential drivers of the wedge

KQðt; sÞ:
We use the following power series expansion of the moment-generating function

ut;sð�Þ,

ut;s vð Þ ¼
X1
n¼0

vn

n!
lQ

n t; sð Þ;

to establish that

KQ t; sð Þ ¼ lim
�v!1

X1
j¼1

�1ð Þj�v2j�1

2j� 1ð Þ 2j� 1ð Þ! l
Q
2jþ1 t; sð Þ

8<
:

9=
;; (10)

which is a weighted average of odd high-order noncentral moments. Since only the odd

high moments are included, the wedge KQ t; sð Þ is closely related to the asymmetry in the

distribution of rt;tþs: In the summation, when focusing on j ¼ 1; it is apparent that KQ t; sð Þ
is the opposite of the third-order noncentral moment lQ

3 t; sð Þ (up to a positive multiplicative

constant). Recall that lQ

3 t; sð Þ is related to the first three central moments as follows:

lQ

3 t; sð Þ ¼ jQ

3 t; sð Þ þ 3lQ

1 t; sð ÞjQ

2 t; sð Þ þ lQ

1 t; sð Þ
h i3

;

where jQ
n ðt; sÞ � EQ

t ½ðrt;tþs � lQ

1 ðt; sÞÞ
n�: Hence, we conclude that the wedge between

the risk-neutral expected quadratic loss and gain increases with the asymmetry in

the risk-neutral distribution. A negative skewness implies larger risk-neutral expected

quadratic losses, while a positive skewness yields the opposite effect. The wedge between

the risk-neutral expected quadratic loss and gain still exists and is always negative

when the distribution is symmetric (all odd-order central moments for a symmetric distri-

bution are zero). In that case, the wedge increases in absolute value as the volatility

increases.
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1.3 Constructing Expectations

1.3.1 Inferring the risk-neutral expectation from option prices

In practice, previous literature estimates the risk-neutral conditional expectation of quad-

ratic payoff directly from a cross-section of option prices. Bakshi, Kapadia, and Madan

(2003) provide model-free formulas linking the risk-neutral moments of stock returns to ex-

plicit portfolios of options. These formulas are based on the basic notion, first presented in

Bakshi and Madan (2000), that any payoff over a time horizon can be spanned by a set of

options with different strikes with the same maturity as the investment horizon.

We adopt the notation in Bakshi, Kapadia, and Madan (2003) and define Vt sð Þ as the

time-t price of the s-maturity quadratic payoff on the underlying stock. Bakshi, Kapadia,

and Madan (2003) show that Vt sð Þ can be recovered from the market prices of out-of-the-

money (OTM) call and put options as follows:

Vt sð Þ ¼
ð1

St

1� ln K=Stð Þ
K2=2

Ct s; Kð ÞdKþ
ðSt

0

1þ ln St=Kð Þ
K2=2

Pt s; Kð ÞdK; (11)

where St is the time-t price of the underlying stock, and Ct s; Kð Þ and Pt s; Kð Þ are time-t op-

tion prices with maturity s and strike K, respectively. The risk-neutral expected quadratic

payoff is then

EQ
t r2

t;tþs

h i
¼ erf sVt sð Þ; (12)

where rf is the continuously compounded interest rate.

We compute Vt sð Þ on each day and maturity. In theory, computing Vt sð Þ requires a con-

tinuum of strike prices, while in practice we only observe a discrete and finite set of them.

Following Jiang and Tian (2005) and others, we discretize the integrals in Equation (11) by

setting up a total of 1001 grid points in the moneyness (K=St) range from 1/3 to 3. First, we

use cubic splines to interpolate the implied volatility inside the available moneyness range.

Second, we extrapolate the implied volatility using the boundary values to fill the rest of the

grid points. Third, we calculate option prices from these 1001 implied volatilities using the

Black-Scholes formula proposed by Black and Scholes (1973).2 Next, we compute Vt sð Þ if

there are four or more OTM option implied volatilities (see, e.g., Conrad, Dittmar, and

Ghysels, 2013, and others). Finally, to obtain Vt 30ð Þ on a given day, we interpolate and ex-

trapolate Vt sð Þ with different s. This process yields a daily time series of the risk-neutral

expected quadratic payoff for each maturity s ¼ 30; 60; . . . ; 360 days.

Note that the price of the quadratic payoff Vt sð Þ in Equation (11) is the sum of a port-

folio of OTM call options and a portfolio of OTM put options:

Vt sð Þ ¼ Vg
t sð Þ þ Vl

t sð Þ; (13)

where

Vl
t sð Þ ¼

ðSt

0

1þ ln St=Kð Þ
K2=2

Pt s; Kð ÞdK and Vg
t sð Þ ¼

ð1
St

1� ln K=Stð Þ
K2=2

Ct s; Kð ÞdK: (14)

Feunou et al. (2019) analytically prove that Vl
t sð Þ is the price of the quadratic loss and

Vg
t sð Þ is the price of the quadratic gain. We present that proof in Section A.6 of the Online

2 Since S&P 500 options are European, we do not have issues with the early exercise premium.

480 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/18/3/473/5856826 by O

xford U
niversity Press U

SA user on 29 D
ecem

ber 2021

https://academic.oup.com/jfec/article-lookup/doi/10.1093/jjfinec/nbaa010#supplementary-data


Appendix accompanying this article. Hence, the risk-neutral expectations of quadratic loss

and gain are as follows:

EQ
t l2t;tþs

h i
¼ erf sVl

t sð Þ and EQ
t g2

t;tþs

h i
¼ erf sVg

t sð Þ: (15)

1.3.2 Estimating the physical conditional expected quadratic payoff

A regression model can be used to estimate the expectations of the quadratic payoff and

truncated returns over different periods using actual returns data. To compute these expect-

ations, we assume that, conditional on time-t information, log returns rt;tþs have a normal

distribution with mean lt;s ¼ Et rt;tþs½ � ¼ Z>t bl and variance r2
t;s ¼ Et RVt;tþs½ �, where

Et RVt;tþs½ � ¼ Z>t br and RVt;tþs is the realized variance between end of day t and end of day

t þ s. We then have

Et r2
t;tþs

h i
¼ l2

t;s þ r2
t;s and

Et l2t;tþs

h i
¼ l2

t;s þ r2
t;s

� �
U �

lt;s

rt;s

� �
� lt;srt;s/

lt;s

rt;s

� �

Et g2
t;tþs

h i
¼ l2

t;s þ r2
t;s

� �
U

lt;s

rt;s

� �
þ lt;srt;s/

lt;s

rt;s

� �
;

8>>>><
>>>>:

(16)

under the log-normality assumption, where U �ð Þ and / �ð Þ are the standard normal cumula-

tive distribution functions and density, respectively.

The first part of (16) implies that the difference between the physical expected quadratic

payoff Et½r2
t;tþs� and the physical expected realized variance r2

t;s is due to the nonzero drift

(lt;s 6¼ 0). If the drift equals zero, the expected quadratic payoff is exactly the same as the

expected realized variance. In Figure A7 of the Online Appendix, we plot the average term

structure of the drift (lt;s) and the squared drift (l2
t;s). As expected, the term structure of the

drift is essentially flat. However, the term structure of the squared drift is increasing in the

investment horizon, which explains the increasing discrepancy between the expected quad-

ratic payoff and the expected realized variance at longer horizons. We also report descrip-

tive statistics of both quantities in Table A4 of the Online Appendix. We find that both the

drift and the squared drift of any investment horizon exhibit significant variations over

time. Overall, these results highlight the importance of studying the term structure of the

quadratic payoff.

The second part of Equation (16) implies that the wedge between the physical expected

quadratic gain and loss is a function of the drift lt;s. If the drift equals zero, then estimates

of the physical expected quadratic gain and loss are equal. This is clearly a consequence of

the normality assumption. In general, the wedge between the physical expected quadratic

gain and loss could also be driven by other factors, for example, skewness. In the Online

Appendix (Section A.10), we relax the normality assumption and instead assume that log

returns rt;tþs follow a binormal distribution. This is an analytically tractable distribution

that accommodates empirically plausible values of skewness and kurtosis, and nests the fa-

miliar Gaussian distribution (for details, see Feunou, Jahan-Parvar, and Tédongap, 2013).

In Table A5 of the Online Appendix, we report the correlations between the physical

expected quadratic loss (gain) estimated under the assumption of normal and binormal dis-

tributed log returns for a 1- to 12-month investment horizon. We find that correlations be-

tween these two physical expected quadratic loss (gain) quantities range between 0.984
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(0.980) and 0.996 (0.993). Further, in Table A6 of the Online Appendix, we find that the

average term structures of these quantities have consistent patterns and similar values.

Taken together, this evidence suggests that our main results are robust to the distributional

assumption of returns.

An estimate of lt;s is obtained as the fitted value from a linear regression of returns onto

the vector of predictors, while an estimate of r2
t;s is obtained as the fitted value from a linear

regression of the total realized variance onto the same predictors. Those estimates are fur-

ther plugged into the formulas in Equation (16) to obtain estimates of the physical expecta-

tions of the squared returns and truncated returns.

The specification of predictors in Z has been documented in a long list of previous litera-

ture. It is now widely accepted that models based on high-frequency realized variance dom-

inate standard GARCH-type models (e.g., Chen and Ghysels, 2011), and thus, we follow

this literature. Bekaert and Hoerova (2014) examine state-of-the-art models in the literature

and consider the most general specification, where Z is a combination of a forward-looking

volatility measure, the continuous variations, and the jump variations and negative returns

in the last day, last week, or last month:

RVt;tþs ¼ cþ aVIX2
t þ bmCt�21;t þ bwCt�5;t þ bdCt

þcmJt�21;t þ cwJt�5;t þ cdJt

þdmlt�21;t þ dwlt�5;t þ ddlt�1;t þ e sð Þ
tþs;

(17)

where Ct and Jt are respectively continuous and discontinuous components of the daily

realized variance RVt, Ct�h;t and Jt�h;t respectively aggregate Ct�j and Jt�j for j ¼
0;1; . . . ; h� 1 (i.e., over a horizon h), and lt�h;t is the loss component of the return from

day t – h to day t. The conditional variance r2
t;s is the fitted time series from the regression

(17), for values of s ¼ 21; 42; . . . ; 252 days. Likewise, the conditional mean lt;s is the fitted

time series from the regression (17) where the left-hand side is replaced by the s-period log

returns rt;tþs.

Unlike the log returns and the realized variance, which are closed to temporal aggrega-

tion, the quadratic payoff and its loss and gain components are not. This suggests that the

term structure of physical expectations of the quadratic payoff and its components are un-

likely to be a flat line unless the mean lt;s is negligible for all considered horizons.

1.4 Data

1.4.1 Option data

For the estimation of the S&P 500 risk-neutral quadratic payoff, we rely on S&P 500 op-

tion prices obtained from the IvyDB OptionMetrics database for the January 1996 to

December 2015 period. We exclude options with missing bid-ask prices, missing implied

volatility, zero bids, negative bid-ask spreads, and options with zero open interest (see, e.g.,

Carr and Wu, 2009). Following Bakshi, Kapadia, and Madan (2003), we restrict the sample

to out-of-the-money options. We further remove options with moneyness lower than 0.2 or

higher than 1.8. To ensure that our results are not driven by misleading prices, we follow

Conrad, Dittmar, and Ghysels (2013) and exclude options that do not satisfy the usual op-

tion price bounds, for example, call options with a price higher than the underlying price

and options with less than seven days to maturity.
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1.4.2 Return data

To construct the physical realized variance and perform volatility forecasts, we obtain

intradaily S&P 500 cash index data spanning the period from January 1990 to December

2015 from TickData.com, for a total of 6542 trading days. On a given day, we use the last

record in each five-minute interval to build a grid of five-minute equity index log returns.

Following Andersen et al. (2001, 2003) and Barndorff-Nielsen, Kinnebrock, and Shephard

(2010), we construct the realized variance on any given trading day t, where rj;t is the jth

five-minute log return and nt is the number of (five-minute) intradaily returns recorded on

that day.3 We add the squared overnight log return to the realized variance. The realized

variances between day t and t þ s are computed by accumulating the daily realized

variances.

1.5 Preliminary Analysis

1.5.1 The term structure of the risk-neutral expected quadratic payoff

To estimate EQ
t ½l2t;tþs� or EQ

t ½g2
t;tþs� for each maturity s, we use options with maturity close to

s and do interpolations.4 In the top left panel of Figure 1, we plot the time-series average of

the risk-neutral expected quadratic payoff and its loss and gain components for maturities

of 1, 3, 6, 9, and 12 months. We find that the average term structures of the risk-neutral

expected quadratic payoff and its loss component are, in general, upward sloping. On the

other hand, we find that the term structure of the risk-neutral expected gain quadratic pay-

off is flat.

To investigate time variations in these term structures, in the two middle panels of

Figure 1, we plot the 6-month maturity (the level) and the 12-month minus 2-month matur-

ity (the slope) for the risk-neutral expected quadratic payoff and its components, respective-

ly. We find that both the level and the slope display important time variations and have

spikes and troughs during crises. We also notice that, although the slopes are mostly posi-

tive, they are negative during crises. These observed patterns are in line with the fact that

during crises, investors expect a recovery in the long run rather than in the short run.

Relationship to Dew-Becker et al. (2017). Compute the term structure of forward variance

prices as Frv;s
t � EQ

t ½RVtþs�1;tþs�. The forward variance price Frv;s
t is essentially the month-t

risk-neutral expectation of the realized variance from end of month t þ s� 1 to end of

month t þ s. The authors compute these forward prices using traded variance swaps. Since

traded loss and gain variance swaps do not exist, one cannot estimate risk-neutral expecta-

tions of the loss and gain components using their approach. Previous literature (see, e.g.,

Kilic and Shaliastovich, 2019) has shown that loss and gain components are important for

asset prices. Our methodology allows us to compute the term structure of forward prices

not only for the quadratic payoff but also for its loss and gain components as

Fr;s
t � EQ

t ½r2
tþs�1;tþs�; Fl;s

t � EQ
t ½l2tþs�1;tþs�, and Fg;s

t � EQ
t ½g2

tþs�1;tþs�, respectively.

3 On a typical trading day, we observe nt ¼ 78 five-minute returns.

4 In the data, we do not always observe options with the exact maturity s. In order to find E
Q
t ½l 2

t ;tþs�
or EQ

t ½g2
t ;tþs� at the exact maturity s, we either interpolate or extrapolate to find the exact value.

For example, if we wish to find E
Q
t ½l 2

t ;tþ30� (i.e., with maturity s ¼ 30 days), we interpolate between

E
Q
t ½l 2

t ;tþs1
� and E

Q
t ½l 2

t ;tþs2
� to obtain E

Q
t ½l 2

t ;tþ30�, where s1 is the closest observed maturity below 30

days and s2 is the closest observed maturity over 30 days. In cases where we do not observe s2 in

the data, we extrapolate s1 to obtain the exact maturity.
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Figure 1 Term Structure of Expected Quadratic Payoff. In this figure, in the top two panels we plot the

average S&P 500 expected quadratic payoff and its loss and gain components for maturities of 1, 3, 6,

9, and 12 months. The top left is for the risk-neutral quantities, while the top right is for the physical

quantities. In the middle panels, we plot the level (6-month maturity) and the slope (12-month minus

the 2-month maturity) of the risk-neutral expected quadratic payoff and its loss and gain components.

In the bottom panels, we plot the physical level and slope. All reported values are monthly and in

squared percentage units. The sample period is from January 1996 to December 2015.
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In Panel A of Figure A1 in the Online Appendix, we plot the term structure of average

forward prices for the risk-neutral expected quadratic payoff and its loss and gain compo-

nents. We find that the estimated term structure of forward prices for the quadratic payoff

is concave, with both the level and slope similar to the forward prices in Dew-Becker et al.

(2017). This finding is despite the differences in sample periods and the fact that our for-

ward prices are computed for the quadratic payoff while their forward prices are computed

from traded variance swaps. Most importantly, as mentioned above, in contrast to Dew-

Becker et al. (2017) we are able to separately estimate the forward prices for the quadratic

loss and gain, while loss and gain variance swaps do not exist. This approach allows us to

investigate not only the term structure of the quadratic payoff but also its components. We

see that the term structures of the average forward prices for the quadratic loss and gain are

in general upward sloping. We also find that, across all horizons, the quadratic loss forward

prices are higher than the quadratic gain forward prices.

1.5.2 The term structure of the physical expected quadratic payoff

In the top right panel of Figure 1, we plot the time-series average of the term structure of

the physical expected quadratic payoff and its loss and gain components for maturities of 1,

3, 6, 9, and 12 months. We find that the term structure of the expected quadratic loss is

downward sloping. Since the quadratic loss is a measure of loss uncertainty, this finding

suggests that investors face more uncertainty about losses in the short run relative to the

long run. On the other hand, we find that the term structure of the expected quadratic gain

is upward sloping. Since the expected quadratic gain is a measure of the gain uncertainty,

this finding suggests that investors face more uncertainty about gains in the long run rela-

tive to the short run. Comparing their term structures, we observe that the level of the

expected quadratic gain dominates the level of the expected quadratic loss across all hori-

zons, and even more so in the long run, leading to the upward-sloping pattern in the total

expected quadratic payoff. The relatively larger values of the expected quadratic gain are

consistent with the fact that the S&P 500 cash index has historically yielded a positive an-

nual return of 7%.

To evaluate the time variation in these term structures, in the two bottom panels of

Figure 1, we plot the 6-month maturity (the level) and the 12-month minus 2-month matur-

ity (the slope) for the expected quadratic payoff and its components, respectively. As for its

risk-neutral counterpart, we find substantial variations in both the level and the slope. We

find that the expected quadratic payoff and expected quadratic gain have in general positive

and occasionally negative slopes. On the other hand, the expected quadratic loss slopes are

almost always negative and very negative during the 2008 financial crisis. These observed

patterns are in line with the fact that investors expect a growth opportunity in the long run

rather than in the short run.

Further, in the top two panels of Figure 1, we observe a common upward-sloping pat-

tern for the term structures of the risk-neutral and physical expected quadratic payoff and

its components. The only exception is the physical expected quadratic loss, which is down-

ward sloping. Bakshi, Kapadia, and Madan (2003) show that under certain conditions, the

risk-neutral distribution can be obtained by exponentially tilting the real-world density,

with the tilt determined by the risk aversion of investors. This means that the observed

upward-sloping risk-neutral expected quadratic loss relative to the downward-sloping term
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structure of the physical quadratic loss may be explained by investors’ increasing risk aver-

sion as the investment horizon increases.

In Table 1, we present the time-series means of the risk-neutral and physical expected

quadratic payoff together with their loss and gain components. For each mean we also re-

port, in parentheses, Newey and West (1987) adjusted standard errors. The mean values

for the risk-neutral expected quadratic payoff increase as the maturity horizon increases

from 45.30 at 1 month to 49.94 at 12 months in monthly percentage squared units. The

mean values for the physical expected quadratic payoff are much lower but also increase as

the maturity horizon increases from 26.28 at 1 month to 28.64 at 12 months. The mean

values for the risk-neutral expected quadratic loss are much higher than the values for the

risk-neutral expected quadratic gain for any given horizon, and the wedge is the same for

different maturity horizons. For example, at 2 months, the risk-neutral expected quadratic

loss is 31.16 and the risk-neutral expected quadratic gain is 14.39; the wedge is about 17,

which is similar to the wedge at 4, 6, 8, and 12 months. However, the physical expected

quadratic loss is much lower than the physical expected quadratic gain for any given hori-

zon, and this wedge is increasing as the horizon increases. For example, at 2 months, the

physical expected quadratic loss is 10.05 and the physical expected quadratic gain is 16.45;

the wedge is about 6, and this wedge is strictly increasing to roughly 16–12 months. We

also see that the standard errors of the means for all these quantities are decreasing in the

maturity. Finally, we find that all the means are statistically different from zero.

Rolling-Window Parameter Estimation. We use the full sample to estimate the drifts in

returns and the expectations of realized variances over different periods. These estimated

quantities enter Equation (16) to compute the expectations of the truncated returns. Such

an approach may incur forward-looking bias in the parameter estimation stage. To check

the robustness of our results, we estimate drifts and expected realized variances using a set

of different rolling windows: 60, 72, 84, 96, 108, and 120 months of daily data. Detailed

comparisons to the full-sample expected quadratic gain and loss are discussed in the Online

Appendix. We plot the correlation between the rolling-window and full-sample expected

quadratic gain in Figure A9 of the Online Appendix, which reveals that all the correlations

are well above 0.7. Except for the expected quadratic gain using a 60-month window size,

all other correlations are higher than 0.77. The correlation can be as high as 0.88 for the

expected quadratic loss based on a 120-month rolling window.

To further compare the full-sample and rolling-window expected truncated returns, we

fix the rolling window size to 120 months, and for each investment horizon s, we estimate

time-series regressions of the following form:

E g2
FS;s

h i
¼ aþ bg

rollE g2
roll;s

h i
þ e

E l2FS;s

h i
¼ aþ bl

rollE l2roll;s

h i
þ e

: (18)

If these expectations constructed from rolling-window parameters are exactly the same

as the ones constructed from full-sample parameters, we should find that bg
roll and bl

roll are

not statistically significantly different from one. In Figure A10 of the Online Appendix, we

plot these coefficients for investment horizons from 1 to 12 months. Panel A shows that

bg
roll is not statistically different from one over horizons of 6, 7, and 8 months. On the other
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hand, we find in Panel B that bl
roll is not statistically different from one over a 3-month hori-

zon. Overall, because of the difficulty predicting returns over short horizons, the quantities

constructed from the full-sample parameters inevitably differ from the rolling-window

counterparts.

1.5.3 The term structure of the QRP

Next, we turn to study the term structure of the QRP. In Table 1, we also present the time-

series means of the QRP and its loss and gain components. On average, the QRP is positive,

equal to 19.04, 20.01, and 21.32 at 1, 6, and 12 months, respectively. Both the loss QRP

and the gain QRP are positive. However, the loss QRP is dominating the gain QRP at all

horizons. For example, QRPl is 21.98 while QRPg is 2.91 at 3 months; QRPl is 26.89 while

QRPg is 5.78 at 9 months. The average QRPg is small at the 1-month horizon and not stat-

istically different from zero. In general, we observe that the standard error of the average

QRP (and its components), which represents the insurance cost (against downside risk, up-

side risk, or the net cost of hedging downside risk), increases with the horizon.

Nevertheless, apart from the 1-month average QRPg, we find that all means are significant-

ly different from zero.

Table 1 Descriptive statistics

Mean

Maturity 1 2 3 4 5 6 7 8 9 10 11 12

E½r2� 26.28 26.49 27.42 28.20 27.97 27.88 27.97 28.06 28.06 28.16 28.38 28.64

(2.49) (2.07) (2.07) (2.01) (1.66) (1.45) (1.34) (1.25) (1.16) (1.09) (1.04) (1.00)

E½l2� 10.87 10.05 10.05 9.95 9.09 8.35 7.90 7.43 6.95 6.56 6.32 6.14

(1.58) (1.30) (1.54) (1.54) (1.13) (0.83) (0.73) (0.66) (0.55) (0.47) (0.44) (0.42)

E½g2� 15.41 16.45 17.37 18.25 18.88 19.53 20.07 20.63 21.11 21.59 22.06 22.50

(1.07) (0.95) (0.87) (0.88) (0.89) (0.91) (0.89) (0.86) (0.84) (0.82) (0.80) (0.78)

EE½r2� 45.30 45.55 46.47 47.07 47.39 47.86 48.40 48.81 49.14 49.33 49.40 49.94

(3.53) (3.03) (2.92) (2.66) (2.43) (2.38) (2.34) (2.32) (2.29) (2.26) (2.19) (2.18)

EE½l2� 30.46 31.16 32.01 32.50 32.71 33.03 33.39 33.65 33.81 33.83 33.74 34.09

(2.58) (2.26) (2.24) (2.04) (1.85) (1.84) (1.84) (1.84) (1.85) (1.83) (1.77) (1.78)

EE½g2� 14.84 14.39 14.46 14.57 14.68 14.84 15.01 15.16 15.33 15.50 15.66 15.85

(0.98) (0.80) (0.73) (0.68) (0.64) (0.61) (0.59) (0.58) (0.57) (0.56) (0.56) (0.55)

QRP 19.04 19.07 19.07 18.89 19.43 20.01 20.44 20.77 21.10 21.19 21.04 21.32

(1.35) (1.43) (1.43) (1.36) (1.41) (1.44) (1.41) (1.43) (1.46) (1.45) (1.43) (1.44)

QRPl 19.61 21.13 21.98 22.57 23.64 24.70 25.50 26.23 26.89 27.29 27.43 27.97

(1.42) (1.54) (1.63) (1.65) (1.69) (1.71) (1.69) (1.71) (1.74) (1.73) (1.69) (1.70)

QRPg 0.56 2.05 2.91 3.68 4.20 4.69 5.06 5.46 5.78 6.10 6.40 6.65

(0.33) (0.37) (0.40) (0.46) (0.44) (0.46) (0.47) (0.47) (0.47) (0.47) (0.47) (0.48)

Notes: In this table, we report the time-series mean for all maturities ranging from 1 to 12 months for a set of

variables that includes the risk-neutral expected quadratic payoff (EE½r2�, EE½l2�; EE½g2�), the expected quadrat-

ic payoff (E½r2�; E½l2�, E½g2�), and the QRP (QRP, QRPl, QRPg). Below each mean, in parentheses, we also re-

port the Newey and West (1987) standard error. All reported statistics are monthly squared percentage values.

The sample period is from January 1996 to December 2015.
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1.5.4 Principal component analysis

In general, structural and reduced-form asset pricing models have a very tight factor struc-

ture, implying that different expectations (whether risk-neutral or physical) are all driven

by a very low number of factors (e.g., in reduced-form option pricing models, the largest

number of factors considered in the literature so far is three). Nevertheless, our analysis

deals with the joint term structures of two uncertainty components (loss and gain) under

two different probability measures (Q and P). To pin down the number of factors observed

in the data, we run a principal component analysis of the term structure of four quantities:

the loss and gain components of the physical and risk-neutral expected quadratic payoff.

Alternatively, one can choose to use the loss and gain components of the physical expected

quadratic payoff and the QRP or the loss and gain components of the risk-neutral expected

quadratic payoff and the QRP. There is no difference between these three choices.

Table 2 shows the explanatory powers of the first three principal components. We find

that the first three principal components are enough to explain 91.39% of the variation in

the term structure of the loss and gain physical expected quadratic payoff and the QRP

(there are forty-eight variables because we include four quantities with twelve maturities).

The first principal component explains 56.73%, the second explains 26.73%, and the third

explains 7.93% of the variations. The immediate implication of these findings is that any

model (whether reduced-form or structural) that aims to jointly fit these various term struc-

tures should include at least three factors.

2 A Model for the Joint Term Structure of Quadratic Loss and Gain

In search of a flexible reduced-form model to accommodate different kinds of distribution

asymmetry and the term structure of lQ�
2 t; sð Þ and lQþ

2 t; sð Þ, we study the recent model pro-

posed by Andersen, Fusari, and Todorov (2015). This model is ideal for our analysis for

three reasons. First, it is built to disentangle the dynamics of positive and negative jumps.

Second, it is a three-factor framework, which would maximize the model’s chances of fit-

ting the term structure of the expected quadratic loss and gain and their risk premia since

we find that three principal components are needed to fit the targeted term structures in

Section 1.5.4. Third, since it is an affine model, it is tractable and enables us to compute all

Table 2 Principal component analysis

Principal component 1 2 3 First 3

Information sets Explanatory power (%)

E½l2� and E½g2� 58.01 37.10 3.13 98.24

EE½l2� and EE½g2� 87.33 8.78 2.76 98.87

QRPl and QRPg 73.05 15.22 6.18 94.45

E½l2�; E½g2�, QRPl and QRPg 56.73 26.73 7.93 91.39

Notes: In this table, we report in percentage the explanatory power of each of the first three principal compo-

nents, and their total explanatory power, for a number of different information sets. These include the term

structure of the loss and gain components of the physical expected quadratic payoff, the risk-neutral expected

quadratic payoff, and the QRP, each separately. We also report the explanatory power of the first three princi-

pal components of the term structure of components of the physical expected quadratic payoff together with

the term structure of the components of the QRP. The sample period is from January 1996 to December 2015.
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the quantities of interest in closed form. In this section, we discuss the Andersen, Fusari,

and Todorov (2015) model and some variants of this three-factor model. We use the two-

factor diffusion model of Christoffersen, Heston, and Jacobs (2009) as the baseline model.

Finally, we introduce a set of different specifications for the pricing kernel, including the

baseline specification in which jumps are not priced.

2.1 Andersen, Fusari, and Todorov (2015)’s Risk-Neutral Specification

In the three-factor jump-diffusive stochastic volatility model of Andersen, Fusari, and

Todorov (2015), the underlying asset price evolves according to the following general dy-

namics (under Q):

dSt

St�
¼ rf ;t � dt

� 	
dt þ

ffiffiffiffiffiffiffi
V1t

p
dWQ

1t þ
ffiffiffiffiffiffiffi
V2t

p
dWQ

2t þ g
ffiffiffiffiffiffiffi
V3t

p
dWQ

3t þ
ð

R2

ex � 1ð ÞlQ dt;dx;dyð Þ

dV1t ¼ j1 �v1 � V1tð Þdt þ r1

ffiffiffiffiffiffiffi
V1t

p
dBQ

1t þ l1

Ð
R2 x21 x<0f gl dt; dx; dyð Þ

dV2t ¼ j2 �v2 � V2tð Þdt þ r2

ffiffiffiffiffiffiffi
V2t

p
dBQ

2t

dV3t ¼ �j3V3tdt þ l3

Ð
R2 1� q3ð Þx21 x<0f g þ q3y2
h i

l dt; dx; dyð Þ;

where rf ;t and dt refer to the instantaneous risk-free rate and the dividend yield, respective-

ly; ðWQ

1t;W
Q

2t;W
Q

3t;B
Q

1t;B
Q

2tÞ is a five-dimensional Brownian motion with corrðWQ

1t;B
Q

1tÞ ¼
q1 and corrðWQ

2t;B
Q

2tÞ ¼ q2 while the remaining Brownian motions are mutually independ-

ent; and lQðdt; dx; dyÞ � lðdt; dx; dyÞ � �Qt ðdx; dyÞdt; where �Qt ðdx;dyÞ is the risk-neutral

compensator for the jump measure l, and is assumed to be

�Qt dx; dyð Þ ¼ f c�t 1 x<0f gk�e�k�jxj þ cþt 1 x>0f gkþe�kþjxj
� �

1 y¼0f g

(19)

where time-varying negative and positive jumps are governed by distinct coefficients: c�t
and cþt , respectively. These coefficients evolve as affine functions of the state vectors

c�t ¼ c�0 þ c�1 V1t� þ c�2 V2t� þ c�3 V3t�; cþt ¼ cþ0 þ cþ1 V1t� þ cþ2 V2t� þ cþ3 V3t�:

These three factors have distinctive features: V2t is a pure-diffusion process, V3t is a

pure-jump process, and innovation in V1t combines a diffusion and a jump component.

Furthermore, one of the key features of the AFT model is its ability to break the tight link

between expected negative and positive jump variation imposed by other traditional jump

diffusion models.

To better understand the ability of the key features of this general model to match the

observed term structures of risk-neutral expected quadratic loss and gain, we focus on two

dimensions. The first is the number of factors. Compared to the three-factor framework,

we ask whether two factors are enough and which two-factor alternatives generate the best

fit. The second dimension is the model’s ability to differentiate between the negative and

positive jump distribution. We ask whether the symmetric jump distribution can still fit the

term structures. We label the unrestricted general model AFT4 and consider the following

nested specifications:
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• AFT0: There are no jumps. This corresponds to the two-factor diffusion model studied

extensively in Christoffersen, Heston, and Jacobs (2009). This is equivalent to suppress-

ing all the jump related components (g ¼ 0 and l1 ¼ 0) and the third factor V3t:

• AFT1: There is no pure-jump process. This corresponds to suppressing V3t:

• AFT2: There is no pure-diffusion process. This corresponds to suppressing V2t: In this

model, both variance factors V1t and V3t jump, implying that it can be used to judge the

benefit of having jumps in volatility, a subject of much debate in the option pricing

literature.

• AFT3: The expected negative jump variation equals the expected positive jump vari-

ation. This corresponds to a three-factor model that assumes the same distribution for

positive and negative jumps. It is equivalent to imposing that k� ¼ kþ and c�t ¼ cþt . The

AFT3 is representative of most of the existing option pricing and variance swap models

as it does not differentiate between the intensity of positive and negative jumps (see,

e.g., Bates, 2012, Christoffersen, Jacobs, and Ornthanalai, 2012, Eraker, 2004,

Chernov et al., 2003, Huang and Wu, 2004, Amengual and Xiu, 2018, and Ait-Sahalia,

Karaman, and Mancini, 2015).

One interesting model variation is the three-factor model in which g ¼ 0: This makes

V3t a pure-jump process in the sense that it only drives the jump intensity while not entering

in the diffusive volatility.5 In the Online Appendix, we compare two three-factor models in

which g¼ 0 and g 6¼ 0 and find that g 6¼ 0 is important for accurate pricing of truncated se-

cond moments.

2.2 The Radon–Nikodym Derivative

In this article, our goal is to understand the statistical properties of the stock returns distri-

bution that are essential to reproduce the observed term structures of lQþ
2 t; sð Þ; lQ�

2 t; sð Þ
and the stochastic discount factor specifications that are able to replicate the observed

spreads lQ�
2 t; sð Þ � lP�

2 t; sð Þ and lQþ
2 t; sð Þ � lPþ

2 t; sð Þ: To do that, we need to specify a

Radon–Nikodym derivative (the law of change of measure). We specify the most flexible

Radon–Nikodym derivative preserving the same model structure under the physical dynam-

ic. Our Radon–Nikodym derivative is the product of the two derivatives separately govern-

ing the compensation of continuous variations and jump variations:

dQ

dP

� �
t
¼ dQ

dP

� �c

t

dQ

dP

� �j

t
;

where

dQ

dP

� �c

t
¼ exp

ðt

0

hr>
s dWP

s þ
ðt

0

�h
v>
s d �B

P

s �
1

2

ðt

0

hr>
s hr

s þ �h
v>
s

�h
v
s

� �
ds

� �
;

and

5 Several papers, including Santa-Clara and Yan (2010), Christoffersen, Jacobs, and Ornthanalai

(2012), and Andersen et al. (2015), find evidence for a pure-jump component in the pricing of S&P

500 options.
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dQ

dP

� �j

t
¼ E

ðt

0

ð
R2

Ws x; yð ÞlP ds;dx;dyð Þ
� �

;

with E referring to the stochastic exponential, dWP
jt � dWQ

jt þ hr
t jð Þdt; d �B

P

jt � d �B
Q

jt þ
�h

v
t jð Þdt; dBQ

jt ¼ qjdWQ
jt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

j

q
d �B

Q

jt , and lP dt;dx;dyð Þ ¼ l dt;dx;dyð Þ � �Pt dx; dyð Þdt:

With the appropriate choice for the price of risk parameters hr
t ;

�h
v
t and the physical

compensator �Pt dx;dyð Þ; we can show that the resulting physical dynamic preserves the

exact structure as the risk-neutral dynamic. In particular, the price of jump risk, Wt x; yð Þ; is

given by

Wt x;yð Þ�
�Qt dx;dyð Þ
�Pt dx;dyð Þ�1 where

�Qt dx;dyð Þ
�Pt dx;dyð Þ ¼

cþt
cPþt

kþ
kPþ

exp � kþ�kPþ

� �
x

� �
x>0 y¼0

c�t
cP�t

k�
kP�

exp k��kP�

� �
x

� �
x< 0 y¼0

c�t
cP�t

k�
kP�

exp k��kP�

� �
y

� �
x¼0 y< 0

:

8>>>>>>>>>><
>>>>>>>>>>:

Is the premium inherent in hedging bad shocks substantially different from the one

required to be exposed to good shocks? The evidence presented in Section 2 overwhelming-

ly points to two very different premia. Another more challenging question is whether we

need to specify a maximum flexible pricing kernel where all the parameters for jump inten-

sities are shifted from the Q- to the P-measure by different amounts, or whether there is a

parsimonious specification (one that imposes more restrictions between the Q- and P-dy-

namics) that is able to simultaneously replicate the observed dynamics of the term struc-

tures of the loss and gain QRP. To shed light on these issues, in the estimation investigation

we distinguish between the following restrictions on the Radon–Nikodym derivative (where

the unrestricted specification is labeled RND4):

1. RND0: Jumps are not priced. This is equivalent to imposing cPþj ¼ cþj ; cP�j ¼ c�j ; for j ¼
0; 1;2;3 kP� ¼ k� and kPþ ¼ kþ: Note that this is the equivalent of setting Wtðx; yÞ ¼ 0;

or equivalently, ðdQ
dPÞ

j
t ¼ 1:

2. RND1: The price of positive jumps equals the price of negative jumps, or more formally

Wtðx; yÞ is independent of the sign of x. Note that this is the implicit restriction imposed

by traditional affine jump diffusion option pricing models, for example, Eraker (2004),

Santa-Clara and Yan (2010), Christoffersen, Jacobs, and Ornthanalai (2012), and Bates

(2012).

3. RND2: Negative jumps are not priced () kP� ¼ k�; cP�j ¼ c�j ; for j ¼ 0; 1;2; 3.

4. RND3: Positive jumps are not priced () kPþ ¼ kþ; cPþj ¼ cþj ; for j ¼ 0; 1; 2;3.

3 Estimation

We largely rely on the recent paper by Feunou and Okou (2018), which proposes to esti-

mate affine option pricing models using risk-neutral moments instead of raw option prices.

Unlike option prices, cumulants (central moments) are linear functions of unobserved
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factors. Hence, using cumulants enables us to circumvent major challenges usually encoun-

tered in the estimation of latent factor option pricing models.

Given that the AFT model is affine, the linear Kalman filter appears as a natural estima-

tion technique. The AFT model can easily be casted in a (linear) state-space form where the

measurement equations relate the observed or model-free risk-neutral cumulants to the la-

tent factors (state variables) and the transition equations describe the dynamics of these fac-

tors. However, unlike the setup in Feunou and Okou (2018), we are mainly interested in

the term structures of expected quadratic loss and gain, which turn out to be nonlinear

functions of the factors. Hence, we will have two sets of measurement equations: (i) linear

equations, which relate the risk-neutral variances and third-order cumulants to the factors;

and (ii) nonlinear equations, which relate the risk-neutral expected quadratic loss and gain

to the factors. We will use only the first set of measurement equations in the linear Kalman

filtering step, and conditional on the filtered factors, we will compute the likelihood of the

risk-neutral expected quadratic loss and gain.

3.1 Risk-Neutral Cumulants Likelihood

On a given day t, we stack together the nth-order risk-neutral cumulant observed at distinct

maturities in a vector denoted by CUM
ðnÞQ
t ¼ ðCUM

ðnÞQ
t;s1

; . . . ;CUM
ðnÞQ
t;sJ
Þ>, where n 2 f2;3g:

We further stack the second and third cumulant vector in CUMQ
t ¼ ðCUM

ð2ÞQ>
t ; CUM

ð3ÞQ>
t Þ>

to build a 2J � 1 vector. This implies the following linear measurement equation:

CUMQ
t ¼ Ccum

0 þ Ccum
1 Vt þ X1=2

cum#
cum
t ; (20)

where the dimension of the unobserved state vector (Vt) is 3. Notably, Ccum
0 and Ccum

1 are

2J � 1 and 2J � 3 matrices of coefficients whose analytical expressions depend explicitly on

Q-parameters as shown in Feunou and Okou (2018). The last term in Equation (20) is a

vector of observation errors, where Xcum is a 2J � 2J diagonal covariance matrix and #cum
t

denotes a 2J � 1 vector of independent and identically distributed (i.i.d.) standard Gaussian

disturbances.

As shown in Feunou and Okou (2018), the transition equation for the three factors in

the AFT model is

Vtþ1 ¼ U0 þ U1Vt þ R Vtð Þ1=2etþ1; (21)

where U0; U1; and R Vtð Þ are functions of model parameters. They are given in the Online

Appendix (Section A12) to save space. The system (20)–(21) gives the state-space represen-

tation of the AFT model. The marginal moments (mean and variance) of the latent vector

are used to initialize the filter by setting V0j0 ¼ � KP
1

� 	�1
KP

0 and vec P0j0
� 	

¼
I9 � U1 � U1ð Þ�1vec R V0j0

� 	� 	
, where I9 is a 9� 9 identity matrix and � is the Kronecker

product. Now, consider that Vtjt and Ptjt are available at a generic iteration t. Then, the fil-

ter proceeds recursively through the forecasting step:

Vtþ1jt ¼ U0 þ U1Vtjt

Ptþ1jt ¼ U1PtjtU
>
1 þ R Vtjt

� 	
CUMQ

tþ1jt ¼ C0 þ C1Vtþ1jt

Mtþ1jt ¼ C1Ptþ1jtC
>
1 þ Xcum

8>>>>>>><
>>>>>>>:

(22)
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and the updating step:

Vtþ1jtþ1 ¼ Vtþ1jt þ Ptþ1jtC
>
1 M�1

tþ1jt CUMQ

tþ1 � CUMQ

tþ1jt

� �h i
þ
;

Ptþ1jtþ1 ¼ Ptþ1jt � Ptþ1jtC
>
1 M�1

tþ1jtC1Ptþ1jt;

8<
: (23)

where V½ �þ returns a vector whose ith element is max Vi; 0ð Þ. This additional condition

ensures that latent factor estimates remain positive for all iterations—a crucial property for

stochastic volatility factors that cannot assume negative values. Finally, we construct a

Gaussian quasi log-likelihood for the cumulants:

LikCUM ¼ �1

2

XT

t¼1

ln 2pð Þ2J
det Mtjt�1

� 	� �
þ n>t;cumM�1

tjt�1nt;cum

h i
; (24)

where nt;cum � CUMQ
t � CUMQ

tjt�1:

3.2 Risk-Neutral Expected Quadratic Loss and Gain Likelihood

We use Equation (8) to compute the model-implied lQþ
2 ðt; sÞ and lQ�

2 ðt; sÞ: Note that

EQ
t ½r2

t;tþs� ¼ CUM
ð2ÞQ
t;s þ ðCUM

ð1ÞQ
t;s Þ2 and both CUM

ð2ÞQ
t;s and CUM

ð1ÞQ
t;s are computed analyt-

ically within the AFT framework following Feunou and Okou (2018). We follow Fang and

Oosterlee (2008) to approximate KQðt; sÞ analytically. All the details are provided in

Section A7 of the Online Appendix. Hence, both lQþ
2 ðt; sÞ and lQ�

2 ðt; sÞ are nonlinear func-

tions of the factor Vt. We construct a Gaussian quasi log-likelihood for the truncated

moments Tmomt;

LikTmom ¼ � 1

2

XT

t¼1

ln 2pð Þ2J
det XTmomð Þ

� �
þ n>t;TmomX�1

Tmomnt;Tmom

h i
; (25)

where nt;Tmom ¼ Tmom Obsð Þ
t � Tmomt Vtjt

� 	
; XTmom denotes the measurement error vari-

ance, Vtjt is obtained through the filtering procedure (see Equations (22) and (23)),

Tmomþt ¼ lQþ
2;s1
; . . . ; lQþ

2;sJ

� �>
; Tmom�t ¼ lQ�

2;s1
; . . . ;lQ�

2;sJ

� �>
; Tmomt

� Tmomþ>t ;Tmom�>t

� 	>
;

and Tmom Obsð Þ
t is the time-t observed risk-neutral truncated moments (computed model-

free using Equation (13)). Parameters for different models are estimated via a maximization

of LikCUM þ LikTmom:

3.3 Discussions

Given the heteroscedasticity and non-normality of factors and some nonlinear measure-

ment equations, the Kalman filter is not optimal in this case.6 Two other alternatives could

have been considered regarding nonlinear measurement equations: (i) locally linearize the

nonlinear measurement equation (this is known as the extended Kalman filter); or (ii) use a

deterministic sampling technique (known as the unscented transformation) to accurately

6 Regarding the issue of heteroscedastic and non-Gaussian factors, we refer readers to Duan and

Simonato (1999) for extensive discussions and Monte Carlo analyses suggesting that the loss of op-

timality is very minimal.
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estimate the true mean and covariance (this is known as the unscented Kalman filter). We

want to emphasize that the Kalman filter described in this article uses nonlinear equations

for parameter estimation (see Equation (25)), which implies that nonlinear equations affect

the filtering of unobserved factors in an indirect way. While the extended Kalman filter is

appealing as it allows the nonlinear measurement equations to directly affect the filtered

factors, in our case its implementation is difficult mainly because nonlinear measurements

and their derivatives are approximate.

Nevertheless, of first importance is evaluating the impact of this estimation choice on

our main results. To do so, we implement the extended Kalman filter for the most flexible

model (AFT4) and compare its fit with the classic Kalman filter. Using the approach in

Fang and Oosterlee (2008), we derive a simple analytical approximation of the Jacobian

required for the effective implementation of the extended Kalman filter. Because of space

constraints, we report these derivations and all empirical results in the Online Appendix

(Table A3, Figures A5 and A6). We find that the two methods provide a very similar fit.

Thus, our main conclusions are robust to the choice of the estimation method.

4 Results

In this section, we evaluate the ability of different models to fit the term structure of the

expected quadratic payoff and its loss and gain components. We use Christoffersen,

Heston, and Jacobs (2009) (AFT0) as our baseline model. We compare this baseline model

with two other two-factor alternatives AFT1 and AFT2, and two more three-factor models,

AFT3 with a symmetric jump distribution and AFT4 in Andersen, Fusari, and Todorov

(2015). Finally, we evaluate the ability of different pricing kernels with various flexibility

to fit the QRP and its loss and gain components.

4.1 Fitting the Risk-Neutral Expectations

We examine the performance of different models by relying on the root-mean-squared error

(RMSE):

RMSE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1

MomMkt
t �MomMod

t

� 	2

vuut ;

where MomMkt
t is the time t observed risk-neutral moment and MomMod

t is the model-

implied equivalent. Results are reported in Table 3.7 Overall, regarding the fitting of the

term structure of the risk-neutral expected gain and loss, we find that the benchmark two-

factor diffusion model (AFT0) is outperformed by all the other variants.

With respect to the risk-neutral quadratic loss fit, the AFT0 model’s RMSE increases

with the horizon and ranges from 1% at 2 months to 2.15% at 1 year. The average RMSE

is 1.73%, which is far higher than other models’ RMSEs. The best performer is the AFT4

model with an average error of 0.77%, which offers approximately a 56% improvement

over the benchmark AFT0 model. This performance of the AFT4 model is robust across

horizons, with an RMSE as low as 0.45% around horizons of 4–5 months, which is an

7 All risk-neutral parameter estimates, together with their standard deviations, are reported in Table

A2 of the Online Appendix.
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improvement of nearly 75% over the benchmark AFT0 model. The three-factor models

(AFT3 and AFT4) outperform the other two-factor models (AFT1 and AFT2). The AFT4

model offers an improvement of approximately 15% over the AFT3 model, which under-

scores the importance of accounting for asymmetry in the jump distribution.

Turning to the risk-neutral quadratic gain fit, the AFT0 model’s average RMSE is

2.19%, which is roughly 50% higher than other variant’s RMSEs. The best-performing

Table 3 Risk-neutral moments RMSEs

s Quadratic loss Quadratic gain

AFT0 AFT1 AFT2 AFT3 AFT4 AFT0 AFT1 AFT2 AFT3 AFT4

2 1.08 0.97 1.14 0.77 0.68 2.56 0.69 1.50 1.65 0.82

3 1.47 0.60 0.81 0.62 0.50 2.12 0.72 1.13 1.37 0.63

4 1.73 0.40 0.57 0.52 0.44 1.99 0.78 0.95 1.14 0.69

5 1.82 0.45 0.46 0.49 0.46 1.93 0.85 0.91 1.08 0.80

6 1.77 0.66 0.55 0.64 0.54 1.98 0.92 0.98 1.06 1.00

7 1.74 0.88 0.74 0.80 0.66 2.07 0.99 1.03 1.07 1.19

8 1.71 1.06 0.89 0.97 0.83 2.15 1.06 1.07 1.08 1.37

9 1.70 1.23 1.05 1.12 0.95 2.21 1.12 1.10 1.03 1.51

10 1.86 1.36 1.20 1.23 1.03 2.28 1.19 1.13 1.00 1.63

11 1.99 1.49 1.29 1.32 1.11 2.38 1.21 1.12 1.00 1.72

12 2.15 1.60 1.39 1.36 1.22 2.45 1.29 1.06 1.07 1.80

Avg 1.73 0.97 0.92 0.89 0.77 2.19 0.98 1.09 1.14 1.20

s Volatility Skewness

AFT0 AFT1 AFT2 AFT3 AFT4 AFT0 AFT1 AFT2 AFT3 AFT4

2 0.74 1.09 1.04 0.69 0.31 0.97 0.19 0.26 0.30 0.47

3 0.33 0.70 0.70 0.61 0.11 0.95 0.16 0.19 0.22 0.27

4 0.51 0.44 0.43 0.47 0.18 0.97 0.15 0.15 0.17 0.19

5 0.47 0.29 0.24 0.31 0.21 0.92 0.13 0.12 0.13 0.13

6 0.43 0.21 0.19 0.19 0.21 0.88 0.11 0.09 0.09 0.09

7 0.36 0.29 0.26 0.23 0.18 0.85 0.08 0.09 0.08 0.09

8 0.22 0.40 0.39 0.33 0.15 0.81 0.08 0.11 0.09 0.11

9 0.20 0.55 0.52 0.44 0.12 0.79 0.09 0.13 0.09 0.15

10 0.36 0.67 0.64 0.50 0.16 0.75 0.11 0.17 0.10 0.17

11 0.54 0.81 0.78 0.61 0.20 0.72 0.13 0.19 0.12 0.19

12 0.71 0.93 0.93 0.75 0.28 0.74 0.14 0.19 0.15 0.22

Avg 0.44 0.58 0.56 0.47 0.19 0.85 0.12 0.15 0.14 0.19

Notes: In this table we report the root-mean-squared error.

RMSE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1

MomMkt
t �MomMod

t

� 	2

vuut :

where MomMkt
t is the time t risk-neutral moment value observed on the market, and MomMod

t is the corre-

sponding model-implied equivalent. All variance RMSEs are in annual percentage units. The sample period is

from January 1996 to December 2015.
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model on this front is the AFT1 model with an average RMSE of 0.98%, while the per-

formance of the AFT2, AFT3, and AFT4 models is similar. However, the AFT0 model fits

the term structure of the total risk-neutral quadratic payoff remarkably well with an aver-

age RMSE of 0.44%, which confirms the findings of Christoffersen, Heston, and Jacobs

(2009). The best performer for the term structure of the total quadratic payoff is again the

AFT4 model with an RMSE of about 0.19%, which offers an improvement of about 57%

over the benchmarks AFT0 and AFT3. In accordance with our findings regarding the quad-

ratic loss, this result highlights the importance of asymmetry in the jump distribution for fit-

ting the term structure of the risk-neutral variance.

On the term structure of the risk-neutral skewness dimension, the benchmark AFT0 is

the worst performer with an average RMSE of 0.85, whereas all the other variants have a

similar fit, with an average RMSE of approximately 0.15, which is an almost 80% im-

provement over the benchmark AFT0. These results underscore the importance of jumps

when fitting the term structure of risk-neutral skewness. To better understand our findings,

in Figure 2 we plot the observed and model implied average term structure of risk-neutral

moments (the top and middle panels). The AFT0 model is clearly unable to fit the average

term structure of risk-neutral expected quadratic gain or loss. It overestimates the risk-

neutral expected quadratic gain and underestimates the risk-neutral expected quadratic

loss, which explains why it is able to fit the term structure of the total risk-neutral expected

quadratic payoff well. Not surprisingly, the AFT0 model is outperformed by all the other

variants when it comes to fitting the term structure of skewness. The most likely explan-

ation is that jumps are essential to generate skewness; accounting for only the leverage ef-

fect is not enough.

The ranking between two-factor models (AFT1 and AFT2) is mixed. The model without

a pure-jump process (AFT1) dominates the one without a pure-diffusion process (AFT2)

when fitting the term structure of the risk-neutral expected quadratic loss and gain in the

short end. However, this result is reversed in the long end. Figure 2 shows that, on average,

the AFT1 model fits the term structure of the risk-neutral expected quadratic gain remark-

ably well, while the AFT2 model fits the term structure of the risk-neutral expected quad-

ratic loss very well. These results suggest that incorporating a pure-jump process and

having jumps in the volatility are essential for the distribution of the loss uncertainty, while

a pure-diffusion process is a key ingredient for the distribution of the gain uncertainty.

Both of the two-factor variants are outperformed by the most general specification

(AFT4), which overall is able to reproduce the term structure of the truncated and total

risk-neutral moments remarkably well. Comparing the two three-factor models (AFT3 and

AFT4), we evaluate the importance of introducing a wedge between the negative and posi-

tive jump distributions. The results are mixed on this front. For the term structure of the

risk-neutral expected quadratic loss and the risk-neutral expected quadratic payoff, the

AFT4 model clearly outperforms the AFT3 model (which has no asymmetry in the jump

distribution). However, there is no clear winner for the gain uncertainty and skewness. The

AFT4 model has a better fit on the short end of the risk-neutral expected quadratic gain,

while the AFT3 is preferred on the long end.

4.2 Fitting the QRP

We focus on the most flexible specification of the AFT model (AFT4) and evaluate the fit-

ting ability of different pricing kernel specifications discussed in Section 2.2. In the bottom
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Figure 2 Observed and model-implied average term structure of risk-neutral moments and risk-pre-

mium. In this figure we plot the observed and model-implied average term structure of risk-neutral

moments (the first two rows) and QRP (the third row). All values of the risk-neutral expected quadratic

payoff and its components are reported in annualized volatility terms. For the risk premium, we use

the most flexible specification of the AFT model (AFT4). The sample period is from January 1996 to

December 2015.
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panels of Figure 2, we plot the observed and model implied average term structure of the

QRP. It is readily apparent that the most flexible Radon–Nikodym derivative (RND4) is

the only one that is able to adequately fit the average term structure of the QRP and its loss

and gain components. The worst performer is RND0, which assumes that jumps are not

priced. Not pricing jumps generates a negative average term structure in the net and loss

QRP. Not pricing either positive jumps (RND2) or negative jumps (RND3) is also strongly

rejected. Finally, even though a symmetric Radon–Nikodym derivative (RND1), which

gives the same price to both the positive and negative jumps, is able to replicate the positive

sign for all the term structures, it falls short in capturing the level. Overall, we find that it is

imperative to price jumps asymmetrically in the pricing kernel.

To confirm these visual findings, we report the RMSE in Table 4. In addition to the loss

and gain QRP RMSEs reported in the top panels, we also report the total QRP (denoted

Net QRP since it is the difference between the loss and gain QRP) in the bottom left panel

and the skewness risk premium (SRP, which is defined as the sum of the loss and gain QRP)

in the bottom right panel. The numbers are roughly in line with the visual findings of

Figure 2. Except for the very short maturity (3 months), RND4 yields the smallest RMSE

across maturities and for different types of risk premia. RND0 is the worst performer,

which implies that pricing jumps is important for the dynamics of the QRP and its compo-

nents. The average RMSE for the RND4 model is 3.5%, 1.2%, 1.4%, and 3.2% for the

loss, gain, net, and sum QRP, respectively. These numbers are substantial improvements

over the benchmarks RND0 (which assumes that jumps are not priced) and RND1 (which

gives the same price to both the positive and negative jumps). To be more specific, on the

one hand, the RND4 model offers approximately 70%, 30%, 80%, and 72% improve-

ments over RND0 for the fitting of the loss, gain, and net QRP, and the SRP, respectively.

On the other hand, the RND4 model offers approximately 62%, 33%, 75%, and 66% im-

provement over RND1 for the fitting of the loss, gain, and net QRP, and the SRP,

respectively.

We can further scrutinize the overall performance results by maturity. Table 4 reveals

that the superiority of the RND4 pricing kernel holds across the maturity spectrum. For the

loss, net QRP, and the SRP, the relative improvement increases with the maturity and

reaches 80% at the 1-year horizon.

5 Conclusion

In this article, we investigate how the amount of money paid by investors to hedge negative

spikes in the stock market changes with the investment horizon. For this purpose, we esti-

mate the quadratic payoff and its loss and gain components across time and horizon. We

uncover new empirical facts that challenge most of the existing option and variance swaps

pricing models. Among these facts, we find an average upward-sloping term structure for

the risk-neutral expected quadratic payoff and its components. We also find upward-

sloping term structures for the physical expected quadratic payoff and quadratic gain but a

downward-sloping term structure for the physical expected quadratic loss. There is signifi-

cant time variation in the slopes of these term structures, and we observe that they are nega-

tive and spike during financial downturns. Finally, we find that at least three principal

components are required to explain the cross-section (across maturity or horizon) of the

risk-neutral and physical expected quadratic payoff and its components.
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To replicate these empirical facts, we focus on the Andersen, Fusari, and Todorov (2015)

model and some of its restricted variants. This model is particularly appealing as it completely

disentangles the dynamics of negative and positive jumps. In addition, the model has three

factors, which is an essential ingredient as suggested by our principal component analysis. We

find that models without an asymmetric treatment of positive and negative jumps are overall

rejected as they are unable to fit the term structure of the risk-neutral expected quadratic loss.

Notably, this category of models covers most of the existing option and variance swap pricing

models found in the literature. We also evaluate different pricing kernel specifications and

find that disentangling the price of negative jumps from its positive counterpart is essential

for replicating the observed term structures of the loss and gain QRP.

Supplementary Data

Supplementary data are available at Journal of Financial Econometrics online.
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Table 4 QRP RMSEs

s Loss QRP Gain QRP

RND0 RND1 RND2 RND3 RND4 RND0 RND1 RND2 RND3 RND4

3 9.86 6.39 3.92 3.55 6.36 1.72 1.95 2.79 2.80 1.12

6 11.53 9.21 4.08 6.04 2.73 1.53 1.62 0.93 1.41 0.92

9 12.53 10.82 3.85 8.01 2.73 1.69 1.70 1.18 1.43 1.23

12 13.21 11.63 4.09 9.16 2.55 1.95 1.93 1.62 1.73 1.52

Avg 11.78 9.51 3.99 6.69 3.59 1.72 1.80 1.63 1.84 1.20

s Net QRP Skewness RP

RND0 RND1 RND2 RND3 RND4 RND0 RND1 RND2 RND3 RND4

3 7.33 4.86 2.63 3.28 2.77 10.90 7.31 4.08 4.85 6.60

6 7.85 6.15 2.16 3.90 1.17 11.98 9.84 3.71 6.59 2.27

9 7.42 6.11 1.70 4.12 0.94 11.88 10.25 3.01 7.52 2.13

12 7.05 5.88 1.32 4.12 0.91 11.80 10.40 2.72 8.06 1.92

Avg 7.41 5.75 1.95 3.86 1.45 11.64 9.45 3.38 6.76 3.23

Notes: In this table we report the root-mean-squared error.

RMSE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1

QRPMkt
t �QRPMod

t

� 	2

vuut ;

where QRPMkt
t is the time t QRP value observed on the market, QRPMod

t is the corresponding model-implied

equivalent. All variance RMSEs are in annual percentage units. Net QRP is the difference between loss and

gain QRP, while skewness RP is the sum. The sample period is from January 1996 to December 2015.
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Abstract

In the last few decades, a broad strand of literature in finance has implemented arti-
ficial neural networks as a forecasting method. The major advantage of this ap-
proach is the possibility to approximate any linear and nonlinear behaviors without
knowing the structure of the data generating process. This makes it suitable for fore-
casting time series which exhibit long-memory and nonlinear dependencies, like
conditional volatility. In this article, the predictive performance of feed-forward and
recurrent neural networks (RNNs) was compared, particularly focusing on the re-
cently developed long short-term memory (LSTM) network and nonlinear autore-
gressive model process with eXogenous input (NARX) network, with traditional
econometric approaches. The results show that RNNs are able to outperform all the
traditional econometric methods. Additionally, capturing long-range dependence
through LSTM and NARX models seems to improve the forecasting accuracy also in
a highly volatile period.

Key words: neural network, machine learning, stock market volatility, realized volatility

JEL classification: C22, C24, C58, G17

Measuring and predicting stock market volatility has received growing attention from both

academics and practitioners over the last years. It is well known that stock return volatility

varies over time (Engle, 1982; Bollerslev, 1986) and asymmetrically responds to unexpected

news (Black, 1976; Nelson, 1990), which may cause distortions in the estimation of volatil-

ity and in the definition of its underlying process. For these reasons, some authors suggested

to estimate stock market volatility through a smooth transition or a threshold model (De

Pooter, Martens, and Van Dijk, 2008; McAleer and Medeiros, 2008). The nonlinearity

makes the estimation of these models difficult, since the sample log-likelihood can exhibit

local maxima and may be generally hard to solve with confidence. Furthermore, this class

of models is in general greedy in requiring a substantial amount of data to identify the states
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and presents poor out-of-sample forecasting performance (Clements and Krolzig, 1998;

Pavlidis, Paya, and Peel, 2012).

In this framework, this article aims to capture the nonlinear relationships between ag-

gregate stock market volatility, measured by realized volatility, and a set of financial and

macroeconomic variables through artificial neural networks (ANNs). Realized volatility

has been shown to be subject to structural breaks and regime-switching, hence the need

to use a nonlinear adaptive modeling approach such neural networks. This method

allows approximating arbitrarily well a wide class of linear and nonlinear functions without

knowing the data generating process. Furthermore, ANNs are found to be particularly useful

to forecast volatile financial variables exhibiting nonlinear dependence, such as stock prices,

exchange rates, and realized volatility; see Donaldson and Kamstra (1996a,b). Even if neural

networks have been around since 1950s, only in the last two decades they have been used in

finance, showing that they can outperform linear models in capturing complex relationships

in which linear models fail to perform well. In particular, they seem to be suitable for model-

ing the dynamics of realized volatility in relation to macroeconomic and financial determi-

nants, that may drive the dynamics of realized volatility not linearly.

ANNs have been commonly implemented for predicting stock prices (White, 1988;

Kamijo and Tanigawa, 1990; Khan, 2011), while there has been little effort on forecasting

volatility through neural networks. Moreover, neural networks have been mostly employed

in combination with GARCH models (Hajizadeh et al., 2012; Maciel, Gomide, and Ballini,

2016). For instance, Donaldson and Kamstra (1997) investigated the usefulness of a semi-

nonparametric GARCH model to capture nonlinear relationships, proving that the ANN

model performs better than all competing models. Hu and Tsoukalas (1999), instead, com-

bined the forecasts from four conditional volatility models within a neural network’s archi-

tecture, showing that the ANNs predict accurately well the targeted variable during crisis

periods. Arneri�c, Poklepovic, and Aljinovi�c (2014) based their neural networks on the

squared innovations deriving from a GARCH model. They relied on a Jordan neural net-

work (JNN) and showed that an neural networks (NN) model provides superior forecasting

accuracy in comparison with other linear and nonlinear models. An early contribution to

this literature is Hamid and Iqbal (2004), which compared the forecasting performance of

neural networks using implied volatility and realized volatility. In their manuscript, neural

networks were able to outperform implied volatility forecasts and were in line with realized

volatility. Kristjanpoller, Fadic, and Minutolo (2014) also made use of neural networks to

forecast, as in this manuscript, monthly realized volatility and returns of three Latin-

American stock market indexes.

Fernandes, Medeiros, and Scharth (2014) extended these studies by specifying a neural-

network heterogeneous autoregressive (HAR) with exogenous variables to improve implied

volatility forecasts. A recent paper by Vortelinos (2017) implemented a neural network to

forecast a nonparametric volatility measure. The author concluded that the persistence in

realized volatility is not well approximated by a feed-forward network. More recently,

Rosa et al. (2014) and Miura, Pichl, and Kaizoji (2019) relied on the use of neural networks

to provide out-of-sample forecasts of realized volatility, both showing that neural networks

were able to outperform linear models.

This article contributes to this literature investigating whether a totally nonparametric

model is able to outperform econometric methods in forecasting realized volatility. In particu-

lar, the analysis performed here compares the forecasting accuracy of time series models with
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several neural networks architectures, as the feed-forward neural network (FNN), the Elman

neural network (ENN), the JNN, a long short-term memory (LSTM) neural network, and the

nonlinear autoregressive model process with eXogenous input (NARX) neural network.

The latent volatility is estimated through the ex-post measurement of volatility based on

high-frequency data, namely realized volatility; see Andersen et al. (2001) and Barndorff-

Nielsen and Shephard (2002). Since macroeconomic and financial variables, which are

sampled at lower frequencies, are included in the model, realized volatility is estimated on a

monthly basis from daily squared returns.

The remainder of this article is organized as follows: Section 1 illustrates the data set,

the estimation method of the volatility, and the set of macroeconomic and financial predic-

tors. Section 2 introduces the neural network models. The choice of the architecture of the

neural networks is presented in Section 3. In Section 4, the performance of the ANNs is

assessed in terms of forecasting accuracy, while Section 5 concludes.

1 Data and Volatility Measurement

The data set employed in this study comprises monthly observations from February 1950

to December 2017 for a total of 815 observations. The realized variance for month t is com-

puted as the sum of squared daily returns,
PNt

i¼1 r2
i;t, where ri;t is the ith daily continuously

compounded return in month t and Nt denotes the number of trading days during month t.

Given that the natural logarithm of realized volatility is approximately Gaussian (Andersen

et al., 2001), the realized volatility is here defined as the log of the square root of the real-

ized variance (RV):

RVt ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiXNt

i¼1

r2
i;t

vuut ; (1)

where ri;t is the daily return of the Standard & Poor’s (S&P) index. The logarithm of the

realized volatility is highly persistent, as indicated by the time series plot in Figure 1 and by

the autocorrelation function (ACF) in Figure 2, suggesting that a long-memory detecting

model should be implemented (Rossi and Santucci de Magistris, 2014). In order to under-

stand whether a nonlinear model was truly necessary, the nonlinearity tests discussed in

Terasvirta (1994) and Keenan (1985) were performed. The tests rejected the null of linear-

ity with a p-value lower than 0.001.

Since volatility exhibits a highly variable behaviur, one may also suspect that its dynam-

ics are partly driven by several economic variables. A strand of literature has focused on the

identification of economic drivers of volatility. In a seminal work, Schwert (1989) found

that volatility behaves in a countercyclical way respect to economic activity. Afterward,

both Engle, Ghysels, and Sohn (2009) and Diebold and Yilmaz (2009) showed a strong link

between macroeconomic fundamentals and stock return volatility. More recently, Paye

(2012) and Christiansen, Schmeling, and Schrimpf (2012) examined the role of a large set

of macroeconomic and financial variables on the dynamics of realized volatility. They

proved that the presence of exogenous variables helps increasing forecasting accuracy. The

same findings are showed by Bucci, Palomba, and Rossi (2019), which analyzed the fore-

casting accuracy of realized covariance through a Vector Logistic Smooth Transition

Autoregressive model.
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Understanding which are the volatility predictors can be crucial for investment deci-

sions, and for policy makers and monetary authorities. Thus, this analysis relies on a com-

prehensive set of macroeconomic and financial variables as volatility predictors.

As in Paye (2012) and Christiansen, Schmeling, and Schrimpf (2012), I include in the

analysis many predictive variables from return predictability literature (Mele, 2007, 2008).

First, the set of determinants comprehends the dividend-price (DP) and the earnings-

price ratio (EP), commonly included in the set of the excess returns predictors, see also

Welch and Goyal (2008). The well-known leverage effect (i.e., negative returns reflect

higher volatility) is gathered through the equity market excess return (MKT). As a measure

Figure 1 log RV from February 1950 through December 2017.

Figure 2 ACF and partial autocorrelation function of RV.
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of risk factors, the Fama and French’s (1993) factors (High Minus Low, HML, and Small

Minus Big, SMB) are considered in the analysis. The short-term reversal factor (STR) is

included to capture the component of stock returns unexplained by “fundamentals.”

A set of bond market variables enriches the set of determinants, as the Treasury bill (T-

bill) rate, the rate of return on long-term government bond and the term spread difference

(TS) of long-term bond yield three-month T-bill rate. The default spread (DEF) completes

the set of financial determinants to approximate credit risk.

The inclusion of macroeconomic variables, as inflation rate and industrial production

growth, follows Schwert (1989) and Engle, Ghysels, and Sohn (2009). Including these vari-

ables permits to assess whether volatility is countercyclical or not. A description of the vari-

ables in the data is shown in Table 1.

2 Neural Networks

ANNs can be seen as nonparametric tools, inspired by the structure of the human brain, for

modeling and predicting the unknown function generating the observed data (Arneri�c,

Poklepovic, and Aljinovi�c, 2014). The structure of the network can be modified to approxi-

mate a wide range of statistical and econometric models. For this reason, ANNs have been

widely employed to forecast time series in different areas, like finance, medicine, biology,

engineering, and physics. Empirical research indicates that ANNs are particularly suitable

for forecasting volatile financial variables that exhibit nonlinear behaviors, like stock mar-

ket returns or stock market volatility (Maheu and McCurdy, 2002), since they are capable

of detecting nonlinear structure that linear models cannot detect. In this way, the researcher

can implement neural networks without any a priori knowledge of the data generating

process.

The neural network is specified as a collection of neurons (or nodes), grouped in layers,

that connect to each other. The nodes of a layer are connected to the nodes of the following

layer through weights and an activation function.1 There exists a wide variety of learning

algorithms to obtain these weights, the most popular being the backpropagation (BP). This

algorithm is based on the gradient descent rule and allows to update the weights at each it-

eration, until there is no improvement in the error function, which is typically defined as

the mean squared error (MSE).2

When the size of the network is too large, because of the number of hidden layers and

hidden nodes, the training algorithm can be very slow. Although some rules have been sug-

gested in the literature to find the optimal number of hidden layers and neurons (Gnana

Sheela and Deepa, 2013), there is no commonly agreed solution to this issue. Stinchcombe

and White (1992) proved that a single hidden neural network is a universal approximator,

meaning that the network can approximate a wide range of linear and nonlinear functions,

1 An activation function is implemented in order to introduce nonlinearity to the network. Many acti-

vation functions, like sigmoid, hyperbolic tangent, and exponential, can be used in this framework,

provided that they satisfy the condition of differentiability to apply the chain rule in the BP

algorithm.

2 Other loss functions can be also implemented, such as mean absolute error and mean absolute

percentage error.
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if a sufficient number of hidden nodes is included. For this reason, a single hidden layer net-

work is assumed throughout the present article. Assuming then a three-layer neural net-

work and a single output variable, the output function is of the form:

ft xt; hð Þ ¼ F b0 þ
Xq

j¼1

G xtc
0
j

� �
bj

0
@

1
A; (2)

where F is the output activation function, G is the hidden units’ activation function, bj,

with j ¼ 1; . . . ;q, are the weights from hidden unit j to the output unit, xt ¼
1; x1;t; . . . ; xs;tf g is the 1�m vector of input variables at time t (with m ¼ sþ 1), b0 is the

bias of the final output, cj ¼ c1;j; . . . ; cm;jf g is the 1�m vector of weights for the connec-

tions between the inputs and the hidden neuron j, q is the number of hidden units, and h ¼
b0; . . . ; bq; c

0
1; . . . ; c0q

� �
is the vector of all network weights. This version, with three input

variables including the bias and two hidden nodes (i.e., m¼3 and j¼2), is depicted in

Figure 3 and assumes that information moves forward from the input layer to the output

layer. Accordingly, it is also called FNN.

Table 1 Variables description

Symbol Variable Data source

Description Source

DP Dividend yield ratio S&P Dividends over the past year relative to cur-

rent market prices; S&P 500 index

Robert Shiller’s

website

EP Earning price

ratio S&P 500

Earnings over the past year relative to cur-

rent market prices; S&P 500 index

Robert Shiller’s

website

MKT Market excess return Fama–French’s market factor: return of U.S.

stock market minus one-month T-bill rate

Kenneth French’s

website

HML Value factor Fama–French’s HML factor: average return

on value stocks minus average return on

growth stock

Kenneth French’s

website

SMB Size premium factor Fama–French’s SMB factor: average return

on small stocks minus average return on

big stocks

Kenneth French’s

website

STR Short-term reversal

factor

Fama–French’s STR: average return on

stocks with low prior return minus aver-

age return on stock with high prior return

Kenneth French’s

website

TB T-bill rate Three-month T-bill rate Datastream

TS Term spread Difference of long-term bond yield and

three-month T-bill

Datastream

DEF Default spread Measure of default risk of corporate bonds:

difference of BAA and AAA bond yields

Datastream

INF Monthly Inflation US inflation rate Datastream

IP Monthly industrial

production

growth rate

US industrial production growth OECD database
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Modern practice allows choosing F and G among a variety of functions. In the most

used form of FNN, the output activation function is an identity function, that is, F(a) ¼ a.

In this case, Equation (2) can be written as follows

ft xt; hð Þ ¼ b0 þ
Xq

j¼1

G xtc
0
j

� �
bj: (3)

A common choice for G is the logistic function, that is, G að Þ ¼ 1
1þe�a, although any con-

tinuous, differentiable, and monotonic function may be implemented. This function,

bounded between 0 and 1, permits the network to reproduce any nonlinear pattern and rep-

licate the way a real neuron becomes active. In particular, the neuron shows a high level of

activation for G close to 1, while it exhibits a poor response when G is close to 0.

Researchers usually refer to FNN as a static network, since a given set of input variables

is used to forecast the target output variable at time t. Hence, feed-forward networks show

no memory, even when sample information exhibits temporal dependence. The so-called re-

current neural networks (RNNs) overcome this shortcoming by allowing internal feed-

backs. This type of networks allows propagating data from input to output, but also from

later layers to earlier layers. Such models have many potential applications in economic and

finance, when nonlinear time dependence and long-memory exist. For this reason, the use

of RNN in forecasting volatility has attracted a large number of researchers (Schittenkopf,

Dorffner, and Dockner, 2000; Tino, Schittenkopf, and Dorffner, 2001). This article focuses

on four recurrent architectures: Elman and Jordan recurrent networks, LSTM networks,

and NARX neural networks.

In the ENN, proposed by Elman (1990), the input layer has additional neurons which

are fed back from the hidden layer (see Figure 4). The output of the ENN, with an identity

function as output activation function, can be represented as

ft xt; hð Þ ¼ b0 þ
Xq

j¼1

htjbj

htj ¼ G xtc0j þ ht�1d
0
j

� �
j ¼ 1; . . . ; q

(4)

Figure 3 FNN with a single hidden layer.
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where ht�1 ¼ ht�1;1; . . . ;ht�1;q

� �
is the vector of lagged hidden-unit activations, and dj ¼

d1;j; . . . ; dq;j

� �
is the vector of connection weights between the jth hidden unit and the

lagged hidden units.

Jordan (1986), instead, introduced an RNN with a feedback from the output layer, as in

Figure 5. Thus, the network output at time t � 1 is used as additional input for the network

at time t. Specifically, the output of the JNN can be specified as follows

ft xt; hð Þ ¼ b0 þ
Xq

j¼1

G xtc
0
j þ ŷt�1wj

� �
bj (5)

where ŷt�1 is equal to ft�1 xt�1; hð Þ and w is the weight between the lagged output and the

jth hidden unit.

Equations (4) and (5) indicate that the outputs of these RNNs can be expressed in terms

of current and past inputs. This makes them similar to the distributed lag model or

Autoregressive (AR) representation of an Autoregressive Moving Average (ARMA) model.

Furthermore, differently from FNNs, RNNs are able to incorporate information of past

observations without including them in the network.

Although extremely appealing, ENN and JNN suffer from the so-called “vanishing gra-

dient problem.” In such methods, the network weights are updated through a training algo-

rithm based on the gradient descent rule. When this kind of algorithm is implemented, the

magnitude of the gradients gets exponentially smaller (vanishes) at each iteration, making

the steps very small and resulting in an extremely slow learning process. In such cases, a

local minimum might be reached.

One of the cause of this shortcoming is the choice of the activation function. For ex-

ample, a logistic activation function maps all the input values in a relatively small range,

that is [0,1]. As a result, even a large change in the input will produce a small change in the

output, vanishing the gradient very fast.

LSTM was introduced by Hochreiter and Schmidhuber (1997) to alleviate the vanishing

gradient problem through a mechanism based on memory cells. LSTM extends the RNN

architecture by replacing each hidden unit with a memory block. Each block contains one

or more self-connected memory cells and is equipped with three multiplicative units called

Figure 4 ENN with a single hidden layer.
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input, forget, and output gates. These gates allow the memory cells to store and access in-

formation, in order to determine which information should be persisted. In this way,

LSTMs are capable of retaining relevant information of input signals, overlooking the un-

necessary parts.

Figure 6 illustrates the structure of a simple LSTM memory block with a one cell archi-

tecture. In the figure, xt denotes the vector of input variables at time t, ct and ct�1 corres-

pond to the cell state at time t and t – 1, respectively, while ht and ht�1 denote the hidden

state or output of the cell at time step t and t – 1, respectively. The input gate is identified

by it, ft indicates the forget gate, while ot is the output gate. Both input and output gates

have the same role as in the RNNs. The new instance, that is, the forget gate, is responsible

for removing the unnecessary information from the cell state. The information at time t,

given by xt and ht�1, is passed through the forget gate ft, which determines if the informa-

tion should be retained or not using a sigmoid function. Basically, a zero response of the sig-

moid function means that the information should be discarded, while a value close to 1

implies that the information should be stored. Meanwhile, the same information is proc-

essed by the input gate to add information to the cell state ct. Additionally, a nonlinear

layer, / ¼ tanh, is introduced to generate a vector of candidate values, ~ct, to update the

state of ct. The output gate is used to regulate the output values of an LSTM cell, using a lo-

gistic function to filter the output. The final output of the memory cell, ht, is then computed

by feeding the cell state, ct, into a tanh layer and multiplying it by the value of the output

gate. The entire process can be synthesized by the following equations:

ft ¼ r Wf ht�1 þUf xt þ bf

� �
(6)

it ¼ r Wiht�1 þUixt þ bið Þ (7)
~ct ¼ tanh Wcht�1 þUcxt þ bcð Þ (8)
ct ¼ ft � ct�1 þ it � ~ct (9)
ot ¼ r Woht�1 þUoxt þ Voct þ boð Þ (10)
ht ¼ ot � tanh ctð Þ (11)
ŷt ¼ ht (12)

where Wf, Wi, Wc, Wo, Uf, Ui, Uc, and Uo are the weight matrices of forget, input, memory

Figure 5 JNN with a single hidden layer.
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cell state, and output gates, respectively, Vc is the weight matrix of the cell state, ŷt is the

output of the neural network, bf, bi, bc, and bo are the biases of the related gates, r is a sig-

moid or logistic function and � is the Hadamard product function.

LSTM can operate where long-memory effects are present in the underlying structure of

the times series, similarly to HAR or Autoregressive Fractional Integral Moving Average

(ARFIMA) models. Accordingly, there are numerous applications of LSTM models in fi-

nance, see, for example, Heaton, Polson, and Witte (2016), Bao, Yue, and Rao (2017),

Pichl and Kaizoji (2017), Kim and Won (2018), Di Persio and Honchar (2017), and Xiong,

Nichols, and Shen (2016).

A further way to deal with long-term dependencies and mitigate the effect of the vanishing

gradient problem is the NARX neural network. This network, introduced by Lin et al. (1996),

addresses the vanishing gradient problem by using an orthogonal mechanism with direct con-

nections or delays from the past. Some authors (Bianchi et al., 2017) showed that NARX net-

works accurately predict time series with long-term dependencies, while others (Menezes and

Barreto, 2006) demonstrated that this method accurately forecasts nonlinear time series.

NARX networks can be specified in a two-fold way. The first mode is called parallel (P)

architecture, in which the output is fed back to the input of the FNN. The NARX-P archi-

tecture behaves like a JNN where, at each training epoch, the output is trained and used in

the subsequent time steps (differently from JNN, this architecture relies on a greater num-

ber of lags). The second mode is called series-parallel (SP) architecture, here the observed

output is used as additional input instead of feeding back the estimated output. The

Figure 6 Basic LSTM memory cell.

Notes: The memory cell has four key components: an input gate, a neuron with self-current connec-

tion, a forget gate, and an output gate. The inputs (the predictors at time t and the outputs of the previ-

ous steps) are passed through the memory cell with some non-linear and linear interactions. Linear

interactions of the cell state are point-wise addition � and point-wise multiplication �. Non-linear

interactions are logistic functions, r.
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structure is that of a regular FNN with d additional inputs equal to d delays of the real tar-

get variable.

In this article, I consider only NARX-SP networks with zero input order and a one-

dimensional output. Thus, the output function of the NARX networks with zero input

order is defined by

ŷt ¼ W xt; yt�1; . . . ; yt�d½ � (13)

where xt and yt are, respectively, the input and the output of the network at time t, d is the

output order and W is a multilayer perceptron as in Figure 7. This architecture can be repre-

sented by the following equation:

ft xt; hð Þ ¼ b0 þ
Xq

j¼1

G xtc
0
j þ
Xnd

d¼1

yt�dwd;j

!
bj (14)

where wd;j is the weight associated to the dth delay of the output.

In the following section, I specify the architecture for the above models, selecting the

final set of inputs, the number of hidden nodes, and the training algorithm.

3 Neural Networks Architecture

The overall task of constructing a neural network passes through a process of trial and

error. Some authors, Anders and Korn (1996) and Panchal et al. (2010) among others, sug-

gested various ways to define information criteria that could help driving the choice of the

neural network architecture. However, the most reliable approach remains the training of

different architectures and the choice of the network producing the lowest forecasting

error.

First, the researcher should choose a set of inputs. Variable selection represents a crucial

phase for the identification of the neural networks’ architecture. While the initial set of

determinants can be guided by the economic theory (see Section 1), a subset of these predic-

tors should be used to reduce the number of weights to be trained (equal to 1þmð Þqþ 1)

and enable algorithms to work properly. In the related literature, there are several methods

to optimally detect the relevant explanatory variables. Here, I selected the variables through

a Least Absolute Shrinkage and Selection Operator (LASSO) regression, introduced by

Tibshirani (1996). This method performs estimation and model selection in the same step

by penalizing the absolute size of the regression coefficients, based on a penalty coefficient,

k; see Zou (2006) for the mathematical details. To assess the results of the analysis, I exam-

ined which variables really affected realized volatility for two samples: the entire sample of

observations, from January 1950 to December 2017, and a subsample,3 from February

1973 to June 2009. All independent and control variables were lagged by one year to miti-

gate the possibility of simultaneity or reverse causality bias, while the number of lags of the

dependent variables was assessed through information criteria. As further explained in the

3 This subsample was used to validate the approach in a more volatile period. The starting month of

this sample has been determined through a breakpoint analysis, while the final monthly observation

coincided with the end of the Great Recession according to the National Bureau of Economic

Research.
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next paragraph, the final set of variables was selected on the training sample, and the result-

ing sets of variables were Xa ¼ RVt�1;RVt�2;RVt�3;DPt�1;MKTt�1; STRt�1;DEFt�1f g
for the entire sample, and Xb ¼ RVt�1;RVt�2;RVt�3;MKTt�1; STRt�1f g for the sub-

sample. The lack of significance of pure macroeconomic variables, that is, inflation rate

and industrial production growth, is in line with the findings of Schwert (1989) and

Christiansen, Schmeling, and Schrimpf (2012), once again underlying the relevance of pre-

mium risk’s determinants.

Choosing the set of explanatory variables entails a two-fold risk. On the one side, the

so-called look ahead bias4 may occur. On the other side, the variables selected through this

method, that is, LASSO, may not be relevant in a neural network framework. The choice of

two samples and two different sets of explanatory variables may help alleviating these

drawbacks. Moreover, the former issue was circumvented by selecting the relevant varia-

bles on the training sample (see the following section for details), where the number of

observations was approximately equal to two-thirds of the entire number of observations.

Furthermore, the neural networks have been implemented without macroeconomic and fi-

nancial determinants, in order to understand if the lags of the dependent variable, alone,

were sufficient to provide accurate forecasts.

Once a set of determinants has been identified, the researcher can proceed to select the

number of hidden layers and hidden neurons. To assess the performance of an architecture,

the researcher must modify the number of hidden units or by adding or removing certain

network connections, and then evaluate them by comparing the MSE attained in compared

architectures.

As previously mentioned, a single hidden layer was assumed throughout the article,

while the selection of the optimal number of hidden neurons was trickier. Since a standard

and accepted method for determining the number of hidden nodes does not exist, I eval-

uated the performance of the networks5 for each sample by the lowest training MSE for an

Figure 7 Architecture of an NARX network.

4 Look ahead bias involves using information not available during the period analyzed.

5 LSTM hidden units follow a different setting in comparison with other neural networks; thus, the

number of hidden units is set to fifty, comparably to similar studies.
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increasing number of hidden nodes, where the maximum number of hidden nodes was

equal to the total number of inputs (i.e., 7 and 5, respectively), as suggested by Tang and

Fishwick (1993). To avoid the optimization algorithm being trapped in a local minimum,

the network weights were re-estimated using 300 sets of random starting values. Table 2

provides the MSE for each architecture in the entire sample, while the results for the sub-

sample are showed in Table 3. Therefore, the number of hidden nodes was selected accord-

ing to the lowest MSE. As in the case of explanatory variables selection, the choice of the

architecture was made on the training samples.

A gradient descent with momentum and adaptive learning rate (gdx) BP has been used

to train the feed-forward, Elman, Jordan, and LSTM architectures. Despite it converges

more slowly in comparison to other algorithms, the trained weights iteratively adapt to the

shape of the error surface at each iteration, reducing the risk of a local minimum. The

NARX network has been trained using a Bayesian regularization (BR) algorithm, since the

predictive performance of the BR algorithm is more robust when an NARX architecture is

implemented, see Guzman, Paz, and Tagert (2017).

4 Assessing Forecast Accuracy

The forecasting ability of the ANNs was compared to an autoregressive fractionally

integrated moving average with the same set of explanatory variables selected in the pre-

vious section (ARFIMAX) and without determinants (ARFIMA). The set of competing

models also included a logistic smooth transition autoregressive model (LSTAR), also

entailing exogenous variables (LSTARX), where the number of lags was set relying on

the Akaike and the Bayesian information criteria. The analysis was performed over a

period from January 1950 to December 2017 and a period from February 1973 to June

2009.

Lag selection of the ARFIMA was assessed on the training sample through information

criteria. ARFIMA(0, d , 1) and ARFIMAX(0, d , 0) were selected for the larger sample,

while ARFIMA(0, d , 0) and ARFIMAX(2, d , 2) were used for the subsample. In order to

determine the number of regimes of the smooth transition models, the presence of structural

breaks was evaluated through the method introduced by Bai and Perron (2003). A single

structural break (and two regimes) was identified, while lagged realized volatility was used

as transition variable.

The forecasting accuracy of the neural networks model was further compared with the

forecasts from an HAR model for realized volatility, discussed in Andersen, Bollerslev, and

Diebold (2007) and Corsi (2009). Since the realized volatility used in this article was

observed monthly, we made use of quarterly and annual aggregation periods.

Realized volatility forecasts were produced on 245 out-of-sample observations (from

August 1997 to December 2017) for the entire sample, while 22 out-of-sample forecasts

(from September 2007 to June 2009) were produced for the subsample. The number of

out-of-sample observations was equal to one-third of the entire sample in the former case,

while it started from the beginning of the Great Recession for the latter. This helped under-

standing whether NNs were able to outperform econometric models in a highly volatile

context and in the presence of greater persistence.
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The one-step-ahead (k¼1) out-of-sample forecasts were generated from a rolling win-

dow scheme, re-estimating the parameters at each step. In addition, multistep-ahead fore-

casts have been considered. The five-step-ahead (k¼ 5) forecasts were iteratively produced

from a rolling window estimation. At each step ahead, the information was updated with

the prediction of the previous step. The resulting set of variables used to make the forecasts

five-step ahead is the following:

Table 2 MSE for increasing number of hidden nodes—entire sample

Model No. of

hidden

Performance No. of

weights

Model No.

of hidden

Performance No. of

weights

FNNX 1* 0.1029 10 FNN 1 0.1168 6

2 0.1245 19 2 0.1260 11

3 0.1062 28 3 0.1177 16

4 0.1074 37 4 0.1171 21

5 0.1035 46 5* 0.1136 26

6 0.1069 58 6 0.1168 31

7 0.1063 71 7 0.1175 36

ENNX 1 0.1027 11 ENN 1 0.1177 7

2 0.1111 23 2 0.1479 15

3 0.1031 37 3 0.1179 25

4* 0.1006 53 4 0.1230 37

5 0.1131 71 5 0.1210 51

6 0.1070 91 6 0.1223 67

7 0.1115 113 7* 0.1170 85

JNNX 1 0.1006 11 JNN 1 0.1165 7

2 0.1236 21 2 0.1315 13

3* 0.1004 31 3 0.1148 19

4 0.1044 41 4 0.1158 25

5 0.1040 51 5* 0.1147 31

6 0.1062 61 6 0.1152 37

7 0.1085 71 7 0.1154 43

NARX 1 0.0990 10 NAR 1 0.1141 6

2 0.0981 19 2 0.1123 11

3 0.0978 28 3 0.1160 16

4 0.0968 37 4 0.1123 21

5* 0.0953 46 5 0.1110 26

6 0.0967 55 6 0.1113 31

7 0.0966 64 7* 0.1100 36

Notes: The table includes the number of hidden nodes, the performance in terms of MSE, and the number of

weights trained for each architecture. Each architecture has a maximum of iterations equal to 1000. The pres-

ence of the X in the name of the model indicates the use of exogenous determinants other than lagged realized

variance. The asterisk denotes the selected number of hidden nodes. Values in boldface represent the lowest

MSE.
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ŷtþ1 ¼ yt; yt�1; yt�2; ztf g

ŷtþ2 ¼ ŷtþ1; yt; yt�1; zt

� �
ŷtþ3 ¼ ŷtþ2; ŷtþ1; yt; zt

� �
ŷtþ4 ¼ ŷtþ3; ŷtþ2; ŷtþ1; zt

� �
ŷtþ5 ¼ ŷtþ4; ŷtþ3; ŷtþ2; zt

� �
;

where zt ¼ DPt�1;MKTt�1; STRt�1;DEFt�1f g in the entire sample, and zt ¼
MKTt�1; STRt�1f g in the subsample. The set of input variables used in models ARFIMA,

LSTAR, HAR, FNN, ENN, JNN, LSTM, and NAR did not include zt.

The relative performance of the out-of-sample forecasting accuracy was assessed using

MSE and the quasi-likelihood (QLIKE), which belong to the family of loss functions robust

to a noisy volatility proxy; see Patton (2011). The predictive performance of the competing

models was also simultaneously compared via model confidence set (MCS), introduced by

Hansen, Lunde, and Nason (2011). The MCS procedure consists in a sequence of equal pre-

dictive accuracy tests through which a set of superior models (SSM) is defined, given a cer-

tain confidence level. For a set of forecasts from M models, MCS tests, through a pairwise

Table 3 MSE for increasing number of hidden nodes—subsample

Model No. of

hidden

Performance No. of

weights

Model No. of

hidden

Performance No. of

weights

FNNX 1 0.1450 8 FNN 1 0.1534 6

2 0.1745 15 2 0.1751 11

3* 0.1196 22 3* 0.1474 16

4 0.1467 29 4 0.1491 21

5 0.1534 36 5 0.1484 26

ENNX 1 0.1192 9 ENN 1 0.1298 7

2 0.1693 19 2 0.1667 15

3 0.1158 31 3 0.1425 25

4* 0.1126 45 4* 0.1420 37

5 0.1205 61 5 0.1471 51

JNNX 1 0.1201 9 JNN 1* 0.1425 7

2 0.1289 17 2 0.1541 13

3* 0.1115 25 3 0.1494 19

4 0.1176 33 4 0.1498 25

5 0.1169 41 5 0.1478 31

NARX 1 0.1111 8 NAR 1 0.1145 6

2 0.1009 15 2 0.1291 11

3 0.1119 22 3* 0.1056 16

4* 0.0998 29 4 0.1177 21

5 0.1020 36 5 0.1158 26

Notes: The table includes the number of hidden nodes, the performance in terms of MSE, and the number of

weights trained for each architecture. Each architecture has a maximum of iterations equal to 1000. The pres-

ence of the X in the name of the model indicates the use of exogenous determinants other than a lagged vari-

ance. The asterisk denotes the selected number of hidden nodes. Values in boldface represent the lowest MSE.
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comparison of loss difference dl;j;t from model l and model j, whether all models provide

equal predictive accuracy. Assuming dl;j;t stationary, the null hypothesis assumes the fol-

lowing form:

H0 : E dl;j;t

	 

¼ 0; 8l; j 2M: (15)

Given a confidence level a, a model is discarded when the null hypothesis of equal fore-

casting ability is rejected. The SSM is then defined as the set of models not-rejecting the null

hypothesis. The p-values were computed using a stationary bootstrap. The lower the p-

value of an object, the lower the probability of being included in the SSM, see Hansen,

Lunde, and Nason (2011) for further details.

As shown by the average of the loss functions in Table 4, the majority of the neural net-

works were able to outperform the traditional long-memory detecting models from Panel A

in the larger sample, when analyzing forecasts for k¼ 1. The unique model exhibiting an

MSE and QLIKE in line with NNs, or better in some comparisons with Panel B, was the

HAR model. In most cases, the exclusion of the explanatory variables worsened the fore-

casting accuracy, highlighting that the dynamics of realized volatility are somehow linked

to macroeconomic and financial conditions. The lowest loss functions were provided by the

models in Panel C, where the long-memory neural networks were stored. The best overall

performance in terms of forecasting accuracy measures was exhibited by LSTMX and

NARX in Panel C, which exhibited the lowest MSE and QLIKE. NARX was the unique

model belonging to the 75% MCS (M̂�
75%), regardless of the loss function considered. Even

though, the average loss functions varied differently according to the kind of loss consid-

ered. For example, in Panel C the QLIKE function was almost equal for all the models,

while MSE was severely smaller in the models entailing the use of macroeconomic and fi-

nancial variables. This may be driven by the definition of the loss functions. In fact, MSE is

a symmetric measure, while QLIKE penalizes more negative biases. In this context, all the

models seemed to underestimate the observed RV (see also Figures 8 and 9), meaning that

the the differences between real RV and the forecasts tended to be positive and the QLIKE

more in line among compared models.

The analysis of multistep-ahead forecasts, in the entire sample, further highlighted the

predictive ability of long-term memory detecting RNNs. In fact, NARX and LSTMX neural

networks exhibited the lowest MSE and QLIKE, excluding the overall best performance of

the HAR model. Compared to one-step-ahead forecasts, the differences in terms of average

losses in multistep-ahead forecasts were much less pronounced between the models com-

pared. This emerged also from the p-values, which assumed values not close to zero for al-

most all the models, and from the fact that the majority of the models was included in the

75% MCS (M̂�
75%). An explanation of these results derives from the nature of the forecasts,

since in multistep-ahead forecasts, the information used is the same for repeated steps, flat-

tening the results from models highly different. The average losses of the models in Panel A

were higher than the most part of the models in Panels B and C, with the only exception of

HAR model’s losses and the QLIKE loss for the ARFIMAX model. Finally, among the

models belonging to 75% MCS (M̂�
75%), the p-values were higher for HAR model, JNNs,

LSTMX, NAR, and NARX neural networks, both for MSE and QLIKE.

In the more volatile period of time, September 2007–June 2009, in Table 5, classical

long-memory detecting models in Panel A seemed not accurate in terms of one-step-ahead
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forecasts. Nevertheless, ARFIMAX model exhibited an average MSE and QLIKE in line

with the compared neural networks. Once again, the lowest loss functions were exhibited

by two models from Panel C, that is, LSTM and NARX. From a theoretical point of view,

this result is not surprising, given that the LSTM has shown stronger performance in similar

works in presence of long dependencies (Heaton, Polson, and Witte, 2016; Pichl and

Kaizoji, 2017). Furthermore, the prediction differences between neural networks and linear

models may indicate a nonlinear behavior of the log-realized variance during financially

stressed periods; see also Choudhry, Papadimitriou, and Shabi (2016). In this volatile

framework, the five-step-ahead forecasts provided mixed results. All the models were

included in the 90% MCS when the MSE was used as loss function, while only two models,

LSTARX and LSTM, were not included in the 75% MCS (M̂�
75%). A similar result was

obtained with QLIKE as a loss function. Among models without exogenous variables, FNN

exhibited the lowest average losses, while the most part of the simple neural networks from

Panel B showed average losses lower than the more complex networks from Panel C. This

may imply that a simpler model should be implemented when few multistep-ahead fore-

casts need to be produced.

Table 4 MCS with 10,000 bootstraps (entire sample: 1997.08–2017.12)

Model k¼ 1 k¼ 5

MSE QLIKE MSE QLIKE

Loss PMCS Loss PMCS Loss PMCS Loss PMCS

Panel A: time series models

ARFIMAX 0.167 0.000 3.317 0.000 0.185 0.683** 3.323 0.867**

ARFIMA 0.205 0.000 3.325 0.000 0.219 0.201* 3.333 0.147*

LSTARX 0.145 0.000 3.316 0.000 0.323 0.000 3.352 0.000

LSTAR 0.130 0.000 3.311 0.000 0.245 0.205* 3.332 0.267**

HAR 0.115 0.000 3.308 0.000 0.102 1.000** 3.306 1.000**

Panel B: FFN, JNN, and ENN

FNNX 0.132 0.000 3.313 0.000 0.178 0.680** 3.325 0.212*

FNN 0.130 0.000 3.311 0.000 0.176 0.757** 3.325 0.308**

ENNX 0.133 0.000 3.313 0.000 0.164 1.000** 3.321 1.000**

ENN 0.138 0.000 3.312 0.000 0.172 0.992** 3.322 0.872**

JNNX 0.136 0.000 3.314 0.000 0.158 1.000** 3.315 1.000**

JNN 0.134 0.000 3.312 0.000 0.161 1.000** 3.314 1.000**

Panel C: long-term dependence detecting neural networks

LSTMX 0.042 0.005 3.293 0.004 0.152 1.000** 3.313 1.000**

LSTM 0.110 0.000 3.307 0.000 0.185 0.639* 3.327 0.025

NARX 0.018 1.000** 3.288 1.000** 0.146 1.000** 3.316 1.000**

NAR 0.075 0.000 3.301 0.003 0.164 1.000** 3.317 1.000**

Notes: This table reports the average loss over the evaluation sample and the MCS p-values calculated on the

basis of the range statistics. The realized volatility forecasts in M̂�
90% and M̂�

75% are identified by one and two

asterisks, respectively. Values in boldface represent the lowest average losses. The set of input variables used in

models ARFIMA, LSTAR, HAR, FNN, ENN, JNN, LSTM, and NAR did not include exogenous variables

other than the lags of the dependent variable.
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Figure 8 Entire sample forecasts comparison. The black line represents the realized volatility of S&P

500, the red dashed line describes the out-of-sample forecasts with exogenous variables, while the

blue dashed line depicts the forecasts from a model without financial and macroeconomic variables.

The left panel entails the one-step-ahead forecasts, while five-step-ahead forecasts are showed in the

right column. (a) ARFIMA one-step-ahead forecasts. (b) ARFIMA five-step-ahead forecasts. (c) LSTAR

one-step-ahead forecasts. (d) LSTAR five-step-ahead forecasts. (e) HAR one-step-ahead forecasts. (f)

HAR five-step-ahead forecasts. (g) FNN one-step-ahead forecasts. (h) FNN five-step-ahead forecasts.

(i) ENN one-step-ahead forecasts. (j) ENN five-step-ahead forecasts. (k) JNN one-step-ahead forecasts.

(l) JNN five-step-ahead forecasts. (m) LSTM one-step-ahead forecasts. (n) LSTM five-step-ahead

forecasts. (o) NARX one-step-ahead forecasts. (p) NARX five-step-ahead forecasts.
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Additionally, the test of equal predictive accuracy of Diebold–Mariano (DM) (Diebold

and Mariano, 1995) was used as a robustness check. The pairwise comparison test in

Table 6 supported our previous findings when k¼ 1 in both the samples, since the null of

equal forecast accuracy was rejected only for long-memory detecting models in Panel C and

for the HAR model. Thus, HAR, LSTM, and NARX models seemed to be the unique mod-

els predicting realized volatility one-step-ahead forecast better than the simple random

walk model. A similar result was observed in the subsample when k¼ 1, where the forecast

accuracy of the NARX and LSTM models was the unique significantly different from a ran-

dom walk. When k¼ 5, neural networks model was able to significantly outperform the

predictive accuracy of the benchmark method (i.e., ŷtþ5 ¼ yt), but the test statistics were

Figure 8 Continued
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Figure 9 Subsample sample forecasts comparison. The black line represents the realized volatility

of S&P 500, the red dashed line describes the out-of-sample forecasts with exogenous variables,

while the blue dashed line depicts the forecasts from a model without financial and macroeconomic

variables. The left panel entails the one-step-ahead forecasts, while five-step-ahead forecasts are

showed in the right column. (a) ARFIMA one-step-ahead forecasts. (b) ARFIMA five-step-ahead

forecasts. (c) LSTAR one-step-ahead forecasts. (d) LSTAR five-step-ahead forecasts. (e) HAR

one-step-ahead forecasts. (f) ) HAR five-step-ahead forecasts. (g) FNN one-step-ahead forecasts.

(h) FNN five-step-ahead forecasts. (i) ENN one-step-ahead forecasts. (j) ENN five-step-ahead forecasts.

(k) JNN one-step-ahead forecasts. (l) JNN five-step-ahead forecasts. (m) LSTM one-step-ahead

forecasts. (n) LSTM five-step-ahead forecasts. (o) NARX one-step-ahead forecasts. (p) NARX

five-step-ahead forecasts.
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comparable among the neural networks. Still, in the entire sample, the greatest significant

difference between the forecasts of the benchmark and the models compared was found

with the HAR (with a DM statistics of 7.428) and the NARX models, which provided a

test statistic of 4.772 and 4.758. In the subsample, as already assessed by the MCS in

Table 5, the test statistics were mostly comparable among the models.

Finally, the forecasts were compared pairwise via encompassing tests, discussed in Fair

and Shiller (1989) and Chong and Hendry (1986). The idea behind encompassing tests is

that, given the realized variable, ytþk, and two sets of forecasts of the variable, ŷ1;tþk and

ŷ2;tþk; ytþk can be explained by pooling the forecasts as follows:

ytþk ¼ a0 þ a1ŷ1;tþk þ a2ŷ2;tþk þ ut:

Figure 9 Continued
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Forecasts encompassing can be tested by analyzing the significance of the coefficients.

For example, if the hypothesis a1 ¼ 0 is rejected, while a2 ¼ 0 not, the first model encom-

passes the second one. Moreover, if the null hypothesis a2 ¼ 0 and a1 ¼ 1 cannot be

rejected, the forecasts from model 1 are also unbiased. Thus, ideally a model should have a

coefficient close to or greater than 1 to significantly encompass the compared model.

Since the number of out-of-sample forecasts is limited in the subsample, only the fore-

casts from the entire sample were compared via encompassing tests in Tables 7 and 8.

The comparison of one-step-ahead forecasts highlighted that the coefficient of the HAR

in encompassing regressions is close to 1 when included in a regression with forecasts from

models in Panels A and B; thus, the HAR forecast encompasses those forecasts. For in-

stance, if we regress RV on the HAR and the FNN forecasts, we get a (statistically signifi-

cant) coefficient on HAR of 0.845 (from the FNN column and HAR row), while we get a

coefficient on the FNN forecast of 0.146 (from the HAR column and FNN row), suggesting

that the HAR forecast encompasses the FNN forecast. In contrast, the HAR forecast is

encompassed by the LSTM, LSTMX, and NARX forecasts. From Table 7, NARX emerges

as the unique method able to encompass the other forecasts and with a (statistically signifi-

cant) coefficient always near to 1. All the models from Panel C encompassed the forecasts

from models in Panels A and B, HAR excluded.

Table 5 MCS with 10,000 bootstraps (subsample: 2007.09–2009.06)

Model k¼ 1 k¼ 5

MSE QLIKE MSE QLIKE

Loss PMCS Loss PMCS Loss PMCS Loss PMCS

Panel A: time series models

ARFIMAX 0.166 0.998** 2.857 1.000** 0.295 1.000** 2.890 1.000**

ARFIMA 0.244 0.306** 2.878 0.546** 0.571 0.593** 2.939 0.890**

LSTARX 0.467 0.000 2.957 0.000 0.503 0.121* 2.947 0.134*

LSTAR 0.221 0.000 2.872 0.449** 0.488 0.440** 2.930 0.813**

HAR 0.247 0.453** 2.878 0.653** 0.263 1.000** 2.885 1.000**

Panel B: FFN, JNN, and ENN

FNNX 0.176 0.103 2.864 0.147* 0.259 1.000** 2.890 1.000**

FNN 0.138 1.000** 2.849 1.000** 0.234 1.000** 2.874 1.000**

ENNX 0.142 1.000** 2.850 1.000** 0.286 1.000** 2.883 1.000**

ENN 0.143 1.000** 2.853 1.000** 0.283 1.000** 2.887 1.000**

JNNX 0.216 0.309** 2.875 0.295** 0.244 1.000** 2.879 1.000**

JNN 0.137 1.000** 2.855 1.000** 0.290 1.000** 2.892 1.000**

Panel C: long-term dependence detecting neural networks

LSTMX 0.151 1.000** 2.853 1.000** 0.533 0.426** 2.936 0.688**

LSTM 0.080 1.000** 2.833 1.000** 0.460 0.148* 2.952 0.137*

NARX 0.052 1.000** 2.824 1.000** 0.266 1.000** 2.884 1.000**

NAR 0.237 0.170* 2.878 0.260** 0.358 1.000** 2.905 0.740**

Notes: This table reports the average loss over the evaluation sample and the MCS p-values calculated on the

basis of the range statistics. The realized volatility forecasts in M̂�
90% and M̂�

75% are identified by one and two

asterisks, respectively. Values in boldface represent the lowest average losses.
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When k¼5, the results were mixed. There was less clear discrimination between meth-

ods, with more evidence of some value to combining forecasts. If we had to pick a single

model from Table 8, it would be the HAR model.

The graphical representation of the out-of-sample forecasts in the two samples was pro-

vided in Figures 8 and 9.

In Figure 8, the ARFIMA models both underestimated the RV during the sub-prime cri-

ses in sub-figure (a), while the five-step ahead forecasts were in line with the trend of RV.

LSTAR models were more precise than ARFIMA when k¼1, especially during the finan-

cial crisis. This was not true for the five-step-ahead forecasts that were inaccurate both

with and without exogenous variables. HAR model seemed to slightly underestimate RV

both for k¼1 and k¼5. The graphical representations of the one-step-ahead forecasts

from FNN, ENN, and JNN almost replicated the observed RV, both in the model with and

without determinants. Furthermore, FNNs seemed to be precise also in five-step-ahead

forecasts, while just JNNX’s representation was in line with the observed RV. LSTM one-

step-ahead forecasts seemed to be smoother than the observed RV, while the same forecasts

from the NARX model (i.e., the red line in Figure 8, letter o) were almost overlapped in the

period 1997–2010. In the five-step-ahead forecasts, FNN and JNN models provided precise

forecasts, while ENNs were less accurate. Finally, LSTM multistep-ahead forecasts were in

Table 6 DM test of equal predictive accuracy

Model Entire sample Subsample

k ¼ 1 k ¼ 5 k ¼ 1 k ¼ 5

Panel A: time series models

ARFIMAX �1.714� 4.284�� 1.648 2.527��

ARFIMA �3.490��� 2.660��� 0.130 0.025

LSTARX �0.182 �1.953� �2.518�� 0.462

LSTAR 1.308 0.812 0.470 0.755

HAR 3.100��� 7.428��� 0.064 2.731��

Panel B: FFN, JNN, and ENN

FNNX 1.454 3.552��� 1.343 3.602���

FNN 2.457�� 3.523��� 1.241 3.663���

ENNX 0.778 4.258��� 1.191 2.542��

ENN �0.232 4.015��� 1.129 2.557��

JNNX 0.203 4.009��� 0.904 2.466��

JNN 0.496 4.044��� 1.251 2.480��

Panel C: long-term dependence detecting neural networks

LSTMX 7.647��� 4.457��� 1.761� 0.271

LSTM 2.713��� 3.075��� 2.264�� 0.867

NARX 9.179��� 4.772��� 3.057��� 3.010���

NAR 7.707��� 4.758��� 0.276 1.788�

Notes: This table reports the t-statistics for the DM test where the null hypothesis is the equivalence of the pre-

dictive accuracy of the compared models with the information available at time t (i.e., ŷtþh ¼ yt). *, **, and

*** indicate a significant difference between the forecasting abilities at 1%, 5%, and 10% level, respectively.

A positive and statistically significant difference means that the model in the line predicts better than simply

using yt.
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line with the forecasts from other neural networks, while NARX models forecasts, despite

a little underestimation during volatility peaks, almost replicated the real trend of RV.

In Figure 9, the representations of the out-of-sample forecasts in the subsample were

heterogeneous. One-step-ahead forecasts from ARFIMA, LSTAR, and HAR models

appeared to be smoother than the observed RV in the subsample, while the five-step-ahead

forecasts from LSTAR models were highly inaccurate. When k¼1, the forecasts from

FNN, ENN, JNN, and NARX seemed to almost overlap with the observed RV. Excluding

FNNs and JNNX, the neural networks seemed instead to be less precise when k¼5, espe-

cially in the volatility peak in October 2008.

The analysis here presented has a two-fold implication. On the one side, the neural net-

works outperformed the compared classical methods in both the sample analyzed. In par-

ticular, the forecasts from long-term detecting networks proved to be the most accurate

among the compared methods. This is not surprising given the well-known long memory of

the realized volatility and the need for a model which accounts for that feature. On the

other side, the use of macroeconomic and financial variables to make predictions increased

the forecasting accuracy, even in the more complex models, although a causal effect cannot

be assessed with neural networks.

5 Conclusions

In this article, a flexible nonlinear tool for forecasting volatility has been applied. The pur-

pose of the article was to understand whether ANNs were able to capture linear and nonlin-

ear relations and provide more accurate forecasts than traditional econometric methods.

The target variable to be forecast was the logarithm of realized volatility, while the models

included also macroeconomic and financial variables as determinants.

The most attractive feature of ANNs is that, by modifying the structure of the network,

any linear and nonlinear function can be approximated. Moreover, in comparison with

traditionally employed nonlinear time series model, such as smooth transition autoregres-

sive model and threshold autoregressive model, they do not necessitate the knowledge of

the number of regimes to be trained and require a minor computational effort in the estima-

tion of the parameters.

Out-of-sample comparisons indicated that neural networks provide significant benefits

in predicting relations expected to be nonlinear, such as between realized volatility and its

determinants.

In a comparison of feed-forward and RNNs with traditional econometric methods, the

best performing models appeared to be LSTM and NARX neural networks. The results fur-

ther showed that these long-term dependence detecting models consistently outperformed

competing for neural networks, like FNN, ENN, and JNN. The superior forecasting ability

of LSTM and NARX was also assessed in a period where the stock market volatility was

particularly high, like the recent financial crisis.

Since a researcher is often interested in producing forecasts for a horizon greater than

one, multistep-ahead recursive forecasts were further compared. Among the main results, it

emerged that long-term memory detecting neural networks had good performance when a

large sample is analyzed, and provided comparable performance with other methods when

a smaller and more volatile sample was evaluated.
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Interestingly, in this article, realized volatility was predicted accurately well in a nonlin-

ear framework. Several papers (McAleer and Medeiros, 2008; Hillebrand and Medeiros,

2010) showed that nonlinear models were not able to improve forecasting accuracy of real-

ized volatility when compared with linear models. There could be several reasons that ex-

plain the findings of this manuscript. First, the analysis of out-of-sample forecasts proved

that the models significantly able to outperform the linear models were the long-term de-

pendence detecting models, that is, LSTM and NARX. So far, this seems to be the first at-

tempt to implement such approaches to predict realized volatility. Moreover, the results

highlighted the usefulness of the macroeconomic and financial variables in forecasting the

realized volatility of S&P 500 index. Although there are many papers on forecasting real-

ized volatility through a linear model, the literature on analyzing the role of volatility deter-

minants in a nonlinear framework is still scarce.

Although appealing, there are still some issues concerning neural networks. The number

of parameters to be trained can be extremely high even with a limited number of input vari-

ables. This is a stark contrast to the number of parameters of an ARFIMA or an HAR

model. However, the number of trained weights does not differ excessively from the num-

ber of parameters in a smooth transition autoregressive model with multiple regimes.

Furthermore, the network models do not lend themselves to the easy interpretation of ex-

planatory variables due to the structure of the layers. On this purpose, the author acknowl-

edges that this article was mainly focused on providing superior forecasting accuracy rather

than interpreting causal relationships.

In future works, the performance of RNNs should be tested with different architectures,

for example, by modifying the activation function or enlarging the number of hidden layers.

Moreover, in this article, I have exclusively focused on univariate time series while, in

practice, multivariate forecasting problems require to forecast a set of possibly dependent

time series. An important future direction is to extend the strategies developed in this article

to the multivariate setting.
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The technical capability of recording and storing intradaily data has given a tremendous

boost to the literature both on measurement issues (various forms of aggregation of ultra-

high frequency data into a daily value) and on modeling their dynamics (extending the

autoregressive flavor behind the GARCH class of models). There exist recent refinements

within a somewhat consolidated menu of realized variance choices [plain vanilla, robust-

ness to market microstructure noise, jumps, etc.; cf. Park and Linton (2012), for a survey];

in this work, we focus on the realized kernel variance (Barndorff-Nielsen et al., 2008) to in-

vestigate a series of aspects related to modeling and forecasting. We will take it either as

such, or as its square root, or yet as its logarithm, but for the sake of simplicity we generic-

ally talk here about realized variance modeling.

In this article, we consider that evaluating forecasts out-of-sample (OOS) is a matter of

subjective taste about how to judge the distance between a predicted outcome and the ac-

tual value. When the latter is observable (say realized variance), the choice of a forecasting

loss (FL) is a consequence of individual preferences, and hence it is not subject to qualitative

assessment. However, when the actual value entering the loss is not observable and fore-

casts are evaluated using a proxy (say realized variance proxying for the underlying condi-

tional variance), not all loss functionals are robust,1 as shown by Patton (2011). In this

respect, we consider several examples of FL functions and discuss their robustness when the

actual value is not observable. In order to produce forecasts, two other elements are import-

ant: the model specification (the equation reproducing conditional variance dynamics), and

the in-sample (IS) estimation criterion (EC), that is, the distance between observed and fit-

ted values delivering parameter estimates. As for the adoption of such elements, we take the

view that there are no natural a priori choices, but they must be geared toward obtaining

the best results in terms of the given FL. In this respect, we argue that the choice of the latter

should not force the same function to be repeated as the EC.2 When the estimated model

and the data generating process coincide, Hansen and Dumitrescu (2018) show that the

asymptotically preferred estimation criteria are those that deliver consistent (paramount)

and relatively more efficient parameter estimates, regardless of the FL; hence, maximum

likelihood is the best criterion. The critical requirement of consistency implies that in the

presence of influential observations (e.g., occasional spikes in volatility), the preferred EC is

the one that is more robust, first, and efficient, second. Furthermore, in the common fore-

casting setting where model parameters are estimated over rolling windows of finite sam-

ples, convergence of the parameter estimates to the corresponding true values is not

attained and an EC that replicates the FL may generate greater losses than an alternative

criterion if the latter delivers more efficient estimates.

A first contribution of the article is to explore whether, for a given FL, the IS EC with

the same functional form produces the best OOS results by specification or, rather, other

estimation criteria are to be preferred. A second contribution is to investigate the capability

of a popular model selection tool such as the Bayes (Schwarz) Information Criterion (BIC)

to identify the specification which performs the best OOS. Third, we compare the

1 Patton (2011) defines a loss function as ‘robust’ if its ranking of any two forecasts is the same

whether the ranking is done using the actual value or some conditionally unbiased proxy.

2 Christoffersen and Jacobs (2004) address the issue of the loss functions used in parameter estima-

tion and in model evaluation in reference to option valuation, advocating an alignment in what we

call estimation criterion and forecasting loss.
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benchmark Heterogeneous Autoregressive (HAR) specifications of Corsi (2009) and

Andersen, Bollerslev, and Diebold (2007) to several realized variance models reminiscent of

well-known GARCH parameterizations which, for the most part, correspond to the simple

ARMA modeling of either realized variance, its square root, or its logarithm. Across model

classes, here we focus on the core specifications that could be extended to accommodate

several refinements (asymmetry, see Engle and Gallo (2006); jumps, see Andersen,

Bollerslev, and Diebold (2007); measurement errors, see Bollerslev, Patton, and Quaedvlieg

(2016), etc.).

We explore these issues on a panel of twenty-eight constituents of the Dow Jones 30

Index using daily realized kernel variance observations from January 2005 to December

2015. The sample is split into six five-year IS periods; we estimate all combinations of spec-

ifications and estimation criteria on the first IS period, generating OOS static forecasts for

the ensuing one-year period, then we move the IS window by one year and repeat the pro-

cedure. Our results may be summarized as follows: there are FL functions not particularly

apt to be repeated as estimation criteria; we cast some doubts about the BIC ability to iden-

tify ex ante the best OOS specification; the ARMA modeling of the log realized variance

provides the best IS and OOS results. In general, we identify the (2,1) structure with a nega-

tive lag-2 coefficient to be a good parameterization. As a reading key to these results, we

find it informative to relate the goodness of the OOS forecasts to the structure’s capability

to mimic long memory features: as a matter of fact, these specifications deliver a long mem-

ory approximation which is equivalent to that of the HAR family, but overall superior

OOS forecasts across assets.

The article is structured as follows. Section 1 discusses the FLs employed to compare

model forecasts and the estimation criteria used to estimate parameters. Section 2 presents

the specifications for the variance dynamics and Section 3 the information criterion used

for model selection. The empirical results are presented in Section 4. In Section 5 we pro-

vide a general discussion on the estimation criteria and the (2,1) parameterizations. Section

6 concludes.

1. FL and EC

A loss function maps events onto real numbers according to the preference orderings of an

individual. When estimating, values of the unknown coefficients of a parametric model are

obtained from the minimization of a loss function IS. When forecasting, the quality of a

specification is assessed through the calculation of a loss function based on the distance be-

tween the predicted outcomes and the actual values, OOS. In what follows, we argue that

the priority given to forecasting requires to define separately the FL and the EC.

With the expression FL we refer to the loss function used to evaluate the model perform-

ance OOS. With the term EC we refer to the objective function used to obtain the param-

eter estimates. In general, the choice of this function responds to some features: theoretical

properties of the resulting estimator, tractability, etc. Distinguishing between forecast

evaluation and model estimation allows us to investigate, empirically and in the context of

variance modeling, whether the EC that coincides with the FL produces the best OOS

results. For FL and EC we consider some of the most common functionals adopted in the

literature to measure the distance between observed and predicted values. Prevailing meas-

ures are quadratic, which corresponds to least squares estimation, and Kullback–Leibler,
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which corresponds to quasi-maximum-likelihood estimation when the chosen density func-

tion is linear–exponential.

1.1 Quadratic Distance

We characterize the general quadratic FL by:

XT2

t¼T1þ1

½f ðRVtÞ � f ðr2
t Þ�

2;

where t ¼ T1 þ 1; . . . ;T2 is the OOS period and f ðr2
t Þ � Et�1½f ðRVtÞ�. For the monotonic

function f ð�Þ we choose the identity, the square root (prefix SD) and the logarithm (prefix

LN) which translate, respectively, into the specific quadratic LS; SDLS, and LNLS FLs. As

an example, for the square root function we have that the FL synthesizes the distance be-

tween RV
1=2
t and rt � Et�1½RV

1=2
t �; t ¼ T1 þ 1; . . . ;T2. When RVt enters the loss as a proxy

of the true conditional variance, SDLS and LNLS are not robust FLs. However, in the case

of RVt computed from five-minute returns, the optimal forecasts of SDLS and LNLS are

only 1% and 2% smaller than the true conditional variance, respectively (cf. Table 2 in

Patton (2011)).

By the same token, we define the quadratic EC:

XT1

t¼1

½gðRVtÞ � gðr2
t Þ�

2;

where t ¼ 1; . . . ;T1 is the IS period and gð�Þ is a monotonic function which may not coin-

cide with the choice of f ð�Þ in the FL. As before, choosing gð�Þ between the identity, square

root and logarithmic functions, leads to LS; SDLS and LNLS estimation criteria,

respectively.

To be clear, hence, we can have a SDLS FL (a matter of individual preference), but an

LS EC (a matter of estimation convenience). For example, since they allow for the simple

OLS estimation of the model parameters, LS is the EC of choice for the HAR of Corsi

(2009) and LNLS for the LOG�HAR of Andersen, Bollerslev and Diebold, (2007), but we

may want to measure the FL in terms of the realized volatility. We point out that r2
t in the

EC is that defined by the FL: r2
t ¼ f�1ðEt�1½f ðRVtÞ�Þ. Therefore, unless g¼ f, what the

model parameters are trained to predict, Et�1½gðRVtÞ�, may differ from the object of interest

in forecasting, Et�1½f ðRVtÞ�. And furthermore, notice how despite the symmetry of the

quadratic FLs, when EC differs from FL, the generalized errors defined by the former do

not enter symmetrically in the latter.3 For insights on optimal predictions under asymmetric

losses, see Christoffersen and Diebold (1997), among others.

1.2 Kullback–Leibler Distance

Of the many density functions that may characterize a Kullback–Leibler distance, we focus

on the Gaussian density to generate the QML FL:

3 Consider the case of SDLS EC and LS FL: substituting the generalized residual ê t � RV
1=2
t � rt in

the FL yields
P

t ê4
t þ 4rt ê

3
t þ 4r2

t ê
2
t which, because of the term ê3

t , is not symmetric.
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XT2

t¼T1þ1

lnr2
t þ

RVt

r2
t

� �
;

where t ¼ T1 þ 1; . . . ;T2 is the OOS period and r2
t is the conditional expectation Et�1½RVt�

of realized variance. Similarly, the QML EC is given by:

XT1

t¼1

lnr2
t þ

RVt

r2
t

� �
(1)

where t ¼ 1; . . . ;T1 is the IS period and r2
t ¼ f�1ðEt�1½f ðRVtÞ�Þ, as defined by the FL. Since

the Gaussian belongs to the family of linear–exponential distributions, minimization of the

QML EC is in fact a quasi-maximum-likelihood estimation with associated properties

(Gourièroux, Monfort and Trognon, 1984). If intradaily returns are normally distributed,

Gaussian QML is maximum likelihood. Although differently motivated, the EC in

Equation (1) is the estimator of choice for the univariate MEM of Brownlees, Cipollini and

Gallo (2012).

1.3 Mismatch Bias

In general, an EC that differs from the FL induces a bias in the forecasts. While the magni-

tude of the bias depends on the (unknown) data generating process, for the cases consid-

ered, its sign may be derived from Jensen’s inequality (Table 1). Since for LS; SDLS, and

QML FLs, the quantity to forecast is positive, an EC that induces a negative bias and has a

relatively smaller variance than an unbiased criterion may be interpreted as performing

some degree of shrinkage toward zero (providing a well-known tradeoff between bias and

variance). For the LNLS FL, the same reasoning applies to every RVt > 1. Therefore, should

the nonpositive bias of the LNLS EC, for every FL, be accompanied by a small variance, it

could result in a well-performing EC (the opposite would be true for a nonnegative bias of

the LS and a large variance).

2 Variance Modeling

In this section, we present some specifications present in the literature on realized variance

modeling: two HAR specifications and several other models reminiscent of popular

GARCH parameterizations. In line with established results in this field, we focus on the (1,

1) and (2, 1) parameterizations, where the former is found to be well suited to generate

good forecasts, as highlighted by Hansen and Lunde (2005), while the latter occasionally

provides better fit and forecasts. We present all models as parameterizing r2
t . Although

nonstandard, this is consistent with our setup in which the model parameters are estimated

IS to provide the best predictions Et�1½gðr2
t Þ�, but are ultimately used to produce OOS fore-

casts Et�1½f ðr2
t Þ�. While our empirical analysis focuses on one-step ahead forecasts, k-step-

ahead forecasts Et�1½f ðr2
tþk�1Þ� may be generated for any of the following parameteriza-

tions, granting that in general their calculation requires numerical integration for k>1.

2.1 HAR Specifications

The HAR, introduced by Corsi (2009), has rapidly achieved the benchmark status for mod-

els of realized variances. Features contributing to this role are the simplicity with which its
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parameters may be estimated and its ability to reproduce long memory features: “. . . the

mixing of relatively few volatility components is capable of reproducing a remarkably slow

volatility autocorrelation decay that is almost indistinguishable from that of a hyperbolic

pattern over most empirically relevant forecast horizons” (Andersen, Bollerslev and

Diebold, 2007). The HAR models r2
t as a function of past realizations over daily, weekly,

and monthly time intervals:

r2
t ¼ xþ a1 � RVt�1 þ a2 �

1

5

X5

i¼1

RVt�i þ a3 �
1

22

X22

i¼1

RVt�i (2)

corresponding to an AR(22) process for RVt with parameter constraints. Its parameters

may be estimated by ordinary least squares when the EC is LS, whereas for different choices

of the EC the estimates are not available in closed form. Necessary and sufficient conditions

for the positivity of r2
t are x > 0; a3 � 0; a2=5þ a3=22 � 0 and a1 þ a2=5þ a3=22 � 0.

The LOG�HAR, introduced by Andersen, Bollerslev and Diebold, (2007), is an alter-

native specification linear in the logarithms:

r2
t ¼ exp xþ a1 � lnRVt�1 þ a2 � ln

1

5

X5

i¼1

RVt�i

!
þ a3 � ln

1

22

X22

i¼1

RVt�i

!8<
:

9=
; (3)

Notice that the presence of the logarithms of averages places the LOG�HAR outside

the class of AR processes. Its parameters may be estimated by ordinary least squares for

LNLS EC, while for different choices of the EC the estimates are not available in closed

form.

2.2 MVAR Specification

With MVAR we indicate the parameterization of r2
t in terms of its lags and lags of RVt or,

equivalently, the ARMA modeling of realized variance RVt. Without stretching this and

subsequent parallels, an MVAR could be seen as an open-to-close GARCH (Bollerslev,

1986), in the limiting case of one intradaily observation (i.e., the realized variance collapses

to the squared open-to-close return). The MVARð2;1Þ specification is given by:

r2
t ¼ xþ a1 � RVt�1 þ a2 � RVt�2 þ b1 � r2

t�1: (4)

Necessary and sufficient conditions for the positivity of r2
t are x > 0; a1;b1 � 0 and

a2 � �a1b1. MVAR estimated by QML coincides with the MEM of Cipollini, Engle and

Gallo (2013) while associated to the LS criterion it reduces to standard ARMA modeling

and estimation.

2.3 MVOL Specification

With MVOL we denote the parameterization of rt in terms of its lags and lags of RV
1=2
t or,

equivalently, the ARMA modeling of realized volatility RV
1=2
t . It is reminiscent of a

TGARCH(p, q) of Zakoian (1994) without the asymmetric term, which would result when

realized volatilities are replaced by the absolute value of the open-to-close returns. The sym-

metric MVOLð2; 1Þ specification is given by:
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r2
t ¼ fxþ a1 � RV

1=2
t�1 þ a2 � RV

1=2
t�2 þ b1 � rt�1g

2
(5)

Although r2
t is positive by construction, the marginal effects of its determinants do not

exhibit abrupt sign changes if and only if rt is also positive. Necessary and sufficient condi-

tions for the positivity of rt are x > 0; a1; b1 � 0 and a2 � �a1b1. QML estimation of

MVOL coincides with the MEM in Brownlees, Cipollini and Gallo (2012) while adopting

the SDLS criterion reduces to standard ARMA modeling and estimation.

2.4 MLOG Specification

MLOG is the ARMA modeling of the log realized variances lnRVt or, equivalently, the par-

ameterization of lnr2
t in terms of its lags and lags of lnRVt. In the way of analogues, it is

related to the log-GARCH(p, q) of Geweke (1986) as the limiting case of MLOG when the

log realized variance reduces to log-squared residual for a single intradaily observation.

The MLOGð2;1Þ specification is given by:

r2
t ¼ exp fxþ a1 � lnRVt�1 þ a2 � lnRVt�2 þ b1 � lnr2

t�1g (6)

When associated with the LNLS criterion, it reduces to standard ARMA modeling and

estimation. QML, on the other hand, would be the natural estimator within the MEM

framework. Dynamic specifications analogous to the MLOG are not uncommon in the con-

text of Autoregressive Conditional Durations, among which Bauwens, Galli and Giot

(2008) and Taylor and Xu (2017) are examples of QML4 and LNLS estimates,

respectively.

2.5 MEXP Specification

The MEXPð2; 1Þ specification is obtained by substituting realized volatilities for the abso-

lute value of the returns, a specification which evokes the EGARCH(p, q) parameterization

(Nelson, 1991), but without the asymmetric term:

r2
t ¼ exp xþ a1 �

RV
1=2
t�1

rt�1
þ a2 �

RV
1=2
t�2

rt�2
þ b1 � lnr2

t�1

( )
; (7)

the MEXP reproduces the symmetric EGARCH in the limiting case of a single intraday ob-

servation. Due to poor performance of both IS (never providing the best description of the

data) and OOS (always generating the largest losses), we omit presenting and discussing

results pertaining to the MEXPð2; 1Þ specification.5

4 To be precise: Bauwens et al. (2008) estimate an ACD analogous to MLOG by minimizing the

Kullback–Leibler distance based on the exponential distribution. Since the exponential belongs to

the family of linear–exponential distributions, the resulting estimator is also quasi-maximum-

likelihood.

5 Table entries for the MEXPð2; 1Þ are available upon request.
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3 Model Evaluation

We perform IS model evaluation and selection by means of the BIC. For the quadratic esti-

mation criteria of Section 1.1, we construct the BIC by treating the generalized residuals

gðRVtÞ � gðr2
t Þ as Gaussian:

BIC ¼ T1ln
1

T1

XT1

t¼1

gðRVtÞ � gðr̂2
t Þ

h i2
 !

þ klnT1

where k is the number of parameters, T1 the sample size, and r̂2
t the model’s prediction. For

the Kullback–Leibler EC of Section 1.2, the BIC is immediately obtained from the log-

likelihood function:

BIC ¼
XT1

t¼1

lnr̂2
t þ klnT1;

where r̂2
t is the prediction from the QML-estimated model. Notice how the BIC is calcu-

lated on the condensed EC in Equation (1) from which the average of RVt=r2
t is dropped on

the ground that deviations from its limiting value of one are neither data-driven nor model-

driven but only reflect initial value choices.6 Since, for equally parameterized specifications,

every information criterion produces identical model rankings, Akaike’s and Hannan–

Quinn’s may produce results that differ from those we present only in the comparisons of

differently parameterized specifications. Furthermore, given that BIC is the most conserva-

tive of the three when it selects a richer parameterization, so do Akaike’s and Hannan–

Quinn’s. Since OOS measures of fit do not depend explicitly on the number of parameters

k, we evaluate OOS forecasts directly from the FL functions of Sections 1.1 and 1.2.

4 Empirical Results

The data used in this study pertains to twenty-eight of the thirty constituents of the

Dow Jones 30 Index. The sample has 11 years of high-frequency daily observations from

March 1, 2005 to Decemeber 31, 2015 for a total of 2768 days. Two series (TRV and V)

are not included in the study because they are not available for the full sample period.7

Tickers of the twenty-eight included stocks are: AAPL, AXP, BA, CAT, CSCO, CVX, DD,

DIS, GE, GS, HD, IBM, INTC, JNJ, JPM, KO, MCD, MMM, MRK, MSFT, NKE, PFE,

PG, UNH, UTX, VZ, WMT, XOM. The raw tick-by-tick TAQ data is cleaned using the

procedure of Brownlees and Gallo (2006) and the series of realized variances calculated fol-

lowing Barndorff-Nielsen et al. (2011) with Parzen kernel. The sample is split into six five-

year IS periods: 2005–2009 (1259 obs.), 2006–2010 (1259 obs.), 2007–2011 (1260 obs.),

2008–2012 (1259 obs.), 2009–2013 (1258 obs.), and 2010–2014 (1258 obs.). All model

combinations are estimated on each of the six IS periods, and for each of them, OOS fore-

casts are generated for the following one-year period: 2010 (252 obs.), 2011 (252 obs.),

2012 (250 obs.), 2013 (252 obs.), 2014 (252 obs.), and 2015 (251 obs.).

6 In fact, for all the specifications considered, when the initial value r2
0 is treated as an unknown par-

ameter and estimated, the average ratio RVt=r2
t is equal to 1.

7 TRV data are available only from February 26, 2007 while V data are missing from April 8, 2006 to

February 26, 2007.
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In what follows, we summarize the message behind the application of our strategy, given

the variety of elements to be considered: we have eight different specifications

(MVAR; MVOL; MLOG—each with (1, 1) and (2, 1) variants, HAR and LOG�HAR),

four FLs (LS; SDLS; LNLS, and QML), four estimation criteria (same list with different

meaning) and twenty-eight tickers across six partitions into IS/OOS periods (a total of 168

instances). The results are grouped in three sets of tables: in the first set (2–5), we consider

in turn each of the four FLs, and, by specification, we report the percentage of instances in

which each EC provides forecasts in the 75% Model Confidence Set (MCS) of Hansen,

Lunde and Nason (2011) and the percentage it delivers the best OOS performance (total by

row is 168). In the second group of Tables 6–9, for the same FLs, we report the percentage

of instances each specification lies in the 75% MCS for a given EC together with the aver-

age loss (across 168 instances), marking the lowest value of the FL by specification. In the

third group of Tables 10–13, we compare specifications by fixing the FL and the EC to be

the same, and reporting the frequency by which each specification is best IS (based on BIC,

total across rows is 100), best OOS (based on FL, total across rows is 100), best OOS

among those instances where that specification had the best IS, the average and the median

FL by specification across all 168 instances. Four fundamental questions can be addressed

on the basis of this evidence:

1. Is the FL the best EC? The short answer is: not always. For a given FL, in Tables 2–9 we

evaluate the conditional variance specifications (rows) when estimated by

LS; SDLS; LNLS and QML estimation criteria (columns). From Tables 2–4 it emerges

that when the FL is quadratic the EC that produces the best OOS results in most instan-

ces is LNLS, with SDLS a second. On the other hand, when the FL is QML, Table 5

shows that overall QML is the preferred EC. Similarly, the EC that is most present in

the 75% MCS for every FL is LNLS followed by SDLS.

These results are confirmed in Tables 6–9 which, for every conditional variance speci-

fication (rows) and EC (columns), report the average value of the given FL over the 168

instances. The lowest average OOS FL measured by LS; SDLS, and LNLS is obtained,

for every variance specification, when estimated using the LNLS EC. Similarly, the

Table 2. LS FL for OOS evaluations

Model LS SDLS LNLS QML

MVAR (1,1) 43.5% [16.1%] 79.2% [19.6%] 93.5% [56.6%] 45.8% [7.7%]

(2,1) 45.8% [13.7%] 87.5% [25.6%] 89.9% [47.0%] 58.9% [13.7%]

MVOL (1,1) 29.8% [8.3%] 75.0% [17.3%] 98.2% [61.9%] 50.0% [12.5%]

(2,1) 37.5% [18.3%] 79.2% [24.4%] 97.0% [49.4%] 60.7% 17.9%

MLOG (1,1) 30.4% [7.1%] 69.0% [20.8%] 98.8% [56.6%] 55.4% [15.5%]

(2,1) 37.5% [8.3%] 77.4% [19.6%] 97.6% [47.0%] 63.1% [25.0%]

HAR 42.9% [4.9%] 88.1% [23.2%] 89.9% [45.8%] 56.0% [16.1%]

LNHAR 34.5% [7.1%] 76.2% [19.1%] 97.6% [54.2%] 63.1% [19.6%]

Notes: For every model specification, we report the percentages (twenty-eight tickers times six periods¼ 168

possible instances) with which the estimation criteria (LS; SDLS, LNLS, and QML) are in the 75% Model

Confidence Set and, in square brackets, the percentages when those criteria provide the best performance (these

add to 100 by row).
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QML EC produces the lowest OOS QML FLs. Hence, the answer is affirmative for

LNLS and QML, but not for LS and SDLS.

2. Does the best IS BIC deliver the best OOS specification? The short answer is: no. The

details for this issue can be retrieved from Tables 10–13: out of the 168 instances,

when a specification is selected as the best IS BIC, it maintains the role of best OOS

specification only 25%, 22%, 41%, and 4% of the times for LS; SDLS; LNLS, and

QML, respectively. The average OOS FL calculated across all specifications selected

by the best IS BIC is never the smallest, when compared to the values associated

with either specification, no matter what the FL is. Nevertheless, the average for the

quadratic FL functions resulting from a best IS BIC selection is preceded only by both

MLOG’s.

The results pertaining to LNLS, the best quadratic EC, are robust to the choice of

the information criterion, with Akaike’s and Hannan–Quinn’s at most redistributing

Table 3. SDLS FL for OOS evaluations

Model LS SDLS LNLS QML

MVAR (1,1) 43.5% [8.9%] 78.0% [12.5%] 92.9% [78.0%] 46.4% [0.6%]

(2,1) 45.8% [3.6%] 86.3% [22.0%] 89.9% [74.4%] 56.5% [0.0%]

MVOL (1,1) 29.2% [3.6%] 73.2% [8.9%] 98.2% [85.1%] 49.4% [2.4%]

(2,1) 39.3% [1.8%] 79.8% [14.9%] 97.6% [81.6%] 61.3% [1.8%]

MLOG (1,1) 30.4% [1.2%] 70.8% [16.7%] 98.8% [79.2%] 54.2% [3.0%]

(2,1) 40.5% [2.4%] 77.4% [25.0%] 97.0% [67.3%] 62.5% [5.4%]

HAR 44.0% [3.6%] 86.9% [20.8%] 90.5% [75.0%] 56.5% [0.6%]

LNHAR 32.7% [1.8%] 76.2% [13.7%] 97.6% [79.2%] 61.9% [5.4%]

Notes: For every model specification, we report the percentages (twenty-eight tickers times six periods¼ 168

possible instances) with which the estimation criteria (LS; SDLS, LNLS, and QML) are in the 75% Model

Confidence Set and, in square brackets, the percentages when those criteria provide the best performance (these

add to 100 by row).

Table 4. LNLS FL for OOS evaluations

Model LS SDLS LNLS QML

MVAR (1,1) 42.3% [3.0%] 79.2% [10.1%] 93.5% [86.9%] 47.6% [0.0%]

(2,1) 43.5% [0.6%] 86.9% [7.1%] 89.3% [91.7%] 56.5% [0.6%]

MVOL (1,1) 32.1% [0.6%] 74.4% [9.5%] 98.2% [89.9%] 48.2% [0.0%]

(2,1) 39.3% [0.0%] 79.2% [4.8%] 97.6% [95.2%] 58.9% [0.0%]

MLOG (1,1) 31.5% [0.0%] 71.4% [8.3%] 99.4% [91.7%] 56.5% [0.0%]

(2,1) 39.3% [0.0%] 79.2% [8.9%] 97.6% [91.1%] 64.9% [0.0%]

HAR 44.0% [0.0%] 88.1% [8.9%] 90.5% [91.1%] 58.3% [0.0%]

LNHAR 33.9% [0.0%] 76.2% [7.1%] 97.6% [92.9%] 61.9% [0.0%]

Notes: For every model specification, we report the percentages (twenty-eight tickers times six periods¼ 168

possible instances) with which the estimation criteria (LS; SDLS, LNLS, and QML) are in the 75% Model

Confidence Set and, in square brackets, the percentages when those criteria provide the best performance (these

add to 100 by row).
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the 1.79% of MLOGð1; 1Þ across the (2, 1) and HAR specifications. In contrast,

model selection is particularly sensitive to the choice of information criterion in the

QML case: using Akaike’s, the least conservative of the three, the IS column of

Table 13 from top to bottom would read: 0.00%, 7.14%, 0.00%, 19.05%, 0.00%,

22.02%, 13.69%, 38.10%. Nevertheless, the instances in which Akaike’s delivers the

best OOS specification is still a mere 11.31%. As such, the ability of information crite-

ria to identify what will be the best OOS specification is very disappointing in the case

of the QML EC, all the more so given that for the latter the information criteria are a

natural consequence of the form of the QML EC itself.

To put it differently, our results show that to go through an intermediate step of

model selection based on the best IS BIC hardly ensures to be coupled with the best

OOS performance. For example, at least for our big caps tickers, a better strategy in

terms of all OOS FL values would be to adopt the MLOG specification for every asset.

Table 5. QML FL for OOS evaluations

Model LS SDLS LNLS QML

MVAR (1,1) 43.5% [7.7%] 78.6% [19.6%] 93.5% [29.2%] 48.8% [43.5%]

(2,1) 44.0% [10.1%] 86.9% [16.7%] 90.5% [23.2%] 57.1% [50.0%]

MVOL (1,1) 29.2% [13.1%] 73.8% [24.4%] 98.2% [23.2%] 50.0% [39.3%]

(2,1) 38.1% [15.5%] 78.6% [19.6%] 97.6% [17.9%] 59.5% [47.0%]

MLOG (1,1) 31.5% [16.1%] 71.4% [31.0%] 99.4% [14.3%] 56.5% [38.7%]

(2,1) 38.1% [18.5%] 78.6% [26.2%] 97.6% [13.1%] 64.9% [42.3%]

HAR 43.5% [7.7%] 87.5% [16.7%] 91.1% [23.2%] 58.9% [52.4%]

LNHAR 32.7% [16.7%] 75.6% [29.8%] 97.6% [10.7%] 61.3% [42.9%]

Notes: For every model specification, we report the percentages (twenty-eight tickers times six periods¼ 168

possible instances) with which the estimation criteria (LS; SDLS, LNLS, and QML) are in the 75% Model

Confidence Set and, in square brackets, the percentages when those criteria provide the best performance (these

add to 100 by row).

Table 6. LS FL for OOS evaluations

Model LS SDLS LNLS QML

MVAR (1,1) 48.8% 13.293 56.5% 13.514 64.3% 13.897 51.2% 15.160

(2,1) 62.5% 13.225 73.2% 13.533 78.0% 13.899 57.1% 15.169

MVOL (1,1) 53.6% 12.444 62.5% 12.189 70.8% 12.161 55.4% 12.669

(2,1) 63.1% 12.405 82.1% 12.237 87.5% 12.226 69.0% 12.762

MLOG (1,1) 70.8% 12.020 69.6% 11.742 76.8% 11.720 62.5% 11.868

(2,1) 69.0% 12.086 91.7% 11.731 95.8% 11.706 94.6% 11.799

HAR 63.7% 13.315 72.0% 13.612 78.6% 13.952 60.7% 15.296

LNHAR 61.3% 12.727 76.8% 12.212 84.5% 12.118 69.6% 12.892

Notes: For each of the four estimation criteria (LS; SDLS; LNLS, and QML), we report the percentages

(twenty-eight tickers times six periods¼ 168 possible instances) with which the various specifications are in the

75% Model Confidence Set and the average loss. For every specification, the lowest loss (across estimation cri-

teria) is reported in bold.
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Clearly, it would be a hasty generalization to extend such recommendation to medium

and small caps or other asset classes.8

3. Is there an overall best OOS specification? The short answer is: yes, but not overwhelm-

ingly so, and there are some disappointing performances. Tables 10–13 provide further

IS and OOS performance measures for when the FL functional is used as EC. The strik-

ing result is that MLOG produces the best OOS specifications 60.12%, 62.50%,

66.67%, and 53.57% of the times for LS; SDLS; LNLS, and QML, respectively. In fact,

what emerges is that the specification producing the smallest average OOS values of the

FL considered is MLOGð2; 1Þ followed very closely by MLOGð1; 1Þ and MVOLð2; 1Þ.
In contrast, HAR scores the best OOS specification just 7.74%, 10.71%, 8.33%, and

Table 7. SDLS FL for OOS evaluations

Model LS SDLS LNLS QML

MVAR (1,1) 50.0% 0.170 55.4% 0.143 63.1% 0.141 50.6% 0.151

(2,1) 61.9% 0.161 72.6% 0.138 78.0% 0.136 58.9% 0.147

MVOL (1,1) 55.4% 0.158 63.1% 0.128 69.6% 0.126 54.2% 0.135

(2,1) 63.1% 0.150 82.7% 0.126 86.9% 0.124 69.0% 0.132

MLOG (1,1) 69.6% 0.146 69.6% 0.121 76.2% 0.120 61.3% 0.126

(2,1) 69.6% 0.147 91.7% 0.120 95.2% 0.118 94.6% 0.123

HAR 62.5% 0.162 72.0% 0.139 78.0% 0.137 61.9% 0.147

LNHAR 59.5% 0.164 76.8% 0.126 83.9% 0.124 70.2% 0.134

Notes: For each of the four estimation criteria (LS; SDLS; LNLS, and QML), we report the percentages

(twenty-eight tickers times six periods¼ 168 possible instances) with which the various specifications are in the

75% Model Confidence Set and the average loss. For every specification, the lowest loss (across estimation cri-

teria) is reported in bold.

Table 8. LNLS FL for OOS evaluations

Model LS SDLS LNLS QML

MVAR (1,1) 48.8% 0.317 55.4% 0.209 64.3% 0.193 51.8% 0.216

(2,1) 62.5% 0.296 72.6% 0.201 77.4% 0.188 58.3% 0.211

MVOL (1,1) 54.2% 0.288 62.5% 0.194 71.4% 0.186 55.4% 0.207

(2,1) 63.1% 0.270 82.7% 0.188 88.1% 0.181 69.0% 0.202

MLOG (1,1) 69.0% 0.258 69.0% 0.187 77.4% 0.182 62.5% 0.201

(2,1) 71.4% 0.258 91.7% 0.184 95.8% 0.178 94.6% 0.197

HAR 63.1% 0.299 70.8% 0.203 78.6% 0.189 61.3% 0.211

LNHAR 58.9% 0.293 76.8% 0.189 84.5% 0.182 70.8% 0.203

Notes: For each of the four estimation criteria (LS; SDLS; LNLS, and QML), we report the percentages

(twenty-eight tickers times six periods¼ 168 possible instances) with which the various specifications are in the

75% Model Confidence Set and the average loss. For every specification, the lowest loss (across estimation cri-

teria) is reported in bold.

8 A judicious approach would suggest to rely on model selection procedures unless the superiority

of a specific model for a given asset class is substantiated by empirical evidence. Similarly, the

performance of a maintained model should be monitored over time and asset classes to detect sig-

nificant changes and intervene when necessary.
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23.21% of the instances and generates average OOS FLs that are in between those of

MVARð1; 1Þ and MVARð2; 1Þ, with all other specifications exhibiting lower OOS FLs.

LOG�HAR produces the best OOS fit 11.31%, 14.29%, 11.31%, and 7.14% of the

instances and averages OOS FLs smaller than HAR and MVAR only.

4. Is there an overall best IS specification? The short answer is: same as with OOS. Even

though the main focus of this study is on OOS forecasts, we recognize that there are

instances where IS fit is of primary importance, for example, a reduced-form model cap-

turing most relevant data features to be used as an auxiliary model in the indirect esti-

mation of a maintained model. Tables 10–13 reproduce results similar to the OOS:

neither HAR nor LOG�HAR emerges as best IS specification as they provide the best

IS fit to the customary sequence of estimation criteria (4.76%, 4.17%, 1.19%, 13.10%)

and (11.31%, 16.67%, 14.29%, 29.17%) of the instances, respectively. On the other

Table 9. QML FL for OOS evaluations

Model LS SDLS LNLS QML

MVAR (1,1) 48.2% 1.171 55.4% 1.142 63.7% 1.140 50.6% 1.135

(2,1) 62.5% 1.166 71.4% 1.141 76.8% 1.140 57.7% 1.135

MVOL (1,1) 53.6% 1.158 61.3% 1.136 70.2% 1.139 54.8% 1.134

(2,1) 62.5% 1.154 82.7% 1.136 87.5% 1.139 69.0% 1.133

MLOG (1,1) 70.2% 1.146 70.2% 1.134 76.8% 1.139 61.3% 1.133

(2,1) 69.6% 1.147 91.7% 1.134 95.8% 1.139 94.0% 1.132

HAR 63.1% 1.167 71.4% 1.141 79.2% 1.140 61.3% 1.135

LNHAR 58.9% 1.162 76.2% 1.136 84.5% 1.140 69.6% 1.134

Notes: For each of the four estimation criteria (LS; SDLS; LNLS, and QML), we report the percentages

(twenty-eight tickers times six periods¼ 168 possible instances) with which the various specifications are in the

75% Model Confidence Set and the average loss. For every specification, the lowest loss (across estimation cri-

teria) is reported in bold.

Table 10. LS FL and EC

Model IS OOS OOSjIS A-Loss M-Loss

MVAR (1,1) 0.00% 1.79% 0.00% 13.2932 1.2859

(2,1) 0.60% 7.74% 0.00% 13.2254 1.1525

MVOL (1,1) 0.00% 1.19% 0.00% 12.4442 1.1717

(2,1) 0.00% 10.12% 0.00% 12.4045 1.1243

MLOG (1,1) 44.05% 33.33% 32.43% 12.0195�� 1.1647

(2,1) 39.29% 26.79% 16.67% 12.0863 1.1457

HAR 4.76% 7.74% 0.00% 13.3150 1.1433

LNHAR 11.31% 11.31% 42.11% 12.7265** 1.1624

Best IS BIC 25.00% 12.2505 1.1554

Notes: The first three columns report the percentage a specification is best: IS, IS (based on BIC); OOS, OOS

(LS loss); OOSjIS, best OOS, limiting to the best IS. A-Loss and M-Loss are the average and median losses.

The Best IS BIC row contains OOS results for the best specifications selected IS by the information criterion.

Diebold–Mariano tests are conducted on the differences between individual A-Losses and corresponding value

on the Best IS BIC row (�, ��, ��� signifies a better performance—10%, 5%, 1% significance—the reverse for

the corresponding *, **, ***).
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hand, MLOG is selected as best IS specification in 20% more instances than

LOG�HAR for QML EC and 400% more for the quadratic criteria.

Jointly, HAR and LOG�HAR are the preferred specifications 16.07%, 20.84%,

15.48%, and 42.27% of the instances for LS; SDLS; LNLS, and QML estimation crite-

ria, respectively. However, the corresponding performance of MLOG of 83.34%,

73.21%, 76.79%, and 35.12% is substantially better (except for QML). Furthermore,

if the HAR and LOG�HAR pair is compared with the MLOG and MVOL pair, the

latter is found to provide the best IS for any EC considered.

To these, we add another question aimed at providing a robustness check:

5. Is the good performance of the log-specification driven by a few large jumps? The short

answer is no. The question is whether the robustness afforded by the log-specification

proves to be beneficial when we consider a time series of continuous variation only.

Paralleling Tables 12 and 13 (reporting the results for given LNLS, respectively QML

EC and FL, and providing the main support in favor of the log-specification), we con-

centrate our robustness check on obtaining results from a jump robust variance estima-

tor. For each asset, we identify a day t as a jump-day, testing whether the plain vanilla

realized variance is significantly higher (a ¼ 0:01) than the realized bipower variation

(cf. Huang and Tauchen, 2005); the realized continuous variation time-series, Ct, is

equal to the plain vanilla realized variance in normal days, and to the bipower variation

in jump days (Andersen, Bollerslev and Huang, 2011, Eq. 12). Using Ct for each asset

and subperiod, Tables 14 and 15 qualitatively confirm all findings in Tables 12 and 13,

among which the relatively low capability of the BIC to identify what turns out to be

the best OOS specification. In Table 14, the only difference that arises in the switch

from the RVt to the Ct data is the improved performance of the MVOLð2; 1Þ specifica-

tion, while the best OOS forecast performance of MLOGð2; 1Þ stands for both types of

series. All other specifications produce statistically significant higher average losses. The

Table 11. SDLS FL and EC

Model IS OOS OOSjIS A-Loss M-Loss

MVAR (1,1) 0.00% 0.00% 0.00% 0.1429��� 0.0817

(2,1) 0.00% 5.36% 0.00% 0.1383��� 0.0776

MVOL (1,1) 0.00% 0.00% 0.00% 0.1283��� 0.0775

(2,1) 5.95% 7.14% 0.00% 0.1259�� 0.0759

MLOG (1,1) 42.26% 12.50% 9.86% 0.1213 0.0757

(2,1) 30.95% 50.00% 53.85% 0.1197��� 0.0752

HAR 4.17% 10.71% 0.00% 0.1392��� 0.0775

LNHAR 16.67% 14.29% 7.14% 0.1262�� 0.0752

Best IS BIC 22.00% 0.1217 0.0757

Notes: The first three columns report the percentage a specification is best: IS, IS (based on BIC); OOS, OOS

(SDLS loss); OOSjIS, best OOS, limiting to the best IS. A-Loss and M-Loss are the average and median losses.

The Best IS BIC row contains OOS results for the best specifications selected IS by the information criterion.

Diebold–Mariano tests are conducted on the differences between individual A-Losses and corresponding value

on the Best IS BIC row (�, ��, ��� signifies a better performance—10%, 5%, 1% significance—the reverse for

the corresponding *, **, ***).

546 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/18/3/532/5862932 by O

xford U
niversity Press U

SA user on 29 D
ecem

ber 2021



only minor difference in Table 15 is that the ranks of best (MLOGð2;1Þ) and second-

best (MVOLð2;1Þ) specifications are reversed.

5 General Discussion

5.1 On the Estimation Criteria

A possible reading key to the empirical findings promoting LNLS as the preferred EC for

LS and SDLS FLs is the balance it strikes between bias and variance of the estimated param-

eters, and consequently of the forecasts. In an ideal setting in which estimated model and

Table 12. LNLS FL and EC

Model IS OOS OOSjIS A-Loss M-Loss

MVAR (1,1) 0.00% 0.00% 0.00% 0.1934��� 0.1821

(2,1) 0.00% 6.55% 0.00% 0.1884��� 0.1767

MVOL (1,1) 0.00% 0.60% 0.00% 0.1861��� 0.1771

(2,1) 7.74% 6.55% 7.69% 0.1809��� 0.1724

MLOG (1,1) 1.79% 10.12% 0.00% 0.1821��� 0.1744

(2,1) 75.00% 56.55% 53.17% 0.1779��� 0.1704

HAR 1.19% 8.33% 0.00% 0.1887��� 0.1763

LNHAR 14.29% 11.31% 8.33% 0.1821��� 0.1739

Best IS BIC 41.00% 0.1787 0.1712

Notes: The first three columns report the percentage a specification is best: IS, IS (based on BIC); OOS, OOS

(LNLS loss); OOSjIS, best OOS, limiting to the best IS. A-Loss and M-Loss are the average and median losses.

The Best IS BIC row contains OOS results for the best specifications selected IS by the information criterion.

Diebold–Mariano tests are conducted on the differences between individual A-Losses and corresponding value

on the Best IS BIC row (�, ��, ��� signifies a better performance—10%, 5%, 1% significance—the reverse for

the corresponding �, ��, ���).

Table 13. QML FL and EC

Model IS OOS OOSjIS A-Loss M-Loss

MVAR (1,1) 6.55% 2.38% 0.00% 1.1354�� 1.1108

(2,1) 0.00% 6.55% 0.00% 1.1346 1.1057

MVOL (1,1) 16.07% 2.38% 0.00% 1.1338� 1.1086

(2,1) 0.00% 4.76% 0.00% 1.1329��� 1.1053

MLOG (1,1) 32.74% 19.05% 7.27% 1.1328��� 1.1070

(2,1) 2.38% 34.52% 0.00% 1.1323��� 1.1053

HAR 13.10% 23.21% 9.09% 1.1346 1.1074

LNHAR 29.17% 7.14% 4.08% 1.1343 1.1073

Best IS BIC 4.00% 1.1344 1.1070

Notes: The first three columns report the percentage a specification is best: IS, IS (based on BIC); OOS, OOS

(QML loss); OOSjIS, best OOS, limiting to the best IS. A-Loss and M-Loss are the average and median losses.

The Best IS BIC row contains OOS results for the best specifications selected IS by the information criterion.

Diebold–Mariano tests are conducted on the differences between individual A-Losses and corresponding value

on the Best IS BIC row (�, ��, ��� signifies a better performance—10%, 5%, 1% significance—the reverse for

the corresponding �, ��, ���).
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data generating process coincide, the results of Hansen and Dumitrescu (2018) apply and

the LNLS EC generates forecasts that are inferior9 to those of LS and SDLS EC when the

latter are the FLs. On the other hand, in the case of misalignment between model and data

generating process, the standard bias–variance interpretation of the LS and SDLS forecast-

ing mean squared error applies. It follows that bias and variance of parameter estimates

Table 14. Analysis from Table 11 repeated on continuous variation data

Model IS OOS OOSjIS A-Loss M-Loss

MVAR (1,1) 0.00% 1.79% 0.00% 0.2218��� 0.2101

(2,1) 1.79% 9.52% 0.00% 0.2164��� 0.2064

MVOL (1,1) 1.79% 2.98% 0.00% 0.2165��� 0.2070

(2,1) 50.00% 19.64% 15.48% 0.2115��� 0.2034

MLOG (1,1) 0.69% 7.14% 0.00% 0.2149��� 0.2070

(2,1) 26.19% 36.90% 25.00% 0.2107��� 0.2035

HAR 8.33% 15.48% 7.14% 0.2167��� 0.2068

LNHAR 11.31% 11.31% 10.53% 0.2137��� 0.2052

Best IS BIC 16.00% 0.2124 0.2049

Notes: LNLS FL and EC. The first three columns report the percentage a specification is best: IS, IS (based on

BIC); OOS, OOS (LNLS loss); OOSjIS, best OOS, limiting to the best IS. A-Loss and M-Loss are the average

and median losses. The Best IS BIC row contains OOS results for the best specifications selected IS by the infor-

mation criterion. Diebold–Mariano tests are conducted on the differences between individual A-Losses and

corresponding value on the Best IS BIC row (�, ��, ��� signifies a better performance—10%, 5%, 1% signifi-

cance—the reverse for the corresponding �, ��, ���).

Table 15. Analysis from Table 12 repeated on continuous variation data

Model IS OOS OOSjIS A-Loss M-Loss

MVAR (1,1) 18.45% 4.17% 0.00% 1.0685�� 1.0412

(2,1) 0.00% 13.69% 0.00% 1.0670�� 1.0395

MVOL (1,1) 28.57% 2.98% 0.00% 1.0675 1.0413

(2,1) 0.00% 14.88% 0.00% 1.0660��� 1.0398

MLOG (1,1) 5.95% 12.50% 10.00% 1.0677 1.0427

(2,1) 1.19% 19.64% 0.00% 1.0666�� 1.0413

HAR 35.12% 26.79% 16.95% 1.0671 1.0374

LNHAR 10.71% 5.36% 0.00% 1.0676 1.0399

Best IS BIC 6.00% 1.0678 1.0436

Notes: QML FL and EC. The first three columns report the percentage a specification is best: IS, IS (based on

BIC); OOS, OOS (QML loss); OOSjIS, best OOS, limiting to the best IS. A-Loss and M-Loss are the average

and median losses. The Best IS BIC row contains OOS results for the best specifications selected IS by the infor-

mation criterion. Diebold–Mariano tests are conducted on the differences between individual A-Losses and

corresponding value on the Best IS BIC row (�, ��, ��� signifies a better performance—10%, 5%, 1% signifi-

cance—the reverse for the corresponding �, ��, ���).

9 LNLS delivers unconditionally unbiased predictions of lnRVt but biased predictions of RVt (LS FL)

and RV
1=2
t (SDLS FL) in a context where unbiasedness alone is paramount to the minimization of the

forecasting loss.
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and forecasts are smallest for LNLS (log transformation), and smaller for SDLS (square

root transformation10) than LS (no transformation).

One example of misalignment between model and data generating process is when the

former is not able to accommodate occasional spikes in volatility (e.g., a flash crash). In

such a case we are dealing with influential observations, with two possible effects: one

relates to estimation and the possibility of biased estimates,11 the other to forecasting, since

such a (lagged) observation will exert its impact on the subsequent predictions in view of

the estimated persistence. As far as the first effect is concerned, we note that, given a predic-

tion r̂2
t the impact of an influential observation on the generalized residual, êt ¼

gðRVtÞ � gðr̂2
t Þ for the quadratic criteria (Section 1.1) and on êt ¼ RVt � r̂2

t for the QML

criterion (Section 1.2), is smallest for LNLS followed by SDLS and then by LS and QML

equally. Moreover, the impact of such an observation on the first-order conditions is in-

versely proportional to r̂n
t with n¼ 0 for LS, n¼1 for SDLS, n¼2 for LNLS and n¼ 4 for

QML, respectively.

5.2 The Effect of (2, 1) Parameterizations on Autocorrelations

While the relevance of the moving-average coefficient b1 is in line with expectations, the

finding that adding an a2 term produces better forecasts (Tables 6–9) is somewhat surpris-

ing in view of the long-established result that a (1, 1) specification for conditional variance

suffices (e.g., Hansen and Lunde, 2005). Figure 1 reports the distributions of the (2, 1)

parameters estimated by LNLS and QML. The striking empirical regularity is the negative

sign of the â2 for every specification, asset, and subsample period. Empirically, such a nega-

tive lag-2 coefficient has the remarkable effect of dynamically mitigating the impact of the

observed lagged volatility, which is particularly useful in the case of an influential observa-

tion: at lag 1, it would have the customary impact of increasing predicted volatility; at lag

2, the negative coefficient results in a quicker dampening effect given that such a spike in

volatility is isolated and not accompanied by subsequent high values.

Tables 16–19 report IS diagnostics in terms of percentage of instances that the residuals’

autocorrelations at lags 1–5, 10, 15, and 20 test significant at 5%. For the quadratic estima-

tion criteria, the (2, 1) and HAR specifications (except LOG�HAR estimated by LS) ex-

hibit statistically insignificant lag-1 autocorrelations, as opposed to the (1, 1)

parameterizations. However, HAR and (1, 1) specifications display higher percentages of

significant lag-2 autocorrelations than the (2, 1) with a2 < 0. The QML EC favors a more

balanced cleaning of the autocorrelations at lags 1 (higher than other EC) and 2 (lower

than other EC). Incidentally, MLOGð2; 1Þ estimated by LNLS, which produces the best

OOS forecasts, presents the lowest percentage of significant autocorrelations.

5.3 Long Memory Approximation

In what follows, we show that our (2, 1) specifications replicate the ability to approximate

the long memory pattern observed in the autocorrelation of realized variances, a feature

which has made the HAR model popular. In Figure 2, we show the cross-sectional average

(over twenty-eight assets) of the empirical autocorrelations of realized variances (labeled

10 Closer similarity between log and square root than log and linear helps explain the empirical find-

ing that SDLS comes in a close second in the rankings of EC not matching the FL (excluding QML).

11 For a detailed treatment of the robustness of M-estimators, see Hampel et al. (2005).
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DATA) and the autocorrelation functions from several models.12 Concentrating on the tail

of the correlogram, we notice that the (2, 1) specifications and the HAR match the DATA

from lag 3, respectively, 8/9, and that, from lag 10 on, they are substantially on top of one

Figure 1. Parameter density estimates over the six IS periods and all the assets considered. From left to

right, the columns contain the densities of the parameters a1, a2, and b1 for the three specifications reported.

12 Using the cross-sectional average of the parameter estimates for the (2010–2014) subsample and

106 Monte Carlo simulations, the results for MVARð2; 1Þ; MVOLð2; 1Þ; MLOGð2; 1Þ; HAR and

LOG� HAR are used to plot the respective autocorrelation functions.
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Table 16. LS EC, IS residual diagnostics

Model 1 2 3 4 5 10 15 20

MVAR (1,1) 17.26% 33.33% 65.48% 35.12% 11.31% 34.52% 34.52% 6.55%

(2,1) 0.00% 32.14% 49.40% 38.69% 11.31% 27.98% 35.71% 9.52%

MVOL (1,1) 13.10% 37.50% 68.45% 42.26% 9.52% 35.12% 32.74% 5.36%

(2,1) 0.60% 18.45% 50.00% 44.64% 15.48% 39.29% 33.93% 11.90%

MLOG (1,1) 28.57% 42.86% 67.86% 51.19% 8.33% 34.52% 33.33% 9.52%

(2,1) 0.00% 14.88% 54.76% 50.60% 18.45% 42.26% 38.69% 13.10%

HAR 0.00% 55.95% 44.64% 34.52% 33.33% 28.57% 35.12% 0.00%

LNHAR 29.76% 51.79% 46.43% 54.17% 16.67% 29.76% 32.74% 4.76%

Notes: For each specification we report the percentage (twenty-eight tickers times six periods¼ 168 possible

instances) of 5% significant residual autocorrelations at lags 1–5, 10, 15, and 20.

Table 17. SDLS EC, IS residual diagnostics

Model 1 2 3 4 5 10 15 20

MVAR (1,1) 20.83% 16.07% 80.95% 16.67% 7.74% 27.38% 43.45% 3.57%

(2,1) 0.00% 56.55% 45.24% 25.00% 7.74% 14.29% 38.69% 0.00%

MVOL (1,1) 7.14% 16.07% 85.12% 16.07% 5.36% 22.02% 36.31% 2.98%

(2,1) 0.00% 35.71% 47.02% 18.45% 4.76% 10.12% 30.95% 0.00%

MLOG (1,1) 1.79% 22.62% 86.31% 17.26% 2.38% 22.02% 30.95% 2.98%

(2,1) 0.60% 20.83% 50.00% 19.05% 2.38% 14.29% 28.57% 0.60%

HAR 5.36% 69.05% 36.90% 17.86% 20.24% 18.45% 36.31% 0.60%

LNHAR 7.14% 60.12% 33.33% 23.21% 7.14% 16.07% 32.74% 0.60%

Notes: For each specification we report the percentage (twenty-eight tickers times six periods¼ 168 possible

instances) of 5% significant residual autocorrelations at lags 1–5, 10, 15, and 20.

Table 18. LNLS EC, IS residual diagnostics

Model 1 2 3 4 5 10 15 20

MVAR (1,1) 11.90% 19.64% 63.10% 5.36% 2.98% 16.07% 7.14% 1.79%

(2,1) 7.74% 26.19% 2.38% 10.12% 6.55% 1.79% 2.38% 0.00%

MVOL (1,1) 11.31% 20.24% 70.83% 6.55% 2.38% 11.90% 5.95% 1.79%

(2,1) 1.79% 17.86% 1.19% 0.60% 2.38% 0.60% 2.38% 0.00%

MLOG (1,1) 10.71% 23.81% 76.19% 7.74% 1.19% 9.52% 5.36% 1.19%

(2,1) 0.00% 4.17% 1.19% 0.00% 0.60% 1.19% 2.38% 0.60%

HAR 7.74% 40.48% 1.79% 1.19% 4.76% 3.57% 3.57% 0.00%

LNHAR 3.57% 35.12% 0.00% 0.00% 0.60% 2.98% 2.38% 0.00%

Notes: For each specification we report the percentage (twenty-eight tickers times six periods¼ 168 possible

instances) of 5% significant residual autocorrelations at lags 1–5, 10, 15, and 20.
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another, both replicating long-range dependence. One may note that LOG�HAR follows the

profile of the decay, but underestimates the magnitude of the autocorrelations at all lags. At lag-

1, we find autocorrelations that are approximately 0.6 for the DATA, 0.67 and 0.5 for the

HAR and LOG�HAR, respectively, but only 0.3–0.4 for the (2, 1) specifications.

The lack of ability by the (2, 1) models in replicating the autocorrelation profile of the

DATA at lag 1 is not an impediment to their better performance in forecasting relative to

HAR. In fact matching the DATA autocorrelation pattern is not necessarily conducive to

superior forecasts. Consider the following example in which RVt and two competing fore-

casts r̂2
1;t and r̂2

2;t are given by:

RVt ¼ r2
t þ �t; r̂2

1;t ¼ r2
t þ S1g1;t; r̂2

2;t ¼ r2
t þ S2g2;t;

with 1 < S2 < S1; �t and g2;t i.i.d. standard random variables; r2
t a process with lag-j auto-

covariance cj, and c0 ¼ 1; g1;t a standard random variable with lag-j autocovariance

Table 19. QML EC, IS residual diagnostics

Model 1 2 3 4 5 10 15 20

MVAR (1,1) 30.95% 11.31% 34.52% 5.95% 2.38% 12.50% 23.21% 2.38%

(2,1) 13.69% 16.07% 5.36% 9.52% 6.55% 5.95% 14.88% 0.00%

MVOL (1,1) 16.07% 19.05% 45.24% 8.33% 1.79% 10.71% 17.26% 3.57%

(2,1) 13.10% 8.93% 7.74% 6.55% 4.17% 4.17% 10.71% 0.00%

MLOG (1,1) 4.76% 39.29% 63.10% 10.71% 1.79% 9.52% 11.31% 3.57%

(2,1) 17.26% 4.17% 17.26% 5.36% 1.79% 4.17% 5.95% 0.60%

HAR 20.24% 26.79% 5.36% 10.12% 5.95% 6.55% 14.29% 0.00%

LNHAR 32.74% 14.88% 2.38% 2.38% 7.74% 4.76% 5.95% 0.00%

Notes: For each specification we report the percentage (twenty-eight tickers times six periods¼ 168 possible

instances) of 5% significant residual autocorrelations at lags 1–5, 10, 15, and 20.

Figure 2. Autocorrelation functions for the variance processes with parameters equal to the cross-sec-

tional averages (over twenty-eight assets) of the LNLS estimates in the most recent subsample (2010–

2014). MVAR, MVOL, and MLOG specifications refer to the ð2; 1Þ parameterizations. Autocorrelations

are computed over 106 simulations with additive standard Gaussian innovations. DATA is the cross-

sectional average of the autocorrelation functions of realized variances.
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wj ¼ 0:5S�2
1 ðS2

1 � 1Þcj. Then, the autocorrelations of the three processes are qjðRVÞ ¼
0:5cj; qjðr̂2

1Þ ¼ 0:5cj and qjðr̂2
2Þ ¼ ð1þ S2

2Þ
�1cj, respectively. The forecasting mean squared

errors of the competing specifications are: E½ðRVt � r̂2
1;tÞ

2� ¼ E½ðRVt � r2
t Þ

2� þ S2
1 and

E½ðRVt � r̂2
2;tÞ

2� ¼ E½ðRVt � r2
t Þ

2� þ S2
2. Therefore, for 1 < S2 < S1, the autocorrelation

structure of r̂2
1;t is an exact match of that of RVt while r̂2

2;t exhibits lower autocorrelations.

This notwithstanding, the forecasting mean squared error of r̂2
2;t is lower than that of r̂2

1;t.

Alternative specifications may thus produce more precise forecasts than HAR even

though the lag 1 autocorrelation of HAR is closer to the one from the DATA. A possible ex-

planation is that autoregressive models with (homoskedastic) measurement error follow an

ARMA process (e.g., Staudenmayer and Buonaccorsi, 2005; Bollerslev, Patton and

Quaedvlieg, 2016) and this may account for a good performance of the (2, 1) specifications.

Moreover, Bollerslev, Patton and Quaedvlieg (2016) highlighted the possible misspecifica-

tion of the HAR in the presence of measurement errors. This argument is supported by the

contemporaneous correlations between realized variances and the model forecasts: 0.6231

for MLOGð2; 1Þ, 0.6219 for MVOLð2; 1Þ, 0.6174 for LOG�HAR, 0.6153 for

MVARð2; 1Þ, and 0.5026 for HAR.

6 Conclusions

In this article, we start from the idea that OOS forecast evaluation relies on the choice of a

distance between predicted outcomes and actual values of realized variance that reflects

subjective preferences. Conditional on a specific OOS FL, we show that the same functional

form may not be the most appropriate choice as an IS EC in which distance between actual

and fitted values is used to deliver parameter estimates. To this end, we have examined sev-

eral models reminiscent of well-known GARCH parameterizations alongside HAR specifi-

cations and we have handled several combinations of IS estimation criteria and OOS FLs.

We find the (2, 1) parameterizations to be best suited to model the dynamics and forecast

realized variances, volatilities, and log-variances. In particular, the specification delivering the

best OOS forecasts is MLOG together with MVOL, a result qualitatively confirmed by a ro-

bustness check performed on continuous variation time series. Interestingly, our empirical find-

ings point to the presence of a negative lag-2 coefficient in all estimated (2, 1) specifications. We

interpret it as a dampening agent which, by limiting to one day most of the impact of a shock to

variance, induces a mimicking effect of long memory properties that are indistinguishable from

those of the HAR and more sustained than those of the LOG�HAR.

With respect to the estimators considered, we find that for all quadratic FLs, models

estimated using the LNLS EC provide the best OOS forecasts. On the other hand, for the

QML FL, the QML EC does better than LNLS, although marginally so. Our findings fur-

ther suggest a judicious approach to model selection which should rely on information cri-

teria unless the superiority of a specific model is substantiated by empirical evidence.
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Abstract

We introduce a set of new Value-at-Risk independence backtests by establishing a
connection between the independence property of Value-at-Risk forecasts and the
extremal index, a general measure of extremal clustering of stationary sequences.
For this purpose, we introduce a sequence of relative excess returns whose
extremal index is to be estimated. We compare our backtest to both popular and re-
cent competitors using Monte Carlo simulations and find considerable power in
many scenarios. In an applied section, we perform realistic out-of-sample forecasts
with common forecasting models and discuss advantages and pitfalls of our
approach.
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In spite of its usage as a risk measure for more than 20 years, researchers are still engaged in

exploring new forecasting and backtesting procedures for the Value-at-Risk (VaR). The lat-

ter procedures are typically based on a statistical test which tries to assess whether a certain

desirable property is met for the observed sequence of VaR violations: first, the concept of

correct unconditional coverage aims at checking whether the number of overall violations

is justifiable. From an academic perspective, we typically seek for a forecasting procedure

which yields neither too many nor too few violations. On the other hand, regulators are

usually interested in situations where the risk is not underestimated, resulting in a focus on
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not too many violations. Second, the correct independence aspect focuses on possible serial

dependence of violations and aims at checking whether the sequence of violations behaves

like an independent sequence. This concept becomes most important if unconditional

coverage is statistically satisfied, that is, an unconditional test cannot be rejected. In that

case, a test using information about the way how violations occur has still potential to re-

ject the forecasts. Available independence backtests may have power only with respect to a

lack of independence, or with respect to both the lack of independence and of correct un-

conditional coverage. The latter ones are called conditional coverage tests.

In general, tackling the independence property is challenging. This is mainly due to the

fact that risk forecasts deal with low-probability events and an often short testing sample. As

a consequence, observing many violations is unlikely, which naturally results in small effect-

ive sample sizes and, therefore, bad power properties. In addition, some of the classical tests

explicitly assume an alternative model incorporating a special kind of dependence, which

may also result in a loss of power if, in fact, a more general form of dependence is present.

Despite these natural difficulties, the independence hypothesis itself is relevant. As a

matter of fact, most financial time series exhibit large degrees of heteroskedasticity and,

therefore, require time-changing risk forecasts. Renouncement would lead to a probably

threatening violation clustering, something a sound risk management should always aim to

prevent.

We contribute to the backtesting literature by introducing a new test for the independence

hypothesis, which is particularly sensitive to deviations from independence among the most

extreme observations. Unlike standard methods, the new test does not use solely the 0-1-vio-

lation sequence. Instead, we assess whether a series of VaR-adjusted returns, coined relative

excess returns, exhibits a significant tendency for that its most extreme observations occur in

clusters. As a measure for that tendency, we employ the extremal index, a natural measure of

clustering of extreme observations stemming from extreme value theory. We implement the

approach with two different extremal index estimators, the first one (Süveges and Davison,

2010) leading to a more classic 0-1-test, while the second one (Northrop, 2015; Berghaus

and Bücher, 2018) enables the processing of more detailed information. We find considerable

power improvements in many cases in comparison to common competing tests, with the se-

cond test often showing the most convincing results. Finally, it is important to note that our

approach is not designed to have power against incorrect unconditional coverage, and that

we do not present a unified test tackling correct conditional coverage. Thus, our approach

can rather be regarded as a potentially powerful supplement to other tests.

As is well known, VaR lacks some important features of risk measures. The most com-

mon alternative measure is provided by the Expected Shortfall (ES), which will soon replace

the VaR as the standard regulatory measure of risk for banks (BCBS, 2016). However, since

VaR and ES are closely related, it does not come as a surprise that VaR and its backtests

also play a prominent role in some ES backtests. For example, Kratz, Lok, and McNeil

(2018) propose a joint backtest for several VaR levels as an intuitive way to implicitly

backtest ES. A second example is BCBS (2016) itself, where out-of-sample backtesting is

based on VaR as well. However, both in general and in the aforementioned examples, the

issue of a possible lack of independence is rarely addressed. Since the implementation of

our idea is relatively independent of the specific VaR level, we see this as a promising ap-

proach in this respect.
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The remainder of this article is structured as follows. Section 1 provides preliminaries

about the notation, a more detailed description of the backtesting problem, and mathemat-

ical details on the extremal index. Section 2 introduces our new approach of independence

backtesting based on the extremal index. In Section 3, we perform a detailed analysis of the

small-sample properties, while Section 4 focuses on some empirical implications. Finally,

Section 5 concludes, while less important aspects are deferred to an Online Appendix.

1 Preliminaries on Backtesting and the Extremal Index

In this section, we introduce our notation, review the essentials of VaR backtesting, and

provide a brief introduction to the extremal index.

1.1 Backtesting the VaR

Consider a random return rt of a financial asset in a period t, usually a day.1 Suppose this

return is continuously distributed with c.d.f. Ft, conditional on the information set F t�1

which embodies all information up to period t � 1. We define the VaR at level p as

VaR
ðtÞ
p :¼ �F�1

t ðpÞ, where F�1
t denotes the generalized inverse of Ft. Throughout the article,

we will refer to p as VaR level, usual values are 5% and 1%, whereas q ¼ 1� p will be

called the VaR confidence level. Note that, with this definition, we report large losses and

hence VaRs as positive numbers.

A violation at time t occurs if rt < � ^VaR
ðtÞ
p , where ^VaR

ðtÞ
p denotes a forecast of the true

VaR at period t, calculated based on information from F t�1. Using a series of VaR forecasts

corresponding to observed returns r1; . . . ; rn, we define the violation sequence ðItÞnt¼1, by

It ¼
1 ðviolationÞ; if rt < � ^VaR

ðtÞ
p

0 ðcomplianceÞ; if rt � � ^VaR
ðtÞ
p

:

8><
>: (1.1)

The time points t where violations occur, that is It ¼ 1, are called violation times or vio-

lations indices. Suppose there are N1 violations, that is, N1 ¼ fIt ¼ 1g, and order the viola-

tion times increasingly t1 < . . . < tN1
. We define the inter-violation durations Di as

Di :¼ tiþ1 � ti, where i ¼ 1; . . . ;N1 � 1. If the VaR forecasts happen to be completely cor-

rect, that is ^VaR
ðtÞ
p ¼ VaR

ðtÞ
p for all t, then the violation sequence forms an i.i.d. Bernoulli

sequence with success probability p, that is It �i:i:d:BernoulliðpÞ. This implies N1 ¼
Pn
t¼1

It �

Binomðn; pÞ and Di �i:i:d:GeomðpÞ.
The goal of backtesting is to asses whether a sequence of n ex ante VaR forecasts are ap-

propriate in relation to the realized returns. This is usually done by stressing one of the

above-mentioned properties of the violation sequence or the durations.

1 The methods introduced in this article are applicable for arbitrary period lengths such as hourly,

daily, or monthly periods if the returns are non-overlapping. We focus on daily returns in subse-

quent analyses because this is the most common case in the academic and regulatory literature.

For the latter, see, for instance, BCBS (1996b) or BCBS (2016).
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Since Christoffersen (1998) backtests are classified according to their focus, see also the

discussion in the introduction. The property of forecasts being completely unsuspicious is

called correct conditional coverage (cc) and may be written as

cc : It �i:i:d:BernoulliðpÞ; t ¼ 1; . . . ;n: (1.2)

Before this term was introduced, assessing VaR forecasts was solely concerned with the

aspect of unconditional coverage (uc), which is defined by

uc : EðItÞ ¼ p; t ¼ 1; . . . ;n: (1.3)

In other words, uc is concerned about whether the frequency of violations is reasonable

in the sense that, for all time points t, the probability of observing a violation equals p,

which is the probability had the true VaR been used for the calculation of It. A simple way

to get a first impression about the latter property is to calculate the actual number of viola-

tions N1 and compare the result to its expectation np under the assumption
^VaR
ðtÞ
p ¼ VaR

ðtÞ
p . See, for example, Kupiec (1995) for an early test or BCBS (1996b) for the

Traffic Light Approach used by the Basel Committee.

Unconditional coverage is complemented by the independence property (ind), given by

ind : I1; . . . ; In are stochastically independent: (1.4)

Rather than on how many violations occur, the focus is on how the violations occur

over time. A simple graphical way to check this property is to look at a plot of VaR

violations and assess visually whether there are any patterns. However, detecting a fail-

ure of the independence property can be fairly hard due to the natural scarcity of viola-

tions if the VaR level is sufficiently small or the backtesting sample is not large enough.

Still, possible dependence among violations can be extremely important for risk manag-

ers, as subsequent violations can sum up and result in an overall loss of threatening

magnitude.

From a more technical perspective, plain independence of violations does not necessarily

imply the absence of violation clustering. This can be seen by an example in Ziggel et al.

(2014), where It and It�k are, in fact, independent but clustering can still happen.2

1.2 The Extremal Index

Loosely spoken, the extremal index h, a parameter in the interval ½0; 1�, measures the ten-

dency of a (strictly) stationary time series to form temporal clusters of extreme values. The

formal definition is as follows, see, for example, Embrechts, Klüppelberg, and Mikosch

(1997, p. 416).

Definition 1.1. Let ðetÞ be a strictly stationary sequence with stationary c.d.f. FðxÞ ¼
Prðe1 � xÞ and let h be a non-negative number. Assume that, for every s > 0, there exists a

sequence ðunÞ ¼ ðunðsÞÞ such that

2 See equation 28 of Ziggel et al. (2014). The authors argue that the independence property should

be replaced by an i.i.d. property. Although the prevention and detection of violation clustering is

also our aim, we continue to speak of independence when we mean the absence of violation

clustering in the remainder of the article.
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lim
n!1

nPrðe1 > unÞ ¼ s;

and

lim
n!1

PrðMn � unÞ ¼ expð�hsÞ;

where Mn ¼ maxfe1; . . . ; eng. Then h is called the extremal index of the sequence ðetÞ, and

it can be shown to lie necessarily in ½0;1�.
The definition is fairly abstract and certainly needs some explanation. Consider an i.i.d.

sequence first, and assume that the c.d.f. F of e1 is continuous and, for simplicity, invertible.

For given s > 0, we may then choose un ¼ F�1ð1� s=nÞ to guarantee that

nPrðe1 > unÞ ¼ nf1� FðF�1ð1� s=nÞÞg ¼ s, that is, the first limiting relationship in the

above definition is satisfied. Since nPrðe1 > unÞ ¼ E½
Pn
i¼1

1ðet > unÞ� by linearity of expect-

ation, we obtain that we can expect, on average, to observe s exceedances of the threshold

un in a sequence of length n. At the same time, it may well happen that we do not observe a

single exceedance of the threshold, and this event is exactly fMn � ung. For the i.i.d. case,

we obtain

PrðMn � unÞ ¼ Prðe1 � unÞ � � �Prðen � unÞ ¼ FðunÞn ¼ 1� nf1� FðunÞg
n

� �n

;

which converges to expð�sÞ. As a consequence, we obtain that the extremal index of an

i.i.d. sequence is h ¼ 1. Note that h ¼ 1 does not imply independence.

For more general time series, a similar calculation is typically much more difficult. It has,

however, been shown that, under weak conditions on the serial dependence and if PrðMn �
unÞ does converge, then the limit is always of the form expð�hsÞ with h being independent

of the level s, as requested in the above definition (Leadbetter, 1983). The extremal index

has been shown to exist for many common time series models, including, for example,

GARCH models (Mikosch and Starica, 2000), and is often smaller than 1 as in the i.i.d.

case.

A common interpretation of the extremal index is as follows: the reciprocal of the

extremal index, that is, 1 =h, represents, in a suitable elaborated asymptotic frame-

work, the expected size of a temporal cluster of extreme observations, see Embrechts,

Klüppelberg, and Mikosch (1997, p. 421). As a consequence, h¼ 1 means that extreme

observations typically occur by oneself, while values below 1 means that extreme

observations tend to occur in temporal clusters, that is, close by in time, with the

expected number of ‘close-by-extreme-observations’ being equal to 1=h. It is exactly

this interpretation which leads us to consider backtests based on the extremal index in

Section 2.

2 Backtesting Based on the Extremal Index

Given some arbitrary forecasts ^VaR
ðtÞ
p , consider the following negative return-VaR ratio
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et :¼ etð ^VaR
ðtÞ
p Þ :¼ � rt

^VaR
ðtÞ
p

; (2.1)

which we call relative excess returns. Similar to the fact that the use of correct VaR fore-

casts leads to an i.i.d. Bernoulli violation sequence, the use of correct forecasts should result

in no (or only low) serial dependence of the sequence ðetÞ.
Note, the negative sign in front of the ratio, which implies that by looking at the right

tail of ðetÞ, we essentially look at the left tail of ðrtÞ. There is an obvious relationship with

the violation sequence ðItÞ defined in Equation (1.1): we have fet > 1() It ¼ 1g and

fet � 1() It ¼ 0g, but ðetÞ obviously contains much more information.

We propose to check for extremal clustering in the right tail of ðetÞ by using the extremal

index, whence the resulting tests can, in fact, be expected to be particularly sensitive to

deviations from independence in the far right tail of et, that is, in the most important part

for risk management needs. More precisely, recalling that an independent sequence has

extremal index 1, we aim at checking for what we coin no cluster property (noc):

noc : he :¼ hððetÞtÞ ¼ 1: (2.2)

In Section 2.1, we argue that this approach is sensible, at least for mean-scale models. In

Section 2.2, we introduce estimators for the extremal index that will be used in Section 2.3

to formally define the new backtests. Sections 2.4 and 2.5 provide extensions to more gen-

eral risk measures and distributional backtests, respectively.

2.1 Relative Excess Returns of Mean-Scale Models

It is instructive to consider the relative excess return series ðetÞ, with ^VaR
ðtÞ
p ¼ VaR

ðtÞ
p , in a

general mean-scale model defined by

rt ¼ lt þ rtzt; where zt �i:i:d:Fz (2.3)

and where EðztÞ ¼ 0; VarðztÞ ¼ 1, and lt; rt are F t�1—measurable. As a consequence, the

conditional VaR using information up to t � 1 can be written as

VaR
ðtÞ
p ¼ �lt � rtF

�1
z ðpÞ; (2.4)

which implies that

et ¼
lt þ rtzt

lt þ rtF�1
z ðpÞ

: (2.5)

We are next going to argue that the sequence ðetÞ is either an i.i.d. sequence (zero

mean case) or at least approximately serially independent (non-zero mean case), in par-

ticular when looking only at the right tail. This suggests to backtest the VaR-forecasts

by checking for serial independence or the absence of extremal clustering of the relative

excesses ðetÞ.

2.1.1 The zero mean case

If lt � 0, then Formula (2.5) simplifies to et ¼ zt=F
�1
z ðpÞ. As a consequence, ðetÞ is an i.i.d.

sequence due to the i.i.d. property of the innovations ðztÞ.
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In practice, the possibility of a non-zero mean cannot be ruled out. However, it is often

argued that financial returns show only insignificant means, see, for example, Hansen and

Lunde (2005). In that paper, a large number of mean-scale models are examined with re-

spect to their volatility forecasting performance, relative to simple specifications such as the

classical GARCH(1,1) model. Three different specifications for the conditional mean are

used and it is concluded that the performance is almost identical across the three versions.

In other words, for financial returns, the mean is often negligible, especially in the short

term. This stylized fact is also assured by the popularity of methods and models which ex-

plicitly use the assumption of zero conditional means. A prime example is provided by the

famous square-root-of-time rule for time-scaling of the volatility and VaR. The rule is well

appreciated among academics and practitioners and is even implemented in regulatory

standards for VaR scaling from daily returns to 10-day returns (BCBS, 1996a).

2.1.2 The general case

Next, consider the general case with lt 6¼ 0 being allowed. The event fet > yg can then be

rewritten as

StðyÞ ¼ zt < y
lt

rt
þ F�1

z ðpÞ
� �

� lt

rt

( )
;

and this representation suggests that the relative excess returns are in general not serially in-

dependent: the events fet > yg and fetþ1 > xg are connected through the conditional mean

and volatility. However, we argue that the serial dependence is actually either vanishing or

low in certain typical cases.

The first case is x ¼ y ¼ 1, in which case Stð1Þ ¼ fzt < F�1
z ðpÞg ¼ fIt ¼ 1g, which

is obviously independent over time. In fact, we are left with the classical violation

sequence ðItÞ.
Next, in case of either ltþ1 	 0 or rtþ1 !1, we get at least approximate equality of

StðyÞ and fzt < F�1
z ðpÞg and hence approximate serial independence of ðetÞ. Note that

large volatilities rt are typically present in periods of financial turmoil, which are in turn

associated with our phenomenon of interest, that is, violation clustering.

More generally, the serial dependence vanishes for x; y � 1 whenever �F�1
z ðpÞ 
 lt=rt

for all t with high probability, which is reasonable for large values of q. In that case, StðyÞ
implies zt � F�1

z ðpÞ, so that only very small values of zt may trigger the event StðyÞ. Since zt

is an i.i.d. sequence, the events StðyÞ are approximately serially independent too, with high

probability.

2.2 Estimators for the Extremal Index

Perhaps not surprisingly, a huge variety of estimators for the extremal index has been

described in the literature. Early estimators include the blocks and the runs method, see

Smith and Weissman (1994) or Beirlant et al. (2004) for an overview. In this section, we de-

scribe the classical blocks estimator and two more recent methods which will be applied in

the subsequent parts of this article. In what follows, let e1; . . . ; en be an observed stretch

from a strictly stationary time series whose extremal index exists and is larger than 0.
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2.2.1 The classical blocks estimator

One of the most intuitive estimators is the classical blocks estimator, see Smith and

Weissman (1994). This estimator is closely related to the definition of clusters and its rela-

tionship to the extremal index and relies on a block size b ¼ bn and a threshold u ¼ un to be

chosen by the statistician.

Divide the sample e1; . . . ; en into n/b disjoint blocks of size b.3 Let Mdj
i ¼

maxfeði�1Þbþ1; . . . ; eibg denotes the maximum of the observations in the ith disjoint block.

The set of exceedances within a block containing at least one exceedance (i.e., Mdj
i > u) is

regarded as a cluster. Since 1=h is the expected cluster size, this suggests to set

ĥ
CB

n ¼

Pn=b
i¼1

1ðMdj
i > uÞ

Pn
i¼1

1ðei > uÞ
;

which equals the number of clusters over the number of exceedances and yields the classical

blocks estimator.

2.2.2 The K-gap estimator

The K-gap estimator by Süveges and Davison (2010) is based on inter-exceedance times be-

tween the extreme observations (the latter bears some similarities with the duration times

introduced in a backtesting context in Section 1.1). The foundations of the estimator are

laid in Ferro and Segers (2003) where it is shown that the inter-exceedance times, appropri-

ately standardized, weakly converge to a limiting mixture model. This remains true after

truncation by the so-called gap parameter K 2 N, as shown for K¼ 1 in Süveges (2007) and

in the general K-gap case in Süveges and Davison (2010).

The K-gap estimator does depend on a high threshold u ¼ un to be chosen by the statisti-

cian and is constructed as follows. Let N1 ¼
Pn
t¼1

1ðet > uÞ denotes the number of exceedan-

ces of the threshold u. Let 1 � j1 < . . . < jN1
� n denotes the time points at which an

exceedance has occured, and let Ti ¼ jiþ1 � ji denotes the inter-exceedance time, for

i ¼ 1; . . . ;N1 � 1. The K-gaps are introduced by truncating with K>0, that is

S
ðKÞ
i ¼ maxfTi � K; 0g:

The mentioned limiting mixture model means that a transformed inter-exceedance time

(K-gaps also) follows either an exponential distribution with mean h (with probability h,

inter-exceedance time positive) or equals to zero (with probability 1� h). In general, the

log-likelihood of ðSðKÞi Þ is intractable, but a pseudo-log-likelihood may be derived under the

assumption of independence of the inter-exceedance times:

3 We assume that the number of blocks n/b is an integer. If this is not the case, a possible remainder

block of smaller size than b must be discarded (typically at the beginning or the end of the observa-

tion period).
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log LKðh; S
ðKÞ
i Þ ¼ ðN1 � 1�NCÞ logð1� hÞ þ 2NC log h� h

XN1�1

i¼1

�FðuÞSðKÞi ;

where NC ¼
PN1�1

i¼1

1ðSðKÞi 6¼ 0Þ and where �FðxÞ ¼ Prðe1 > xÞ. The maximization of this log-

likelihood yields a closed-form estimator of the extremal index given by

ĥ
G

n ¼ ĥ
G

n ðu;KÞ ¼
R2 � ðR2

2 � 8NCR1Þ1=2

2R1
(2.6)

where R1 ¼
PN1�1

i¼1

�FðuÞSðKÞi and R2 ¼ R1 þN1 � 1þNC. In practice, one must replace the

unknown function F by the empirical c.d.f. F̂n and u ¼ un by F̂
�1

n ðqÞ, for some value q ¼ qn

near 1. Note that the asymptotic behavior of the estimator has only been derived under

additional (unrealistic) assumptions such as knowledge of the c.d.f. F and independence of

the inter-exceedance times. Finally, it is important to note that we used a minor modifica-

tion of the above estimator throughout our Monte Carlo experiments. The modification

aims at a proper handling of the possibly censored inter-exceedance times at the start and

the end of the observation period, see Section A.2 in the Online Appendix for details.

2.2.3 A block-based maximum likelihood estimator

A sliding block version of a maximum likelihood estimator for the extremal index has been

proposed and theoretically analyzed in Northrop (2015) and Berghaus and Bücher (2018),

respectively. Unlike other blocks estimators for the extremal index, it is only depending on

one parameter to be chosen by the statistician, namely a block length parameter b ¼ bn.

The estimator has a simple closed-form expression and is defined as follows: first, given a

block length b, let Msl
t ¼ maxfet; . . . ; etþb�1g and Zsl

t ¼ bf1� FðMsl
t Þg, where F denotes the

c.d.f. of e1 and where t ¼ 1; . . . ; n� bþ 1. It can be shown that the transformed block

maxima Zsl
t are asymptotically b-dependent and exponentially distributed with mean h�1.

Hence, after replacing F by its empirical counterpart F̂n, the reciprocal of the sample mean

of Ẑ
sl

t ¼ bf1� F̂nðMsl
t Þg can be used to estimate the extremal index4:

ĥ
B

n ¼ ĥ
B

nðbÞ ¼
1

n� bþ 1

Xn�bþ1

t¼1

Ẑ
sl

t

0
@

1
A
�1

: (2.7)

Under regularity conditions on the time series and if b ¼ bn !1 with b ¼ oðnÞ, it fol-

lows from theorem 3.1 in Berghaus and Bücher (2018) that

ffiffiffiffiffiffiffiffi
n=b

p
ðĥB

n � hÞ ! Nð0; h4r2
slÞ;

where h denotes the true extremal index and where r2
sl ¼ r2

slðhÞ > 0 denotes the asymptotic

variance of the sliding blocks estimator. It is worthwhile to mention that r2
sl ¼ 0:2726 in

4 Berghaus and Bücher (2018) propose an additional bias correction, which we do not describe here

in detail, but which we employ throughout the simulation studies and the empirical applications.
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case the extremal index is equal to 1, that is, the limiting distribution is pivotal; see example

3.3 in Berghaus and Bücher (2018).

2.2.4 An example

In Figure 1, we illustrate the classical blocks estimator from Section 2.2.1, the K-gap esti-

mator from Section 2.2.2, and the disjoint variant of the block-based Maximum Likelihood

estimator from Section 2.2.3 (obtained by using Ẑ
dj

t ¼ bf1� F̂nðMdj
t Þg with Mdj

t ¼
maxfebt�1þ1; . . . ; etbg for t ¼ 1; . . . ;n=b).

The data consist of about three years of negative daily log returns on the S&P 500

index. The solid red horizontal line corresponds to the ex post 97.5% empirical quantile of

the negative return data, that is, u¼ 0.0225. Hence, we have exactly twenty values above

this threshold. All exceedances of the threshold are labeled with a vertical dotted red line.

The gray dashed lines mark the edges of the disjoint blocks. We choose a block length of

b¼ 40 returns, resulting in n=b ¼ 20 disjoint blocks.

The first line at the top of the Figure 1 shows the empirical cluster sizes used for the dis-

joint classical blocks estimator from Section 2.2.1. The inverse of the average cluster size

provides the classical blocks estimator for the extremal index, with a value of ĥ
CB ¼ 0:45

for the particular example.

The second line corresponds to the K-gaps estimator from Section 2.2.2 with K¼6,

which is depending on the threshold u and the gap parameter K, but not the block size b.

The partly displaced horizontal red lines serve as an illustration for the durations betweens

exceedances. Three numerical examples are provided above those lines. For instance,

109:103 means that the inter-exceedance time was 109 days. This value, truncated with

K¼ 6, leads to a K-gap of 103. Since this inter-exceedance time is quite high, the truncating

Figure 1. This plot illustrates the three extremal index estimators described in Section 2.2. The data

set consists of about 800 daily returns on the S&P 500 index from January 3, 2011 till March 10, 2014.

The first line at the top documents cluster sizes, the second line shows three examples for durations

and six-gaps, and the last line reports transformed block maxima.
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alters little. However, in the first example, the duration is 2, resulting in a K-gap of 0. The

final estimated value is ĥ
G

n ¼ 0:51.

The blocks estimator ĥ
B

n from Section 2.2.3 is only depending on the block size b and is

based on computing maxima within each block. In particular, such a block maxima (red

crosses) can also be below the threshold, as, for example, for blocks 1–2 in the picture. The

block maxima are then transformed to the pseudo-observations Ẑ
dj

t , which are reported in

the third line of the plot. Here, the inverse of the mean yields an estimate of ĥ
B

n ¼ 0:62.

In this example, all estimates are quite similar and show that the negative S&P 500

returns exhibit a large degree of extremal dependence in their right tail.5 However, it is well

know that such estimates can deviate largely depending on the estimator and parameter

choice.6

2.3 The Backtesting Procedure for VaR

The backesting procedure we propose is as follows: first, given a sequence of VaR forecasts

^VaR
ðtÞ
p and observed returns rt, for t ¼ 1; . . . ; n, calculate ðetÞ as defined in Equation (2.1).

Second, calculate ĥn ¼ ĥnðe1; . . . ; enÞ with ĥn denoting any of the extremal index estimators

from Section 2.2. Finally, reject the VaR-forecasts if ĥn is significantly smaller than 1.

Regarding the extremal index estimators, we only consider the sliding blocks estimator

from Section 2.2.3 and the K-gap estimator from Section 2.2.2; the resulting tests will sub-

sequently be denoted by HB
noc ¼ HB

nocðbÞ and HG
noc ¼ HG

nocðu;KÞ, respectively.

2.3.1 Block maxima-based test

Regarding test HB
noc, we first need to choose a block length parameter b. A preliminary

Monte Carlo simulation study to compare several values of b, details can be found in Table

A.3 of the Online Appendix; guides us to choose b¼ 40 across all further analyses.

Although more suitable choices may be possible depending on the data generating process

(DGP), we set a general data-dependent strategy for the choice of b aside, thus possibly

reducing power in some cases.

Critical values for test HB
noc could, in principle, be calculated based on the normal ap-

proximation described in Section 2.2.3: if the extremal index is 1, then ĥb � 1 is approxi-

mately centered normal with variance 0:2726 � b=n, no matter the stationary distribution Fe

or the serial dependence of the time series outside the upper tail. However, the fact that the

limiting distribution is pivotal also allows to approximate it by simulating from an arbi-

trary model for which the extremal index is 1. We hence opt for calculating critical values

by first simulating ~e1; . . . ; ~en from the model

5 This implies extremal dependence in the left tail of the S&P 500 returns.

6 See, for example, Tables 8.1.8 and 8.1.9 in Embrechts, Klüppelberg, and Mikosch (1997).
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~et ¼
~rt

� ^VaR
ðtÞ
p

; ~rt �i:i:d:Nð0; 1Þ; ^VaR
ðtÞ
p ¼ �U�1ðpÞ; (2.8)

where U denotes the c.d.f. of the standard normal distribution, and by then calculating

ĥ
B

n ¼ ĥ
B

nð~e1; . . . ; ~enÞ with the same block length parameter as chosen above, that is, b¼ 40.

Note that such a simulation-based approach is also common for other classical backtesting

procedures where asymptotic distributions are known.

2.3.2 K-gap test

Let us next describe details on test HG
noc, which depends on the choice of both K and u ¼ un.

Regarding the choice of u, we simply set u¼1, which essentially means that we leave the

extreme value context and are back to the 0-1-violation sequence from Section 1.1 (note

that et > 1 if and only if It ¼ 1). In particular, this viewpoint suggests to obtain critical val-

ues of the test simply by generating i.i.d. Bernoulli(p)-sequences ~It, and to calculate ĥ
G

n ¼

ĥ
G

n ðKÞ by considering each time points where ~It ¼ 1 as an exceedance (note that ĥ
G

n only

depends on those time points). Regarding the choice of the K-gap parameter, a further pre-

liminary simulation study (details are presented in Table A.2 in the Online Appendix)

prompts us to choose K¼6 for all further analyses. Since the K-gap test can be imple-

mented with and without taking care of censored durations at the start and the end of the

observation period, we distinguish three versions of this test via HG
noc;uðKÞ; HG

noc;c;nðKÞ, and

HG
noc;c;lðKÞ. Details on their (minor) differences can be found in Section A.2 of the Online

Appendix. Throughout this article, the two above-described simulation-based approaches,

as well as all other similar approaches, are based on N¼10,000 replications, and corre-

sponding p-values are computed as described in the Online Appendix, see also Dufour

(2006).

2.3.3 Relation to the independence hypothesis and tests

By definition, the no cluster property, noc, in Equation (2.2) is quite different from the clas-

sical independence hypothesis, ind, in Equation (1.4), and a comparison between the

hypotheses and tests is of interest.

As argued in Section 2.1, at least for (mean-)scale models, the use of correct forecasts

implies that both ind and noc are met, both of which are properties related to the serial de-

pendence of a respective forecast adjusted time series. This prompts us to regard corre-

sponding tests for those hypotheses as valid backtests for the forecasts, despite the

difference between the hypotheses.

When comparing respective tests, it is important to notice that the tests based on the

extremal index follow quite different estimation approaches, with HG
noc being based on

inter-exceedance times and HB
noc being based on block maxima. As described in the previous

paragraph, HG
noc in fact only depends on the 0-1-violation sequence and is hence closely

related to classical independence backtests and also to the independence hypothesis, ind, in

Equation (1.4).7

7 A more appropriate notation would hence be HG
ind instead of HG

noc.
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On the other hand, the block maxima-based test HB
noc is really a test for noc in

Equation (2.2), and as such quite different to classical backtests. Two important draw-

backs are to be kept in mind when applying HB
noc: first, since an extremal index of one

does not imply independence, the test cannot have power against certain incorrect fore-

casts. Second, our motivation from Section 2.1 only concerns (mean-)scale models, whence

the test may in fact wrongly reject the null hypothesis for certain alternative models not of

the mean-scale type. On the other hand, an application of HB
noc also comes along with the

advantage that it may use the data in a more informative way, given that the test is de-

pending on ðetÞ instead of just the violation sequence ðItÞ. This may result in more power

against certain types of forecasts that are not able to capture the tail in such a way that

noc holds.

2.4 Extensions to More General Risk Measures Including ES

Backtesting the ES recently received increased attention due to its upcoming implemen-

tation as a standard risk measure for regulatory purposes in banking (BCBS, 2016).

Most available backtests of ES focus on unconditional coverage, see Kerkhof and

Melenberg (2004), Wong (2008), Costanzino and Curran (2015), and Kratz, Lok, and

McNeil (2018). Only recently, Du and Escanciano (2017) propose to additionally use a

Box–Pierce test to test for autocorrelation in a certain sequence of cumulative viola-

tions. This test can hence be regarded as the first ES backtest for independence (rather:

serial uncorrelation). In this section, we extend the basic idea from Section 2.3 to ob-

tain a further backtest for ES that is particularly sensitive to certain deviations from in-

dependence in the tails.

Recall that the main idea of the VaR method from Section 2.3 consists of checking

whether the relative excess returns in Equation (2.1) do not show any sign of extremal clus-

tering. The sensibility of such an approach was explained in Section 2.1 for mean-scale

models, and the arguments can, in fact, be generalized to any risk measure which is transla-

tion invariant and positively homogeneous. Indeed, recall that a risk measure q : M! R,

M a set of random variables, satisfies translation invariance if, for all R 2M and every

c 2 R, we have qðRþ cÞ ¼ qðRÞ � c (the change of the sign stems from interpreting R as a

return and not a loss). Positive homogeneity is satisfied if qðc; RÞ ¼ c; qðRÞ for all R 2M

and c>0 (McNeil, Frey, and Embrechts, 2005). By the same arguments as in Section 2.1, it

is sensible to backtest a sequence of forecasts q̂t by checking whether the sequence

et ¼ �
rt

q̂t

(2.9)

does not so any sign of extremal clustering. Indeed, for location-scale models as defined in

Equation (2.3) and for q̂t ¼ qt ¼ qðrtjF t�1Þ, we obtain that

et ¼ �
rt

qt

¼ lt þ rtzt

lt � rtqðztÞ
;

which simplifies to Equation (2.5) if we use qðztÞ ¼ �F�1
z ðpÞ, that is, VaR. As a conse-

quence, it is sensible to apply the methodology described in Section 2.3 to the sequence ðetÞt
defined in Equation (2.9), for any translation invariant and homogeneous risk measure. We

do not pursue this any further in this document.
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2.5 An Extension to Distributional Backtests

The general idea from Section 2.3 may also be applied to backtesting forecasts of the entire

conditional distribution (or density), see also Berkowitz (2001). More precisely, suppose

that F̂ t is a distributional forecast of the conditional c.d.f. of rt given F t�1, the latter being

denoted by Ft. The role of the VaR-adjusted return series ðetÞ may then be played by the

probability integral transform sequence ut ¼ 1� F̂tðrtÞ; t ¼ 1; . . . ;n: In case F̂ t ¼ Ft, the se-

quence is known to constitute an i.i.d. sequence of uniformly distributed random variables

on the interval ½0;1�, see Rosenblatt (1952). As in the previous section, a distributional

backtest that is particular sensitive to deviations from independence in the upper right tail

of ut is obtained by comparing the estimated extremal index of u1; . . . ; un with 1.

3 Size and Power Analysis

In this section, we compare our new approach to several classical independence backtesting

procedures in terms of their empirical size and power properties by means of a large-scale

Monte Carlo simulation study.

The following competitors to our tests are considered: the Markov chain-based likeli-

hood-ratio test LRMar
ind from Christoffersen (1998), the Geometric likelihood-ratio test

LRGeo
ind;c from Berkowitz, Christoffersen, and Pelletier (2011), the test GMM

ðVDÞ
ind;c based on

the generalized method of moments from Candelon et al. (2011),8 and the test based on

squared durations MCSind by Ziggel et al. (2014). More details on these tests can be found

in Section A.1 of the Online Appendix. Regarding our tests and as described in Section 2.3,

the parameter b is set to b¼40 for test HB
noc and to K¼6 for test HG

noc;c;l.

Throughout, the general procedure to obtain empirical rejection rates is as follows: for

each combination of DGP, VaR level, and sample size, we generate 5000 random samples.

We then perform the mentioned tests, based on p-values that are computed as described in

Section 2.3 and in Sections A.1 and A.3 in the Online Appendix.

3.1 Power Properties When True Unconditional VaRs Are Used

The first simulation experiment is guided by table 4 in Ziggel et al. (2014), the purpose

being to compare (independence) backtests in situations where clustered violations are like-

ly due to the use of unconditional instead of conditional VaRs. The DGP is as follows:

rt ¼ rtzt; t ¼ 1; . . . ; n;

with zt �i:i:d:Nð0; 1Þ; r1 ¼ 1 and

r2
t ¼ kr2

t�1 þ ð1� kÞz2
t�1; t ¼ 2; . . . ; n:

As in Ziggel et al. (2014), the parameter k is chosen from the set

f0:8706; 0:9829;0:9914;1g (case k ¼ 1 will correspond to the null hypothesis) and the

sample size n is chosen from the set f250, 1000, 2500g. Note that results for sample sizes

as small as 250 should be regarded with a little caution. For the block maxima-based test

8 With (VD), we indicate that we choose the parameter k for the GMM test to be 3 for the 1% VaR

level and 5 for the 5% VaR level.
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HB
noc, taking blocks of length b¼ 40 results in only six disjoint block maxima (and slightly

more distinct values for the sliding block maxima), to which we then fit an exponential dis-

tribution. However, since we do not rely on asymptotics but rather on simulations to calcu-

late critical values, we still think that an application to such small sample sizes is sensible.

The classical tests suffer from similar drawbacks in the absence of violations. To make this

issue less important and in line with Ziggel et al. (2014), the simulation study is performed

conditional on the restriction of at least two violations per backtesting sample.9

Recall from Section 2.1 that the true conditional VaR of the above-described model is

given by VaR
ðtÞ
p ¼ �rtU

�1ðpÞ and that the use of ^VaR
ðtÞ
p ¼ VaR

ðtÞ
p in Formula (2.1) would

result in an i.i.d. sequence of relative excess returns. Serial dependence (and in particular

extremal clustering) is now introduced by instead setting ^VaR
ðtÞ
p ¼ ^VaRp (independent of t)

to the empirical VaR computed from a preliminary simulation with 100,000 returns.

The estimated rejection rates are reported in Table 1 (an extended version can be found

in Table A.5 in the Online Appendix, where we also consider the confidence level a ¼ 1%

and additional modifications of the tests). All tests exhibit a reasonable approximation of

the intended level (case k ¼ 1). Only for n¼ 250 and the 1% VaR level, the nominal sig-

nificance levels are consistently slightly surpassed, which is possibly due to above-

mentioned restriction on the number of violations. In terms of power, the proposed

extremal index test HB
noc typically yields the largest numbers, which on top are often much

larger than for the classical competitors. In the few cases, a non-extremal index test yields

larger power, the improvement over the extremal index versions is rather small.

With some exceptions (in particular test HB
noc), the rejection rates are higher in the 5%

VaR Panel. A possible explanation is that a small number of violations cannot yield the

same evidence for serial dependence like a large number of violations are capable of. For

HB
noc instead, the rejection rates change barely for different levels, a likely explanation being

that the input data (relative excess returns) are approximately the same up to a scaling fac-

tor. Moreover, by construction, HB
noc is also able to use information of events where viola-

tions did occur almost, see also Figure 1. This questions whether it is meaningful to assess

the independence property of 1% VaR forecasts in small samples based solely on violation

sequences.

3.2 How Often Can We Reject Historical Simulation?

The second simulation is inspired by Candelon et al. (2011) and Christoffersen and

Pelletier (2004). Again, returns are simulated using a mean-scale model with lt � 0 and

innovations zt �i:i:d:
ffiffiffiffiffiffiffi
d�2

d

q
et, where et follows a Student’s t-distribution with d degrees of free-

dom. The conditional variance involves an asymmetric leverage effect and is given by

r2
t ¼ xþ cr2

t�1ðzt�1 � hÞ2 þ br2
t�1; t 2 N�2;

where c ¼ 0:1; h ¼ 0:5; b ¼ 0:85;x ¼ 3:9683 � 10�6 and d¼8. We set r2
1 ¼ x and use a

burn-in period of length Nburn�in ¼ 200 before forecasting is started.

9 The probability that a generated sample of size n violates this condition is negligible in all cases

except for the 1% VaR level and n ¼ 250 case, where approximately 28.6% of randomly drawn sam-

ples exhibit at most one violation.
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Time-varying forecasts are obtained by applying the popular and realistic VaR forecast-

ing technique of (unconditional) “Historical Simulation” (HS): given an integer

Te 2 f250; 500g, we estimate the conditional VaR at time t by the respective empirical

quantile (multiplied with �1) of the Te observations prior to time point t. The experiment is

hence in contrast to the scenario from Section 3.1, where one fixed VaR forecast was used

for all t. Still, since HS is not able to capture the dynamics of the time-varying volatility ad-

equately either, the forecasting method (FC) should be rejected. We hence allow for an as-

sessment of the methods’ power in a more realistic environment. Note that we have to

simulate Nburn�in þ Te þ n returns in total per replication to obtain the results of the simu-

lation experiment.

Results of the simulation experiment are reported in Table 2 (an extended version can

be found in Table A.6 in the Online Appendix). Focusing only on the classical methods

first, we find that typically one of LRGeo
ind;c; GMM

ðVDÞ
ind , or MCSind backtests yields the largest

power. The 0-1-Extremal Index approach HG
noc shows overall comparable rejection rates to

these—sometimes the power is larger, sometimes smaller, and sometimes there is barely

any difference. Finally, the second extremal index test HB
ind is able to improve the power in

every case under consideration, sometimes by a considerable amount.

3.3 Rejection Rates of (Misspecified) Stochastic Volatility Models

In this section, we study backtest rejection rates for forecasts based on estimated, but pos-

sibly misspecified stochastic volatility models. The underlying DGP is fixed as a certain

GJR-GARCH(1,1) model with Student-t innovations and a non-zero mean parameter l,

with the model parameters being chosen as the estimated values obtained by fitting the

model to daily S&P 500 log returns from January 1, 2012 to January 1, 2015 (754 observa-

tions), see Appendix A.4 in the Online Appendix for details. Note that all parameters of the

model were found to be highly significant in the fit, including the mean parameter

l ¼ 6:91� 10�4. Hence, in light of the discussion in Section 2.1, the present setting also

serves as a robustness check of the extremal index tests against a non-zero mean.

For each Monte Carlo repetition, a time series of length nþ1000, with

n 2 f250; 1000;2500g, is simulated from the above-described model. Three FCs are then

investigated, based on either a GJR-GARCH(1,1), a GARCH(1,1), or an ARCH(1) model

fit to the first 1000 observations of the time series, and a subsequent VaR forecast based on

the respective estimated model and the realized returns up to time t � 1. Note that the three

models are included in each other, and that the latter two models are, by construction, mis-

specified. We hence expect increasing rejection rates in this order.

The results are presented in Table 3 (an extended version can be found in Table A.7 in

the Online Appendix). For comparison, the first FC corresponds to the usage of the true

VaRs of the simulated data, which is not available in practice but for which the null hy-

pothesis is met. The remaining methods correspond to the three mentioned forecasting

models. The main findings are summarized in the next three paragraphs.

3.3.1 Size

The FC “True VaRs” serves as a size benchmark. Overall, all methods exhibit a reasonable

approximation of the nominal size. Deviations may in most cases be explained by
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simulation variance of the simulated distributions of the test statistics, as well as the Monte

Carlo simulations itself. However, we also observe a larger deviation for HB
noc at the 1%

VaR level and a backtesting sample size of n¼ 2500. For example, the rejection rate is

13.6% at the 10% significance level. A possible explanation is the non-zero mean in the

DGP, an issue that is further investigated in Section A.6 in the Online Appendix. This kind

of oversizedness does not occur for the other extremal index test HG
noc.

3.3.2 Estimation risk

The forecast based on estimating the (true) GJR-GARCH(1,1) is slightly more likely to be

rejected than the true VaRs. We further check the sensitivity of the backtests to estimation

uncertainty in the next Section 3.4.

3.3.3 Rejection rates of misspecified models

As expected, ARCH(1) is most likely to be rejected, followed by the standard GARCH

model. Interestingly, HG
noc performs often better than HB

noc in the 5% VaR Panel. For the

1% VaR Panel, the decrease in the number of violations leads to a better performance of

HB
noc. In most cases, both tests are able to improve the power substantially compared to the

classical competitors.

3.4 Estimation Risk

The results in Table 3 have shown that estimating the correct model is not sufficient to get

correct forecasts. Hence, an additional aspect of the forecasting task in general is the ability

to estimate the potentially correct model sufficiently accurately: which sample size is neces-

sary to get (almost) true forecasts if the correct model is used? To shed light on this issue,

we report in Table 4 (an extended version can be found in Table A.8 in the Online

Appendix) results of a similar task as in the previous section. We estimate the true model

using varying lengths of sample sizes nEst ranging from 500 to 5000 (recall that we used a

fixed value of nEst ¼ 1000 in the previous section). The table reveals that, across all tests,

the extremal index approaches are most likely to reject the estimated model. A large

amount of data is hence needed for the rejection rates to approach the nominal significance

level.

The previous findings suggest to adapt the backtesting approaches in a way that is able

to explicitly take care of the estimation uncertainty involved in the estimation of a correct

model. Such a modification has for instance been worked out in Escanciano and Olmo

(2010), among others, for tests that are based on the violation sequence. Corresponding

adaptations for the extremal index-based tests constitute an interesting research problem,

which, however, is beyond the scope of this article.

4 Empirical Applications

After we have investigated the power of the extremal index approach and competing meth-

odologies in theoretical setups, we now shed light on the practical implications of our ap-

proach. Our focus is on four questions, which one might summarize under the title

“Historical Simulation, Few Violations, and the Rejection of GARCH Models”.
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The first question aims again at HS, which is not only widespread in the academic litera-

ture as is evident from the frequent use in simulation studies (as in this article and others)

but also one of the most popular forecasting approaches used in practice. See, for example,

Pérignon and Smith (2010) who report that HS was the most used procedure in 2005 with

a percentage of 47.4% among their sample. Despite its prevalence, HS in its classical form

should be rejected as a correct conditional approach due to its lack of a quick reaction to

changing volatility. Therefore, we check backtesting results of HS in two different periods.

First, we backtest HS for a 1% VaR on the S&P 500 index in a phase containing the last fi-

nancial crisis (January 15, 2008 till December 31, 2011), and second the subsequent rela-

tively calm phase (January 1, 2012 till December 22, 2015). Both backtesting periods

consist of exactly 1000 returns which lead to an expectation of ten violations. We re-use

these periods for Questions 2 and 3 below. The data were downloaded from Yahoo

Finance.

The second question addresses a finding of Pérignon, Deng, and Wang (2008) and

Pérignon and Smith (2010). In the first-named paper, the authors report that disclosed VaR

numbers of Canadian banks were way too conservative in the past (seventy-four violations

expected, only two violations happened) and suggest two explanations. First, it is conjec-

tured that markets will severely punish banks who underestimate risk which makes them

possibly very conservative. Second, a lack of correct accounting for diversification across

departments of a bank could yield too large risk estimates, too. In the second paper, this

conservatism is also found in another sample containing U.S., Canadian, and international

banks. Interestingly, in the subsequent financial crisis, almost all banks suffered substantial

losses which are surprising given that market risk measurements of banks were considered

conservative before. Therefore, we analyze how the extremal index approach enables to as-

sess independence even in the absence of many violations. We achieve this by calculating in-

correct conditional VaR forecasts at an unconventional low level of 0.05% by simply

fitting a skewed Student’s t-distribution (Azzalini and Capitanio, 2003) to the Te 2
f250; 500g observations prior to time t. Note that Eling (2014) found that this distribution

can provide a good fit for asset returns. Due to the low VaR level, only 0.5 violations can

be expected throughout the considered time periods.

The third question we consider is about distinguishing different specifications of the

volatility process of GARCH-type models at the 1% VaR level. Note that GARCH model-

based forecasts possibly provide the most common alternative to HS, aiming at more accur-

ate forecasts due to their particular focus on time-changing aspects. However, there are

many different models available and a modeler has to asses which of them captures the dy-

namic behavior the best. Hence, we adopt two very popular GARCH specifications

(Bollerslev, 1986; Glosten, Jagannathan, and Runkle, 1993) as well as ARCH(1) and report

how backtesting results differ. Of course, it is important to note that backtesting is not the

appropriate method for comparing the accuracy of two or more forecasters. Nevertheless,

it is interesting to see whether disparities can be made visible by backtesting.

Finally, the fourth question10 concerns the specification of the innovation distribution,

which, next to the choice of the model for the volatility, is possibly most crucial for fore-

casting accuracy, see, for example, Kole et al. (2017). Although the innovation distribution

might primarily influence the ability to obtain correct unconditional coverage, we aim at

10 We thank an anonymous referee for his proposal of investigating this issue.
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checking whether we can also detect differences regarding the independence/no clustering

property. For that purpose, we calculate forecasts using the volatility dynamics of Question

3 both with a normal distribution and a t-distribution for the innovation sequence.

For each forecasting exercise, we perform one-day ahead forecasts based on a rolling

window scheme of previous returns. Questions 1 and 2 use estimation sample sizes Te of

250 and 500. In the GARCH case, we chose windows of Te ¼ 1000 returns. Respective

results for all four questions are presented in Table 5. Panel A corresponds to Question 1,

Panel B to Question 2, and Panel C/D to Question 3/4.

First, we focus on Question 1. Panel A of the turbulent period shows that both HS

approaches yield way too many violations. Most independence backtests are able to reject

both methods. Here, the only failing backtest is LRMar
ind . Throughout the calm period, HS

forecasts are more appropriate (see the smaller number of violations N1) but can still be

rejected by the use of independence backtests. Especially, both extremal index approaches

reject the forecasts, but also LRMar
ind which failed in the turbulent phase. This somewhat sur-

prising change can be explained by the fact that LRMar
ind can only detect violations that

occurred on subsequent days. Moreover, we observe that the rejection of the longer estima-

tion sample using Te ¼ 500 returns appears to be easier, as expected from the simulation

results and their interpretation in Section 3.

Next, we turn to Question 2. We observe that the number of violations in each case of

the Panel B is quite close to the expectation. Hence, we cannot reject unconditional cover-

age in any of these cases. However, due to the nature of the FC employed, we would still

like to reject the independence hypothesis. As the main result from Question 1, we have

seen that most independent backtests can reject unconditional forecasts quite satisfactorily.

However, if violations are very rare as in the present setting, then a correct assessment can

become either impossible or the assessment itself rather meaningless. Table 5 shows that

binary tests are often not feasible or cannot reject the null.11 Instead, the extremal index ap-

proach HB
nocð40Þ decouples its result from the presence of violations and yields very similar

p-values as for the HS scenarios in Question 1.

Finally, the results for Questions 3 and 4 are presented in Panels C and D. Regarding

Question 3, we find that the ARCH(1) model is generally rejected in the turbulent phase

(except by the Markov test) and also in the calm phase for normal innovations. The

GARCH and GJR-GARCH models are harder to reject. In almost no case, an independence

backtest is able to reject one of these two models, which is, to some extent, in line with the

literature (Hansen and Lunde, 2005). Only in a few cases, the p-values are below 5%. The

extremal index backtest HB
noc shows barely a sign of misspecification, which is noteworthy

due to its often large power in our simulations.

Regarding Question 4, we find that modeling the innovation sequence by a t-distribu-

tion yields typically more appropriate forecasts in terms of unconditional coverage com-

pared to the normal distribution. In the turbulent period, we obtain consistently fewer

violations with the t-distribution. Nevertheless, there are still too much of them. In the

11 Note that we report a p-value whenever our procedures return a finite value and “-” if not. The

former happens also sometimes in cases with N1 � 1 where actually no meaningful information

is available. In these cases, the p-values should be interpreted with caution.
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calm period, both distributions achieve fewer violations, while the t-distribution is again

more suitable than the normal distribution. Regarding the violation of independence, we

find some evidence that p-values tend to be slightly smaller in the normal case. This is in

line with the impression obtained from the number of violations.

5 Conclusion

In this article, a new idea for the assessment of VaR forecasts with respect to violation clus-

tering is worked out in detail. For that purpose, we implement two recently proposed esti-

mators for the extremal index, derive corresponding new backtests, and compare them to

existing ones. The results show that especially the sliding blocks estimator from Northrop

(2015) and Berghaus and Bücher (2018) is suitable for this task. The corresponding backt-

est exhibits substantial power improvements in many theoretical scenarios and can easily

reject unconditional forecasters even in the absence of violations, a feature lacked by many

other backtests. The latter feature is possibly interesting to detect bad forecasts even if they

are conservative, since conservative forecasts can fail to accurately adapt to changing mar-

kets, too. Furthermore, we briefly hint at possible extensions to backtesting ES, which may

become more important in the future.

Supplementary Data

Supplementary data are available at Journal of Financial Econometrics online.
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1University of Cyprus, 2CEPR, 3Universitàdella Svizzera italiana, 4Swiss Finance Institute,
5University of North Carolina - Chapel Hill and 6EDHEC Business School

Address correspondence to Elena Andreou, University of Cyprus, University Avenue 1, P. O. Box 20537,

1678 Nicosia, Cyprus, or e-mail: elena.andreou@ucy.ac.cy.

Received April 20, 2020; revised April 20, 2020; accepted April 30, 2020

Abstract

This article presents tests for the existence of common factors spanning two large pan-
els/groups of macroeconomic and financial variables, and the estimation of common
and group-specific factors. New analytical results are derived regarding (i) the differ-
ence in the asymptotic distribution of the test statistics when aggregating the data first
and then extracting the principal components (PCs), or vice versa, as well as (ii) the es-
timation of the common factor and its asymptotic distribution, extending the work of
Andreou et al. (2019). We find that although there is no empirical evidence for one
common factor, with constant loadings, in the United States during the period 1963–
2017, there is evidence of one common macro–finance factor during the pre- and post-
Great Moderation regimes. The aforementioned approaches of estimating PCs yield al-
most identical common and group-specific (financial and macro) factors which turn
out to be significant in predicting key economic indicators, such as real Gross
Domestic Product (GDP) growth and the CBOE Volatility Index, among others.

Key words: large panel, unobservable pervasive factors, mixed frequency, canonical correla-

tions, forecasting models
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both finance and econometrics.1 Christoffersen was a real scholar and we would like to il-

lustrate this by reporting on an exchange we had with him. At some point, we asked

Christoffersen whether we could use his realized skewness series for our own research—ob-

viously citing the original work (Amaya et al., 2015). Christoffersen graciously sent us his

data series, and we are happy to put that series—among others—to good use in this article.

In this article, new analytical results are derived for the asymptotic distribution of the prin-

cipal components (PCs) as well as the test for common factors between groups/panels of vari-

ables of mixed data frequencies, when either aggregating the data first and then extracting the

PCs or when applying PC analysis (PCA) first and then aggregating the estimates. In addition,

the asymptotic theory results are derived for the common factor estimation methods. New

empirical results are also presented to test for the existence of common factors spanning two

large panels/groups of macroeconomic and financial variables, as well as to estimate common

and group-specific factors related to each of the aforementioned panels.

Hence this article contributes to the macro–finance literature in extracting the common

factor (CF) also refered to as macro–finance factor between the financial sector and the

U.S. real/nominal economy indicators. A macro–finance factor is the common part among

the spaces of pervasive factors in the macro and finance panels. In other words, it is a com-

mon factor among the PCs extracted independently from the panels of macro and finance

series. The role of the common as well as financial- and macro-specific factors for forecast-

ing key macroeconomic and financial indicators is evaluated both in-sample (IS) and out-

of-sample (OOS), uncovering some interesting results.

Macro panel data are often sampled at a low frequency (LF) (e.g., annual/quarterly),

whereas higher frequency (HF) (e.g., daily/weekly) data are typically collected pertaining to fi-

nancial indicators. Prime examples are, for example, for the macro panels, the Stock and

Watson (2008) quarterly data as well as the McCracken and Ng (2016) FRED quarterly/

monthly data dominated by macroeconomic indicators, versus higher frequency financial

indicators such as the (intra)daily stock market or exchange rate indices, the Gilchrist and

Zakrajsek (2012) monthly credit spreads panel and the Fama and French portfolios of sorted

equity returns. Extracting the common factor (the evidence suggests there is only a single

common factor—more on this later) between the two large panels/groups of macroeconomic

and financial markets series provides a way to study how the U.S. common macro–finance

component has evolved over time, its cyclical behavior, which variables drive this common

factor, how the factor and/or its loadings might have changed over the last 55 years, as well

as the role of the common factor in Granger causing and forecasting key economic indicators.

In extracting factors from mixed-frequency group panels, two approaches are pursued:

the first approach is to aggregate the HF data and then perform PCA while the second ap-

proach refers to extracting the PCA first. Andreou et al. (2019) established the large sample

distributional properties of the statistic for testing the number of common and group-

specific factors in the first approach. While the two alternative approaches were also com-

pared in Andreou et al. (2019) with accompanying simulation evidence, this article

provides analytical results deriving the asymptotic expansion of PCs estimates following

these two approaches and how these affect the distribution of the test for common factors

1 A partial list of his contributions in the area includes Christoffersen, Ghysels, and Swanson (2002),

Christoffersen, Fournier, and Jacobs (2017), Christoffersen et al. (2014), Christoffersen and Langlois

(2013), among others.
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between the groups/panels. Moreover, conditions are presented under which the asymptotic

distributions of the common factor test following the two approaches coincide.

Our empirical analysis presents evidence that the two approaches of aggregation first/

PCA last or PCA first/aggregation last, yield almost identical PCs estimates as well as infer-

ences regarding the number of factors and the common factor test. For our given groups of

the monthly financial panel and the quarterly U.S. macro panel, we find that although there

is no evidence for one common factor in the United States during the full sample period

starting from the 1960s, there is, however, evidence of one CF during the pre- and post-

Great Moderation (GM) regimes. We show that this is due to structural changes in the load-

ings of the common factor during the period 1963–2017, which is driven by almost all the

categories of macro and financial variables considered in this study. In addition, group-

specific factors, namely HF financial factors and LF macro factors are extracted. The forecast-

ing role of the aforementioned factors (common and group specific) is further investigated in

predicting key macroeconomic as well as financial indicators such as real GDP and consump-

tion of services and nondurable goods growth, the Moody’s corporate bond default spread,

the CBOE Volatility Index (VIX) and Variance Risk Premium (VRP) as well as the Exchange

Traded Fund (ETF) iShares Core S&P500 returns. Our mixed-frequency group factors are

also compared with other well-known factors in the literature extracted from different but

related panels such as the mixed-frequency small panel factor measuring real business condi-

tions of Aruoba, Diebold, and Scotti (2009), the large panel of corporate spreads factor of

Gilchrist and Zakrajsek (2012), the large panel extracting an activity index/factor by Brave

and Butters (2012), among others. Last but not least, the role of groups/panels of mixed sam-

pling frequencies of data in estimating common and group-specific factors via PCs is also

compared with the traditional approach that extracts factors from a single panel that stacks

all variables (both macro and financial) together in common (low) frequency.

The article is organized as follows: Section 1 presents the mixed-frequency group factor

model and the test for common factors. Section 2 provides the asymptotic results of the fac-

tors and the common factor test for the two approaches: PCA first or PCA last as well as the

asymptotic distribution of estimators of the common factor. Section 3 presents a comprehen-

sive empirical analysis, and Section 4 concludes the article. Online Appendix, henceforth

referred to as OA, provides proofs, supplementary theoretical results, an extensive description

of the dataset used in the empirical application, and additional empirical results.

1 Group Factor Models

In this section, we revisit the class of group factor models studied by Andreou et al. (2019),

henceforth AGGR.2 We use the following notation for the group factor model setting,

assuming two groups:

y1;t

y2;t

" #
¼

Kc
1 Ks

1 0

Kc
2 0 Ks

2

" # f c
t

f s
1;t

f s
2;t

2
664

3
775þ e1;t

e2;t

" #
; (1.1)

2 See also Kose, Otrok, and Whiteman (2008), Goyal, Pérignon, and Villa (2008), Chen (2012), Wang

(2012), Ando and Bai (2015), and Breitung and Eickmeier (2016) for recent contributions to the group

factor model literature.

Andreou et al. jMixed-Frequency Macro–Finance Factor Models 587

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/18/3/585/5909329 by O

xford U
niversity Press U

SA user on 29 D
ecem

ber 2021

https://academic.oup.com/jfec/article-lookup/doi/10.1093/jjfinec/nbaa015#supplementary-data


where yj;t ¼ ½yj;1t; . . . ; yj;Njt�
0 collects observations for Nj individuals in group j, Kc

j ¼
½kc

j;1; . . . ; kc
j;Nj
�0 and Ks

j ¼ ½ks
j;1; . . . ; ks

j;Nj
�0 are the matrices of factor loadings, and ej;t ¼

½ej;1t; . . . ; ej;Njt�
0 is the vector of error terms, with j¼1, 2, and t ¼ 1; . . . ;T, related to our

empirical analysis of the macro and financial groups/panels. The dimensions of the com-

mon factor f c
t and the group-specific factors f s

1;t; f s
2;t are, respectively, kc, ks

1, and ks
2. The

errors and factor processes are stationary, serially mixing, and satisfy the assumptions on

weak cross-sectional dependence and existence of higher-order moments in AGGR,

Appendix A. The group-specific factors f s
1;t and f s

2;t are orthogonal to the common factor f c
t .

Since the unobservable factors can be standardized, we assume (see Assumption A.2 in

AGGR):

E

f c
t

f s
1;t

f s
2;t

2
664

3
775 ¼

0

0

0

2
664
3
775; and V

f c
t

f s
1;t

f s
2;t

2
664

3
775 ¼

Ikc 0 0

0 Iks
1

U

0 U0 Iks
2

2
664

3
775; (1.2)

where Ik denotes the identity matrix of order k. We allow for a nonzero covariance U be-

tween group-specific factors. Under an identification condition implied by the set of

assumptions in AGGR, the rotational invariance of Equations (1.1) and (1.2) allows

only for separate rotations among the components of f s
1;t, among those of f s

2;t, and finally

those of f c
t ; and therefore maintains the interpretation of common and group-specific

factors.

We consider the generic setting of Equation (1.1) and let kj ¼ kc þ ks
j , for j¼1, 2, be the

dimensions of the pervasive factor spaces for the two groups, and define k ¼ minðk1; k2Þ.
We collect the factors of each group in the kj-dimensional vectors hj;t ¼ ðf c0

t ; f
s0
j;tÞ
0 and define

their variance and covariance matrices: Vj‘ :¼ Eðhj;th
0
‘;tÞ; j; ‘ ¼ 1; 2: From Equation (1.2) we

have Vjj ¼ Ikj
for j¼1, 2. AGGR show that the factor space dimensions kc, ks

1; ks
2 are iden-

tifiable using canonical correlation analysis applied to h1;t and h2;t. In particular, according

to their Proposition 1, it is shown that the number of common factors kc, the common fac-

tor space spanned by f c
t , and the spaces spanned by group-specific factors can be identified

from the canonical correlations and canonical variables of h1;t and h2;t: Therefore, the fac-

tor space dimensions kc and ks
j and factors f c

t and f s
j;t, j¼1, 2, are identifiable (up to a rota-

tion) from information that can be inferred by disjoint PCA on the two subgroups. Indeed,

disjoint PCA on the two subgroups allows us to identify the dimensions k1 and k2, and vec-

tors h1;t and h2;t up to linear one-to-one transformations. Therefore, our group factor

model provides some key insights in estimating and testing for the existence of the CF be-

tween these two groups/panels, while at the same time estimating the group-specific finan-

cial and macro factors which are orthogonal to the common factor.

Assuming for a moment that the true number of factors kj > 0 in each subgroup j¼ 1, 2,

is known, and also that the true number of common factors kc > 0, is known, then the fol-

lowing estimation procedure for the common factors can be implemented. Let h1;t and h2;t

be estimated (up to a rotation) by extracting the first kj PCs from each subpanel j, and de-

note by ĥj;t these PC estimates of the factors, j¼1, 2. Let Ĥj ¼ ½ĥj;1; . . . ; ĥj;T �0 be the ðT;kjÞ
matrix of estimated PCs extracted from panel Yj ¼ ½yj;1; . . . ; yj;T �0 associated with the largest

kj eigenvalues of matrix 1
NjT

YjY
0
j , j¼1, 2. Let V̂ j‘ denote the empirical covariance matrix of
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the estimated vectors ĥj;t and ĥ‘;t, that is, V̂ j‘ ¼ 1
T Ĥ

0
jĤ ‘ ¼ 1

T

PT
t¼1 ĥj;tĥ

0
‘;t; j; ‘ ¼ 1; 2; and let

matrices R̂ and R̂
�

be defined as:

R̂ :¼ V̂
�1

11 V̂ 12V̂
�1

22 V̂ 21; and R̂
�

:¼ V̂
�1

22 V̂ 21V̂
�1

11 V̂12; (1.3)

where R̂ and R̂
�

have the same nonzero eigenvalues. The kc largest eigenvalues of R̂ (resp.

R̂
�
), denoted by q̂2

‘ ; ‘ ¼ 1; . . . ; kc, are the first kc squared sample canonical correlation be-

tween ĥ1;t and ĥ2;t: The associated kc canonical directions, collected in the ðk1; k
cÞ matrix

Ŵ 1 (resp. ðk2; k
cÞ matrix Ŵ2), are the eigenvectors associated with the kc largest eigenval-

ues of matrix R̂ (resp. R̂
�
), normalized to have length 1 with respect to V̂ 11 (resp. V̂ 22). It

also holds that Ŵ
0
1V̂ 11Ŵ1 ¼ Ikc ; and Ŵ

0
2V̂ 22Ŵ2 ¼ Ikc :

AGGR consider two estimators of the common factors vector, that are f̂
c

t ¼ Ŵ
0
1ĥ1;t and

f̂
c�
t ¼ Ŵ

0
2ĥ2;t. Note that, 1

T

PT
t¼1 f̂

c

t f̂
c0
t ¼ Ikc , and similarly for f̂

c�
t , that is, the estimated

common factor values match IS the normalization condition of identity variance–covari-

ance matrix in Equation (1.2). In this article, we explore the idea that linear combinations

of these two “basis” estimators also yield valid estimators. More specifically, let us consider

the estimator

f̂
c?

t ¼ S xð Þ f̂
c

t þ xf̂
c�
t

� �
; (1.4)

where scalar parameter x is the weight. Transformation by matrix SðxÞ ¼
½ð1þ x2ÞIkc þ 2xD̂��1=2, where D̂ ¼ diag ðq̂1; . . . ; q̂kc Þ ensures property 1

T

PT
t¼1 f̂

c?

t ðf̂
c?

t Þ
0 ¼

Ikc in sample.3

Note that the idea we explore is reminiscent of forecast combinations, originated by

Bates and Granger (1969) who studied optimal mean square error (MSE) forecast combina-

tions. The natural question which emerges is how to choose the weight. One possibility is

suggested by revisiting the work in Goyal, Pérignon, and Villa (2008) and references there-

in. They consider the estimator of the common factors that is obtained by the rows of the

ðT;kcÞ matrix of standardized eigenvectors of matrix 1
T ðĤ1Ĥ

0
1 þ Ĥ2Ĥ

0
2Þ associated with

the kc largest eigenvalues. The computations in Section D.2 of Online Appendix of AGGR

show that the rows of the eigenvectors matrix are ðf̂
c

t þ f̂
c�
t Þ
0; t ¼ 1; . . . ;T, up to normaliza-

tion. Hence, the Goyal, Pérignon, and Villa (2008) estimator corresponds to the linear com-

bination in Equation (1.4) with weight x¼1, that is, the equally weighted linear

combination of the two basis estimators f̂
c

t and f̂
c�
t .

An alternative choice for x is provided by the optimal weight which minimizes the

asymptotic MSE (AMSE) of the factor estimator which would be more in line with the ap-

proach put forward by Bates and Granger (1969) (see also Timmermann, 2006 for a sur-

vey). We consider the asymptotics with N1;N2;T !1 such that

N2=N1 ! l > 0;
ffiffiffiffi
T
p

=N2 ¼ o 1ð Þ; N2=T
5=2 ¼ o 1ð Þ: (1.5)

Further, to simplify the exposition, we focus here on the setting with kc ¼ 1, that is, a

single common factor as we find in our empirical analysis, and conditionally homoskedastic

errors that are uncorrelated across series and panels (see Online Appendix for a more

3 To see this, use 1
T

PT
t¼1 f̂

c

t ðf̂
c�
t Þ
0 ¼ Ŵ

0
1V̂ 12Ŵ 2 ¼ D̂ . One could use a matrix-valued weight x as

well.
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general analysis). From AGGR Online Appendix Section D.5, we have the joint asymptotic

distribution

ffiffiffiffiffiffiffi
N1

p
Ĥcf̂

c

t � f c
t �

1

T
bc

1;t

� �
ffiffiffiffiffiffiffi
N2

p
Ĥ�c f̂

c�
t � f c

t �
1

T
bc

2;t

� �
2
6664

3
7775 !d N 0;Ruð Þ; (1.6)

where the asymptotic variance is the (2,2) diagonal matrix Ru ¼ diag ðRðccÞ
u;11;R

ðccÞ
u;22Þ, with

Ru;jj ¼ R�1
K;jXK;jR

�1
K;j ; RK;j ¼ limNj!1

1
Nj

PNj

i¼1 kj;ik
0
j;i and XK;j ¼ limNj!1

1
Nj

PNj

i¼1 cj;ikj;ik
0
j;i, for

kj;i ¼ ðkc
j;i; k

s 0
j;i Þ
0 and cj;i ¼ E½e2

j;i;t�, j¼1, 2, and (cc) denotes the upper-left element of a

matrix. Random variables Ĥc and Ĥ�c converge to 1 in probability for the suitable sign

fix of the latent factor. The bias terms are bc
j;t ¼ �cjðR�1

K;jhj;tÞðcÞ, j¼1,2, where

�cj ¼ limNj!1
1

Nj

PNj

i¼1 cj;i. From Equation (1.6), we obtain the AMSE of the linear combin-

ation f̂
c?

t in Equation (1.4), which depends on the factor realization ft via the asymptotic

bias. In Online Appendix, we show that the average (across factor realizations) AMSE is

minimized for

x ¼
1

N1
R ccð Þ

u;11 þ 1
T2 B11 � B12ð Þ

1
N2

R ccð Þ
u;22 þ 1

T2 B22 � B12ð Þ
; (1.7)

where Bjj ¼ �c2
j R�2

K;j

h i ccð Þ
, j¼1, 2, and B12 ¼ �c1�c2 R�1

K;1V12R
�1
K;2

h i ccð Þ
. When N1=T

2 ¼ o 1ð Þ,

the bias terms do not matter, and the optimal weight x depends positively on the ratio of

the error variances R ccð Þ
u;11=R

ccð Þ
u;22 and the ratio of the cross-sectional dimensions N2=N1.4 If

N1=T
2 does not shrink to zero, there is an effect from the bias terms. Of course, the para-

metric family Equation (1.4) encompasses the AGGR estimators f̂
c

t and f̂
c�
t , which corres-

pond to choices x ¼ 0 and x ¼ þ1, respectively.

For a given choice of the weight x, let F̂
c? ¼ ½f̂

c? 0
1 ; . . . ; f̂

c? 0
T �0 be the ðT; kcÞ matrix of

estimated common factors, and K̂
c

j ¼ ½k̂
c

j;1; . . . ; k̂
c

j;Nj
�0 the ðNj;k

cÞ matrix collecting the esti-

mated loadings:

K̂
c

j ¼ Y 0j F̂
c?

F̂
c? 0

F̂
c?

� ��1
¼ 1

T
Y 0j F̂

c?
; j ¼ 1; 2: (1.8)

Moreover, let nj;t ¼ yj;t � K̂
c

j f̂
c?

t be the residuals of the regression of yj;t on the estimated

common factor f̂
c?

t ; for j¼1, 2 and Nj ¼ ½nj;1; . . . ; nj;T �0 be the ðT;NjÞ matrix of the regres-

sion residuals, for j¼ 1, 2. Estimators of the specific factors f̂
s

1;t (resp. f̂
s

2;t) are defined as

the first ks
1 (resp. ks

2) PCs of subpanel N1 (resp. N2), namely, the columns of the ðT;ks
j Þ ma-

trix F̂
s

j ¼ ½f̂
s

j;1; . . . ; f̂
s

j;T �
0 are the eigenvectors associated with the ks

j largest eigenvalues of

matrix 1
NjT

NjN
0
j, normalized to have F̂

s0
j F̂

s

j=T ¼ Iks
j

for j¼ 1, 2. By construction, the esti-

mated common factors in the columns of F̂
c?

are orthogonal in sample to the estimated

4 AGGR assumes that N2 ¼ min N1;N2f g without loss of generality. Note that depending on the appli-

cation, N2 may pertain to either the LF or HF data panel.
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group-specific factors F̂
s

j , for j¼1, 2. Finally, the loadings of the group-specific factors are

estimated by

K̂
s

j ¼ Y 0j F̂
s

j F̂
s 0
j F̂

s

j

� ��1

¼ 1

T
N0jF̂

s

j ; j ¼ 1;2; (1.9)

where K̂
s

j ¼ ½k̂
s

j;1; . . . ; k̂
s

j;Nj
�0 is the ðNj; k

s
j Þmatrix collecting the estimated loadings.

How does one determine the dimension kc of the common factor space? To answer this

question, we first consider the case where the number of pervasive factors k1 and k2 in each

subpanel is known, hence k ¼ minðk1;k2Þ is also known, and we relax this assumption

below. The dimension kc is the number of unit canonical correlations between h1;t and h2;t;

see Proposition 1 in AGGR. We consider the hypotheses: H(0) ¼ f1 > q1 � . . . � qkg; H(1)

¼ fq1 ¼ 1 > q2 � . . . � qkg; . . . ; HðkcÞ ¼ fq1 ¼ � � � ¼ qkc ¼ 1 > qkcþ1 � . . . � qkg; . . . ;

and finally, HðkÞ ¼ fq1 ¼ � � � ¼ qk ¼ 1g; where q1; . . . ; qk are the ordered canonical corre-

lations of h1;t and h2;t. Hypothesis H(0) corresponds to the absence of common factors.

Generically, HðkcÞ corresponds to the case of kc common factors and k1 � kc and k2 � kc

group-specific factors in each group. The largest possible number of common factors is k ¼
minðk1;k2Þ: In order to select the number of common factors, let us consider the following

sequence of tests: H0 ¼ HðkcÞ against H1 ¼ [0� r<kc HðrÞ; for each kc ¼ k; k � 1; . . . ; 1. To

test H0 against H1, for any given kc ¼ k; k � 1; . . . ;1 we consider:

n̂ kcð Þ ¼
Xkc

‘¼1

q̂‘: (1.10)

The statistic n̂ðkcÞ corresponds to the sum of the kc largest sample canonical correlations

of ĥ1;t and ĥ2;t. We reject the null H0 ¼ HðkcÞ when n̂ðkcÞ � kc is negative and large.

The critical value is obtained from the large sample distribution of the statistic under the

joint asymptotics N1; N2; T ! 1; and the assumptions in Equation (1.5), as provided in

AGGR. Then, let R̂U ¼ ðN2=N1ÞR̂
ðccÞ
u;11 þ R̂

ðccÞ
u;22, with R̂u;jj ¼ ð 1

Nj
K̂
0
jK̂jÞ�1ð 1

Nj
K̂
0
jĈ jK̂jÞ

ð 1
Nj

K̂
0
jK̂jÞ�1 where K̂ j ¼ ½K̂

c

j
..
.

K̂
s

j �; K̂
c

j and K̂
s

j are the loadings estimators, Ĉ j ¼

diag ðĉ j;i; i ¼ 1; . . . ;NjÞ with ĉj;i ¼ 1
T

PT
t¼1 ê2

j;i;t, and ê j;i;t ¼ yj;i;t � k̂
c 0
j;i f̂

c?

t � k̂
s 0
j;i f̂

s

j;t, for j¼ 1,

2. Define the test statistic:

en kcð Þ :¼ N
ffiffiffiffi
T
p 1

2
tr R̂

2

U

n o� ��1=2

n̂ kcð Þ � kc þ 1

2N
tr R̂U

	 
� �
; (1.11)

with N ¼ min N1;N2f g: Then Theorem 2 of AGGR, which holds under the assumptions

that the errors are conditionally homoskedastic martingale difference sequences and are not

cross-sectionally correlated, shows that: (i) under the null hypothesis H0 ¼ H kcð Þ of kc

common factors, we have: en kcð Þ!d N 0; 1ð Þ and (ii) under the alternative hypothesis

H1 ¼ [0� r< kc H rð Þ, we have: en kcð Þ!p �1. Importantly, the asymptotic distribution and

rate of convergence of the test statistic en kcð Þ in Theorem 2 of AGGR are unchanged when

the true numbers of pervasive factors k1 and k2 are unknown, and is estimated by consistent

selection methods as those provided, among others, by Bai and Ng (2002), Onatski (2010),

and Ahn and Horenstein (2013). The above test statistics can be used to determine the num-

ber of common factors (and therefore by difference the number of group-specific factors)

by means of a sequential testing procedure, see Proposition 2 in AGGR.
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2 Mixed-Frequency Group Factor Model: PCA First or Last?

When we apply the theory of group factor models to mixed-frequency data, some addition-

al issues emerge, not studied by AGGR. It is the purpose of this section to expand on such

issues. First, we pose the case of mixed frequency as a group factor model in the first sub-

section. Then, we address specific issues hitherto unresolved—namely the interchange of

aggregation and PCA. We are able to solve explicitly the comparison under some restrictive

conditions and provide practical guidance to empirical work. The derivations in this section

are complementary to the Monte Carlo simulations reported in AGGR. They provide ana-

lytic support instead of simulation-based evidence.

2.1 Model Structure

Let t¼ 1, 2, . . . ; T be the LF time units. Each time period t � 1; tð � is divided into M subper-

iods with HF dates t � 1þm=M, with m¼ 1, . . . ; M and the cross-section is of size NH for

the HF data and NL for the LF data. We let xH;i
m;t; for i¼ 1, . . . ; NH; be the HF data observa-

tion i during subperiod m of LF period t. Similarly, xL;i
t , with i¼1, . . . ; NL, is the observa-

tion of the ith LF series at t. These observations are gathered into the NH-dimensional

vectors xH
m;t, for all m, and the NL-dimensional vector xL

t , respectively.

There are three types of latent pervasive factors, gC
m;t; gH

m;t, and gL
m;t; respectively, of di-

mension kC, kH, and kL: The former represents a vector of factors which affect both HF

and LF data, and the other two types of factors affect exclusively high (superscript H) and

low (marked by L) frequency data. The latent factor model with HF data sampling is:

xH
m;t ¼ KHCgC

m;t þ KHgH
m;t þ eH

m;t;

xL�
m;t ¼ KLCgC

m;t þ KLgL
m;t þ eL

m;t;
(2.1)

where m ¼ 1; . . . ;M and t ¼ 1; . . . ;T, and KHC, KH, KLC, and KL are matrices of factor

loadings. The vector xL�
m;t is unobserved for each HF subperiod and the measurements,

denoted by xL
t , depend on the observation scheme, which can be either flow sampling or

stock sampling (or some general linear scheme).

In the case of flow sampling, the LF observations are the sum (or average) of all xL�
m;t

across all m, that is, �xL
t ¼

PM
m¼1 xL�

m;t.
5 Then, model (2.1) implies:

xH
m;t ¼ KHCgC

m;t þ KHgH
m;t þ eH

m;t; m ¼ 1; . . . ;M;

�xL
t ¼ KLC

XM
m¼1

gC
m;t þ KL

XM
m¼1

gL
m;t þ

XM
m¼1

eL
m;t:

(2.2)

Let us define the aggregated variables and innovations �xH
t :¼

PM
m¼1 xH

m;t, �eU
t :¼PM

m¼1 eU
m;t; U¼H, L, and the aggregated factors: �gU

t :¼
PM

m¼1 gU
m;t; U¼C, H, L. Then we

can stack the observations �xH
t and �xL

t and write:

�xH
t

�xL
t

2
4

3
5 ¼ KHC KH 0

KLC 0 KL

" # �gC
t

�gH
t

�gL
t

2
664

3
775þ �eH

t

�eL
t

2
4

3
5; (2.3)

5 In the case of stock sampling, the LF observations are the end-of-period values xL�
M;t (or the values

at some other given date m within a subperiod). The analysis proceeds analogously, replacing sum-

mation over subperiods with evaluation at the end-of-period. We cover the flow sampling here be-

cause it corresponds to the empirical analysis reported in later sections.
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that is, the group factor model, with common factor �gC
t and group-specific factors �gH

t and

�gL
t . The normalized latent common and group-specific factors �gU

t ; U ¼ C;H;L, satisfy the

counterpart of Equation (1.2).

Finally, the results in AGGR can be applied for identification and inference in the

mixed-frequency factor model—see their section 5 for details. In particular, AGGR show

under mild assumptions on the factor loadings, that the HF values gC
m;t and gH

m;t of the com-

mon and high-frequency factors (HFFs) are identifiable. Not surprisingly, only the flow-

sampled values �gL
t of the low-frequency factor (LFF) are identifiable from the LF observa-

tions of the corresponding group (or panel).

2.2 Aggregation and PCA

Inference on the factor spaces and their dimensions can be conducted in two ways which

are described below. We focus first on the inference on the number of common factors and

leave the estimation of factor values for the next subsection.

(1) First flow sample the data and obtain a group factor model for observables �xH;i
t and

�xL;i
t , with pervasive factors, loadings matrices, and idiosyncratic errors given by

h1;t ¼ �gC 0
t ; �gH 0

t

h i0
; k1;i ¼ k0HC;i; k

0
H;i

h i0
; e1;i;t ¼ �eH;i

t ; (2.4)

h2;t ¼ �gC 0
t ; �gL 0

t

h i0
; k2;i ¼ k0LC;i; k

0
L;i

h i0
; e2;i;t ¼ �eL;i

t ; (2.5)

in the HF and LF panels, respectively. Next, apply PCA in each group to get PC estimates

ĥ1;t and ĥ2;t, compute the canonical correlations q̂‘ and canonical directions Ŵ 1 and Ŵ 2,

and the test statistic n̂ kCð Þ ¼
PkC

‘¼1 q̂‘ for kC common factors. Theorem 1 of AGGR implies

that under the null H kCð Þ the test statistic (after recentering and standardization) is asymp-

totically standard Gaussian.

(2) First perform PCA on, respectively, the HF and LF panels to extract h1;m;t ¼
gC 0

m;t ; g
H 0
m;t

h i0
at HF and h2;t ¼ �gC 0

t ; �gL 0
t

 �0
at LF, and then flow sample the HF factor esti-

mates to get �h1;t ¼
PM

m¼1
�h1;m;t, compute the canonical correlations �q‘ among LF PCs �h1;t

and ĥ2;t, the canonical directions �W 1 and �W 2, and the test statistic �n kCð Þ ¼
PkC

‘¼1 �q‘ for kC

common factors. The “check” symbol notation highlights the difference with approach (1).

If the HF panel data, PC estimates obey an asymptotic expansion of the same type as the

one in Proposition 3 of AGGR, then upon aggregation:

�h1;t ¼ �H1 h1;t þ
1ffiffiffiffiffiffiffiffi
NH

p u1;t þ
1

T
�b1;t þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NHTM
p �d1;t þ �#1;t

� �
;

where h1;t is as in Equation (2.4) and

u1;t ¼ 1
NH

XNH

i¼1

k1;ik
0
1;i

!�1
1ffiffiffiffiffiffiffiffi
NH

p
XNH

i¼1

k1;i�e
H;i
t ; k1;i ¼ k0HC;i; k

0
H;i

h i0
;

�b1;t ¼ 1
NH

XNH

i¼1

k1;ik
0
1;i

!�1

1
TM

XT

t¼1

XM
m¼1

h1;m;th
0
1;m;t

!�1
1

M

XM
m¼1

g2
1;m;th1;m;t;

(2.6)
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g2
1;m;t ¼ plimNH!1

1
NH

PNH

i¼1 E½ðeH;i
m;tÞ2jF t�; �d1;t ¼

PM
m¼1 d1;m;t; �#1;t ¼

PM
m¼1 #1;m;t is a re-

mainder term and F t ¼ rðFs; s � tÞ is the sigma field generated by current and past factor

values Ft ¼ ðf c0
t ; f

s0
1;t; f

s0
2;tÞ
0.6 The asymptotic distribution of the test statistic follows from

Theorem 1 in AGGR by substituting the quantities in Equation (2.6) for j¼ 1 and those in

Equation (2.5) for j¼2. Specifically, under the null hypothesis H0 ¼ HðkCÞ and the

assumptions in Equation (1.5) that correspond to the regularity conditions in Theorem 1 of

AGGR, the asymptotic distribution of the test statistics �nðkcÞ ¼
Pkc

‘¼1 �q‘;t in approach (2) is

such that:

NL

ffiffiffiffi
T
p

XU;1 þ NL

T2
�XU;2

� ��1=2
�n kCð Þ � kC þ 1

2NL
tr eR�1

cc
eRU

n o
þ 1

2T2
tr eR�1

cc
�RB

n o� �
!d N 0;1ð Þ;

(2.7)

where eRU ¼ 1
T

PT
t¼1

l2
N
eR ccð Þ

u;11;t þ eR ccð Þ
u;22;t � lN

eR ccð Þ
u;12;t � lN

eR ccð Þ
u;21;t

� �
; and

fDbt ¼ �b1;t � b2;t �
1

T

XT

s¼1

�b1;s � b2;s

� �
F0s

 !
� 1

T

XT

s¼1

FsF
0
s

!�1

Ft

eRcc ¼
1

T

XT

t¼1

�gC
t �gC 0

t ; �RB ¼
1

T

XT

t¼1

gDbt

cð ÞgDbt

cð Þ0

XU;1 ¼
1

2

X1
h¼�1

E tr RU;t hð ÞRU;t hð Þ0
n oh i

; �XU;2 ¼
X1

h¼�1
E tr RU;t hð ÞDb

cð Þ
t�hDb

cð Þ0
t

n oh i
;

Dbt ¼ ��b 1;t � �b2;t � E
��b1;t � �b2;t

� �
F0t

h i
V Ftð Þ�1Ft;

RU;t hð Þ ¼ l2R ccð Þ
u;11;t hð Þ þ R ccð Þ

u;22;t hð Þ � lR ccð Þ
u;12;t hð Þ � lR ccð Þ

u;21;t hð Þ; h ¼ � � � ;�1;0;1; . . . ;

eRu;11 ¼
1

NH

XNH

i¼1

k1;ik
0
1;i

!�1
1

NH

XNH

i¼1

XNH

‘¼1

k1;ik
0
1;‘Cov �eH;i

t ; �eH;‘
t jF t

� �! 1

NH

XNH

i¼1

k1;ik
0
1;i

!�1

and similarly for eRu;22 and eRu;12 using the LF quantities.

The term b2;t is defined in AGGR as b2;t ¼ ð 1
NL

PNL

i¼1 k2;ik
0
2;iÞ
�1ð1T

PT
t¼1 h2;th

0
2;tÞ
�1g2

2;th2;t

with g2
2;t ¼ plim NL!1

1
NL

PNL

i¼1 E½e2
2;i;tjF t� and �b2;t ¼ R�1

K;2g
2
2;th2;t is its large cross-sectional

limit,
��b1;t ¼ R�1

K;1E½h1;m;th
0
1;m;t�

�1 1
M

PM
m¼1 g2

1;m;th1;m;t is the large cross-sectional limit of �b1;t

defined in Equation (2.6), and RK;1 ¼ limNH!1
1

NH

PNH

i¼1 k1;ik
0
1;i and similarly for RK;2. The

upper index (c) denotes the upper ðkc;1Þ block of a vector, and the upper index (c, c)

denotes the upper-left ðkc;kcÞ block of a matrix.

The zero-mean terms uj;t, for j¼1, 2, which drive asymptotic normality in the expan-

sions of the PCs estimates are the same in both approaches (1) and (2). Hence, matrix XU;1

in the variance of the asymptotic distribution of the test statistic is also the same. Instead,

the bias components b1;t and �b1;t differ, which explain the different recentering term �RB

and variance contribution �XU;2 when PCA is performed first compared to the result in

6 The remainder term �#1;t is the flow-sampled value of higher-order terms #1;m;t in the asymptotic

expansion of the PCs in Group 1. A probability bound on its magnitude follows from Proposition 3 in

AGGR.
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AGGR Theorem 1.7 Therefore, the test statistics generally differ depending on whether ag-

gregation or PCA is performed first.

There is an important special case in which the asymptotic distributions of the test sta-

tistics in the two approaches coincide. Namely, let us assume that the HF error processes

are uncorrelated across individual series and panels, at all leads and lags, and are condition-

ally homoskedastic martingale difference sequences given the unobservable factors:

Cov eU;i
m;t; e

V;‘
n;t�hjF t

� �
¼ 0; if either U 6¼ V; or i 6¼ ‘;

E eU;i
m;tj eU;i

n;s

n o
n<m_s< t

;F t

� �
¼ 0;

E eU;i
m;t

� �2

j eU;i
n;s

n o
n<m_s< t

;F t

� �
¼ cU;i sayð Þ;

(2.8)

where eU;i
t�1þm=M 	 eU;i

m;t, for U ¼ H;L, where eU;i
n;s

n o
n<m_s< t

consists of all error terms

previous to subperiod m of date t. Then, XU;2 ¼ �XU;2 ¼ 0 and eRB ¼ �RB ¼ 0 in both

approaches, and the test statistic under the null hypothesis H kCð Þ is such that:

NL

ffiffiffiffi
T
p 1

2
tr R2

U

n o� ��1=2

n̂ kCð Þ � kC þ 1

2NL
tr eR�1

cc
eRU

n o� �
!d N 0; 1ð Þ; (2.9)

where eRu;11 ¼ Mð 1
NH

PNH

i¼1 k1;ik
0
1;iÞ
�1ð 1

NH

PNH

i¼1 k1;ik
0
1;icH;iÞð 1

NH

PNH

i¼1 k1;ik
0
1;iÞ
�1 and similarly

for eRu;22 using the corresponding LF quantities, eRU ¼ ðNL=NHÞeRu;11 þ eRu;22; eRcc ¼
1
T

PT
t¼1 �gC

t �gC 0
t ; and RU being the large sample limit of eRU as NH ;NL !1. The same distri-

butional result as Equation (2.9) holds for �nðkCÞ. Even if the recentering and rescaling terms

in the asymptotic distribution are the same whenever aggregation or PCA is performed first,

the test statistic values n̂ðkCÞ and �nðkCÞ in the two approaches differ, because the canonical

correlations estimates differ.

2.3 Mixed-Frequency Factor Estimation

In this subsection, we consider the estimation of the factor values and focus in particular on

the asymptotic distribution of the estimator of the common factor. Building on the previous

subsection, there are two approaches depending on whether aggregation (flow sampling) is

performed before or after PCA. To simplify the exposition, we focus on the case kC ¼ 1.

(i) When data are flow-sampled first, the estimator of the LF values of the common factor is

�̂g
C?
t ¼ S xð Þ �̂g

C
t þ x�̂g

C�
t

� �
; (2.10)

where S xð Þ ¼ 1þ x2 þ 2xq̂1

� ��1=2
and x is the weight, with �̂g

C
t ¼ Ŵ

0
1ĥ1;t and

�̂g
C�
t ¼ Ŵ

0
2ĥ2;t. Then, we use the residuals from �̂g

C?
t to estimate the specific factors �̂g

H
t

and �̂g
L
t , and the common and group-specific factor loadings to get K̂1 ¼

K̂HC : K̂H

 �
; K̂2 ¼ K̂LC : K̂L

 �
in analogy with the procedure introduced in Section 1

7 Vectors d1;t and �d 1;t differ, but are both a (stochastic, asymptotically nonsingular) linear transform-

ation of vector h1;t , and therefore their contribution to the test statistic is asymptotically negligible.

Further, matrices H1 and �H1 that correspond to rotations of the factor estimates, also differ in

approaches (1) and (2), but they are immaterial for the values of estimators and test statistics.
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for the general group-factor framework. Finally, we estimate the HFF values ĝC
m;t and ĝH

m;t

from the cross-sectional regression of xH
m;t onto the estimated loadings:

ĝC
m;t

ĝH
m;t

2
4

3
5 ¼ K̂

0
1K̂1

� ��1

K̂
0
1xH

m;t; m ¼ 1; . . . ;M; t ¼ 1; . . . ;T:

(ii) When PCA is performed first, we have HF estimates �gC
m;t ¼ �W

0
1

�h1;m;t, for m ¼ 1; . . . ;M,

and LF estimates ��g
C�
t ¼ �W

0
2ĥ2;t, of the common factor values. We follow the principle of lin-

ear combination to obtain another and possibly more efficient (in a sense to be defined below)

HF estimator of the common factor. Consider the estimation of the common factor value for

subperiod m. The linear combination of �gC
n;t; n ¼ 1; . . . ;M, and ��g

C�
t , which yields an asymp-

totically unbiased estimator of gC
m;t, has the form

�gC?
m;t ¼ �gC

m;t þ am ��g
C�
t � ��g

C
t

� �
; (2.11)

for a coefficient am, up to a standardization to impose unit sample variance, where

��g
C
t ¼

PM
n¼1 �gC

n;t ¼ �W
0
1

�h1;t. When we aggregate across subperiods, we get

��g
C?
t :¼

PM
m¼1 �gC?

m;t ¼ a��g
C
t þ ð1� aÞ��gC�

t , where a :¼ 1�
PM

m¼1 am. Therefore, for the flow-

sampled estimators, we get a linear combination analogous to Equation (2.10) with relative

weight:

x ¼ 1� að Þ=a: (2.12)

Finally, we use the residuals from �gC?
m;t on the HF panel, and the residuals of ��g

C?
t on the LF

panel, to extract the group-specific factor estimates �gH
m;t and ��g

L
t .

How to choose the weights? If we mimic the Goyal, Pérignon, and Villa (2008) estima-

tor in our mixed-frequency setting, we chose x¼ 1 in (2.10) for the aggregation-first esti-

mator. To have an analogous choice for the PCA-first estimator, Equation (2.12) suggests

to have a ¼ 1=2. Imposing equal weights across subperiods as the simplest option, this

yields am ¼ 2Mð Þ�1
in Equation (2.11).

Another approach to the determination of the weights consists of minimizing the asymp-

totic MSE of the estimators. For this purpose, we might consider either the flow-sampled

estimates �̂g
C?
t and ��g

C?
t or the HF estimates ĝC?

m;t and �gC?
m;t. In this article, we consider the for-

mer option and assume that the HF weights am ¼ 1
M 1� að Þ ¼ 1

M
x

1þx for the PCA-first esti-

mator are homogenous across subperiods. The latter option in a general framework is more

challenging and is left for future research. Note that we impose Equation (2.8) to derive the

results below. In Online Appendix, we derive the asymptotic Gaussian distributions of the

flow-sampled estimators:

ffiffiffiffiffi
N
p

Ĥ?

C �̂g
C?

t � �gC
t �

1

T
�b

C?
t xð Þ

� �
) N 0;V? xð Þ

� �
;

and

ffiffiffiffiffi
N
p

�H?

C
��g

C?

t � �gC
t �

1

T
ebC?

t xð Þ
� �

) N 0;V? xð Þ
� �

;
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where �b
C?
t ðxÞ ¼ 1

1þx ð�b
C
1;t þ x�b

C
2;tÞ; ebC?

t ðxÞ ¼ 1
1þx ðebC

1;t þ x�b
C
2;tÞ and V?ðxÞ ¼ 1

ð1þxÞ2 ðx
2lRðccÞ

u;11

þRðccÞ
u;22Þ, with �b

C
1;t ¼M�cHðR�1

K;1h1;tÞðcÞ; �b
C
2;t ¼M�cLðR�1

K;2h2;tÞðcÞ; ebC

1;t ¼ 1
M

�cH ðR�1
K;1

E½h1;m;th
0
1;m;t�

�1h1;tÞðcÞ, and RðccÞ
u;jj ¼MðR�1

K;jXK;jR
�1
K;jÞ
ðccÞ, j¼1,2, RK;1 ¼

limNH!1
1

NH

PNH

i¼1 k1;ik
0
1;i and XK;1 ¼ limNH!1

1
NH

PNH

i¼1 cH;ik1;ik
0
1;i, and similarly for j¼2 on

the LF panel. The flow-sampled estimators with aggregation first or PCA first have the

same asymptotic variance (for given x) and different asymptotic bias at order 1=T. The

asymptotic bias is negligible if N=T2 ¼ oð1Þ; and the two approaches PCA first or last are

asymptotically equivalent.8 The average AMSE of the aggregation-first estimator is

1

T2
E �b

C?
t xð Þ2

h i
þ 1

N
V? xð Þ ¼ 1

1þ xð Þ2
1

T2
B11 þ x2B22 þ 2xB12

� �
þ 1

N
lR ccð Þ

u;11 þ x2R ccð Þ
u;22

� �� �

(2.13)

where B11 ¼M2�c2
H R�2

K;1

h i ccð Þ
and similarly for B22, and B12 ¼M2�cH�cL R�1

K;1V12R
�1
K;2

h i ccð Þ
. It

is minimized for

x ¼
1

NH
R ccð Þ

u;11 þ 1
T2 B11 � B12ð Þ

1
NL

R ccð Þ
u;22 þ 1

T2 B22 � B12ð Þ
: (2.14)

For the PCA-first estimator, we get similar formulas with B11 and B12 replaced byeB11 ¼ 1
M2 �c2

H½R�1
K;1Eðh1;m;th

0
1;m;tÞ

�2R�1
K;1�

ðccÞ and eB12 ¼ �cH�cL½R�1
K;1Eðh1;m;th

0
1;m;tÞ

�1V12R
�1
K;2�

ðccÞ,

respectively.

We can compare the AMSE of the aggregation-first and PCA-first estimators for specific

DGPs. As in the Monte Carlo experiments in AGGR, let us assume that the HF dynamics

of the latent factors is given by the VAR(1) process gm;t ¼ aFgm�1;t þ
ffiffiffi
f
p

gm;t with common

AR coefficient aF, where gm;t ¼ ðgC0
m;t; g

H0
m;t; g

L0
m;tÞ

0 is the stacked factor vector,

gm;t ¼ ðgC0
m;t; g

H0
m;t; g

L0
m;tÞ

0 
 IIDð0;RgÞ, matrix Rg has identity matrices as diagonal blocks,

CovðgH
m;t; g

L
m;tÞ ¼ U, and zero elements elsewhere. The scale of the innovation variance is

f ¼ 1�a2
F

M2j with j ¼ 1� 2
M2

PM
m¼1 mð1� aM�m

F Þ to ensure the standardization Vðhj;tÞ ¼ Ikj
.

Then, we have E½h1;m;th
0
1;m;t� ¼ 1

M2j Ik1
, which yields eB11 ¼ jB11 and eB12 ¼ jB12 with

j < 1. Therefore, from Equation (2.13), we can see that for this DGP the PCA-first estima-

tor has smaller asymptotic bias and average AMSE for any given choice of weight x > 0

(the same in both approaches), such as x¼ 1 for the analogue of the Goyal, Pérignon, and

Villa (2008) estimator, as well as for the optimal choices of the weights (as long as these are

positive, and B12 > 0).

3 Empirical Analysis

3.1 Data Description

We employ two large panels/groups of variables available at two different sampling fre-

quencies. The first panel comprises NL ¼ 188 LF, quarterly U.S. macroeconomic variables

while the second panel comprises NH ¼ 116 HF, monthly financial variables.9 The choice

8 This corroborates the findings in our empirical analysis, where we have T ¼ 218 and N ¼ 116 and

we find that the two approaches yield very similar estimates.

9 Note that therefore in the empirical analysis NH < NL, but this does not matter since the large sam-

ple results can be derived in this case by interchanging the roles of NH and NL.
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of quarterly frequency for the macro data is based on maximizing NL in this group to in-

corporate important indicators from the National Income and Product Accounts related to

GDP, government expenditure, investment, among others. Similarly, the choice of the

monthly frequency is constrained by the trade-off between increasing NH aiming to enlarge

the cross section of financial variables to include, for example, interest rates and credit

spreads, and at the same time covering a long-span of time series, T. While we acknowledge

that many financial series are available at a much higher frequency (e.g., daily and/or intra-

daily), this choice would compromise both N and T as many of these higher frequencies ser-

ies are not available since the early 1960s and this would challenge our inferential frame-

work which is based on large N and T.

The time series period is 1963m7–2017m12, with T¼ 218 quarterly and TM ¼ 654

monthly observations. The macro panel is based on the quarterly macro indicators of

FRED-QD (McCracken and Ng, 2016).10 The financial panel includes the following finan-

cial indicator categories: (i) Interest Rates, (ii) Stock Markets, (iii) Exchange Rates, (iv) Soft

(a) and Hard (b) Commodities.11 All variables are transformed to represent stationary vari-

ables and each series is demeaned and standardized in the panel following either FRED-QD

or the corresponding transformations for stationarity in Stock and Watson (2002) and

Brave and Butters (2014).

We also consider the following well-known factors in the literature extracted from dif-

ferent but related panels, such as the ADS factor of Aruoba, Diebold, and Scotti (2009)

measuring real business conditions and based on a mixed-frequency small panel, the

Chicago Federal National Activity Index (CFNAI) and the National Financial Conditions

Indicator (NFCI; Brave and Butters, 2014) extracted from larger panels, as well as the

credit spreads index of Gilchrist and Zakrajsek (2012) available from authors.

The role of the aforementioned factors from the literature, as well as our mixed-

frequency group factors, namely the common and group-specific factors, are further investi-

gated in predicting key macroeconomic as well as financial indicators such as real GDP and

consumption of services and nondurable goods growth, the Moody’s corporate bond de-

fault spread, the CBOE’s VIX also referred to as the “fear index”, the VRP (available from

Zhou, 2018), as well as the ETF iShares Core S&P500 Index.

3.2 Extracting the Common and Group-Specific Factors

Within the mixed-frequency group factor model comprising U.S. quarterly (Low) frequency

(LF) macroeconomic indicators and monthly (High) frequency (HF) financial variables, we

investigate whether there is a CF spanning these two panels, as well as group-specific

10 The panel includes the following eleven categories of variables: (i) National Income and Product

(NIPA), (ii) Industrial Production, (iii) Employment and Unemployment, (iv) Housing, (v) Inventories,

Orders and Sales, (vi) Prices, (vii) Earnings and Productivity, (viii) Money and Credit, (ix)

Household Balance Sheet, (x) Consumer Expectations, and (xi) Nonhousehold balance sheet. The

macro variables in each category are listed in Online Appendix Table OA.1. Our macro panel

excludes the following FRED-QD categories: Exchange Rates, Interest Rates, and Stock Markets,

since most of these variables are available at monthly frequency and belong to the financial

panel.

11 The financial variables in each category and the corresponding data sources are listed in Online

Appendix Table OA.2.
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Financial/HF and Macro/LFFs, HFF, and LFF, respectively. Employing the methods devel-

oped in AGGR and further expanded in Sections 1 and 2, we find that although there is no

common factor in the United States during the full sample period from 1963 to 2017, there

is however, evidence of a single CF during the pre- and post-GM periods. These results are

presented in Tables 1 and 2 which report the estimated number of pervasive factors in the

HF and LF panels, as well as the canonical correlations and test statistics for the common

factors, respectively. Following the analysis in the previous section, we apply the CF test

using the PCA approach first as well as PCA last (i.e., aggregation first) to examine how

inferences related to the number of factors and the CF test is affected. It is worth mention-

ing at the outset that we find that these two approaches of estimating factors yield very

similar results for this empirical application.

3.2.1 Group specific factors

We start by selecting the number of factors in each subpanel and each subperiod. In

Table 1, we report the results for the ICp2 information criterion of Bai and Ng (2002; simi-

lar results apply for the ICp1) and we choose the maximum number of factors (kmax) equal

to ten in order to avoid excluding potentially important factors from the panels.12 The ICp1

and ICp2 dominate the other criteria in Bai and Ng (2002). We focus the discussion on the

number of factors in each subperiod (pre- and post-GM), given that we find one common

factor in each of these regimes. For the panel/group of financial variables at monthly fre-

quency (xH) and quarterly frequency (�xH), the ICp2 criterion, during the pre-GM period,

selects six factors for xH and eight factors for �xH. In contrast, during the post-GM period,

ICp2 selects nine factors for the xH and ten factors for �xH. On the contrary, for the quarter-

ly macro variables panel/group, ICp2 selects five and six factors in the pre- and post-GM

periods, respectively. The inference on the number of factors is robust to the PCA first or

last approach, as shown in Table 1. Last but not least, we compare our inference on the

number of group/frequency specific factors with the traditional approach of applying the

ICp2 to a single panel with a common low (quarterly) frequency which stacks all the varia-

bles together, denoted by [�xH; �xL] in Table 1. In the latter case, the ICp2 chooses seven fac-

tors in the pre-GM vis-à-vis nine factors in the post-GM. In our subsequent empirical

applications, we proceed with the aggregation first approach (also followed in the empirical

analysis of AGGR).

Most criteria for factor selection, including the ICp2, choose factors in an unconditional

setup, that is, without conditioning on the variable(s) of interest that the factors aim to ex-

plain or forecast. Moreover, from the total number of factors chosen from the panels and

subperiods, it is expected that different factors will have varying explanatory power for dif-

ferent dependent variables of interest (e.g., macro or financial) and for alternative subper-

iods. Hence given that we are interested in the role of these factors in a conditional setup,

our empirical analysis considers the above number of factors for each subpanel and regime

in order to avoid any omitted factors/variables (hence the choice of kmax ¼ 10) in explain-

ing key macro and financial variables. Subsequently, we reassess the conditional

12 Similar results apply to kmax ¼ 8 found in Online Appendix Tables OA.3 and OA.4. Note that for

smaller values of kmax < 6, we ignore some of the estimated factors in each subpanel and regime

vis-à-vis kmax ¼ 8 or 10 which also turn out to be significant in the conditional setup for explaining

key macro and financial variables, as discussed in the next subsection.
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Table 1 Estimated number of pervasive factors in HF and LF panels

Full Sample Pre-GM Post-GM

xH �xH �xL ½�xH �xL� xH �xH �xL ½�xH �xL� xH �xH �xL ½�xH �xL�

ICp2 Aggregation first – 10 8 10 – 8 5 7 – 10 6 9

PCA first 8 – 6 – 9 –

Table 2 Canonical correlations and test statistics for common factors

Aggregation first/PCA last

Full sample Pre-GM Post-GM

(cv ¼ �2.0003) kc ¼ 0) (cv ¼ �1.9048) kc ¼ 1) (cv ¼ �1.9477) kc ¼ 1)

i q̂ i
enðiÞ i q̂ i

enðiÞ i q̂ i
enðiÞ

1 0.839 �5.139 1 0.913 0.376 1 0.911 �0.187

2 0.782 �4.027 2 0.800 �4.015 2 0.812 �4.842

3 0.715 �7.211 3 0.696 �8.325 3 0.701 �8.721

4 0.590 �9.171 4 0.25 �8.987 4 0.545 �8.303

5 0.378 �12.51 5 0.150 �9.436 5 0.376 �7.872

6 0.170 �14.04 6 0.144 �3.731

7 0.034 �8.384

8 0.025 �8.300

PCA first/aggregation last

FULL SAMPLE Pre-GM Post-GM

(cv ¼ �2.0003) kc ¼ 0) (cv ¼ �1.9048) kc ¼ 1) (cv ¼ �1.9477) kc ¼ 1)

i q̂ i
enðiÞ i q̂ i

enðiÞ i q̂ i
enðiÞ

1 0.834 �4.567 1 0.894 �1.098 1 0.906 �0.195

2 0.701 �10.640 2 0.722 �6.721 2 0.786 �5.852

3 0.603 �11.000 3 0.626 �11.000 3 0.670 �9.609

4 0.550 �12.850 4 0.241 �8.714 4 0.434 �13.370

5 0.258 �13.710 5 0.228 �7.521 5 0.356 �8.260

6 0.182 �14.180 6 0.200 �4.103

7 0.080 �9.204

8 0.038 �6.405

Notes: �xH is the (T, NH) panel of the quarterly data computed as the sum of the HF monthly (TM, NH) panel

data, xH, and �xL is the (T, NL) panel of the LF quarterly data and kmax ¼ 10. The number of observations is

given by NH¼ 116 for monthly financial variables, NL¼188 for quarterly macroeconomic variables,

Tpost¼ 128 during the post-GM period (1986q1–2017q4), Tpre¼ 82 during the pre-GM period (1963q3–

1983q4), Tfull¼218 during the full sample period (1963q3–2017q4). q̂ i and enðiÞ refer to the canonical correl-

ation and test static of the i common factor, respectively. kc is the estimated number of common factors defined

as kc ¼ maxfi : 1 � i � kmax ;enðiÞ � cvg, where cv refers to the critical value reported above which is defined

in AGGR as �cðN
ffiffiffiffi
T
p
Þc with c¼ 0.95 and c ¼ 0:1.
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significance of factors using both IS and OOS criteria such as the goodness-of-fit, signifi-

cance/thresholding for targeted predictors (Bai and Ng, 2008) and testing based on mean

squared forecasting error criteria, discussed in Subsection 3.3.

3.2.2 Common factor

The estimated canonical correlations in each of the two subpanels of LF and HF data and

the test statistics, reported in Table 2, provide evidence that there is one common factor in

the two subperiods, before and after the mid-1980s. The inference on a single common fac-

tor in these two regimes is also robust whether we apply the PCA first or last approach, as

shown by the two panels in Table 2. Note also that while results reported in Tables 1 and 2

refer to 1984q1 being the change point, as reported in Stock and Watson (2008), the results

on the existence of one common factor are robust to other break dates in the mid-1980s

during the period 1984q1–1985q4, which is also consistent with other studies in the litera-

ture.13 Given that the inference on a single CF for these two regimes is robust following the

two approaches, PCA first or last, we proceed to compare the actual PC estimates from

these two approaches shown in Figure 1a and b, for the pre- and post-GM periods, respect-

ively. The CFs estimated following the two approaches are very closely correlated as shown

by the two PCs which are almost superimposed in Figure 1a and b, with the correlation of

the factors from PCA first and last being 0.95 and 0.98, during the pre- and post-GM

regimes, respectively. Moreover, the persistence of the CFs as measured by the simple

AR(1) coefficient is estimated to be 0.79 (and 0.91) for PCA first and 0.88 (and 0.93) for

the PCA last for the monthly CF in the first regime (and in the second regime). Further evi-

dence on the factor estimates obtained from the two approaches is provided in Online

Appendix Table OA.6 which reports the correlation matrices of all the factors showing that

the corresponding PCs (from aggregation or PCA first) yield correlations of 0.94–1.00.

In Table 3, we provide additional evidence which shows the alternative CF estimation

methods discussed in Sections 1 and 2, focusing on the post-GM period. The common fac-

tor estimators CF1, CF2, CF3, and CF4 are based on Equation (2.10) with x¼0, x ¼ þ1,

x¼ 1, and x as specified in Equation (2.14), respectively. These results show that not only

the correlations of the alternative CFs are very high across the different estimation types

(reported in Table 3), but also the time series behavior of these CF estimates is almost iden-

tical as shown in Figure 2. Hence, in the subsequent analysis, we use the third estimation

type, CF3, that is, Equation (2.10) with x¼1. Moreover, given the empirical evidence that

the two approaches (PCA last or first) yield almost identical factor estimates we proceed

with one of them namely aggregation first/PCA last, not only for conciseness in reporting

results, but also because the aggregation first approach is more comparable to the common

frequency single panel PCA approach (according to which all data are aggregated to a

13 Enlarging the panel to include other financial indicators such as the Fama–French portfolios

related to the forty-nine industries and 100 portfolios sorted on size and book to market, we find

no common factor during the full sample and the two subperiods. This evidence suggests that a fi-

nancial panel dominated by these U.S. portfolio-type stock market variables may mask the exist-

ence of a common factor between the macro and financial panels and other financial indicators

(including the stock market indices). Further evidence related to the role of specific stock market

variables (e.g., the VXO) in driving the common factor is provided below, related to the changing

structure of the CF during the pre- and post-GM periods.
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common LF and all variables are collapsed to a common panel in order to estimate the PCA

at the end). This latter approach would be denoted as the common frequency factors

(CFFs).

The evidence of a CF during the pre- and post-GM is further investigated by testing for

a structural change in the loadings of the CF (as well as the HFFs and the LFFs) in the mid-

1980s, which seems to affect the inference on the existence of a common factor during the

full sample period, 1963–2017. If factor loadings have a break which is not only small, but

also the change point is sufficiently independent across the cross section of time series used

to estimate the factors, then its effect is averaged out across the many series in the panel

and the PCs estimates are not affected (e.g., Stock and Watson, 2002). Applying theLM

(resp. supLM) test for a break in the loadings of factor models proposed by Breitung and

Figure 1 Common factor (CF) estimates using PCA first and last approaches during the (a) pre-GM and

(b) post-GM.
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Eickmeier (2011), we report empirical evidence in Table 4 that in the mid-1980s, 50%

(resp. 73%) of the CF loadings associated with the LF/macro series change, whereas 55%

(resp. 67%) of the HF/financial loadings in the CF change, as shown by the total percentage

of rejections of the null (no break) hypothesis. Note that applying the Chow test for breaks

in factor loadings proposed in Stock and Watson (2008), we also find evidence of breaks.14

Yet, given that the LM test for known break and supLM for unknown breaks are valid

under more general assumptions and exhibit better finite sample properties (Breitung and

Eickmeier, 2011), we focus our discussion on the LM-type tests. Within the cross section,

Table 3 Correlation coefficients between common factor (CF) estimation types during the post-

GM

CF1 CF2 CF3 CF4

Panel A: Correlations of HF CFs

CF1 1 0.888 0.997 1

CF2 0.888 1 0.915 0.894

CF3 0.997 0.915 1 0.998

CF4 1 0.894 0.998 1

Panel B: Correlations of LF CFs:

CF1 1 0.927 0.998 1

CF2 0.927 1 0.942 0.931

CF3 0.998 0.942 1 0.999

CF4 1 0.931 0.999 1

Notes: The common factor estimators CF1, CF2, CF3, and CF4 based on Equation (2.10) with x ¼ 0,

x ¼ þ1, x ¼ 1, and x as specified in Equation (2.14), respectively.

Figure 2 Common factor (CF) estimation types CF1, CF2, CF3, and CF4 during the post-GM.

14 We present only the results for the Breitung and Eickmeier (2011) supLM test. The results of the

Chow test proposed by Stock and Watson (2008) are found in Online Appendix Table OA.5.
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Table 4 LM-type tests for the GM structural break in the loadings of dynamic factor models

CF

(Quarterly

loadings)

(%)

CF

(Monthly

loadings)

(%)

CFF1

(%)

CFF2

(%)

CFF1,

CFF2 (%)

CFFs

(ICp2) (%)

CF, HFFs,

LFFs (%)

LM test (Breitung and Eickmeier, 2011)

Total 50.0 55.2 46.1 60.5 68.4 89.5 99.0

Interest rates 67 93 74 96 100 100

U.S. stock market indices 69 62 69 77 100 100

Exchange rates 64 4 28 20 96 100

Commodities 41 22 14 22 49 94

NIPA 59 82 100 95 100 100

IP 60 93 80 93 100 100

Employment 70 66 89 98 100 100

Housing 100 0 100 100 100 100

Inventories, orders, and sales 50 83 100 100 100 100

Prices 9 24 33 46 91 100

Earnings and Productivity 40 50 60 90 100 100

Money and Credit 62 38 77 77 92 100

Household Balance Sheets 78 33 100 100 100 100

Consumer Expectations 100 0 100 100 100 100

Non-Household Balance Sheets 27 45 91 100 100 100

supLM test (Breitung and Eickmeier, 2011)

Total 73.4 67.2 50.7 71.7 74.7 96.7 98.7

Interest rates 96 96 85 100 100 100

U.S. stock market indices 92 69 85 85 100 100

Exchange rates 60 8 36 36 100 100

Commodities 49 22 33 29 84 92

NIPA 91 82 100 100 100 100

IP 100 93 87 100 100 100

Employment 89 70 93 100 100 100

Housing 100 9 100 100 100 100

Inventories, orders, and sales 100 83 100 100 100 100

Prices 35 24 52 57 98 100

Earnings and Productivity 70 90 100 100 100 100

Money and Credit 69 46 77 77 92 100

Household Balance Sheets 89 44 100 100 100 100

Consumer Expectations 100 0 100 100 100 100

Non-Household Balance Sheets 55 64 100 100 100 100

Notes: The reported values refer to the percentage of rejections of the null hypothesis of no breaks in the load-

ings. The above results refer to the case of estimating mixed-frequency group factors (CF, HFFs, and LFFs)

with aggregation first (i.e., PCA last) which is more comparable to the CFFs. Same results apply to the case of

estimating the factors with the PCA first approach. The reported results for the LM test refer to the subsample

1986q1–2017q4. Results are robust to other known break dates, namely 1984q4 as well as 1985q4. CF refers to

the common factor from the MFF model. CFF extracted from the stacked panel of all low/quarterly frequency

variables. The details of the variable categories and the variable definitions are found in Online Appendix.

Bold values indicate the percentage of rejections for the total number of variables for the null hypothesis of no

structural break of the LM test (for 5% significance level).
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there is strong evidence that the GM is associated with changes in the CF loadings of all

variable categories in the two groups, macro and financial. Moreover, there is evidence that

a large percentage of CF loadings change within many variables categories. In contrast, the

changes in the loadings appear to be relatively smaller (than the total change in the load-

ings) for the consumer/producer prices and non-household balance sheet indicators (in the

macro panel), as well as for exchange rates and commodity prices (in the financial panel).

The supLM test results show strong evidence that approximately more than 90% of the

loadings of the CF related to the individual series in the following categories change due to

the GM: interest rates and stock market return indices in monthly financial panel, as well

as National Income and Product Accounts (NIPA), IP, Employment, Housing, Inventories,

Orders and Sales, Household Balance Sheet, and Consumer Expectations in the quarterly

macro panel. Similarly, the correlation of the loadings of the CF in these two regimes,

marked by the GM, is quite small, for both the HF (0.09) and LF (0.12) series loadings.

Last but not least, the results on the structural break analysis and the percentage changes in

the loadings of different series categories are the same whether we apply the PCA first or

last approach.

The time series behavior of the estimated CF during the pre- and post-GM as well as the

corresponding full sample CF is presented in Figure 3. The dashed and dotted lines refer to

the CF in the aforementioned regimes vis-à-vis the solid line which refers to the full sample

CF. The CFs in Figure 3 present at least three interesting features of the macro–finance fac-

tor. First, there is a shift in the mean of the estimated PCs in the two regimes and ignoring

the break seems to overestimate the mean of the full sample CF in the early 1960s and

underestimate it in the mid-1980s, as shown by comparing the solid, dashed, and dotted

lines representing the CFs in the three periods. Interpreting the PCs in Figure 3 as the CFs

we find that the GM has caused an increase in the mean of this factor, conditional on the

two regimes, as shown by the relatively higher mean during the mid-1980s until the early

2000 (compared to the mean of the CF shown by the dashed line). Second, the CF in the

post-GM period has a strong cyclical behavior (vis-à-vis that in the first regime), suggesting

that during the recent period the CF is dominated by the behavior of business cycle macro

series as well as financial cycle-related series, as opposed to that of financial asset returns

series (such as FX and stock market returns). Hence, our analysis provides additional and

complementary evidence in the literature related to the GM structural break in the loadings

of factor models, demonstrating how this has affected the loadings of the U.S. CF as well as

the inference and behavior of this common component, while allowing us to study the be-

havior of group-specific (financial or macro) factors jointly. Third, we observe that during

the U.S. NBER recession dates marked by the grey areas in Figure 3, the CF in most cases

exhibits relative peaks associated, for example, with the recent global financial crisis in

2007–2008, the dotcom bubble in 2001, the banking strains in early 1990s, and the two oil

crises in the mid-1970s and early 1980s, followed by downturns after each crisis/recession.

In Figure 4, we relate our CF during the post-GM period with the U.S. business cycle and fi-

nancial cycle of Drehmann, Borio, and Tsatsaronis (2012) and observe that our CF is domi-

nated by long cycles similar to those of the financial cycle in the 1980s and during 2000–

2017.15 The financial cycle has 0.45 correlation with the CF in the post-GM regime as

15 The Drehmann, Borio, and Tsatsaronis (2012) financial cycle is a frequency-based (band-pass) fil-

ter capturing medium-term cycles using five financial variables: credit to private and non-financial
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opposed to the business cycle with which correlation is very low, that is, 0.04 (reported

later in the last two rows of Table 5).

The changing structure of the estimated macro–finance common factor in the two

regimes is further investigated by examining the different categories that drive the CFs, as

well as the HFFs, LFFs, and CFFs, during the two regimes. The categories of financial and

macro variables and their R2 are reported in Table 6. Further details of the specific

Figure 4 The Business Cycle (BusC), the Financial Cycle (FinC), and the CF during the post-GM period.

Figure 3 Common factor (CF) and NBER recessions during the full period (1963m07–2017m12) and

during the pre- and post-GM (1963m07–1983m12 and 1986m01–2017m12, respectively) using the PCA

last approach.

sector, the ratio of credit to GDP, equity prices, residential property prices, and an index of aggre-

gate asset prices including residential and commercial property and equity prices. Similarly, the

business cycle is a band-pass filter capturing fluctuations in real GDP over a period of one to

eight years.
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Table 6 MFF (CF, HFF, and LFF) and CFF and their R2 with alternative variable categories

Panel A: Pre-GM Factors Panel B: Post-GM Factors

Factors R2 Category of variables Factors R2 Category of variables

CF 0.42–0.85 Interest rates CF 0.52–0.64 Commodities spreads

0.59 Stock markets: VXO 0.30–0.46 Interest rates

0.28–0.49 Commodities spreads

0.61 Consumer Expectations 0.28–0.56 Employment

0.40–0.56 Non-Household Balance Sheets 0.55 IP

0.29–0.50 Money and Credit 0.37 Household Balance Sheets

0.27–0.38 NIPA 0.28–0.37 NIPA

0.32–0.37 Earnings and Productivity 0.26–0.36 Money and Credit

0.29–0.32 Household Balance Sheets 0.36 Consumer Expectations

0.29 Employment

HFF1 0.35–0.52 Interest rates HFF1 0.28–0.81 Interest rates

0.36–0.45 Stock Markets

0.42 IP

0.34 Employment

0.26 Prices

HFF2 0.25–0.44 Commodities spreads,

Exchange rates

HFF2 0.34–0.55 Stock Markets

0.26–0.29 Interest rates 0.32–0.42 Exchange rates

0.26–0.34 Interest rates

0.28 Employment 0.27–0.58 Household Balance Sheets

0.36 Inventories, orders, and sales

0.26–0.30 NIPA

0.26 Employment

0.25 Housing

HFF3 0.37–0.45 Interest rates HFF3 0.27–0.46 Commodities spreads

0.30 Exchange rates 0.26–0.37 Interest rates

0.28 Household Balance Sheets 0.38 Money and Credit

0.32 Inventories, orders, and sales

HFF4 0.26–0.31 Interest rates, Exchange rates HFF4 0.26–0.62 Exchange rates

HFF5 0.44–0.46 Stock Markets HFF5 0.26–0.42 Stock Markets

0.30 Interest rates 0.29–0.34 Exchange rates

HFF6 0.37–0.52 Interest rates

HFF8 0.26–0.28 Commodities spreads

LFF1 0.25–0.36 Interest rates LFF1 0.34 Interest rates

0.26 Stock markets 0.34 Stock Markets

0.53–0.76 Employment, IP 0.66–0.83 Employment

0.56 NIPA 0.72 NIPA

0.62–0.71 IP

0.67 Inventories, orders, and sales

LFF2 0.29 Interest rates LFF2

0.31–0.46 IP 0.28–0.81 Prices

0.27–0.42 Employment

0.31–0.37 NIPA

0.26–0.36 Inventories, orders, and sales

0.31 Non-Household Balance Sheets

0.26–0.31 Housing

LFF3 0.25–0.66 Prices LFF3 0.48 Money and Credit

0.45 Earnings and Productivity

0.31 Inventories, orders, and sales

LFF4 0.26–0.50 Prices, earnings, and productivity LFF4 0.26 Money and Credit

0.25–0.26 NIPA

LFF5 0.61–0.71 Earnings and Productivity
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variables in each category can be found in Table OA.7 in Online Appendix (with the corre-

sponding acronyms for each variable used to extract the factors). Focusing on the CFs

results reported in the top of Panels A and B in Table 6, the evidence suggests that the CF

loads on three main financial categories during the pre-GM regime, namely interest rates

spreads (both government and corporate default spreads) with R2 ¼ 0.42–0.85, commod-

ities spreads (the difference between future and spot prices) with R2 ¼ 0.28–0.49 and

theVXO with R2 ¼ 0.59.16 In contrast, in the post-GM, the CF is no longer driven by the

VXO (and any other stock market indicators). In fact, the R2 of the regression of the CF

and VXO in the second regime drops to 0.01. Our group factor model reveals that in the

post-GM, the VXO instead drives the second HF (monthly) financial factor, HFF2, with R2

¼ 0.55, as shown in Table OA.7, Panel B. Moreover, interest rates spreads while being one

of the main drivers of the CF in both regimes, their R2 becomes weaker in the post-GM

period with R2 ¼ 0.30–0.46, while commodities spreads are still highly correlated with the

CF in the post-GM with R2 ¼ 0.52–0.64. These results further explain the changing role of

the drivers of the CF, which in the last four decades, was mainly driven by commodities

spreads and interest rates and not by the VXO or any other stock market indices. We find

that the main drivers of the macro–finance CF are interest rates and credit spread factors

(also found by Gilchrist and Zakrajsek, 2012 for the U.S. economic activity), as well as

commodities spreads and returns (also found by Gospodinov and Ng, 2013 for explaining

the U.S. inflation and by Chaise, Ferrara, and Giannone, 2017 for global economic activ-

ity). These relationships of the CF with specific variables are further analyzed in the next

subsection using dynamic partial correlations in a predictive context. Hence, we will inves-

tigate the role of our CF in Granger causing as well forecasting out of sample key financial

and macro variables (including the VIX).

Turning to the LF quarterly macro variables, we find that many different categories

drive the CF. In the pre-GM regime, the CF is driven by variables in the following catego-

ries ranked in terms of the higher R2 first: Consumer Expectations (R2 ¼ 0.61), non-

Household Balance Sheets (R2 ¼ 0.40–0.56), Money and Credit (R2 ¼ 0.29–0.50),

National Income and Product Accounts (R2 ¼ 0.27–0.38), Earnings and Productivity (R2 ¼
0.32–0.37), Household Balance Sheets (R2 ¼ 0.29–0.32), and Employment (R2 ¼ 0.29).

While in the post-GM, the aforementioned variable categories are still important with simi-

lar R2, the non-Household Balance Sheets as well as Earnings and Productivity, are no lon-

ger correlated with the CF. Instead the Industrial Production (namely Capacity Utilization:

Manufacturing with R2 ¼ 0.55) becomes an important driver of the CF in the post-GM and

the role of the Employment category increases with R2 ¼ 0.28–0.56.

Last but not least, we obtain the correlation of the CF with some key economic and fi-

nancial variables which we will evaluate in terms of forecasting, as well as with other well-

known factors in the literature in the two regimes. Table 5 shows that the correlation of the

CF with real GDP and consumption growth is higher in the pre-GM period rather than in

the post-GM period (in Panels A and B, respectively). The same applies for the correlation

16 For the full sample factor estimation, we consider the CBOE S&P100 Volatility Index (VXO) due to

the longer historical sample since the 1960s. In the post-GM period, we examine the role of the

factors in predicting the VIX which is not only a broader index (referring to the S&P500) but also a

benchmark indicator in the VRP. Note that in the post-GM the correlation of the VXO and VIX is

0.97.
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between the CF with the ADS index or CFNAI, for which their correlation drops below

one-third compared to that in the first regime. More importantly, while in the first regime

the CF is highly correlated with the financial factors and indicators, for example, the NFCI

(0.90), Baa-Aaa (0.35), excess stock market returns (0.35), their correlation with the CF in

the second regime drops to 0.02, 0.05, and 0.01, respectively.

Naturally, we wish to investigate how our Mixed-Frequency Group Factors (MFFs),

that is, the CF, the HFFs, and the LFFs, compare to the traditional approach which employs

aggregated (quarterly) data and pools the macro and financial panels to extract the CFFs

from a single panel. First, we find evidence consistent with the literature above, that the

loadings of the CFFs also exhibit a break associated with the GM. Evidence from the LM

(resp. supLM) test in Table 4 reveals that using all the CFFs chosen by the ICp2 criterion,

there is overwhelming evidence of a break in 90% (resp. 97%) of the loadings of all the ser-

ies in the panel (both the macro and financial) in the mid-1980s. However, in order to com-

pare the results derived from our CF, we focus on the first and second CFFs (CFF1 and

CFF2 or both together), which have the highest correlation with the CF in pre- and post-

break regimes. This result is reported in Table 7 (in the first column of Panels A and B),

where the CF is highly correlated with the CFF1 (0.90) in the pre-GM regime and with the

CFF2 (0.82) in the post-GM regime. The supLM, based on Table 4, yields very similar

results whether using the CF or CFF2 or both CFF1 and CFF2 with regard to the total per-

centage of loadings changing, whereas the CFF2 also provides closer results to those of the

CF when it comes to the various variable category loadings changes (as shown, for instance,

by the consumer expectations category) as opposed to CFF1. Last, applying the LM-type

tests to all CFFs or all the MFFs (CF, HFFs, and LFFs) selected by the ICp2, we find that all

loadings change in almost all categories. Our results suggest that focusing on the CF load-

ing change point tests we are able to identify more heterogeneity in the change point of the

loadings of different variable categories that drive the macro–finance factor.

The relationship of the CFFs and mixed-frequency group factors as well as key macro

and financial variables is further analyzed in Tables 5 and 7. Table 7 shows that the ICp2

criterion selects a larger number of factors (HFF, LFF, and CFF) in the post-GM period ra-

ther than in the pre-GM period. As expected, the CF, LFFs, and HFFs are highly correlated

with different CFFs in the two subperiods. For instance, in the pre-GM, the first CFF

(CFF1) is highly correlated with the CF and the second CFF (CFF2) with both HFF1 and

LFF1. In contrast, in the post-GM, CFF1 is correlated with HFF2 and LFF1 whereas CFF2

with just CF. These results suggest that while extracting factors from the mixed-frequency

group factor model it is possible to identify and label common versus group-specific factors

even in different regimes, whereas, this is less obvious in the CFF model. Hence, in many

cases, it is difficult to isolate what is the driving group of the CFFs. Turning to Table 5, we

find that in both subperiods while CFF1 is highly correlated with real GDP, Consumption

growth, the CFNAI, and the ADS index, in the post-GM period CFF1 becomes highly cor-

related with NFCI and GZ_spread as opposed to the pre-GM period.

3.3 Predictive Evidence

In this subsection, we investigate the role of our estimated mixed-frequency group factors

using IS and OOS predictive regression models in explaining and forecasting key macro

and financial variables, namely the real GDP and Consumption growth, the Moody’s Baa-
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Aaa default spread, the VIX, the VRP, and the ETF iShares Core S&P500 returns. We focus

at forecasting these variables at quarterly frequency given that in many cases the quarterly

frequency is the frequency of interest of policy makers as well as for comparison purposes

across all variables. We consider traditional linear factor augmented distributed lag (FADL)

models when all variables and factors are at the same, low (quarterly) frequency estimated

by least squares (referred to as Linear-LS). Among these specifications, we include the mod-

els with the traditional CFFs considered in the literature. Additionally, we estimate the cor-

responding FADL-MIDAS models by nonlinear least squares (referred to as MIDAS-NLS),

given that predictors/factors are available at higher frequency (monthly) than the dependent

variable and some MIDAS weighting schemes can be estimated by NLS. Alternative HF

weighting polynomials (the Almon and the Step) are used for estimating the FADL-MIDAS

models. The predictive role and information content of our factors is also assessed relative

to other related and established U.S. factors in the literature, such as the CFNAI, the NFCI,

the ADS index, the GZ_spread, and the four Fama–French factors, excess market returns

(RM-RF), small-minus-big (SMB), high-minus-low (HML), and momentum (UMD).

3.3.1 IS predictive evidence

The IS linear and MIDAS predictive models are presented in Tables 8 and 9 and include our

MFFs extracted from the mixed-frequency group factor model and/or the aforementioned

well-known factors in the literature as well as the traditional CFFs. More precisely in

Table 8 we report the results for real GDP and Consumption growth as well as the corpor-

ate bonds default spread for the two subperiods marked by the GM, while in Table 9 we re-

port the results for the VIX, VRP, and ETF returns for the more recent period, due to the

shorter data sample available. Given the large model space involved in estimating the above

models for all predictors, lag lengths, and HF weighting polynomials, we focus on reporting

the results for those models where predictors turn out to be significant following the Bai

and Ng (2008) targeted predictors approach with hard thresholding (based on the 10% sig-

nificance level and the heteroskedastic and autocorrelation Newey–West standard errors).

For the lag length p in these FADL type models, we consider p¼ 1 up to four quarters and

select the number of lags using theBIC (which is a consistent information criterion and

selects parsimonious models—a desirable property for forecasting models). For most mod-

els reported in Tables 8 and 9, the BIC selects one lag. For each dependent variable, the

FADL and FADL-MIDAS models are compared in terms of the BIC. We highlight in bold

the three models with the lowest BIC values and mark with a þ the model that yields the

lowest BIC among these. Of special interest is the predictive or Granger causal role of the

CF evaluated via the significance and estimated regression coefficient of the CF (b̂CF) which

are also reported in Tables 8 and 9.17

In the top panel of Table 8, we present the results of real GDP growth in the two

regimes. The first column reports the alternative model specifications in each row while the

17 Alternative approaches of dealing with the large model space such as alternative criteria for

model selection, model averaging, shrinkage, among others, can also be pursued in this context.

Although these are complementary approaches, our analysis aims at uncovering the predictive

role of the common macro–finance as well as the group-specific factors in comparison to other

factors and hence we consider the model selection approach.
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Table 9 VIX (logVIX), VRP, and ETF iShares Core S&P500 (ETF_iSHARES) predictive models BIC

results: FADL Linear-LS and FADL MIDAS NLS models with alternative Factors (CFFs and MFFs)

Predictive model specifications logVIX targeted predictors

1990q1–2017q4

b̂CF BIC

LD – �1.542

LD, all CFFs [ICp2] in Linear-LS – �1.261

LD, CFFs in Linear-LS CFF:2,5,6 – �1.466

LD, MFFs in Linear-LS CF, LFF5, HFF:2,3,4,5,6,7,8 0.015*** �1.386

LD, MFFs in Almon MIDAS CF, LFF3, HFF:2,3,4,6,7,8 0.013*** �1.671

LD, MFFs in step MIDAS LFF:3,5, HFF:2,3,5,6,7,8 – �1.536

LD, ADS, MFFs in Linear-LS CF, LFF5, HFF:2,3,4,5,6,7,8 0.015*** �1.386

LD, ADS, MFFs in Almon MIDAS CF, LFF3, HFF:2,3,4,6,7,8 0.013*** �1.671

LD, ADS, MFFs in step MIDAS ADS, LFF:3,5, HFF:2,5,6,7,8 – �1.504

LD, CFNAI, MFFs in Linear-LS CF, LFF5, HFF:2,3,4,5,6,7,8 0.015*** �1.386

LD, CFNAI, MFFs in Almon CF, LFF3, HFF:2,3,4,6,7,8 0.013*** �1.671

LD, CFNAI, MFFs in step MIDAS CFNAI, LFF:3,5, HFF:2,3,5,6,7,8 – �1.536

LD, NFCI, MFFs in Linear-LS CF, LFF5, HFF:2,3,4,5,6,7,8 0.015*** �1.386

LD, NFCI, MFFs in Almon MIDAS CF, LFF:3,4, HFF:2,3,4,5,6,7,8 0.012*** �1.628

LD, NFCI, MFFs in step MIDAS LFF:3,5, HFF:2,5,6,8 – �1.606

LD, GZ_SPRD, MFFs in Linear-LS CF, LFF:3,5, HFF:2,3,4,5,6,7,8 0.014** �1.358

LD, GZ_SPRD, MFFs in Almon MIDAS GZ_SPRD, CF, LFF3, HFF:2,4,6,7,8 0.019*** �1.649

LD, GZ_SPRD, MFFs in step MIDAS LFF3, LFF5, HFF:2,5,6,7,8 – �1.567

LD, FFs, MFFs in Linear-LS CF, HFF:1,5,7,8 – �1.370

LD, FFs, MFFs in Almon MIDAS RM_RF, CF, LFF:3,5, HFF:1,2,4,7,8 0.005** �1.630

LD, FFs, MFFs in step MIDAS RM_RF, LFF:3,5, HFF:2,7,8 – �1.688þ

LD, logSKEW, MFFs in Linear-LS CF, HFF:2,3,4,6,7,8 0.011** �1.373

LD, logSKEW, MFFs in Almon MIDAS CF, LFF3, HFF:2,3,4,5,6,7,8 0.012*** �1.644

LD, logSKEW, MFFs in step MIDAS LFF:3,5, HFF:2,5,6,7,8 – �1.567

Predictive model specifications VRP targeted predictors

1990q1–2017q4

b̂CF BIC

LD – 8.288

LD, all CFFs [ICp2] in Linear-LS – 8.423

LD, CFFs in Linear-LS CFF:2,3,7,8,9 – 8.297

LD, MFFs in Linear-LS CF, HFF:1,2,7,8 1.649** 8.343

LD, MFFs in Almon MIDAS CF, HFF:1,7,8 1.103*** 8.282

LD, MFFs in step MIDAS HFF:1,2,3,5,7 – 8.438

LD, ADS, MFFs in Linear-LS CF, HFF:1,2,3,6,7,8 2.121** 8.360

LD, ADS, MFFs in Almon MIDAS ADS, CF, LFF1, HFF:1,2,3,5,7,8 0.679* 8.188

LD, ADS, MFFs in step MIDAS ADS, LFF1, HFF:1,2,3,5,6 – 8.369

LD, CFNAI, MFFs in Linear-LS CF, HFF:1,2,7,8 1.649** 8.343

LD, CFNAI, MFFs in Almon CFNAI, CF, LFF1, HFF:1,2,5,7,8 – 8.249

LD, CFNAI, MFFs in step MIDAS CFNAI, HFF:1,2,3,5,8 – 8.460

LD, NFCI, MFFs in Linear-LS NFCI, CF, HFF:1,7,8 2.356*** 8.260

LD, NFCI, MFFs in Almon MIDAS NFCI, CF, HFF:1,5,7 1.372*** 8.169þ

LD, NFCI, MFFs in step MIDAS HFF:1,3,5,7 – 8.436

LD, GZ_SPRD, MFFs in Linear-LS CF, HFF:1,7,8 1.370* 8.343

LD, GZ_SPRD, MFFs in Almon MIDAS CF, HFF:1,7,8 1.103*** 8.282

LD, GZ_SPRD, MFFs in step MIDAS CF, HFF:1,2,3,5,6,7 0.239** 8.439

LD, FFs, MFFs in Linear-LS CF, LFF5, HFF:3,4,5,7,8 – 8.463

LD, FFs, MFFs in Almon MIDAS RM_RF, HML, CF, HFF:1,7,8 1.069*** 8.177

LD, FFs, MFFs in step MIDAS RM_RF, HML, HFF:1,3,7 – 8.403

LD, SKEW, MFFs in Linear-LS CF, HFF:1,2,3,7,8 1.795*** 8.345

LD, SKEW, MFFs in Almon MIDAS CF, HFF:1,7,8 1.103*** 8.282

LD, SKEW, MFFs in step MIDAS CF, HFF:1,2,3,5,7 – 8.427

(continued)
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second and fifth columns list the significant predictors/factors in each model that corres-

pond to each of the two regimes. The corresponding BIC values for each model in the first

and second regime are reported in fourth and last columns, respectively. Last but by no

means least, the estimated regression coefficient of the CF and its statistical significance in

the pre- and post-GM periods are also reported. There are two interesting results to note

Table 9 VIX (logVIX), VRP, and ETF iShares Core S&P500 (ETF_iSHARES) predictive models BIC

results: FADL Linear-LS and FADL MIDAS NLS models with alternative Factors (CFFs and MFFs)

Predictive model specifications ETF_iSHARES targeted

predictors 2000q3–2017q4

b̂CF BIC

LD – �1.993

LD, all CFFs [ICp2] in Linear-LS – �2.035

LD, CFFs in Linear-LS CFF:2,5,8 – �1.899

LD, MFFs in Linear-LS CF, HFF7 0.010*** �1.944

LD, MFFs in Almon MIDAS CF, HFF:1,2,3,5 0.006*** �2.712

LD, MFFs in step MIDAS CF, LFF1, HFF:2,3,5,7,8 0.000** �3.466

LD, ADS, MFFs in Linear-LS ADS, CF, HFF7 0.014*** �2.100

LD, ADS, MFFs in Almon MIDAS CF, HFF:2,3,5 0.006*** �2.724

LD, ADS, MFFs in step MIDAS CF, HFF:2,3,5,7,8 0.002** �3.372

LD, CFNAI, MFFs in Linear-LS CF, HFF7 0.010*** �1.944

LD, CFNAI, MFFs in Almon CF, HFF:1,2,3,5 0.006*** �2.712

LD, CFNAI, MFFs in step MIDAS HFF:2,3,4,5,7 – �3.523þ

LD, NFCI, MFFs in Linear-LS NFCI, HFF:1,2,3 – �1.962

LD, NFCI, MFFs in Almon MIDAS CF, HFF:1,2,3,5 0.006*** �2.712

LD, NFCI, MFFs in step MIDAS CF, HFF:2,3,5,7,8 0.002** �3.372

LD, GZ_SPRD, MFFs in Linear-LS GZ_SPRD, CF, HFF7 0.014*** �1.888

LD, GZ_SPRD, MFFs in Almon MIDAS CF, HFF:1,2,3,5 0.006*** �2.712

LD, GZ_SPRD, MFFs in step MIDAS HFF:2,3,5,7,8 – �3.290

LD, FFs, MFFs in Linear-LS CF, HFF7 0.010*** �1.944

LD, FFs, MFFs in Almon MIDAS HFF:2,3,5 – �2.644

LD, FFs, MFFs in step MIDAS RM_RF, SMB, HFF:2,4,7 – �3.443

LD, logSKEW, MFFs in Linear-LS CF, LFF2, HFF7 0.010*** �1.885

LD, logSKEW, MFFs in Almon MIDAS logSKEW, HFF:1,2,3,5,7 – �2.686

LD, logSKEW, MFFs in step MIDAS HFF:2,3,5,7 – �3.369

Notes: Bold BIC values refer to the models with the three lowest BIC for each dependent variable and the BIC

values with a þ denotes the model with minimum BIC for each variable. Targeted predictors are based on the

Bai and Ng (2008) hard thresholding approach using 10% significance level, Newey–West standard errors

with the Bartlett kernel and data-driven bandwidth selection. The corresponding significance of the regression

coefficient of the CF refers to the following significance levels: ***1%, **5%, and *10%. The common factor

(CF), the HFFs, and the LFFs are estimated using the quarterly (LF) and monthly (HF) frequency macro and fi-

nancial series panels, respectively, using the MFF model. The MIDAS model step (s¼ 3) and Almon (d¼ 1) are

reported given that yield parsimonious representations with low BIC. The CFFs are estimated from all the ser-

ies at the quarterly LF stacked in a common panel. The predictive model involves the following predictors: the

lagged dependent (LD) term, the MFFs, namely the Common Factor (CF), the HFFs and LFFs, the CFFs, the

Aruoba, Diebold, and Scotti (2009) (ADS) index, the Chicago National Activity and Financial Conditions

Indices (CFNAI and NFCI, respectively), the four Fama–French (FF) factors (RM-RF, SMB, HML, UMD),

Gilchrist and Zakrajsek (2012) spread (GZ_SPRD) and the Amaya, Christoffersen, Jacobs, and Vasquez

(2015) Realized Skewness (SKEW).
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about the GDP growth predictive models: first, following the targeted predictors approach,

the model with the lowest BIC is a simple linear model and a MIDAS model in the first and

second regimes, respectively, with just the lagged ADS index, followed by the MIDAS mod-

els which also include some of the significant LFFs and HFFs and the CF, especially in the

first regime. Second, comparing the estimated predictive coefficients of the common factor

in all the reported models in the pre- and post-GM regimes, we find that while it is signifi-

cant in both regimes, its estimated value has dropped by at least a third in the second re-

gime. Hence, although still statistically significant, the actual value of the predictive

coefficient of the CF in explaining GDP growth has decreased in the last three decades.

This finding also extends to the real Consumption growth models reported in the second

panel, for which the estimated CF coefficient drops by a half in the recent regime. More

interestingly, the results for the default spread, found in the last panel, show that the CF

turns out to be significant in many models in the first regime, whereas in the second regime

it turns out to lose its Granger causality role in almost all models, except in a single model

with the lowest BIC. For real Consumption growth, the model with the minimum BIC is a

MIDAS specification with just the lagged CF in the first regime and the CF along with the

ADS, LFFs, and HFFs in the second regime. Similarly, for the default spread in the first re-

gime the MIDAS model with the CF, HFFs as well as the ADS index and the LFFs is the

model with the best fit. In the second regime, the MIDAS model with the CF, HFFs, and

NFCI yields the lowest BIC for the U.S. corporate bond default rate. Summarizing Table 8

shows that while the CF Granger causes the real GDP and consumption of services and

nondurable goods growth in the two regimes, its predictive estimated effect is much lower

in the post-GM regime. These findings not only extend to the case of the default spread but

the results from the alternative models show that the Granger causality role of the CF is

much weaker in the post-GM regime relative to the pre-GM period for this spread.

Turning to Table 9, we report the results for predictive models for the log(VIX), VRP,

and the ETF iShares Core S&P500 returns during the second regime and based on data

availability. Within these predictive models, we also consider the Realized Skewness

(SKEW) proposed in Amaya et al. (2015) which turns out to be a significant predictor in

the log specification of a model for ETF returns along with other HFFs. The reported results

in Table 9 provide two broad conclusions: first, for these three key financial indicators, the

models that yield the lowest BIC are MIDAS specifications, which include a subset of our

MFFs along with the excess market returns for the VIX and the NFCI for the VRP. Second,

even if the CF is not driven by any stock market indices (as discussed in the previous subsec-

tion) and even though in the post-GM the VXO is no longer closely related with the CF, the

evidence in Table 9 shows that in the recent regime in many models the CF is a strongly sig-

nificant predictor Granger causing the VIX, VRP, and ETF returns in the last three decades.

Given the recent financial crisis, we add a simple dummy variable in the constant of all the

AR, FADL, and FADL-MIDAS models (which takes the value one during 2008q4 and zero

otherwise) and find that while this is significant for almost all models for all dependent var-

iables (except for real consumption), it does not affect the significance of the predictive re-

gression coefficient of the CF and the models selected by BIC. Hence, the results reported in

Tables 8 and 9 are robust to excluding the recent global financial crisis.

In comparing the CFFs in linear-LS models with our MFFs in either linear-LS or

MIDAS-NLS models, we find that the MFFs perform relatively better in terms of BIC for

all variables (except for real GDP growth in the pre-GM period). Comparing the model
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results in rows 2–6 in Tables 8 and 9 for each variable and regime, we find that the models

with MFFs provide the best fit (in terms of BIC) when combined with MIDAS instead of

linear-LS specifications especially in the second regime. Hence our empirical evidence sug-

gests that it is the combination of the information content of the MFFs as well as their role

in MIDAS predictive regressions vis-à-vis that of the CFFs (in linear-LS models) that pro-

vides goodness of fit improvements. Yet, what is not obvious to isolate and infer in predict-

ive models with CFFs, as opposed to those with MFFs, is the role of the CF as shown in

either linear or MIDAS models with the CF.

Summarizing, the large dimensional empirical analysis reduces the dimensionality of the

data via mixed-frequency group factor models, yet we still face the large model space of al-

ternative factors, predictors, and predictive model specifications. We find that model selec-

tion approaches favor MIDAS predictive regression models and mixed-frequency group

factors as predictors of key macro and financial variables. The overall results in Tables 8

and 9 show that the lowest BIC favors MIDAS specifications with some of our mixed-

frequency group factors (i.e., CF, HFFs, and LFFs) mainly for the second regime, as

opposed to the traditional CFFs. Additionally, the ADS, the NFCI, and excess market

returns turn out to be additional significant predictors, among the aforementioned factors

for models with the lowest BIC. For instance, the ADS factor turns out to be significant in

the models with the best fit (based on BIC) for the real GDP growth and the default spread

in the pre-GM period and for the real Consumption growth for the post-GM period. This is

an interesting finding given that both the MFFs and ADS are based on the idea of deriving

factors from mixed-frequency grouped data, albeit of different sizes and types of cross-

sectional information. For the VIX, VRP, and ETF returns, we find that our HFFs (along

with other factors such as the CF, LFF, NFCI, excess market returns) yield predictive mod-

els with the lowest BIC.

3.3.2 OOS predictive evidence

We analyze the OOS predictive ability of our factors (MFFs and CFFs) reporting in

Table 10 the root mean squared errors (RMSE) ratios of linear and MIDAS models vis-à-

vis the random walk (RW) model, often considered as a simple benchmark model for both

macro and financial indicators. Given the evidence of structural change, we focus on evalu-

ating the forecasting performance of the models in the more recent post-GM and longer

period. Panel A refers to the results for the three variables that have the longer sample

period (Real GDP, Consumption, and Baa-Aaa), whereas Panel B refers to the financial var-

iables with the shorter sample (VIX, VRP, and ETF returns). The IS period for the models

in Panel A refer to 1986q1–2001q4, while for the variables in Panel B, namely for the VIX

and VRP, the IS period is 1990q1–2003q4 and for the ETF returns it is 2000q3–2007q1,

due to the shorter data availability. For the factor augmented predictive models (reported

in each row of Table 10), we focus on evaluating the forecasting ability of the correspond-

ing model (in each row) with the significant predictors during the IS period, given these are

more parsimonious representations than the model with all factors. For the OOS forecast-

ing evaluation, we pursue two approaches, the fixed and the recursive sample schemes. We

report the results one-quarter ahead given the sample sizes. While the fixed OOS approach

is pursued in many studies for evaluating macro forecasting models, the recursive OOS ap-

proach is more realistic especially for financial data as it is not subject to the look ahead

bias criticism. The MSE-F test (Gonçalves, McCracken, and Perron, 2017) is performed to
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evaluate if the factor augmented predictive regression models yield statistically significant

predictive gains vis-à-vis other benchmark models like the RW (or the AR reported in the

first row of Panels A1 and B1), as marked in Table 10. Similarly, the model with the lowest

and significant RMSE ratio for each dependent variable and each family of models and

forecasting scheme is marked in bold in Table 10.

Four broad results can be highlighted from Table 10: first, the RMSE ratios of almost

all factor augmented predictive models (linear or MIDAS) vis-à-vis the RW or the AR

model (given it has the same RMSE as the RW), for forecasting the real GDP growth, the

real Consumption growth and the default spread, are statistically significant and less than

one (shown in Panels A1 and A2). This is also the case for most (but not all) the models for

the VIX, VRP, and ETF returns, which seem harder to forecast OOS. This could be due to

the nature of these financial series and/or the shorter sample available. Second, for the best

performing model with the lowest RMSE ratio, the recursive OOS approach yields similar

and in some cases improved forecasting gains vis-à-vis the fixed sample OOS scheme for all

variables, except the ETF returns. Interestingly, although the recursive method is a more

demanding OOS forecasting scheme, it not only improves over the fixed sample OOS but

for at least two cases—namely the default spread and the VIX—it also substantially

improves the forecasting gains, as shown by the corresponding lowest RMSE ratios. Third,

the models with the lowest RMSE ratios refer to models with our MFFs rather than the

traditional CFFs as predictors, in almost all cases. Additional factors turn out to improve

the recursive OOS forecasts, namely the ADS index for the GDP, the CFNAI for the

Consumption, the NFCI and GZ spread for the corporate default spread, the excess market

returns for the VIX, along with some of our MFFs. Finally, in most cases, the best perform-

ing FADL-MIDAS models (with the lowest RMSE) provide forecasting gains over the corre-

sponding best performing FADL linear-LS model (comparing the corresponding best RMSE

models in Panels A1 and A2 or Panels B1 and B2).

To further investigate the OOS forecasting performance of the models in the recent

post-GM period, we employ the Model Confidence Set (MCS) procedure developed by

Hansen, Lunde, and Nason (2011). In line with Table 10, we use the significant predictors

for each model and focus on the recursive scheme. In Table 11, we report the RMSE, the p-

value and the ranking of each model. Following Hansen, Lunde, and Nason (2011), we use

75% and 90% confidence levels. The MCS results are consistent with those in Table 10

and show that for all variables at least one of the Linear-LS and PDL/Almon MIDAS mod-

els perform better than RW, which in most cases ranks among the worst predictive models.

Concluding, we provide evidence that for quarterly real GDP and Consumption growth,

the Moody’s corporate bond spread as well as the VIX, VRP, and ETF returns, during the

pre- and post-GM periods, our CF, as well as the group-specific macro and financial factors

have significant IS and OOS forecasting abilities. This evidence is especially strong in the

context of MIDAS predictive regressions, vis-à-vis the traditional linear predictive regres-

sions, for example, FADL type models, as well as the RW and AR benchmark models.

Moreover, comparing the role of the CF, during the pre- and post-GM, in Granger causing

GDP or Consumption growth as well as the default spread, we find that while the CF is sig-

nificant in both subperiods, it has a relatively smaller estimated coefficient in the post-GM

period. Hence, during the recent period, the role of the CF, while still significant, turns out

to be relatively much weaker in Granger causing the aforementioned key economic varia-

bles. These predictive regression models results extend the evidence of a break in the
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Table 11 MCS by Hansen, Lunde, and Nason (2011) for OOS forecasting ability of mixed-fre-

quency factors, CFFs, as well as other types of factors

Panel A1: RMSE for Linear-LS models and the RW model for Real GDP growth (GDP), Real Consumption growth (RealCons),

and Moody’s default spread (Baa-Aaa)

GDP RealCons Baa-Aaa

Specification Recursive sample Recursive sample Recursive sample

RMSE p-value Rank RMSE p-value Rank RMSE p-value Rank

LD, all CFFs [ICP2] 0.51 0.73** 4 0.24 1.00** 1 0.27 0.82** 2

LD, CFFs in Linear-LS 0.52 0.62** 5 0.25 0.94** 2 0.28 0.57* 3

LD, MFFs in Linear-LS 0.51 0.49** 7 0.31 0.32* 3 0.25 1.00** 1

LD, ADS, MFFs in Linear-LS 0.44 1.00** 1 0.28 0.22* 6 0.26 0.27* 6

LD, CFNAI, MFFs in Linear-LS 0.49 0.54** 6 0.32 0.29* 4 0.26 0.27* 6

LD, NFCI, MFFs in Linear-LS 0.50 0.36** 8 0.28 0.22* 6 0.25 1.00** 1

LD, GZ_SPRD, MFFs in Linear-LS 0.48 0.78** 3 0.28 0.22* 6 0.38 0.45* 4

LD, FFs, MFFs in Linear-LS 0.51 0.49** 7 0.28 0.22* 6 0.27 0.18* 7

RW 0.63 0.86** 2 0.39 0.29* 5 0.48 0.36* 5

Panel A2: RMSE for PDL/Almon MIDAS models and the RW for Real GDP growth (GDP), Real Consumption growth

(RealCons), and Moody’s default spread (Baa-Aaa)

Specification Recursive sample Recursive sample Recursive sample

RMSE p-value Rank RMSE p-value Rank RMSE p-value Rank

LD, MFFs in PDL/Almon 0.50 0.29* 5 0.37 0.43* 3 0.31 0.15* 3

LD, ADS, MFFs in PDL/Almon 0.40 1.00** 1 0.26 1.00** 1 0.25 0.12* 5

LD, CFNAI, MFFs in PDL/Almon 0.41 0.86** 2 0.29 0.06 5 0.29 0.13* 4

LD, NFCI, MFFs in PDL/Almon 0.50 0.29* 5 0.35 0.77** 2 0.29 0.13* 4

LD, GZ_SPRD, MFFs in PDL/Almon 0.51 0.31* 4 0.37 0.43* 3 0.20 1.00** 1

LD, FFs, MFFs in PDL/Almon MIDAS 0.51 0.15* 6 0.37 0.43* 3 0.29 0.13* 4

RW 0.63 0.51* 3 0.39 0.21* 4 0.49 0.17* 2

Panel B1: RMSE for Linear-LS models and the RW for VIX (logVIX), Variance Risk Premium (VRP), and ETF iShares

(ETF_iShares)

logVIX VRP ETF_iShares

Specification Recursive sample Recursive sample Recursive sample

RMSE p-value Rank RMSE p-value Rank RMSE p-value Rank

LD, all CFFs [ICP2] 0.11 1.00** 2 15.57 0.85** 5 0.102 0.64** 5

LD, CFFs in Linear-LS 0.11 1.00** 1 15.67 0.94** 4 0.072 0.15* 8

LD, MFFs in Linear-LS 0.12 0.65** 5 14.88 1.00** 2 0.083 0.94** 3

LD, ADS, MFFs in Linear-LS 0.12 0.65** 5 15.74 0.24* 9 0.077 0.99** 2

LD, CFNAI, MFFs in Linear-LS 0.12 0.65** 5 14.88 1.00** 2 0.083 0.94** 3

LD, NFCI, MFFs in Linear-LS 0.12 0.65** 5 16.74 0.79** 7 0.096 0.59** 6

LD, GZ_SPRD, MFFs in Linear-LS 0.12 0.64** 6 16.50 0.72** 8 0.083 0.51** 7

LD, FFs, MFFs in Linear-LS 0.12 1.00** 3 16.67 0.86** 6 0.083 0.94** 3

LD, SKEW, MFFs in Linear-LS 0.12 0.95** 4 14.87 1.00** 1 0.084 0.91** 4

RW 0.16 0.08 7 16.02 0.98** 3 0.066 1.00** 1
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loadings of the factor models (reported in the previous subsection), to the conditional setup

related to the estimated impact of the CF as a predictor of key macro and financial

variables.

4 Conclusions

This article contributes further to our understanding of group factor models for extracting

PCs from large panels of mixed data frequencies, allowing us to estimate and test for the ex-

istence of the common factor among the groups as well as the group-specific factors. New

analytical results are derived for the asymptotic distribution of the PCs and test statistics

for the existence of the common factor especially regarding the alternative approaches of

aggregating the data first and then extracting PCs, or applying PCA first and then aggregat-

ing the factor estimates. Our framework provides an interesting setup to study the common

factors among two large groups/panels of quarterly macro and monthly financial indica-

tors, in order to test for the existence of a CF as well as estimate the group-specific financial

and macro factors. Interestingly, we find one CF in the United States during the pre- and

post-GM, since the early 1960s. Structural break analysis reveals that the loadings of the

CF have changed during the pre- and post-GM and that the loadings of certain financial

Table 11 Continued

Panel B2: RMSE for PDL/Almon MIDAS models and the RW for VIX (logVIX), VRP, and ETF iShares (ETF_iShares)

Specification Recursive sample Recursive sample Recursive sample

RMSE p-value Rank RMSE p-value Rank RMSE p-value Rank

LD, MFFs in PDL/Almon 0.13 0.00 3 15.34 1.00** 1 0.14 0.00 4

LD, ADS, MFFs in

PDL/Almon

0.13 0.00 3 15.62 0.90** 3 0.14 0.00 4

LD, CFNAI, MFFs in

PDL/Almon

0.13 0.00 3 15.83 0.90** 4 0.14 0.00 4

LD, NFCI, MFFs in

PDL/Almon

0.13 0.00 4 17.31 0.40** 6 0.14 0.00 4

LD, GZ_SPRD, MFFs in

PDL/Almon

0.12 0.03 2 15.34 1.00** 1 0.14 0.00 4

LD, FFs, MFFs in PDL/

Almon MIDAS

0.09 1.00** 1 15.49 1.00** 2 0.08 0.56 2

LD, SKEW, MFFs in

PDL/Almon

0.13 0.00 3 15.34 1.00** 1 0.15 0.17 3

RW 0.16 0.00 5 15.98 0.84** 5 0.07 1.00** 1

Notes: The IS period refers to 1986q1–2001q4 for the Real GDP growth (GDP), Real Consumption growth

(RealCons) and the Moody’s default spread (Baa-Aaa), 1990q1–2003q4 for the VIX (logVIX) and VRP, and

2000q3–2007q1 for the ETF iShares Core S&P500 (ETF_iSHARES). The OOS period refers to 2002q1–

2017q4 for the GDP, RealCons, and Baa-Aaa, 2004q1–2017q4 for the logVIX and VRP, and 2007q2–2017q4

for the ETF_iSHARES. For the GZ_SPRD, the end date is 2016M08 hence IS period is 1986q1–2001q2 and

OOS period is 2001q3–2016q3. The OOS analysis is performed based on the recursive estimation of the fac-

tors in pseudo real-time at each forecast origin using the recent vintage of data. Bold values refer to the models

ranking first according to MCS. The results based on significance level 10% and 25% are identified by (*) and

(**), respectively. RMSEs of GDP and RealCons are multiplied by 100.
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assets have become relatively weaker during the recent regime. Our empirical analysis

shows that the estimated PCs are almost identical whether we pursue the PCA approach

first and then aggregate the factors or whether we aggregate the data and then apply PCA.

The forecasting role of our factors, as well as other established factors in the literature, is

further investigated in predicting key macro and financial indicators, such as real GDP and

Consumption, the VIX, the VRP, corporate bond default spreads, and ETF iShares Core

S&P500 returns, via FADL and FADL-MIDAS type models. Our empirical results provide

evidence of significant forecasting gains of our factors for these key economic indicators

and show that the CF, while being significant in both regimes, has a weaker predictive ef-

fect in the recent period covering the last three decades.

Supplemental Data

Supplemental data is available at Journal of Financial Econometrics online.
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Abstract

We propose a novel method of estimating default probabilities using equity options
data. The resulting default probabilities are highly correlated with estimates of de-
fault probabilities extracted from CDS spreads, which assume constant losses given
default. Additionally, the option-implied default probabilities are higher in bad
economic times and for firms with poorer credit ratings and financial positions.
A simple inferred measure of loss given default is related to underlying business
conditions, and varies across sectors; the time series properties of this measure are
similar after controlling for liquidity effects.
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From the perspective of academics, market professionals, and regulators, one of the attract-

ive features of a credit default swap (CDS) contract is its window into market perceptions

of credit risk. Based on no-arbitrage pricing formulations and assumptions about the recov-

ery rate on the asset, one can use information in the quoted spread on a CDS contract to
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infer the market’s implied risk-neutral probability of default; see, for example, Duffie and

Singleton (1999). This measure stands as a market-based nonparametric alternative to

agency credit ratings and structural models of default. However, the market for CDS

reached its peak in late 2007; since that time, this market has substantially decreased in

size.1 Recent market events suggest that the reduction in the size of the CDS market will

not be reversed soon, as noted in Augustin et al. (2016). Thus, the decline in the single-

name CDS market represents a loss for those interested in market-driven estimates regard-

ing the credit risk of a corporate entity.

In this article, we propose a novel measure of the risk-neutral probability of default

based on option prices. It is well known that option prices are informative about the risk-

neutral distribution of equity payoffs; see, for example, Breeden and Litzenberger (1978).

In addition, the equity payoff depends on default risk. In principle, if absolute priority

holds, the value of equity will be zero in the case of a default as in Merton (1974).

Alternatively, one can define a default region of the equity payoff distribution and use the

cumulative probability of that region inferred from option prices to identify a probability

of default. Importantly, an option-based approach has the advantage that, since options are

traded on a large number of underlying securities, this method could provide estimates of

default probability for a broader cross-section of firms.

Our results indicate that estimates of the levels of implied default probabilities extracted

from equity options are strongly, but not perfectly, correlated with default probabilities

estimated using CDS. If we assume constant loss given default (LGD) (as is frequently done

in the CDS market), the median correlation between estimates of default probabilities for

the cross-section of firms extracted from these two markets is 0.52. Aggregated across

firms, the two estimates of default probabilities are highly correlated through time, with a

correlation coefficient of 0.66. The default probabilities estimated from equity options pri-

ces increase monotonically with lower credit ratings; in addition, the relations between de-

fault probabilities estimated from equity options and firm characteristics are similar to the

relations estimated between CDS default probabilities and firm characteristics. Overall, the

evidence suggests that equity options can provide important information concerning the

probability of default for a broad spectrum of underlying firms.

We also investigate whether the imperfect correlation between option- and CDS-implied

default probabilities reflects the fact that estimates of LGD embedded in CDS rates vary

across firms and through time, as argued in Berndt et al. (2018), Doshi, Elkamhi, and

Ornthanalai (2018), Schuermann (2004), and Altman et al. (2005). We find that a simple

proxy for LGD, defined as the ratio of the CDS spread to option-implied default probability,

covaries positively with the frequency of default in the aggregate sample; the ratio is high

during the early 2000s and the financial crisis, declines in the mid-2000s and after the finan-

cial crisis, and has been relatively low during 2013–2017. While some of this difference in

the option-implied default probability and CDS spread is related to measures of illiquidity,

the time series patterns in this variable remain after removing variation due to illiquidity.

Our article is related to the literature investigating the ability of option prices to provide

information about default. In an earlier paper whose intuition is closely related to our

work, Le (2015) develops models of option and CDS prices and uses those models

1 The Bank for International Settlements reported notional principal outstanding in the last half of

2007 of $61 trillion; in the first half of 2019, this figure stood at $7.8 trillion.
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sequentially to estimate default probabilities and recovery rates. His method of estimating

default probabilities differs from ours; for example, he assumes a specific process for the

dynamics of equity prices and estimates the probability of default, where default is associ-

ated with equity prices diffusing or jumping to zero. In contrast, we estimate the risk-

neutral density at a particular point in time from a range of option prices and consider vari-

ous default thresholds. Moreover, our sample (which extends through February 2017) ena-

bles us to document the time series properties of LGD over a longer period, including the

credit crisis. Capuano (2008) uses a cross-entropy functional to infer default probabilities,

although Vilsmeier (2014) notes that the entropy approach has issues with accuracy and

numerical stability (and provides some technical fixes for those problems); our approach is

simpler computationally. Carr and Wu (2011) show that deep out-of-the-money (OTM)

options can be used to synthesize a default insurance contract, and, as a consequence, infer

the probability of default. Their approach is simple and intuitive, but necessitates the exist-

ence of options that are very deep out of the money, limiting the number of firms for which

these probabilities can be calculated.

This article is also related to others that have inferred LGDs or other credit-related

measures from the market prices of various securities; the papers in this literature differ

with regard to the securities that are required for estimation of LGD, and, in some cases,

the processes that rates of LGD are assumed to follow. Duffie and Singleton (1999) and

Das and Sundaram (2007) provide examples of how LGD might be inferred from secur-

ities with the same probability of default but different payout structure or priority.

Similarly, Madan and Unal (1998) empirically investigate the separation of default prob-

ability and LGD using junior and senior debt prices where those are available; Madan

and Güntay (2003) also exploit differences in debt priority to infer LGDs. Doshi,

Elkamhi, and Ornthanalai (2018), as noted above, use the term structure of CDS to esti-

mate LGD. Bakshi, Madan, and Zhang (2006) use a risky debt model with stochastic

rates of LGD to infer measures of LGD from risky bond prices. More recently, Berndt

et al. (2018) combine information from CDS rates, firm-specific default estimates from

Markit, and information regarding expected default from Moody’s Analytics to estimate

credit risk premia.

The remainder of the article is organized as follows. In Section 1, we discuss the method-

ology we employ for extracting risk-neutral default probabilities from options and from

CDS spreads. We describe the data that we employ in this article in Section 2, and present

estimates of default probabilities and their relation to various firm characteristics. In

Section 3, we explore the differences between the two measures of default probability,

including cross-sectional and time series variation in LGD and liquidity effects. We con-

clude in Section 4.

1 Risk-Neutral Probabilities Implied by CDS and Option Prices

1.1 Pricing CDSs

In order to infer risk-neutral default probabilities from the prices of CDSs, we follow a

model widely used in practice for their valuation, detailed in O’Kane and Turnbull (2003).

In the discussion that follows, we assume that the swap being valued is a one-year CDS con-

tract with quarterly premium payments, and that there is no information on CDS from

which to infer risk-neutral default probabilities for horizons of less than one year. Under
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these assumptions, the practice is to assume a flat default probability term structure over

the year.2

When a CDS contract is struck, the swap premium is set such that the value of the pre-

mium leg, received by the writer of the swap, is equal to the value of the protection leg,

received by the swap purchaser. Assuming that premiums are accrued in case of default dur-

ing a quarter, the value of the premium leg is given by

1

2
st

X4

j¼1

0:25e�r j
4ð Þ j

4 e�kt
j�1
4 þ e�kt

j
4

� �
; (1)

where rðsÞ is the continuously compounded zero coupon Treasury yield with maturity s

expressed as an annual rate and kt is the default intensity. Because of the assumption of a

flat term structure of default probability over one year, this intensity is invariant to matur-

ity for the one-year horizon, although it is indexed by t to indicate that default intensity

may change over time. The quantity e�kts represents the risk-neutral probability that the en-

tity survives to time s. Intuitively, expression (1) simply calculates the present value of the

swap payments received by the swap writer, conditional on survival of the entity.

The value of the protection leg is the risk-neutral expected loss on the CDS,

ðLGDÞ
X12

j¼1

e�r j
12ð Þ j

12 e�kt
j�1
12 � e�kt

j
12

� �
; (2)

where LGD designates the loss given default as a fraction of the amount owed. Expression

(2) is a discrete approximation to an integral that represents the expected risk-neutral loss

on the underlying entity. O’Kane and Turnbull (2003) show that for a constant default in-

tensity, the approximation error is given by rðsÞ
2M, where rðsÞ is the continuously compounded

risk free rate over the constant default intensity horizon and M is the number of summation

periods. The authors suggest that for M¼ 12 as above and a risk-free rate of 3%, the abso-

lute value of the error is 1 basis point on a spread of 800 basis points.

The above expressions allow for the determination of the break-even CDS spread if one

has estimates of LGDs and risk-neutral survival probabilities. Alternatively, the expressions

can be used to infer risk-neutral default probabilities given rates of LGD and constant ma-

turity CDS spreads. For example, using the expressions above, the break-even CDS spread

is given by

st ¼
ðLGDÞ

P12

j¼1

e�r j
12ð Þ j

12 e�kt
j�1
12 � e�kt

j
12

� �
1
2

P4
j¼1

0:25e�r j
4ð Þ j

4 e�kt
j�1
4 þ e�kt

j
4

� � : (3)

In the absence of any market frictions, Equation (3) is a nonlinear equation in the de-

fault intensity, kt.

For our initial calculations, we assume a constant rate of LGD ¼ 0.60, consistent with

common practice. Given the data on the risk-free term structure and one-year CDSs, we

2 Note that this valuation model is similar to the one described in Augustin and Saleh (2017), with the

exception that we adjust for accrued interest.
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then solve Equation (3) for kt for each reference entity and date in our sample. Given this

default intensity, the probability of default of entity i is given by

QC
i;t ¼ 1� e�ki;t ; (4)

where the superscript C indicates that CDS data are used to infer default probabilities.

1.2 Measuring Default Probabilities from Option Prices

An options-based approach to extracting default probabilities is based on the seminal work

of Breeden and Litzenberger (1978), who show that one can recover the risk-neutral density

of equity returns from option prices. Given the risk-neutral density, the risk-neutral prob-

ability of default can be thought of as the mass under the density up to the return that corre-

sponds to a default event.

We construct the risk-neutral density using estimates of the risk-neutral moments com-

puted as in Bakshi, Kapadia, and Madan (2003) and the Normal Inverse Gaussian (NIG)

method developed in Eriksson, Ghysels, and Wang (2009). Specifically, Bakshi, Kapadia,

and Madan (2003) (BKM) show that one can use traded option prices to compute estimates

of the variance, skewness, and kurtosis of the risk-neutral distribution. These moments in

turn serve as the inputs to the NIG method, which estimates the distribution. Eriksson,

Ghysels, and Wang (2009) show that the NIG has several advantages to alternatives such

as Gram–Charlier series expansions in pricing options. In particular, the distribution pre-

vents negative probabilities, which the expansions can generate for the levels of skewness

and kurtosis implied by option prices. The density is also known in closed form, avoiding

the computational intensity of expansion approaches. Details of the estimation process are

provided in Online Appendix A.

Once the risk-neutral distribution is estimated, we measure the probability of default for

entity i at time t as the cumulative density of the NIG distribution at a default threshold a,

QO
it ðsÞ ¼

ða

�1
fNIG

�
x; Ei;tðsÞ;V itðsÞ;SitðsÞ;KitðsÞ

�
dx (5)

where fNIG is the NIG density function evaluated at a log return of x with parameters calcu-

lated as in BKM.3 The superscript O in Equation (5) indicates that the risk-neutral prob-

ability has been recovered from options data. The exact functional form of the density is

provided in Online Appendix A.

A critical detail in this procedure is the definition of the default threshold, a. In the

Merton (1974) model, equity has zero value in the case of default. However, the density at

x ¼ lnð0Þ cannot be calculated. Carr and Wu (2011) deal with this problem by assuming

that there is a range of values for the stock price, ½A;B�, in which default occurs.

Specifically, prior to default, the equity value is assumed to be greater than B, and upon de-

fault the value is assumed to drop below the value A 2 ½0;BÞ. In their empirical implemen-

tation, the authors set A¼ 0, and choose the lowest priced put with positive bid price and

positive open interest with strike price less than $5 and option delta less than or equal to

15% in absolute value for their estimation.

3 In a few cases, our estimates of the kurtosis are too small given the calculated skewness. In order

to calculate the cumulative density, it is necessary thatKit > 3þ 5
3 S2

it . In cases in which this re-

striction is violated, we set the kurtosis toKit ¼ 3þ 5
3 S2

it þ 1e � 14.
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For our initial choice of the default threshold, we begin with an updated version of the

data on bankruptcy filing dates from Chava and Jarrow (2004).4 We merge these data with

data taken from the Center for Research in Security Prices (CRSP), and calculate the per-

centage decline in price DP from 12 months prior to the bankruptcy filing to either the

delisting date or the CRSP price observed in the bankruptcy month.5

We examine the extent to which these declines are related to other measures of credit

risk and to credit ratings. In this sample, there are 383 firms for which we have Standard

and Poor’s (S&P) long-term credit ratings for the borrowers 12 months prior to bankrupt-

cy. The 12-month average declines in price for these firms are depicted by credit rating in

Table 1, where we group together all firms of a particular letter grade (i.e., “A”, “Aþ”,

and “A�”). The table suggests that there is a clear relation between credit rating and price

decline in the 12 months leading up to bankruptcy. Between “BBB”-rated and “CC”-rated

firms, there is a near monotonic decline in losses. The prices of “BBB”-rated firms are on

average 8% of their 12-month prior levels and the prices of “CC”-rated firms are 45% of

their 12-month prior levels on average. The magnitude of price declines does not increase

perfectly with credit rating; the average price decline of “A”-rated firms is higher than

that of “BBB”-rated firms and the price decline of “BB”-rated firms is higher than that of

“B”-rated firms.6 However, the overall pattern suggests that average price declines in the

12 months leading to bankruptcy filing decrease with credit rating.

Table 1. Drop in equity prices over 12 months prior to bankruptcy

Rating N Mean Std. Min. Max.

A 3 0.14 0.18 0.00 0.35

BBB 26 0.08 0.11 0.00 0.47

BB 67 0.13 0.20 0.00 0.98

B 197 0.12 0.16 0.00 0.95

CCC 59 0.20 0.22 0.00 0.84

CC 9 0.45 0.23 0.18 0.86

D 22 0.38 0.30 0.02 1.00

Notes: The table presents the magnitude of the drop in equity prices for firms that file bankruptcy over the pre-

vious 12 months. Bankruptcy filing dates are from the updated version of the data in Chava and Jarrow (2004)

and are merged with CRSP data on equity prices and returns. We include only those firms that have CRSP data

12 months prior to the bankruptcy and in the month of bankruptcy filing and whose price declined over the 12

months prior to filing. The table presents summary statistics by credit rating for the decline in price by S&P

credit rating for those firms for which ratings data are available. We present means, standard deviations, mini-

ma, and maxima of the ratio of the value of the stock price in the month of bankruptcy filing or delisting price

to the price 12 months prior.

4 Thanks to Sudheer Chava and Claus Schmitt for making these data available.

5 There are 1560 bankruptcy events in which the price declined over the previous 12 months, with an

average decline in price of 79.40%. There are an additional 86 cases in which returns are positive

over the 12-month period.

6 The average price declines of “A”-rated firms are driven by the very small number of “A”-rated

firms (3) that have filed for bankruptcy. These firms are PG&E, with a stock price drop of 63.6%
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Based on this evidence, for much of the analysis in the article, we let a, the default thresh-

old, vary across credit ratings; we term this the Rating-derived a. According to S&P, from

1981 to 2015, no AAA-rated credit has defaulted, and defaults of “AA”-rated are rare. As a

consequence, we assign a ¼ 0:05 to “AAA”-rated firms and a ¼ 0:10 to “AA”-rated firms,

respectively. We assign a ¼ 0:15 to “A”-rated firms and increment a by 0.05 as we move to

lower levels of credit ratings from “BBB” to “B”, consistent with the lower price declines

associated with these firms. Finally, firms with ratings of “CCC” and below are assigned

a ¼ 0:35. In our sample, these choices imply an average default threshold of a ¼ 0:18.

In robustness checks, we also compute default probabilities for each firm assuming a

constant critical value across firms, and allow those critical values to vary from a ¼ 0:01 to

a ¼ 0:40. In later sections of the article, we compare results obtained using Rating-derived

alphas to those obtained using a constant threshold of 0.15, and all results with constant

thresholds are available from the authors upon request.

2 Risk-Neutral Probabilities Implied by CDS and Option Prices

2.1 Data Description

Data on CDS are obtained from Markit. The initial sample consists of daily representative

CDS quotes on all entities covered by Markit over the period January 2002 through

November 2019. With the standardization of CDS contracts in 2009, new CDS contracts

began trading with fixed coupon of 100 or 500 basis points, with upfront payment depend-

ing on the perceived credit risk of the underlying bond issuer. The CDS rate provided by

Markit is “at market” composite CDS quotes, computed based on the bid and ask quotes

obtained from two or more anonymous CDS dealers. We assume that the composite CDS

rate is the rate at which the market value of the default swap is zero, without an upfront

payment. While the five-year contract is generally thought to be the most liquid, our pro-

posed measure of default probability relies on options data, of which few are struck for

maturities in excess of one year. As a consequence, we restrict attention to entities that have

quote data available on one-year CDS. We use these quoted prices, together with zero cou-

pon discount rates, to solve for the default intensity, kt in Equation (3), assuming a constant

rate of LGD at 60%. Discount rates are obtained by fitting the extended Nelson and Siegel

(1987) model in Svensson (1994) using all non-callable Treasury securities from CRSP. Our

initial sample consists of 364 entities for which we have at least one default intensity

observation.

Options data are from OptionMetrics. The calculation of the risk-neutral moments

requires the computation of integrals over a continuum of strikes. However, options are

struck at discrete intervals. In addition, while the CDS in our sample has a constant one-

year maturity, the maturity of options available in our sample varies and there are relatively

few contracts available that are close to one year to maturity. We follow Hansis, Schlag,

and Vilkov (2010) and Chang, Christoffersen, and Jacobs (2013) in constructing the volatil-

ity surface for options at 365 days to maturity using a cubic spline. We interpolate implied

volatilities over the support of option deltas ranging from �99 to 99 at one-delta intervals,

setting implied volatilities constant for deltas outside the span of observed option prices.

prior to filing in April 2001; Armstrong Cork, with a stock price drop of 93.8% prior to filing in

December 2000; and Lehman Brothers, with a drop of 99.9% prior to delisting in September 2008.
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We then convert implied volatilities to option prices and integrate over OTM calls and puts

using the rectangular approximation in Dennis and Mayhew (2002). In order to be included

in the sample, we require that options have positive open interest, positive bid and offer pri-

ces, at least two OTM puts and OTM calls, offer prices greater than bid prices and offer

prices greater than $0.05. We also eliminate options where the offer price is greater than

five times the bid price. Our sample of option-implied default probabilities yields 299 firms

out of the 364 firms with default intensity information from CDS data.

We merge data from Markit, OptionMetrics, and CRSP data on the basis of the ticker

and firm name to obtain the permno as a unique identifier for each firm. Next, we merge

the matched sample of option- and CDS-implied default probabilities with credit ratings

data from Compustat. We retain observations for which Compustat has a S&P ratings

grade for the month of the observation. Since credit ratings data on Compustat end in

February 2017, the combined sample extends only through that date. The final sample of

firms, which have at least one time series observation with an option-implied default prob-

ability, a CDS-implied default probability, and a S&P credit rating, consists of 276 firms

over the period January 2002 through February 2017.7

2.2 Descriptive Statistics

Summary statistics for the default probabilities implied by options and CDSs in our sample

of firms are presented in Table 2. For each firm, the default probability is calculated as the

time series average of the weekly estimates obtained from CDS or options data using

Rating-derived alphas. We report the mean, standard deviation, 5th, 50th, and 95th percen-

tiles of the distribution of default probabilities in Panel A. Additionally, we report the 5th,

50th, and 95th percentile of the distribution of the correlation between CDS- and option-

implied probabilities in Panel B.

The summary statistics indicate that across the distribution of firms, option-implied

probabilities are on average higher than CDS-implied default probabilities. The mean and

median option-implied default probability are 2.87% and 2.03%, compared to 1.98% and

0.77% for CDS. In addition, the option-implied probabilities exhibit less cross-sectional

variation than CDS-implied default probabilities, with standard deviations of 2.61% and

3.75%, respectively. These results suggest that the distribution of CDS-implied default

probabilities is more positively skewed than option-implied default probabilities; we ex-

plore various explanations for the skew later in the article.

Table 2. Summary statistics for probabilities of default

Panel A: Distribution

Data Source Mean Std. p5 p50 p95

Option 2.87 2.61 0.71 2.03 7.77

CDS 1.98 3.75 0.15 0.77 6.56

7 These data are sourced from S&P Annual Global Corporate Default Study and Ratings Transitions

2015.
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We observe a substantial but imperfect correlation between CDS-implied and option-

implied probabilities. The median correlation coefficient between default probabilities is

0.52; even at the 95th percentile, the correlation is less than 1.0.8

In Figure 1, we plot the time series of cross-sectionally averaged weekly default proba-

bilities implied by CDS and options. For the options-based default probabilities, we show

the averages when the default threshold varies by credit rating, as well as when the default

threshold is held constant at 0.15. The plot shows that the CDS measure of default prob-

ability, as well as both option-implied default probabilities, exhibit common features; de-

fault probabilities are uniformly low during the economic expansion and spike during times

of economic turbulence. In particular, the default probabilities rise sharply during the reces-

sion in the early 2000s and the financial crisis of 2007–2009. Default probabilities also

spike in late 2011, corresponding to the uncertainty surrounding the U.S. Congress’ willing-

ness to raise the federal debt ceiling and the subsequent downgrade of U.S. sovereign debt

by S&P. Both measures of default probabilities are low during the economic expansions of

mid-2000s and the later part of the sample in 2013–2017. The result that default probabil-

ities are countercyclical is consistent with the evidence in (Chen et al., 2009) , who find that

they are better able to explain Baa-Aaa spreads using a model that is calibrated to match

Figure 1. Implied default probabilities.

Notes: The figure plots the time series of aggregate default probabilities. Default probabilities are

measured using one-year CDS spreads with an assumed rate of LGD of 60% and using the risk-neutral

distribution implied by option prices with a ratings-dependent default threshold and a constant thresh-

old a ¼ 0:15. CDS data are obtained from Markit and options data from OptionMetrics. Data are

sampled at the weekly frequency and aggregated by taking the average across the firms in the sample.

The data cover the period January 2002 through February 2017, and cover 276 firms.

8 At the 5th percentile, note that the correlation between the two default probabilities is negative.

However, we find that this result is driven by the large gaps in the time series for some firms, with

virtually all of the negative correlations concentrated in firms with relatively few time series

observations.
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default rates that are countercyclical. We find that all three estimates of default probabil-

ities exhibit this tendency: the correlation between both of the two option-implied default

probabilities and the CDS-implied default probability through time is relatively high, at

0.66 and 0.56, respectively.

The greater variability in CDS-implied default probabilities observed in Figure 1, with

higher default probabilities compared to option-implied probabilities during market down-

turns and lower default probabilities compared to option-implied probabilities during mar-

ket upturns, is consistent with the evidence in Table 2. It may also reflect variation in LGDs

through the cycle, in contrast with the (assumed) constant LGDs embedded in the CDS-

implied estimates of default probabilities shown here. That is, this pattern is consistent with

expected LGD covarying positively with true default probabilities. We investigate this pos-

sibility later in the article.

2.3 Default Probabilities and Credit Ratings

To investigate further the cross-sectional variation in implied default probabilities, we re-

port summary statistics for default probabilities by credit rating. In Table 3, we present

mean and median default probabilities and the number of firms conditional on ratings class.

Since firms may migrate across ratings, the total N reported in the table differs from the

total number of firms reported in the sample. Thus, the N¼9 for “AAA”-rated firms indi-

cates that there are nine firms that at some point in this time series have been rated “AAA.”

As above, we group together firms with a “þ,” “�,” or no modifier.

Table 3. Summary statistics for probabilities of default by credit rating

Credit Rating Option CDS

Mean Median Mean Median

AAA 9 0.45 0.35 0.23 0.19

AA 32 0.90 0.87 0.44 0.24

A 116 1.35 1.37 0.61 0.32

BBB 158 2.16 2.08 1.27 0.72

BB 88 3.71 3.64 2.87 2.34

B 49 6.73 6.09 4.72 3.59

CCCþ and below 9 14.39 14.51 15.38 11.48

Notes: The table presents summary statistics for risk-neutral probabilities of default implied by CDS spreads

and prices of options on the equity of the same firm, grouped by credit rating. Firms with credit ratings aug-

mented by ‘þ’ or ‘�’ are grouped together; for example, rating ‘BBB’ refers to firms with a credit rating of

‘BBBþ’, ‘BBB’, or ‘BBB�’. CDS-implied default probabilities are calculated using a Nelson–Siegel–Svensson

zero coupon term structure and constant one-year maturity CDS, assuming a LGD of 60% on the underlying

bond. Option-implied default probabilities are measured using the BKM procedure for computing risk-neutral

moments, and then computing risk-neutral probabilities of the NIG distribution on the basis of these moments.

Risk-neutral moments are computed using the implied volatility surface of options with 365 days to maturity.

We calculate the average default probability for each firm, conditional on its ratings group, and report the

mean and median of these averages by ratings group. Options and CDS data are sampled at the weekly fre-

quency, and ratings at the monthly frequency for 276 firms over the period January 2002 through February

2017.

Sources: CDS data are from Markit, options data are from OptionMetrics, and ratings data are from

Compustat.
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The summary statistics in Table 3 indicate that for both CDS- and option-implied de-

fault probabilities, the average risk-neutral probability of default increases monotonically

across ratings classes. Using options (CDS) data, average default probabilities increase from

0.45% (0.23%) for “AAA”-rated firms to 14.39% (15.38%) for firms rated “CCCþ” and

below. There is a similar pattern of monotonic increase in median default probabilities

across ratings classes, although CDS-implied median default probabilities are typically

lower than the mean default probabilities. Across all ratings except “CCC,” the average

and median option-implied probability is higher than that of the CDS-implied probability,

consistent with the aggregate evidence reported earlier.

Of course, since the default thresholds in Table 3 vary by credit rating, some of these

results may be mechanically induced. In untabulated results, we examine default probabilities

across ratings classes, while keeping the default threshold constant across firms. Our results

indicate that, as credit ratings deteriorate, the default probabilities implied by options for

firms with poor credit ratings and relatively high default thresholds (high a) are more similar

to those implied by CDS than those implied by relatively low thresholds (low a). Similarly,

the default probabilities implied by options for firms with strong credit ratings are more simi-

lar to those implied by CDS when the threshold is low. This evidence is consistent with de-

fault thresholds that vary both cross-sectionally [as in Chava and Jarrow (2004)] and over

time [as in Chen, Collin-Dufresne, and Goldstein (2008)] as credit ratings migrate.

2.4 Firm Characteristics and Probability of Default

The evidence presented above indicates that option-implied risk-neutral probabilities of default

are substantially and positively correlated with CDS-implied risk-neutral probabilities of de-

fault, and are cross-sectionally correlated with S&P credit ratings. We analyze cross-sectional

variation in default probabilities in more detail in this section, by examining the relation be-

tween both estimates of default probability and firm characteristics. In particular, we use a

variant of Campbell, Hilscher, and Szilagyi (2008), who specify a pooled logit model for pre-

diction of default. Instead of using a limited dependent variable based on an observation of de-

fault, we regress continuous estimates of default probabilities on firm-specific variables.

Qk
it ¼ ait þ b0itxit þ uit;

where Qk
it is the Week t observation of the risk-neutral probability, k ¼ fC;Og indexes

CDS- and option-implied default probabilities and xit is a vector of firm-specific character-

istics. In constructing these characteristics, we sample market variables at the weekly fre-

quency contemporaneously with the default probabilities. Accounting data items are

sampled at the quarterly frequency and lagged one-quarter relative to the default probabil-

ities.9 The firm-specific variables that we use comprise the fundamental variables examined

in Campbell, Hilscher, and Szilagyi (2008) and are described in Online Appendix B.

The results of these regressions are presented in Table 4. We split the sample into finan-

cial and nonfinancial firms, defined by the firm’s GICS sector from Compustat. Campbell,

Hilscher, and Szilagyi (2008) consider only nonfinancial firms, and ratios such as leverage

9 Results are qualitatively unchanged if we sample the last weekly observation of the quarter for the

market variables and default probabilities, rather than using all weekly observations.
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and book-to-market ratio are likely to be very different for financial firms than nonfinan-

cial firms.

The results for nonfinancial firms indicate that the relations between CDS-implied and

option-implied default probabilities and firm characteristics are similar. The implied default

probabilities for nonfinancial firms are statistically significantly decreasing in profitability,

book-to-market, and relative size when default probabilities are measured using either

options or CDS. Both the default probabilities are statistically significantly increasing in le-

verage and return volatility. All of these relations are consistent with the results in

Campbell, Hilscher, and Szilagyi (2008). For example, the negative association between

book-to-market ratios and default probabilities is consistent with the positive relation be-

tween market-to-book equity ratio and bankruptcy in Campbell, Hilscher, and Szilagyi

(2008). This result is also consistent with the evidence in Hovakimian, Kayhan, and Titman

(2012), who find that firms with higher proportions of tangible assets (or low book-to-

market ratios) have lower default probabilities. Additionally, both default probabilities are

Table 4. Relation between firm characteristics and default probabilities

Characteristic CDS Option

Financial Nonfinancial Financial Nonfinancial

NIMTA �17.32*** �11.20*** �24.37*** �5.99***

(2.18) (0.34) (1.30) (0.22)

TLMTA 2.90*** 1.54*** 1.89*** 2.33***

(0.13) (0.04) (0.08) (0.02)

EXRET �0.46*** �0.35*** 1.56*** 0.38***

(0.15) (0.04) (0.09) (0.02)

SIGMA 7.45*** 7.33*** 1.99*** 4.84***

(0.09) (0.04) (0.05) (0.02)

RSIZE �1.00*** �0.80*** �0.86*** �0.36***

(0.02) (0.01) (0.01) (0.00)

CASHMTA 4.51*** 1.62*** 3.91*** 2.21***

(0.29) (0.09) (0.18) (0.06)

BM 0.04*** �0.47*** �0.06*** �0.32***

(0.01) (0.01) (0.01) (0.01)

R2 0.54 0.46 0.40 0.59

Notes: The table examines the relationship between default probabilities implied by either CDS spreads using a

60% LGD assumption or options with a critical threshold that varies with credit rating, and firm-specific char-

acteristics. Default probabilities at the end of each month are regressed on a set of nine firm-specific variables:

NIMTA, the ratio of net income to market value of total assets, TLMTA, the ratio of total liabilities to market

value of assets, EXRET, the monthly log return on the firm’s equity in excess of that of the S&P 500, SIGMA,

the volatility of the firm’s equity return over the past three months, RSIZE, the log ratio of the market capital-

ization of the firm’s equity to that of the S&P 500, CASHMTA, and BM, the firm’s ratio of book value of

equity to market value of equity. Point estimates are the average of monthly regression coefficients, and stand-

ard errors in parentheses are corrected using the Newey-West procedure. We present results for financial firms

and for firms excluding financial firms, defined as those in GICS sector 40.

Sources: Data for CDS are obtained from Markit, data for options is obtained from Option Metrics, return in-

formation is obtained from CRSP, financial statement and ownership information is obtained from

Compustat.

*,**,*** denotes significance at the 10%, 5%, and 1% critical level, respectively.
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positively and statistically significantly associated with cash holdings, suggesting a greater

precautionary saving motive for holding cash as in Acharya, Davydenko, and Strebulaev

(2012). For only one variable, excess returns, does the relation to the two measures of de-

fault probability change signs in this subsample.

Results for financial firms are broadly similar to those for nonfinancial firms. When de-

fault probabilities are measured by options, the regression coefficient associated with firm

characteristics is similar for financial and nonfinancial firms in terms of sign and statistical

significance. We obtain similar findings for CDS-implied default probabilities, with the ex-

ception of its relation to book-to-market. Overall, the results of this analysis suggest that

the relation of firm characteristics to both CDS and option-implied default probabilities are

consistent with the underlying fundamentals of the firm.

3 Sources of Difference Between Option- and CDS-Implied Default
Probabilities

The evidence presented so far suggests that default probabilities inferred from CDS and op-

tion prices contain broadly similar information regarding the time series properties of prob-

abilities of default. Additionally, the evidence suggests that credit ratings and firm

characteristics that are hypothesized to be related to the probability of default are related to

both option- and CDS-implied default probabilities; that is, both estimates of default prob-

abilities are capturing cross-sectional information.

However, as noted above, default probabilities estimated from the CDS and equity

options market are not perfectly correlated. It is possible that these differences may simply

arise from estimation error; in particular, the option-implied default probabilities are based

on estimation of risk-neutral moments and the imposition of the NIG distributional as-

sumption. In this section, we consider various reasons that the probabilities from the two

markets might differ.

The first possibility we consider is that differences in option and CDS prices are due to

variation in rates of LGD. A second possibility is that aggregate and security-level liquidity

may impact option and CDS prices, and therefore the imputed default probabilities derived

from these markets. For example, at the security level, our option-based probability esti-

mates begin by calculating implied volatility surfaces using OTM puts and calls. These con-

tracts, especially deep OTM contracts, are likely to have less liquidity than near-the-money

puts and calls. Further, we are interpolating the volatility surface at a maturity of 365 days,

where there are likely to be fewer available contracts and lower liquidity. In addition, CDS

is also likely to suffer from liquidity issues. We are using one-year CDS contracts, which

have lower liquidity than five-year contracts. Finally, CDS are relatively sparsely traded at

the beginning of our sample period and some contracts also suffer from liquidity issues dur-

ing the financial crisis.

A third possibility involves the default threshold, a, that is used when estimating default

probabilities from the options market. That is, higher a’s may result in option-implied de-

fault probabilities that better match CDS-implied default probabilities in times when CDS-

implied probabilities are high and for firms with poorer credit ratings. Thus, as in Chen,

Collin-Dufresne, and Goldstein (2008), it may be that the market perceives the default

threshold for equity as being different during times of financial market stress or when a

firm is closer to its default boundary; although our estimation method lets a vary as the
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credit rating varies, the market’s perception of the default threshold may change at a higher

frequency than a firm’s credit rating. In addition, there may be other economic rationales

for a varying default threshold, such as strategic bankruptcies; that is, in some circumstan-

ces, firms may find it beneficial to default even if they are solvent and able to make debt

payments, as in Davydenko and Strebulaev (2007).

3.1 A Simple Measure of LGD

To analyze differences in the default probability estimates in these two markets, and in par-

ticular to explore whether these differences may be related to LGDs, we consider a simpli-

fied version of the relation between the CDS spread, the default probability, and the LGD.

If we consider a simple one-period CDS contract:

St ¼ ðQC
t Þ � ðLGDtÞ;

the CDS spread is the product of the default probability and the LGD. While the relation-

ship between spreads, default probabilities, and LGD is more precisely given in Equation

(3), this approximation provides useful intuition for understanding the relation between

spreads, default probabilities, and rates of LGD.

Under the standard practice of assuming a constant rate of LGD of 60%, the spread and

the CDS implied default probability in this simple model are perfectly correlated by con-

struction, both cross-sectionally and in the time series. However, if the option-implied de-

fault probability is a valid estimate of the true default probability, then the ratio of CDS

spread and option-implied default probability should provide an (approximate) estimate of

LGD that is allowed to vary across firms and through time. Of course, this ratio will also

capture effects related to liquidity, mis-specification of the default threshold, and other esti-

mation errors. We begin by calculating this ratio, denoted as ^LGD, and considering its

properties below.

3.1.1 Cross-market inferences

In Figure 2, we present the time series of average estimates of ^LGD across all firms in our

sample, where option-implied default probabilities are calculated using both a threshold

based on credit ratings (labeled Rating-derived) and a constant default threshold of 0.15.

To limit the LGDs to 100%, we set values of ^LGD that are above 100% to missing.

The figure shows that the average ^LGD measures obtained using the two default thresh-

olds are highly correlated. In addition, the behavior of both measures of ^LGD through time

is consistent with the interpretation that the measure is related to LGD; note that the aver-

age ^LGD varies strongly with business conditions, consistent with the relation between re-

covery rates and market fundamentals documented in Jankowitsch, Nagler, and

Subrahmanyam (2014). In particular, the variation in ^LGD implies that average LGDs are

high in the early 2000s (at approximately 45%), followed by declines in LGD to values of

approximately 10–15% during the economic recovery of the mid-2000s. LGDs again rise

sharply to 55% during the financial crisis of 2007–2009, and then gradually decline. The

secondary increase in LGD in 2011 is contemporaneous with the downgrade of U.S. debt in

2011. Over the recent period of 2013–2017, the LGDs hover around 15%. Note that the

average LGD in economic expansions is substantially lower than the typical assumed
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(constant) rate of 60%, although it is consistent with the average historical LGD figures

reported for large corporate borrowers [see, e.g., Global Credit Data (2018)].

Regardless of default thresholds, the evidence in Figure 2 that ^LGD varies with econom-

ic conditions is consistent with an inference that combining option-implied default prob-

ability measures with CDS data provides information about recovery rates, and indicates

that the assumption that recovery rates are constant through time is a poor fit to the data.

In addition, if both default probabilities and LGDs are countercyclical, note that estimates

of default probability taken from CDS under the assumption that LGD are constant would

result in default probability estimates that are more variable, and more right-skewed, than

estimates taken from option prices, consistent with the evidence in Table 2; intuitively, if

one assumes that LGD is constant instead of allowing LGD and default probabilities to

covary positively, then estimated default probabilities must vary more in order to match the

volatility in CDS rates. In the next sections, we examine the variation in ^LGD across sec-

tors, while controlling for other factors such as liquidity.

3.1.2 Loss given default and industry sectors

We analyze variation in ^LGD across sectors. The results so far indicate that the cross-

sectional variation in option-implied default probabilities is sensitive to the default thresh-

old chosen, although the time series information in ^LGD across different thresholds is simi-

lar. As a consequence, we examine LGD inferences for the two default thresholds presented

in Figure 2: a constant a ¼ 0:15 and the firm-specific default thresholds based on credit rat-

ing (i.e., the Rating-derived a). We utilize the GICS sector definitions, which separate firms

Figure 2. Differences in log CDS spreads and option-implied default probabilities.

Notes: The figure plots the time series of the ratio of one-year CDS spreads and option-implied default

probabilities aggregated over firms, denoted as ^LGD . Option-implied default probabilities are calcu-

lated with a rating-derived default threshold and a constant threshold a ¼ 0:15. Options data are from

OptionMetrics and CDS data are from Markit. Data cover 276 firms over the period January 2002

through February 2017.
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into eleven sectors; Energy, (EN) Materials (MA), Industrials (IN), Consumer

Discretionary (CD), Consumer Staples (CS), Healthcare (HC), Financial (FI), Information

Technology (IT), Telecommunications (TC), Utilities (UT), and Real Estate (RE). Sector

classifications are obtained from Compustat.

In Table 5, we report the estimates obtained using both default thresholds. For each de-

fault threshold measure, we report the number of firms in the sample or sector in the first

column, followed by the average ^LGD in the sample or sector; in the remaining columns,

we present the 5th percentile and 50th percentile of the cross-sectional distribution of
^LGD. This is followed by a column that reflects the percentile in the sample or sector where
^LGD exceeds 100%.

When default thresholds vary by credit rating, the median-implied LGD across the entire

sample is 21%, or a recovery rate of 79%; note again that the median ^LGD using this ap-

proximation is lower than the typical Markit estimate of 60%. For nine of the eleven sec-

tors, the median ^LGD ranges between 16% (Industrials) to 30% (Financials), with

substantially higher ^LGD for Telecommunications and Real Estate. The number of firms

with ^LGD greater than 1 is relatively small; there are six firms in total with these extreme
^LGD in four sectors. Overall, 99% of the firms have ^LGD lower than 1.0.

We obtain qualitatively similar results when the default threshold is held at a constant

0.15, with the range of ^LGD increasing in most cases. In the full sample, the median ^LGD

is 0.32, and the range of ^LGD in nine out of eleven sectors is within the range of 16–44%.

Table 5. Summary statistics for ratio of CDS spreads to option probabilities

Sector Rating-Derived a a ¼ 0:15

N p5 p50 L ¼ 100 p5 p50 L ¼ 100

All 276 0.08 0.21 99 0.08 0.32 84

Energy 26 0.12 0.19 100 0.09 0.27 85

Materials 19 0.08 0.20 100 0.10 0.33 95

Industrials 37 0.08 0.16 95 0.07 0.16 84

Discretionary 50 0.11 0.24 100 0.12 0.44 78

Staples 26 0.10 0.20 100 0.09 0.18 81

Healthcare 30 0.10 0.19 100 0.07 0.27 97

Financials 32 0.14 0.30 94 0.10 0.34 91

Technology 24 0.08 0.27 100 0.07 0.41 83

Telecommunications 10 0.08 0.53 90 0.08 0.98 50

Utilities 16 0.11 0.20 100 0.13 0.32 75

Real Estate 6 0.17 0.47 83 0.27 0.68 83

Notes: The table presents summary statistics for the ratio of one-year CDS spreads and default probabilities

implied by risk-neutral probabilities of default as measured by options. Option-implied default probabilities

are measured using the BKM procedure for computing risk-neutral moments, then computing risk-neutral

probabilities of the NIG on the basis of these moments. Risk-neutral moments are computed using the implied

volatility surface of options with 365 days to maturity. CDS data are from Markit and options data are from

OptionMetrics. The table presents the number of firms, 5th and 50th percentiles of the cross-sectional distribu-

tion of average ratio of one-year CDS spreads to option-implied default probabilities, and the percentile at

which the ratio exceeds 1.0. Results are presented for all firms in the sample and with GICS sectors and two de-

fault thresholds; one based on Rating-derived thresholds and the other a constant threshold of 0.15. Data are

sampled at the weekly frequency for 276 firms over the period January 2002 through February 2017.
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For both default thresholds, we observe considerable variation in ^LGD across sectors,

indicating that recovery rates vary cross-sectionally. Using both measures of default thresh-

old, there are two sectors with higher ^LGD: telecommunications and real estate, where the

estimated median LGD increases to approximately 0.5 in the ratings-derived default thresh-

old, and to values of median ^LGD at 98% and 68%, respectively, using the constant de-

fault threshold. Note that these two sectors also have a relatively small number of firm

observations (ten or fewer); as a consequence, these results may be subject to greater esti-

mation error. Overall, however, the correlation across sectors in the median estimate of
^LGD across the two default thresholds is quite high, at 0.97.

3.2 Liquidity, Default Probabilities, and LGD

While variation in LGD is one possible explanation for differences in risk-neutral default

probabilities across options and CDS, another possibility is that estimated probabilities in

these two markets differ as a result of market frictions. As mentioned above, OTM options

used to estimate risk-neutral moments, and then option-implied default probabilities, may

be thinly traded; in addition, the liquidity of some CDS contracts is low. As a consequence,

the marked increase in LGD around the crisis may reflect instead changes in market liquid-

ity.10 Note that the approximate relation between CDS rates, option-implied default proba-

bilities, and LGD discussed in Section 4.1 implies that, in the absence of market frictions,

the difference between the log CDS spread and the log default probability should be ap-

proximately equal to the log LGD. We use this approximation and estimate the extent to

which variation in this difference is related to changes in various liquidity measures.

Illiquidity in the CDS and options markets may reflect both security-specific and

market-wide variation in liquidity.11 We are limited in measuring security-specific liquidity

by the data available for options and CDS. In the case of options, we have information on

bid–ask spreads, open interest, and volume. Since the default probabilities recovered from

options are likely to depend most on the prices of OTM options close to 365 days to matur-

ity, we construct SPREADO
t , the average percentage bid–ask spread for the OTM options

used in constructing our volatility surface. We also compute VOLO
t and OPENO

t , the sum

of volume and open interest for these contracts. In the case of CDS, we have a measure of

the firm-specific depth for five-year CDS contracts, DEPTHC
t . We assume that depth for

the one-year contracts is correlated with the depth of the five-year contracts for each firm

and use that as another measure of liquidity.

To capture aggregate liquidity, we use two measures from the fixed income security

markets. First, we use the Treasury-Eurodollar spread, TEDt, measured as the difference in

90-day LIBOR and 90-day Treasury Bill yields. An increase in the TED spread can indicate

an increase in interbank counterparty credit risk, and a consequent drop in funding liquid-

ity. The second measure is the root mean squared error of the difference in market Treasury

10 It is possible that precipitous declines in market liquidity are associated with declines in asset val-

ues and thus increases in LGD (see, e.g., Brunnermeier and Pedersen (2009). If that is the case,

our controls for market liquidity will cause the increases in LGD during periods of market illiquidity

to be estimated conservatively.

11 Note that by using Fama and MacBeth (1973) regressions we are in effect including a time fixed

effect in the regression. Thus, the results reported earlier supporting the interpretation of ^LGD as

a proxy for LGD are unlikely to be due to aggregate liquidity effects.
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security yields from those implied by a Nelson–Siegel–Svensson model. This measure,

NOISEt, is investigated in Hu, Pan, and Wang (2013). The authors suggest that NOISEt is

high when there is less arbitrage capital available in the Treasury market, a condition asso-

ciated with lower liquidity. The TED spread is constructed using data from the Federal

Reserve and NOISEt is obtained from Jun Pan’s webpage.12 Finally, we include a proxy for

liquidity in the equity markets; Nagel (2012) suggests that a high level of the VIX index,

VIXt is associated with a high-risk premium, and a consequent large reduction in liquidity

provision, in equity markets. Data on the VIX are also obtained from the Federal Reserve.

We examine the extent to which liquidity effects influence the relation between CDS-

and option-implied default probabilities by estimating the relation between changes in the

(log) approximate LGD and changes in the (log) liquidity variables, beginning at the aggre-

gate level. That is, we estimate the parameters of a regression,

D ^lgda;t ¼ aa þ ba;1Dtedt þ ba;2Dnoiset þ ba;3Dvixt þ ba;4DspreadO
a;t

þba;5DvolOa;t þ ba;6DopenO
a;t þ ba;7DdepthC

a;t þ ea;t;
(6)

where a indicates that we are measuring the quantity at the aggregate level, and aggregate

variables are calculated as the cross-sectional average of individual time series observations.

Lowercase variables are natural logs of their uppercase counterparts. The option-implied

probability of default that is used to construct the estimate of LGD uses a rating-derived de-

fault threshold. All variables are measured at the weekly horizon.

Results of this regression are reported in Table 6. When all liquidity variables are

included, there is some evidence that changes in options market liquidity variables are asso-

ciated with changes in CDS spreads. Specifically, the coefficient on DspreadO is significant

at the 1% level, with an increase in spreads associated with a downward revision in the ap-

proximate LGD. In contrast, changes in the VIX are associated with a significant increase

in LGD, suggesting that some of the marked increase in LGD observed in the financial crisis

may be associated with an increase in market-wide volatility. This result is consistent with

the evidence in Nagel (2012), who shows that an increase in the VIX is associated with a re-

duction of equity arbitrage capital; alternatively, or in addition to a liquidity effect, the in-

crease in market-wide volatility may be associated with a decline in asset values. Together,

changes in these liquidity variables explain approximately 17% of the variation in changes

in the log LGD measure.

We also report the results of this regression across sectors in Table 7. The results are

generally consistent with the results observed in the aggregate. Across all sectors with the

exception of real estate, we continue to find evidence that changes in the VIX are positively

associated with changes in the average ^LGD in the sector. Changes in option spreads are

negatively and statistically significantly associated with changes in ^LGD in six out of the

eleven sectors at the 5% or 10% critical level (specifically, consumer discretionary, con-

sumer staples, healthcare, financial, information technology, and utilities). Changes in op-

tion open interest are significantly negatively related to changes in ^lgd in the real estate

sector. Finally, changes in the NOISE measure are statistically significantly and positively

related to changes in ^lgd in the energy and consumer staples sectors. In all of these cases,

12 We thank Jun Pan for making these data available at http://www.mit.edu/junpan/.
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the R2 measures indicate that liquidity measures account for less than 10% of the time ser-

ies variation in changes in the approximate LGD measure.

Using these regression results, we construct an alternative measure of approximate LGD

that controls for the effect of these liquidity measures. Specifically, we construct an alterna-

tive ^LGD by cumulating the residuals from Equation (6). At time t, this liquidity-adjusted

LGD measure is calculated as

^LGD
�
a;t ¼ exp âa þ

Xt

j¼0

êa;t�j

0
@

1
A;

where we initialize ^LGD
� ¼ ^LGD at time t¼1 (in January 2002) and at each period add

the residual at time t given by the regression above. We exponentiate this series so that it

can be compared to the ^LGD measure calculated previously.

Table 6. Liquidity, CDS spreads, and option-implied default probabilities

Dted Dnoise Dvix DvolO DopenO DspreadO DdepthC R2

Aggregate 0.012 0.024 0.152 0.003 0.033 �0.113 �0.027 0.168

SE (0.019) (0.016) (0.015) (0.006) (0.030) (0.029) (0.033)

p5 �0.493 �0.215 �0.195 �0.108 �0.724 �0.525 �0.133 0.012

SE (0.371) (0.596) (0.147) (0.132) (0.517) (0.242) (0.053)

p25 �0.082 �0.022 0.029 �0.034 �0.133 �0.215 �0.023 0.029

SE (0.174) (0.055) (0.065) (0.031) (0.406) (0.122) (0.023)

p50 0.007 0.040 0.165 �0.008 �0.002 �0.079 0.008 0.050

SE (0.080) (0.045) (0.079) (0.026) (0.164) (0.093) (0.017)

p75 0.082 0.115 0.259 0.016 0.110 0.031 0.039 0.086

SE (0.041) (0.057) (0.073) (0.038) (0.258) (0.274) (0.054)

p95 0.285 0.330 0.457 0.082 0.447 0.446 0.122 0.256

SE (0.098) (0.170) (0.064) (0.059) (0.183) (0.393) (0.090)

Notes: The table presents the results of regressions of changes in the log approximate LGD on changes in log li-

quidity variables. The regressions are specified as

D ^lgda;t ¼ aa þ ba;1Dtedt þ ba;2Dnoiset þ ba;3Dvixt þ ba;4DspreadO
a;t

þba;5DvolOa;t þ ba;6DopenO
a;t þ ba;7DdepthC

a;t þ ea;t;

where ^lgda;t is the log of an approximate LGD measure and is constructed by subtracting the log of the option-

implied default probability from the log of the one-year CDS spread. tedtþ1 is the log TED spread, the differ-

ence between the yield on 90-day LIBOR and 90-day Treasury Bills, noisetþ1 is the log of the noise measure

from Hu, Pan, and Wang (2013), vixtþ1 is the log VIX index, volOi;tþ1 is the log of the sum of volume for

OTMOTM options on firm i, openO
i;tþ1 is the log sum of open interest on firm i’s OTM options, spreadO

i;tþ1 is

the log of the average percentage bid–ask spread for firm i’s OTM options, and depthC
i;tþ1 is the depth of five-

year CDS contracts for firm i. The table first reports results of regressions of the change in log LGD on the ex-

planatory variables, where the aggregate is constructed as the cross-sectional average of each week’s observa-

tions. The table also reports results for the 5th, 25th, median, 75th, and 95th percentile coefficient estimates

and their associated standard errors for firm-specific regressions. The sample covers 276 firms over the period

January 2002 through February 2017.

Sources: Options data is from OptionMetrics, CDS data from Markit, financial market data from the Federal

Reserve, and the noise measure from Jun Pan’s website.
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Figure 3 presents the time series of this variable. The behavior of this liquidity-adjusted

LGD measure is broadly similar to the series plotted in Figure 2, with a relatively high

implied LGD during the early 2000s recession that declines in the mid-2000s, followed by

sharp increases in the financial crisis of 2008–2009. There are two noteworthy differences

Table 7. Liquidity, CDS spreads, and option-implied default probabilities by sector

Sector Dted Dnoise Dvix DvolO DopenO DspreadO DdepthC �R
2

Energy �0.005 0.065 0.218 �0.010 �0.070 0.001 0.009 0.075

(0.038) (0.032) (0.031) (0.013) (0.062) (0.059) (0.037)

Materials 0.011 0.011 0.192 0.006 �0.015 �0.014 �0.042 0.041

(0.045) (0.038) (0.037) (0.015) (0.074) (0.071) (0.036)

Industrials 0.041 �0.046 0.081 0.018 �0.056 �0.075 �0.017 0.022

(0.041) (0.035) (0.034) (0.014) (0.068) (0.065) (0.046)

Cons. Disc. 0.020 0.012 0.174 0.003 0.058 �0.129 �0.006 0.068

(0.035) (0.029) (0.028) (0.012) (0.057) (0.054) (0.042)

Cons. Staples �0.006 0.083 0.096 0.027 0.042 �0.144 0.046 0.045

(0.037) (0.031) (0.030) (0.013) (0.061) (0.058) (0.041)

Healthcare �0.025 0.012 0.132 �0.009 0.039 �0.126 �0.087 0.056

(0.034) (0.028) (0.028) (0.012) (0.056) (0.053) (0.039)

Financials �0.002 0.053 0.155 �0.003 0.098 �0.158 �0.023 0.062

(0.036) (0.030) (0.029) (0.012) (0.059) (0.056) (0.034)

Info. Tech. 0.047 0.007 0.048 �0.019 0.158 �0.176 �0.077 0.014

(0.058) (0.051) (0.047) (0.021) (0.096) (0.092) (0.051)

Telecom. 0.023 0.115 0.166 0.029 0.111 �0.218 �0.141 0.024

(0.101) (0.088) (0.083) (0.036) (0.168) (0.165) (0.060)

Utilities 0.015 0.077 0.175 �0.020 0.176 �0.182 �0.074 0.033

(0.065) (0.055) (0.054) (0.022) (0.110) (0.109) (0.057)

Real Estate �0.048 0.001 0.154 �0.002 �0.460 0.147 0.019 0.012

(0.122) (0.106) (0.103) (0.043) (0.208) (0.211) (0.075)

Notes: The table presents the results of regressions of changes in the log approximate LGD on changes in log li-

quidity variables. The regressions are specified as

D ^lgda;t ¼ aa þ ba;1Dtedt þ ba;2Dnoiset þ ba;3Dvixt þ ba;4DspreadO
a;t

þba;5DvolOa;t þ ba;6DopenO
a;t þ ba;7DdepthC

a;t þ ea;t;

where ^lgda;t is the log of an approximate LGD measure and is constructed by subtracting the log of the option-

implied default probability from the log of the one-year CDS spread. tedtþ1 is the log TED spread, the differ-

ence between the yield on 90-day LIBOR and 90-day Treasury Bills, noisetþ1 is the log of the noise measure

from Hu, Pan, and Wang (2013), vixtþ1 is the log VIX index, volOi;tþ1 is the log of the sum of volume for OTM

options on firm i, openO
i;tþ1 is the log sum of open interest on firm i’s OTM options, spreadO

i;tþ1 is the log of the

average percentage bid–ask spread for firm i’s OTM options, and depthC
i;tþ1 is the depth of five-year CDS con-

tracts for firm i. The table reports results for series aggregated across two-digit GICS codes, Energy (EN),

Materials (MA), Industrials (IN), Consumer Discretionary (CD), Consumer Staples (CS), Healthcare (HC),

Financials (FI), Information Technology (IT), Telecommunications (TC), Utilities (UT) and Real Estate (RE).

Data are sampled at the weekly frequency from January 2002 through February 2017.

Sources: Options data is from OptionMetrics, CDS data from Markit, financial market data from the Federal

Reserve, and the noise measure from Jun Pan’s website.
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in the behavior of these LGD measures. First, ^LGD
�

is substantially higher than ^LGD be-

ginning approximately in 2009. That is, adjusting for liquidity effects results in an estimate

of loss given default ^LGD
�

that is meaningfully higher during the financial crisis. Second,

the liquidity-adjusted estimate of LGD remains relatively elevated after the financial crisis,

although it does decline, to approximately 0.35 in 2013, and then increases somewhat in

the 2014–2017 period. Overall, estimates of LGD that control for liquidity effects increase

in economic downturns; indeed, our evidence suggests that liquidity-adjusted LGD meas-

ures are more sensitive to economic states than LGD measures that do not control for

liquidity.

Figure 3. Liquidity-adjusted LGD.

Notes: The figure presents a liquidity-adjusted measure of the LGD, represented by the cumulative re-

sidual from a regression of the change in approximate log LGD on a set of variables measuring liquid-

ity. Specifically, we regress changes in the log aggregate ratio of one-year CDS spread to option-

implied default probability on changes in the log of the aggregate of seven measures of liquidity; the

TED spread, ted, the noise measure from Hu, Pan, and Wang (2013), noise, the VIX index, vix, the sum

of OTM option volume, volO, the sum of OTM option open interest, openO, the average OTM option

bid–ask spread, spreadO, and the depth of five-year CDS contracts, and depthC:

^lgdt ¼ aþ b1Dtedt þ b2Dnoiset þ b3Dvixt þ b4DvolOt

þb5DopenO
t þ b6DspreadO

t þ b7DdepthC
t þ etþ1;

where aggregates of the variables volO, openO, spreadO, and depthC are cross-sectional averages or

sums of firm-level variables. The LGD net of liquidity is

^LGD
� ¼ exp ^lgd1 þ â þ

Xt�1

j¼0

êit�j

0
@

1
A:

Sources: Data for the construction of the TED spread and the VIX are obtained from the Federal

Reserve. The noise measure is taken from Jun Pan’s website. Data on option volume, open interest,

and bid–ask spreads are from OptionMetrics. CDS contract depth is obtained from Markit. Data are

sampled at the weekly frequency over the period January 2002 through February 2017.
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4 Conclusion

In this article, we propose a new method of estimating default probabilities for firms. Using

option prices, we construct an estimate of the risk-neutral density; the default probability

for the firm is the mass under the density up to the return that corresponds to a default

event. We estimate default probabilities for different levels of default thresholds; we find

that, although the level of estimated default probabilities is sensitive to the choice of default

threshold, they are very highly correlated with one another and behave very similarly over

time.

We examine the relationship of the option-implied default probabilities to default prob-

abilities estimated from CDS prices, as well as their relation to firm characteristics and rat-

ings categories. We find that option-implied default probabilities are strongly, but not

perfectly, related to CDS default probabilities that assume constant LGDs, with the latter

exhibiting higher variation and higher skewness. With respect to firm characteristics and

ratings categories, the option-implied default probabilities behave as one would expect.

Specifically, the default probabilities increase monotonically as ratings decline; in addition,

default probabilities of nonfinancial firms are significantly and positively related to leverage

and volatility; they are negatively and significantly related to profitability, book-to-market

equity, and size.

If option-implied default probabilities are valid estimates of the firm’s propensity of fail-

ure, then an examination of the relation between these probabilities and CDS prices should

provide information about LGDs. We construct a simple measure of LGD by calculating

the ratio of CDS spreads and option-implied default probabilities. We find significant time

series variation in this ratio, which is related to economic conditions. While the ratio is

highly correlated across default thresholds, we also find evidence of significant cross-

sectional variation in this measure depending on sectors.

When we estimate the relation between CDS spreads and option-implied default proba-

bilities, while controlling for liquidity effects, we find evidence that changes in the VIX are

significantly and positively related to changes in log LGD measures; we find weaker evi-

dence that changes in the liquidity of the options and fixed income markets affect changes

in LGD. Finally, after controlling for changes in liquidity effects, estimates of LGD inferred

from CDS and option prices again show a strong relation to underlying business conditions.

Overall, the equity options market may provide useful information with which to infer de-

fault probabilities, as well as the LGDs of underlying assets.

Supplementary Data

Supplementary data are available at Journal of Financial Econometrics online.
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