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Abstract

Motivated by the recent availability of extensive electronic news databases and ad-
vent of new empirical methods, there has been renewed interest in investigating the
impact of financial news on market outcomes for individual stocks. We develop the
information processing hypothesis of return volatility to investigate the relation be-
tween firm-specific news and volatility. We propose a novel dynamic econometric
specification and test it using time series regressions employing a machine learning
model selection procedure. Our empirical results are based on a comprehensive
dataset comprised of more than 3 million news items for a sample of 28 large U.S.
companies. Our proposed econometric specification for firm-specific return volatil-
ity is a simple mixture model with two components: public information and private
processing of public information. The public information processing component is
defined by the contemporaneous relation with public information and volatility,
while the private processing of public information component is specified as a

* This article was previously circulated under the title “And Now, The Rest of the News: Volatility

and Firm Specific News Arrival.” We thank René Garcia, the Editor, and two anonymous referees

for their helpful comments. We are grateful to Torben Andersen, Tim Bollerslev, Christian

Brownlees, Nikolaus Hautsch, Yu Jun, Andrew Patton, Peter Phillips, Kevin Sheppard, and Carsten

Tanggaard for helpful discussions. We are also thankful for helpful comments received at the

HUKU 2011 conference in Copenhagen, and at seminars at CREATES, Copenhagen Business School

and Duke University Singapore Management University, Brunel University, Lancaster University

and at the 2015 ERIM seminar at Erasmus University Rotterdam. Earlier version of this article was

completed while the second author was at Aarhus University. Engle thanks the Volatility and Risk
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general autoregressive process corresponding to the sequential price discovery
mechanism of investors as additional information, previously not publicly available,
is generated and incorporated into prices. Our results show that changes in return
volatility are related to public information arrival and that including indicators of
public information arrival explains on average 26% (9–65%) of changes in firm-
specific return volatility.

Key words: firm-specific news, realized volatility, public information arrival, information process-

ing hypothesis of return volatility

JEL classification: G14

Empirical research confronting the paradigm that changes in stock prices are related to the

arrival of new economic public information has reached mixed conclusions. While both fi-

nancial theory and empirical research suggest that unanticipated public information affects

stock prices, early research using all observable macroeconomic and industry-specific infor-

mation has found high levels of inexplicable price volatility (Roll, 1988).

Initially, research, spurred by the advent of event study methodology, explored how cor-

porate information events relate to changes in stock prices. Among others, these efforts led

to the first studies using aggregate news counts to examine the relationship between market

activity and the flow of public information (Ederington and Lee, 1993, Berry and Howe,

1994, Mitchell and Mulherin, 1994). Motivated by the recent availability of extensive elec-

tronic news databases and proliferation of text analysis methods, current branches of re-

search investigate the impact of financial news on market outcomes for individual stocks

and market indexes. Except for relatively few articles, literature on the role of media in fi-

nancial markets focuses on the relationship between news and direction of returns or other

market activity.1

Our research belongs to a fairly recent branch of literature that examines how news

impacts firm-specific stock price volatility, for example, Boudoukh et al. (2019), Calomiris

and Mamaysky (2019), Glasserman and Mamaysky (2019) and, in a special case, to the re-

search by Jeon, McCurdy, and Zhao (2019) who investigate the relation between news and

jumps in the stock returns, especially the jump size volatility.

In this article, we develop the information processing hypothesis of return volatility to

investigate the relation between firm-specific news and volatility. We propose a novel dy-

namic econometric specification and test it using time series regressions employing a ma-

chine learning model selection procedure. Our empirical results are based on a

comprehensive dataset comprised more than 3 million news items identified with 83 subject

categories, as well as intraday prices and firm-specific information obtained from five

1 For example, Tetlock (2007), (2011), Tetlock, Saar-Tsechansky, and Macskassy (2008), Hillert,

Jacobs, and Müller (2014) investigate investor sentiment and market activity. Fang and Peress

(2009), Dougal et al. (2012), Heston and Sinha (2017), Engelberg, Mclean, and Pontiff (2018) examine

news coverage and return predictability. Engelberg (2008), Dougal et al. (2012), Brogaard et al.

(2014), Foucault et al. (2016) focus on news and trading. While Kalev et al. (2004), Maheu and

McCurdy (2004), Lumsdaine (2010), Dzielinski and Hasseltoft (2017), Neuhierl, Scherbina, and

Schlusche (2013) are among the earlier studies that consider the how news impacts price volatility.

2 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/19/1/1/6043100 by O

xford U
niversity Press U

SA user on 31 August 2021



databases covering the period from January 2001 through July 2009 for a sample of 28

large U.S. companies. Our primary contribution originates from the unique hypothesis we

develop to directly test the impact of firm-specific news on firm-specific volatility for which

we present economically significant results.

The economic model behind our hypothesis is motivated by market microstructure and

behavioral finance as well as the information asymmetry and asset pricing literature. We

build our hypothesis by synthesizing market microstructure theory, among others, which

relates trading and news: news-induced information asymmetry among market participants

due to information processing skills (Kim and Verrecchia, 1991, 1994), differences in opin-

ion (Kandel and Pearson, 1995) as well as behavioral finance theories of momentum that

relates market participants’ reaction and news: slow diffusion of information (Hong and

Stein, 1999, Hong, Lim, and Stein, 2000), attention (Barber and Odean, 2008), information

processing time (Engelberg, 2008), cognitive biases (Antoniou, Doukas, and

Subrahmanyam, 2013).

According to Rubinstein (1993), “differences in consumer behavior are often attributed

to varying intelligence and ability to process information; and agents reading the same

morning newspapers with the same stock price lists will interpret the information differ-

ently.” Grossman (1986) suggests that the “private processing of public information” can

lead to private information. Green (2004) indicates that the release of public information

raises the level of information asymmetry, which is consistent with the interpretation that

some market participants have an advantage at information processing.

Financial information research faces two key challenges (Boudoukh et al., 2007). The

first challenge is to identify and observe all relevant fundamental information for a specific

financial asset. The second challenge consists of correctly quantifying and measuring the

fundamental. This article builds on existing financial information research by investigating

the relationship between economic information arrival and changes in stock return volatil-

ity. One of our contributions is to identify a collectively exhaustive measure of firm-specific

news flow by collecting all firm-specific news in the cross-section of approximately 30,000

different news sources accessible through the Dow Jones Factiva database. Our dataset is

one of the most comprehensive news datasets employed in the literature.2

Although closely related, our analysis differs substantially from the investigations by

Boudoukh et al. (2019), who examine the stock return variance ratios in periods with rele-

vant news, and by Glasserman and Mamaysky (2019), who investigate monthly volatilities

interacted with news sentiment.3

Glasserman and Mamaysky (2019) report that unusual news is reflected in volatility

slower at the aggregate level than at the company-specific level which leads them to pose

the following questions: “Why is volatility-relevant information in news not absorbed more

quickly; and why is it absorbed more slowly at the aggregate level than at the company-

specific level?” Glasserman and Mamaysky (2019) suggest that the “observed responses of

volatility to news may be explained by attention constraints on investors.” Our empirical

2 Boudoukh et al. (2019) use only the news articles contained in the Dow Jones Newswire while the

Dow Jones Factiva database we use covers substantially more news sources in addition to the

Dow Jones Newswire.

3 Calomiris and Mamaysky (2019) focus on a forecasting model using the context-specific measures

of newsflow into risk and return in different equity markets around the world.
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results for testing the information processing hypothesis of return volatility provide con-

vincing explanation for the question posed by Glasserman and Mamaysky (2019).

Public information is incorporated contemporaneously while additional information,

previously not publicly available, is generated from the private processing of public infor-

mation and therefore incorporated sequentially. Alternative interpretation is to distinguish

between the announcement effects of public news, which are contemporaneous and lagged

effects due to the processing of those announcements, which would be sequential.4 Our ter-

minology of “private processing of public information” is private in the sense that investors

do not publish how they process and interpret the public information. We refer to this spe-

cification as the information processing hypothesis of return volatility and test it using time

series regressions. For a sample of 28 large U.S. stocks, we construct indicators of economic

information arrival and investigate their relationship with measures of firm-specific realized

variance by use of time series regression. Our approach allows us to test whether public in-

formation arrival is related to increases in volatility.

We find that the model identified by our machine learning model selection procedure

includes lagged news indicators alongside contemporaneous news indicators. We interpret

this effect as evidence that after the arrival of public information, additional information,

previously not publicly available, is generated and incorporated into asset prices via super-

ior processing of this public information.

Results from the three robustness checks we perform confirmed that our measures of in-

formation arrival capture news relevant for a particular stock and that, in general, time ser-

ies regressions of firm-specific volatility on firm-specific information arrival provide

evidence that, ex-post, large changes in return volatility.

Section 1 develops our information processing hypothesis of return volatility. In Section

2, we present a novel time series representation for estimating the components of return

volatility, which we use for testing the relationship between the arrival of economic infor-

mation and firm-specific return volatility. Section 3 discusses how we measure the econom-

ic information arrival using our vast news database. In Section 4, we present our data

including our sources, details of variables, news indicator choices, and data mining techni-

ques used in the analysis. Section 5 presents our results and contrasts them with previous

studies. We support our investigation with a series of robustness checks in Section 6 and

conclude in Section 7.

1 Information Processing Hypothesis of Return Volatility

This section introduces a return specification describing sources of equity volatility. We

conclude with a description of the model’s intuition and its relationship with established fi-

nancial information theory.

In this investigation, we use a simple market model to decompose total stock return

variance into a component that is firm-specific and a component that is common to the

market. Throughout our investigation, we assume that this approach is capable of isolating

the variance associated with revisions in expected future cash flows. In other words, we

equate idiosyncratic variance from a market model with the variance of stock returns asso-

ciated with firm-specific revisions in expected future cash flows.

4 We thank the anonymous referee for providing this interpretation for our hypothesis.

4 Journal of Financial Econometrics
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Before proceeding, it is important to note that this investigation uses the term information

to mean facts, knowledge, or intelligence. This is an important definition since it is important

to distinguish it from the concept of information in an econometric sense. Although the term

information set will not be used throughout the article, it is an implicit assumption that every-

thing is conditioned on the econometricians’ information set. That said, it is also important to

note that different types of information will be discussed. Public information will refer to

facts, knowledge, or intelligence that is published into the public domain by news sources

such as news wires, newspapers, press release wires, and others. Private information will refer

to information generated by investors from the processing of information in the public do-

main. Information processing in turn refers to the collection of facts, knowledge, or intelli-

gence and its subsequent examination, investigation, study, or analysis in the context of

setting new expectations for future cash flows of the company in question. This study does

not equate private information with inside information. Inside information may, however, be

a source of contextual information for the processing of new public information. However,

our investigation does not treat inside information as a separate object of analysis.

In this article, we consider equities, financial instruments linked directly to the economic

performance of a company. Generally, when we think of information about a company’s

economic performance, we use a broad typology with three main categories: General and

macroeconomic; industry; and company-specific. Changes in expectations about firm’s fu-

ture cash flows and returns occur due to the arrival of new information. The expected re-

turn includes a contemporaneous relation with market wide returns, rm,t, such that

unexpected returns only correspond to a firm-specific component. Let, i denote a given

company, ri,t the return on its common stock, and ei,t the unexpected firm-specific return

component, then a specification of the return generating process we consider is

ri;t � Et�1 ri;tð Þ ¼ ri;t � lt � btrm;t ¼ ei;t (1)

where bt measures the response of ri,t to the return on the chosen market portfolio, rm,t and

lt is an excess return.5

Following French and Roll (1986), we include a distinction between private and public

information so that returns have a public information component and a component due to

private processing of public information. Applying this conceptual breakdown and specify-

ing the dynamics of each component, eprivate,t and epublic,t, we consider the following simple

mixture model in terms of the firm-specific return variance, for simplicity we drop the nota-

tion, i, identifying a given company:

et ¼ eprivate;t þ epublic;t (2)

eprivate;t ¼ rt�1;t with r2
t ¼ xþ ae2

t�1 þ hr2
t�1

epublic;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

k¼1

dknt;k

0
@

1
A

vuuut �2;t

5 We have written lt and bt as time varying to be consistent with the evidence regarding temporal

variation in betas as demonstrated by, for example, Bali and Engle (2010), Patton and Verardo

(2012), and Hansen, Lunde, and Voev (2014).
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�1;t; �2;t � iidð0; 1Þ;

where nt,k, for the time being, is defined broadly as an indicator of public information ar-

rival. In the case where we have only one type of public information and a time-invariant

effect on expected returns and expected cashflows, we have

et ¼ rt�1;t þ
ffiffiffiffiffiffiffi
dnt

p
�2;t; (3)

which is a specification that captures the private processing component of public informa-

tion, rt, as a GARCH (1,1) process and the relationship with the arrival of public informa-

tion as being contemporaneous. Any mispricing and other noise components are left

entangled and unidentified in the two error terms �1;t and �2;t. The conditional variance of

the idiosyncratic return component will then be

Var etjXt�1;nt;xtð Þ ¼ r2
t þ dnt; (4)

where Xt�1 contain the history of the firm’s stock return, and xt is a vector of exogenous in-

formation such as general market conditions as captured by the return on the market, rm,t.

Since et is defined as per Equation (1), its variance will also be conditioned on xt although it

does not appear explicitly on the right-hand side of Equation (4). Our model does not imply

a causal relationship between volatility and news items. Rather, we suggest that news items

and volatility share a common latent factor, new economic information.

While there are several possibilities for econometric implementation of the specification

suggested in Equation (4), time series regression provides the flexibility necessary for our re-

search question. Our chosen approach, which we present in the next section, is inspired by

the ability to rewrite the specification from Equation (4) in terms of an autoregressive dis-

tributed lag model, where we simply replace Var etjXt�1;nt;xtð Þ with its realized counter-

part, the firm-specific realized variance.

We refer to this specification as the information processing hypothesis of return volatil-

ity. The intuition follows in two steps. First, market participants evaluate the signal inher-

ent in new economic information and, due to intense competition between numerous

informed traders, incorporate an imprecise and unbiased estimate into market prices almost

immediately. Next, investors pursuing active information-based strategies conduct further

economic assessments and revise their expectations and portfolios accordingly. In what can

be characterized as an adaptive price discovery mechanism triggered by the arrival of public

information, this behavior results in stock return volatility decreasing over time. Lagged

effects of economic information arrival will be related to information processing activities

by investors.

Our information processing hypothesis is in line with three mechanisms modeled by fi-

nancial information theory. First, when multiple informed traders observe the exact same

signal, prices may reflect new information almost instantaneously (Holden and

Subrahmanyam, 1992). Second, skilled processing of public information may identify prof-

itable trading opportunities (Admati and Pfleiderer, 1988). Third, a large information ad-

vantage of multiple informed traders, combined with the subsequent arrival of informative

public information, may lead to decreasing return volatility on an interday basis (Foster

and Viswanathan, 1990).

Admati and Pfleiderer (1988) examine how informed traders and liquidity traders inter-

act. The information structure of their model allows the interpretation that skilled

6 Journal of Financial Econometrics
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information processors will be able to identify profitable trading opportunities due to faster

and more efficient processing of public information. They show that endogenous informa-

tion acquisition intensifies the concentration of trading and that increased competition

among informed traders increases price informativeness. Foster and Viswanathan (1990)

present a model where the quality of public information available to noninformation-based

traders determines the decay rate of the information advantage.

Theory and anecdotal evidence support our specification for the information processing

hypothesis of return volatility. To summarize, it suggests that information observed by a

broad set of market participants is likely to be incorporated almost instantaneously. In add-

ition, the arrival of public information creates a trading opportunity for investors with ex-

ceptional information processing capabilities. The information advantage is largest in the

period after public information arrival and decreases with time as multiple information-

based investors compete with each other. The speed of variance decline may be further

increased by the arrival of public information providing analysis of previously disclosed

economic information. Conclusively, our specification captures the intuition that, after the

arrival of public information, the change in stock return volatility will reflect changes in the

rate at which additional information, previously not publicly available, is generated via su-

perior processing of new public information, and is revealed in prices.

In a broader context, established financial research suggests that there are several pos-

sible sources of volatility. The prevailing hypothesis involves the arrival of new informa-

tion. The mixture of distributions hypothesis (MDH) suggests that volume and volatility

are driven by a common factor, which can be interpreted as the rate of information arrival

(Clark, 1973). If the underlying information flow is clustered, then this will lead to cluster-

ing in volatility. The MDH is general and can be thought of as subsuming several more

detailed hypotheses that differ primarily in their suggested explanation for the source of

volatility clustering.

An alternate perspective interprets volatility as economic uncertainty related to the fun-

damental value of the underlying assets of the firm (Merton, 1974; Black, 1976; Christie,

1982). Some theories suggesting volatility as a measure of economic uncertainty reverse the

causal relation and propose that news is the result of the media producing news items to re-

solve uncertainty or information asymmetry (Veldkamp, 2006). A possible source of vola-

tility not directly related to information is noise. Noise as a source of volatility arises from

trading by noninformation-based traders (Black, 1986). Noise therefore includes any ir-

rational reason for trading as well as trades motivated by liquidity needs. We can consider

the noise hypothesis as covering all irrational and noninformation-based sources of

volatility.

Based on the market microstructure models of Glosten and Milgrom (1985) and

Andersen (1996), Chua and Tsiaplias (2019) indicate that the asset returns are largely due

to the relationship between the arrival of news and the underlying mechanism that proc-

esses the new information into prices. While referring to the same models, Maheu and

McCurdy (2004) suggest that varying information content of news may have different

effects on volatility.

In this light, our model captures the salient hypotheses of the sources of return volatility.

The specification allows us to nest all of the above hypotheses in one model. This article

presents a simple empirical investigation where firm-specific volatility is regressed on firm-

specific news. While our investigation will not enable us to say anything about the specific
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behavior of agents subject to public information arrival, results from time series regressions

of our two measures of interest, news, and volatility, provide evidence of whether the ar-

rival of information is related to changes in volatility.

2 Estimating Components of Return Volatility under Information
Processing Hypothesis

In our analysis, the variable of interest is idiosyncratic variance, which captures firm-

specific price movements within the trading day. We refer to this measure as the daily firm-

specific variance (FVt) and suggest that it corresponds to a realized version of

Var etjXt�1;nt;xtð Þ. We estimate it by:

FVi;t ¼ RVi
t � b2

t RVSPY
t ; using bt ¼

RCovi;SPY
t

RVSPY
t

; (5)

where the individual parts are computed using intraday data so that RVi
t;RVSPY

t ; and

RCovi;SPY
t represent the covariance matrix between the individual asset and the S&P 500

index as represented by the SPY exchange traded fund, ensuring FVt is always positive. We

interpret bt as a realized beta and RVSPY
t as the realized variance of the market index.6

We now present a novel time series specification for testing the information processing

hypothesis of return volatility. First, we discuss how our time series specification allows us

to estimate and test the significance of two components of equity volatility: public informa-

tion and private processing of public information.

We estimate the public information component in order to test whether the arrival of

economic information is related to contemporaneous changes in FVt . We interpret a signifi-

cant proportion of covariation between realized variance and contemporaneous indicators

as implying that prices are moving in conjunction with the arrival of relevant information

about the firm’s economic prospects.

In addition, we test if private processing of public information occurs following the ar-

rival of economic information. We argue that any lagged effects of economic information

arrival will be related to information processing activities of information-based investors.

For example, institutional investors and investment managers pursuing active investment

management strategies will process newly arrived information, evaluate its impact on com-

pany value, infer the initial impact estimate already incorporated in prices, and finally they

will devise trading strategies to exploit the derived signal.

Furthermore, recent research into media, news, and financial markets has brought forth

an alternate hypothesis for the origin of price movements and market activity. It has been

suggested that a proportion of stock returns and market activity may be driven by a media

effect reflecting the attention that a company achieves in the media (Huberman and Regev,

2001, Barber and Odean, 2008, Engelberg and Parsons, 2011, Hillert, Jacobs, and Müller,

6 The realized measures are computed by aggregating squared 5-min returns within each trading

day as done in Andersen et al. (2001). In addition, the realized covariance matrix between the indi-

vidual asset and the market index is estimated using Refresh Time sampling as discussed in

Barndorff-Nielsen et al. (2011). All our realized measures are based on transaction prices accord-

ing to the cleaning rules presented in Barndorff-Nielsen et al. (2009).
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20147). In order to control for media effects, we include a set of indicators measuring

increases in media attention. Our aim is to disentangle media attention effects from eco-

nomic content effects.

We test the information processing hypotheses with the following autoregressive distrib-

uted lag specification:

ln FVtð Þ ¼ xþ
XK

k¼1

qkln FVt�kð Þ þ
XM
i¼1

cini;t þ
XM
i¼1

XJ

j¼1

~c i;jni;t�j þ �t (6)

where we add indicators of public information arrival, ni, t, that we believe may either

have economic relevance or measure media attention. This empirical approach is motivated

both by the aim of our investigation and the complexity arising from the number of indica-

tors, which we intend to consider in our estimation efforts. The specification in Equation

(6) has three components of particular interest: an autoregressive part,
PK

k¼1 qklnðFVt�kÞ;
contemporaneous news;

PM
i¼1 cini;t; and lagged effects of news,

PM
i¼1

PJ
j¼1 ~ci;jni;t�j.

This time series representation in Equation (6) is a convenient way of investigating how

FVt is related to the arrival of different types of economic information. Our central hypoth-

esis is that public information is incorporated contemporaneously while additional infor-

mation, previously not publicly available, resulting from the processing of new public

information is incorporated sequentially through an adaptive mechanism where market pri-

ces gradually reveal this additional information. While the representation in Equation (6) is

convenient for estimation, it is not the most intuitive for interpretation. The issue is that in

Equation (6) lagged news can both influence the FVt directly and indirectly through the lags

of the dependent variable. To this end it is, after estimation, helpful to use the so-called

final form for interpretation (Theil and Boot, 1962). This is obtained by eliminating all

lagged values of ln FVtð Þ by means of lags of the same equation. For simplicity, we just

show what this looks like for K ¼ 1; M ¼ 1, and J ¼ 1 (the general expression is of similar

form):

ln FVtð Þ ¼ xþ qln FVt�1ð Þ þ c1n1;t þ ~c1;1ni;t�1 þ �t (7)

which gives us

ln FVtð Þ ¼ x
1� q

þ
X1
s¼0

qsc1n1;t�s þ
X1
s¼0

qs~c1;1n1;t�1�s þ
X1
s¼0

qs�t�s (8)

That we rewrite as

ln FVtð Þ ¼ x
1� q

þ c1n1;t þ
X1
s¼0

ðqsþ1c1 þ qs~c1;1Þn1;t�1�s þ
X1
s¼0

qs�t�s (9)

So c1n1;t represent the explanation provided by the contemporaneous news, andP1
s¼0 ðqsþ1c1 þ qs~c1;1Þn1;t�1�s what is explained by lagged news. Besides the R2 from the

estimated model we can compute a partial R2 for these two terms that will tell us how

much of the variation in the FVt is explained with news (we denote this R2
news). Also, of

7 Hillert et al. (2014) use news articles, between 1989 and 2010, obtained from the LexisNexis data-

base relying on the “relevance score” provided by that database without identify the information/

subject categories for each new item.
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particular interest are the partial R2 of the contemporaneous term (denoted by this R2
cont:).

We will use this formulation to enable our interpretation of the dynamic relationship be-

tween realized variance and economic information arrival.

3 Measuring Economic Information Arrival

Previous empirical work by Ederington and Lee (1993), Mitchell and Mulherin (1994),

Berry and Howe (1994), and DeGennaro and Shrieves (1997) suggests that a relevant meas-

ure of public information arrival is a simple count of the number of news items. Hence, our

indicator corresponds to

ni;t � ci;t (10)

where ci,t counts from time t� 1 to t the number of news items for a given subject or media

attention category.8 Higher values will reflect a higher level of information arrival and con-

tent materiality. If media industry participants reliably evaluate the materiality of new in-

formation and consistently initiate editing and distribution of news items of material

economic content, then it is reasonable to assume that a positive change in the number of

news items will proxy for the revisions in expectations about future cash flows of the firm.

The structure of the media industry implies that most news items are the result of infor-

mation release. This is consistent with the description of the news disclosure process pro-

vided by Thompson, Olsen, and Dietrich (1987). They describe how firms typically initiate

firm-specific news stories through press releases and direct contact with journalists. New

economic information is created by participants in the information environment of a firm.

Findings by Tetlock, Saar-Tsechansky, and Macskassy (2008) as well as by Engelberg

(2008) suggest that there is relevant “soft” information in news stories that is not immedi-

ately reflected in prices. Furthermore, Dougal et al. (2012) show that, at least over short

time horizons, journalists have the potential to influence investors’ behavior, which sug-

gests that the interpretation of public news is important. In summary, news items are the re-

sult of the activities of media industry participants as they edit, aggregate, and distribute

raw economic information. Media industry participants choose the degree that items are

edited and aggregated in order to fit the medium’s distribution frequency (i.e., continuous-

ly, daily, weekly, etc.) and distribution form (e.g., electronic or print). As a result, positive

changes in firm-specific newsflow, as we measure in the full cross-section of news sources,

are a sufficient indicator reflecting the arrival of material unexpected information.

4 Data and Variable Construction

4.1 Data Sources

This subsection describes the characteristics of the data used in our investigation. We em-

ploy data from five databases covering the period from January 29, 2001 through July 31,

2009 for a sample of 28 large U.S. companies included in the Dow Jones Industrial Average

for which we could obtain a sufficient amount of intraday returns and news counts between

2001 and 2009. Table 1 provides an overview of the characteristics of our sample. Table 1

8 All news items published after close of the exchange are transferred to the news count observa-

tion for the next trading day.
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illustrates that the sample companies on average have 57.1% of revenues from their largest

business unit, while 57.5% of revenues are from North American operations. In addition,

the average market capitalization over the sample period across firms is $128 billion. These

characteristics underscore the large size, business diversification, and international activities

of companies in the sample.

Intraday data for each company’s common stock are extracted from the Trade and

Quote database. Firm-specific news items are collected from the Dow Jones Factiva data-

base using the Dow Jones company codes, which we match with CUSIP identification codes

as well as permanent company and security identification numbers from the Center for

Research in Security Prices (CRSP) database. Daily returns and trading volume (TV) used

for robustness investigations are from the CRSP. For our robustness analysis, we also use

implied volatilities (IVs), obtained from Bloomberg, that are calculated from 1 month at-

the-money call option prices. Company-specific information used in our discussion section

comes from sources such as the U.S. Securities and Exchange Commission (SEC) filings and

other reference data extracted from the S&P Capital IQ database.

4.2 Indicators of Economic Information Arrival

Our choice of information arrival indicators is linked directly to the economic rationale in-

herent in our model describing the microeconomic sources of equity volatility. This model

states that unexpected returns may arise from changes in expected returns and changes in

expected future cash flows. Our chosen variables are all considered indicators of the arrival

of new economic information related to changes in expected returns or expected cashflows.

We limit our choice of indicators of economic information arrival to a set of 83 subject cat-

egories, assigned by the Dow Jones Intelligent Indexing system, presented in Table 2.9

These categories reflect a mutually exclusive set of corporate information categories cover-

ing an extensive set of corporate information events. In this way, news response coefficients

can be partially disentangled into economic content effects as suggested in Engelberg and

Parsons (2011). The subject categories are, in a taxonomic sense, mutually exclusive; how-

ever, this does not preclude that they may occur simultaneously or on the same day.

To control for the media attention effect, we include the 16 indicators displayed at the

bottom of Table 2. These indicators measure the change in the level of news item counts in

newspapers and other types of source formats. While the ideal measure would entail a

measure of investor readership, we argue that our chosen variables control for the media at-

tention effect, since they proxy for the distribution and proliferation of company-specific

news. The media attention hypothesis and the information processing hypothesis are not

mutually exclusive and may well coexist. Hence, we include proxies for media attention by

measuring changes in the arrival of news. This allows us to explicitly test the importance of

aggregate measures of media attention alongside proxies for different corporate informa-

tion events.

Variation in the information content of news items suggests the relationship between

market impact and news may vary depending on the nature of the news. We use the Dow

Jones Intelligent Indexing categorization to distinguish between the content of news items.

For example, one news item related to a corporate merger may have a larger impact than a

9 Heston and Sinha (2017) use subject codes assigned by an alternative data source, Thomson

Reuters NewsScope, in predicting stock returns using news stories.
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Table 2 Choice of news variables

Main DJII code and

category name

No. of

selected

variables

List of subject category names

GCAT-general/

political

12 Crime/Courts, Disasters/Accidents, Environmental News, Climate

Change, Global/World Issues, Health, Int. Relations, Domestic

Politics, Regional Politics, Science/Technology, Weather, Labor

Issues, Demographics

ECAT-economic 27 Economic Growth, Money Supply, Inflation/Prices, Personal Income/

Average Earnings, Consumer Sentiment, Consumer Credit/

Expenditure/Savings, Budget Account, Government Borrowing

Requirement, Agricultural Production, Industrial Production,

Capacity Utilization, Inventories, Factory Orders/Durable Goods,

Employment Costs/ Productivity, Employment/Unemployment,

Business Sentiment, Reserve Assets, Mortgage Applications/

Refinancing, Car Registrations/Vehicle Sales, Bankruptcy Figures,

Index of Leading Economic Indicators, Housing Starts/Construction

Figures, Home Sales/Housing Affordability, Economic/Monetary

Policy, Government Finance, Trade/External Payments, Euro Zone/

Currency

MCAT-financial/

commodity markets

8 Money Markets, Foreign-Exchange News, Soft Commodity Markets,

Metals Markets, Energy Markets, Fund Markets

CCAT-corporate/

industrial

36 Plans/Strategy, Corporate Crime/Legal/Judicial, Regulation/

Government Policy, Annual Meetings, Dividends, Sales Figures,

Earnings Surprises, Analyst Comment/Recommendation, Internal

Audit, Bankruptcy, Share Capital, Corporate Debt Instruments,

Financing Agreements, Corporate Credit Ratings, Acquisitions/

Mergers/Takeovers, Divestitures/Asset Sales, Privatizations/

Nationalization, Joint Ventures, Output/Production, New Products/

Services, Research/Development, Capacity/Facilities, Information

Technology, Product Safety, Marketing/Market Research,

Government Contracts, Defense Contracts, Non-government

Contracts, Licensing Agreements, Franchises, Outsourcing,

Competition Issues, Management Issues, Labor Disputes, Lay-offs/

Redundancies, Natural Reserves/Resources Discovery

Economic

information

indicators

83

Media attention

indicators

16 Dow Jones News Service, Reuters Newswire, Washington Post, New

York Times, Wall Street Journal, Associated Press Newswires, USA

Today, Financial Times, Aggregate Newspaper, Aggregate

Newswire, Aggregate Industry Publication, Aggregate Newsletters,

Aggregate Press Release Wire, Aggregate Other Wire, Aggregate

General News and Business Publication, Aggregate Government and

Politics Publication

Total 99

This table provides an overview of the subject categories from the Dow Jones Intelligent Indexing system that

we use to create content-specific indicators of new economic information arrival. When creating indicators for

a given company, we include only indicator series that have news arrival on at least 1% of the days in the sam-

ple period. Dow Jones Factiva provides more information on their Dow Jones Intelligent Indexing system on

the following webpage: https://www.dowjones.com/products/factiva/#overview.
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news item related to the launch of a new product. The information typology used by Roll

(1988) provides a starting point for thinking about news categorization. General and

macroeconomic information may include facts about the state of consumer, industrial, and

other markets as well as news related to politics, government policy, regulation, and demo-

graphics. Industry-specific information may include news about access to resources, merg-

ers, and acquisitions, and other industry information events. Firm-specific news may

include information about corporate issues and activities, such as research and develop-

ment, restructuring, litigation and arbitration, business/franchise performance, funding, as

well as other corporate information events. With respect to Roll’s (1988) information typ-

ology, the news in our dataset mainly covers industry- and firm-specific news items.

Since we aim to estimate the proportion of stock return volatility that is related to the

arrival of economic information, we are concerned with the issue of news item endogeneity.

Endogenous news is news items that include references to stock market information such as

TV and price change alerts. We are only interested in news items that contain reference to

some form of economic information related to the firm. In other words, we wish to filter

out items that are automatically generated based on market activity. Other studies have

approached this issue using filtering rules. Of all news considered to contain discussion of

share price movements a subset also discusses events in the broad equity markets and the

rest discuss events in other financial markets (steel, oil, natural gas, etc.).10 Our examin-

ation of market news items reveals that purely endogenous news items, created due to ab-

normal market activity, account for �5% of the corporate news flow and is more prevalent

among a specific set of news sources. We find that news containing references to price

movements can either be purely endogenous, triggered by trading activity, or include a sum-

mary or reference to corporate information events. The Dow Jones Intelligent Indexing sys-

tem enables identification of the topics covered in an individual news item; hence, we can

filter out purely endogenous news and focus on news items that provide economic content.

4.3 Sample Characteristics

Table 3 presents the characteristics of our measure of firm specific realized variance while

Table 4 describes the characteristics of our news item dataset. Our sample starts after the

decimalization occurred at the New York Stock Exchange (NYSE) and the National

Association of Securities Dealers Automated Quotations exchange (NASDAQ). The NYSE

completed decimalization on January 29, 2001 while NASDAQ completed the transition

on April 9, 2001. Alternatively, the sample period for each firm starts from when the last

major corporate event occurred as marked by a name change, merger, initial public offer-

ing, or similar. As can be seen in the last column of Table 3, this results in 919–2137 obser-

vations per company.

Table 3 shows that our variable of interest, daily FVt, generally accounts for between

58% and 77% of all intraday volatility (refer to Column 8). This is consistent with results

from market models at lower frequencies, for example, using daily data. For example, Roll

(1988) finds that the market model’s average R2 across 96 large firms is 24%,

10 We therefore choose to remove all news that the Dow Jones Intelligent Indexing system labels as

covering events in equity markets (M11), contains stock market pricing information (C1522), and

does not contain any other type of economic information, in the form of a reference to other cor-

porate information events.
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Table 3 Characteristics of firm specific realized variance

RV FV b FV/RV Start date No. of

observations
Ticker m r2 m r2 m r2 m r2

AA 5.84 114.85 3.73 30.78 1.08 0.23 0.75 0.02 January 29, 2001 2137

AXP 5.23 108.87 2.98 35.37 1.05 0.21 0.65 0.03 January 29, 2001 2136

BA 3.29 21.09 2.13 5.78 0.89 0.09 0.72 0.03 January 29, 2001 2136

BAC 7.04 635.13 3.7 161.56 1 0.45 0.64 0.03 January 29, 2001 2136

C 9.34 1308.2 5.74 530.02 1.18 0.34 0.62 0.02 January 29, 2001 2136

CAT 3.58 32.9 2.06 6.02 1.02 0.14 0.68 0.03 January 29, 2001 2136

CVX 2.57 28.04 1.38 3 0.84 0.14 0.69 0.04 December 10, 2001 1963

DD 2.97 20.75 1.64 3.24 0.94 0.08 0.65 0.03 January 29, 2001 2136

DIS 3.71 45.83 2.36 19.5 0.89 0.1 0.72 0.03 January 29, 2001 2136

GE 3.78 71.19 1.98 20.06 0.98 0.1 0.6 0.03 January 29, 2001 2136

HD 3.87 31.36 2.28 6.69 1.04 0.12 0.68 0.02 January 29, 2001 2136

HPQ 3.82 29.76 2.52 11.29 1.02 0.11 0.71 0.02 May 6, 2002 1822

IBM 2.28 13.98 1.24 2.73 0.87 0.05 0.62 0.02 January 29, 2001 2136

INTC 4.46 27.64 2.34 6.01 1.39 0.18 0.58 0.02 April 9, 2001 2087

JNJ 1.55 6.89 1.06 2.87 0.56 0.06 0.75 0.02 January 29, 2001 2136

JPM 6.14 194.08 3.39 54.18 1.16 0.23 0.63 0.03 January 29, 2001 2136

KO 1.66 5.99 1.09 1.62 0.62 0.06 0.74 0.02 January 29, 2001 2136

MCD 2.58 14.49 1.85 5.95 0.75 0.09 0.76 0.02 January 29, 2001 2136

MMM 2.1 11.66 1.22 2.74 0.81 0.06 0.65 0.03 January 29, 2001 2136

MRK 2.8 20.52 1.98 8.76 0.71 0.11 0.77 0.02 January 29, 2001 2136

MSFT 2.75 14.78 1.4 2.71 1.02 0.1 0.6 0.02 April 9, 2001 2087

PFE 2.48 11.37 1.65 3.55 0.77 0.09 0.74 0.02 January 29, 2001 2136

PG 1.53 7.32 0.98 1.61 0.63 0.05 0.72 0.02 January 29, 2001 2136

T 3.43 38.86 1.86 8.29 0.88 0.1 0.68 0.03 December 1, 2005 919

UTX 2.55 18.68 1.51 5.05 0.86 0.08 0.67 0.03 January 29, 2001 2137

VZ 2.88 19.52 1.78 5.19 0.83 0.09 0.71 0.03 January 29, 2001 2137

WMT 2.23 10.36 1.34 3.25 0.84 0.06 0.66 0.02 January 29, 2001 2136

XOM 2.48 43.34 1.28 5.28 0.89 0.11 0.64 0.03 January 29, 2001 2136

This table reports descriptive statistics for our sample. The end date is July 31, 2009 for all stocks. In our ana-

lysis, the variable of interest is idiosyncratic variance, which captures firm-specific price movements within the

trading day. We refer to this measure as the daily FVt and estimate it as:

FVi;t ¼ RVi
t � b2

t RVSPY
t ; using bt ¼

RCovi;SPY
t

RVSPY
t

;

RVSPY
t and RCovi;SPY

t represent the covariance matrix between the individual asset and the index as represented

by the SPY exchange traded fund, ensuring FVt is always positive. We interpret bt as a realized beta and RVSPY
t

as the realized variance of the market index. Realized measures are computed by aggregating squared 5-min

returns within each trading day following Andersen et al. (2001). In addition, the realized covariance matrix

between the individual asset and the market index is estimated using Refresh Time sampling as discussed in

Barndorff-Nielsen et al. (2011). All realized measures are based on transaction prices according to the cleaning

rules presented in Barndorff-Nielsen et al. (2009).
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corresponding to idiosyncratic return variability of 76%. The mean realized variance across

stocks corresponds to annualized volatility in the range from 19.6 for Procter & Gamble

(NYSE: PG) to 48.5 for Citigroup (NYSE: C). On the other hand, mean firm-specific real-

ized variance translates to annualized volatility in the range from 15.7 for PG to 38.0 for C.

Mean realized betas correspond to expected magnitudes.

Table 4 News dataset characteristics

Trading Holiday Weekend

Ticker No. of News

sources

Gini (%) m (S.E.) m (S.E.) m (S.E.)

AA 1922 85 14.1 (0.5) 8.5 (1.2) 2.4 (0.1)

AXP 2799 80 15.4 (0.3) 9 (1) 3.7 (0.2)

BA 3529 87 55.3 (1) 34.5 (3) 12 (0.5)

BAC 3143 86 45.5 (1.3) 19.5 (2.3) 8.4 (0.4)

C 3425 88 72.7 (1.5) 39.2 (3.9) 12.8 (0.5)

CAT 1682 83 7.8 (0.2) 3.9 (0.4) 2 (0.1)

CVX 2777 85 25.9 (0.5) 14.7 (1.6) 4.4 (0.2)

DD 2292 81 10.5 (0.2) 6.9 (0.7) 1.9 (0.1)

DIS 3618 87 38.8 (0.7) 27.4 (2.3) 14.5 (0.4)

GE 4716 86 66.1 (1.1) 48.4 (4.4) 15.7 (0.5)

HD 1668 83 11.2 (0.4) 5.8 (0.7) 3.1 (0.1)

HPQ 3328 84 35.3 (0.8) 23.2 (2.5) 6.6 (0.3)

IBM 3799 86 56.2 (1) 38.7 (3.6) 9.1 (0.4)

INTC 3304 87 53.6 (1.1) 31.2 (3.1) 8.5 (0.3)

JNJ 3130 86 27.9 (0.6) 20.9 (2.1) 6.3 (0.2)

JPM 3437 90 80.1 (1.4) 50.5 (4.8) 14.1 (0.5)

KO 2974 81 21.5 (0.4) 14.4 (1.4) 5.7 (0.2)

MCD 3303 80 20.3 (0.4) 14.4 (1.5) 6.3 (0.2)

MMM 1656 83 6.7 (0.2) 3.9 (0.5) 1.2 (0.1)

MRK 1795 84 12.8 (0.4) 7.7 (0.8) 2.2 (0.1)

MSFT 4493 87 102 (1.8) 63.6 (5.3) 22.6 (0.8)

PFE 2806 86 29.4 (0.7) 18.7 (1.9) 6.1 (0.3)

PG 3323 83 24 (0.6) 17.4 (1.7) 5.8 (0.4)

T 1868 86 16.7 (0.5) 7.3 (1.3) 2.9 (0.2)

UTX 2184 87 14.1 (0.3) 8.5 (0.8) 2.4 (0.1)

VZ 2468 88 34.1 (0.7) 17.2 (1.6) 6.1 (0.2)

WMT 3206 86 41.7 (0.8) 26.3 (2.2) 13.2 (0.4)

XOM 3373 86 46.5 (0.9) 27.9 (2.6) 7.9 (0.3)

This table provides an overview of our news data. Number of sources is computed based on the unique number

of source codes available in our sample. News items are computed based on the unique items in our sample

identified by headline, date, timestamp, sourcecode, and wordcount. Gini refers to the Gini coefficient com-

puted based on the amount of unique news items per source code for a given company. The Gini coefficient

measures concentration of news among observed sources and is calculated as G ¼ 1� 2
n�1 n�

Pn

i¼1
iyiPn

i¼1
yi

� �
,

where yi � yiþ1. Trading, Holiday, and Weekend refer to the mean daily number of news items over the sam-

ple period occurring on each type of day.
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Table 4 contains descriptive statistics for our measure of aggregate firm-specific news

over the sample period. The table shows the number of daily news items for each company.

Our dataset contains all news items identified by the Dow Jones Intelligent Indexing system

as being related to a particular firm. It may also include news where the news agency has

specifically marked news as being of importance to the firm. Our sample includes news

items from approximately 30,000 different news sources and more than 3 million news

items for the 28 companies.

Figure 1 illustrates the aggregate firm-specific news flow for Alcoa (NYSE: AA) across

the full cross-section of news sources accessible from the Dow Jones Factiva database. Each

company’s news flow is composed of news items from a wide group of sources, between

1656 and 4716 individual sources per stock over the sample period.11 A review of the top

10 sources in terms of aggregate news counts reveals that three key newswires reappear

consistently across the sample: Associated Press Newswires, Dow Jones News Service, and

Reuters News.12 The remaining top news sources vary considerably but tend to reflect char-

acteristics of a particular company. The presence of several local news publications reflects

the location of a company’s corporate headquarters or a large local presence, examples in-

clude SeattlePI.com for Boeing, Peoria Journal Star for Caterpillar, Charleston Gazette for

Dupont, The Atlanta Journal for Coca Cola, The Cincinnati Post for Procter & Gamble,

and The Arkansas Democrat Gazette for Walmart.

Similarly, industry-specific sources are also among the 10 largest contributors to the

firm-specific news flow: Metal Bulletin News Alert Service for Alcoa; Moody’s Ratings

Delivery Service for various financial institutions (NYSE: AXP, BAC, C, JPM); and corpo-

rations with large financing arms (NYSE: CAT, GE); Health & Medicine Week, Biotech

Week, Pharma Business Week, and Drug Week for healthcare companies such as Pfizer,

Johnson & Johnson, and Merck; Upstream and The Oil Daily for Exxon and Chevron; TR

Daily and TR’s State Newswire for telecommunication services companies such as AT&T

and Verizon; FedBizOpps for companies regularly engaging as contractors with the U.S.

Government such as Boeing and United Technologies Corporation; The Grocer for

Walmart and Just-Drinks for Coca Cola.

Table 4 provides insight on general timeliness characteristics of aggregate news items.

While we observe a consistent pattern of less news on holidays and weekends as opposed to

on trading days, the intensity of aggregate news varies substantially across companies.

In Table 4, we also include a measure of the contribution of the largest news sources to

total news flow. The measure is computed as a Gini coefficient using information on the

news contribution of each individual source to the total newsflow over the sample period.

A Gini coefficient of 0.85 for Alcoa (NYSE: AA) implies that 85% of the firm-specific news

flow is contributed by the 15% largest news sources. We can think of the Gini coefficient

as a concentration ratio, a high Gini coefficient implies that the firm-specific newsflow is

concentrated among relatively fewer sources. As a reference point, a Gini coefficient of

0.50 implies that each source contributes equally to the total newsflow.

Across the sample of companies, the concentration ratio ranges from 80% to 90%. This

pattern is partially due to the differences in distribution frequencies across different sources.

For example, there are relatively fewer newswires, but they account for a larger proportion

11 Hansen (2012) illustrates how the number of sources changes over time for each stock.

12 The source code identifiers are APRS, DJ, and LBA.

18 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/19/1/1/6043100 by O

xford U
niversity Press U

SA user on 31 August 2021



of the newsflow on an aggregate level. The pattern may be reinforced by the specialization

of different sources in terms of their coverage and content focus. For example, financial

wires and industry publications are more likely to cover companies on a continuous basis

than mainstream media.

The timeliness of news items deserves a final remark before proceeding. We observe a

general trend in the number of average daily news items and find that certain months have

higher means of daily news items due to quarterly earnings announcements. This has impli-

cations for our time series regressions. We include a set of dummy variables and a time

trend to account for effects from increasing overdispersion in aggregate news items over

time.13

4.4 Model Selection Algorithm

With our chosen set of explanatory variables, there are a vast range of possible models we

could settle upon, that is, for the estimation of Equation (6) with K¼5, which represents

up to five lags of the firm-specific variance; M¼ 99 corresponding to possible combinations

of 83 economic information indicators and 16 media attention indicators; J¼3 which rep-

resents inclusion of up to three lags of the corresponding information arrival indicator. To

ensure that model selection is free from our subjective judgment, we resort to the general-

to-specific model selection procedure as surveyed in Campos, Ericsson, and Hendry (2005)

and implemented in Doornik (2009).
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Aggregate news counts

Figure 1 Aggregate news counts for Alcoa (NYSE: AA), January 29, 2001 to July 31, 2009.

Notes: The chart presents the aggregate newsflow of Alcoa Inc in terms of number of news items reg-

istered in the Dow Jones Factiva database, using the Dow Jones Intelligent Indexing code for Alcoa.

13 These variables are rarely significant when news is included in the model. This is consistent with

the results in Andersen and Bollerslev (1998), suggesting that day of the week dummies imperfect-

ly substitute for announcement effects such as unanticipated news.
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Our use of Doornik’s (2009) Autometrics procedure is an effort to keep our model selec-

tion procedure as objective as possible. Among alternative machine learning model selec-

tion procedures, Autometrics is particularly well-suited for our investigation since

according to Castle, Qin, and Reed (2013), it is distinguished by its emphasis on congru-

ency and the use of multi-path searches to select variables based on significance rather than

goodness of fit.14

It is important to explain the way we conduct estimation of the various sub-models we

compare in this article. Whenever we estimate a particular specification Autometrics gets to

select the model all over. This implies that the terminal models that we end up with may

not be nested, even though the initial models were nested. This explains why the R2 may de-

crease when going from a smaller to a larger nesting initial model.

5 Evidence of Information Processing Components of return volatility

This section presents our estimation results and contrasts these with the findings in existing

literature. First, we summarize general measures of fit for each estimated model. We pro-

vide an overview of the type of economic information included in the estimated time series

regressions across stocks in subsection 6.1 and review the role of media attention indicators

in subsection 6.2.

Table 5 presents the total as well as partial R2’s from time series regressions used to esti-

mate Equation (6) and expressed in terms of the final form Equation (9), where measures of

information are included. We estimate four versions of the model in Equation (6) and then

using the estimated parameters, we construct a variable for each of the news components of

the final form. For each model, in addition to the total R2, we present partial R2 for the

variation in the firm-specific variance that is explained with news (R2
news) and the partial R2

of the contemporaneous term (R2
cont:).

Table 5 provides evidence that, for all 28 stocks, the model identified by our machine

learning model selection procedure includes lagged news indicators alongside contempor-

aneous news indicators. This result suggests that the arrival of unexpected public informa-

tion triggers information processing activities leading to additional information, previously

not publicly available, being incorporated sequentially. A close examination of Table 5

reveals that both the contemporaneous news component and the lagged news component

are significant by themselves as well as together, suggesting that the public information and

14 Doornik’s (2009) approach, Autometrics, uses a path search through the space of possible models

determined by the variables introduced in the initial model specification. The starting point for the

model reduction procedure is a general unrestricted model with the full information set. The

model has been specified in order to be a statistically well-behaved process. Each insignificant

variable in the initial model is a possible reduction path. The first path corresponds to removing

the variable with the lowest absolute t-value. The process continues in this way until we reach a

terminal model. Along the way, each model is subjected to a series of encompassing and diagnos-

tic tests. If model reduction fails, then the current model is considered a terminal model, and the

model selection procedure continues. The procedure may arrive at multiple terminal models in

which case we use an information criterion to choose the model that best fits the data. We have

also approached the estimation using an alternative machine learning model selection procedure:

The Least Absolute Shrinkage and Selection Operator implemented using the Least Angle

Regression algorithm. This approach reached similar results.
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Table 5 The partial R2 of firm specific indicators of news arrival

Ticker AR(5) AR(5) þ contemporaneous

news

AR(5) þ contemporaneous

news þ lagged effects of news

Contemporaneous

news þ lagged news

R2
Total R2

Total R2
News R2

Cont. R2
Total R2

News R2
Cont. R2

Total R2
Cont.

AA 68 71 16 3 73 30 3 40 8

AXP 84 85 19 1 86 9 1 47 11

BA 66 70 17 4 72 27 4 51 13

BAC 88 89 34 1 90 48 1 66 12

C 89 90 39 1 91 65 1 77 10

CAT 65 68 14 4 71 19 5 31 12

CVX 65 67 10 2 69 17 2 28 6

DD 68 70 10 3 72 20 3 35 9

DIS 73 75 11 1 77 36 1 50 8

GE 81 82 30 2 84 46 2 66 13

HD 70 72 10 2 73 14 2 26 5

HPQ 68 71 14 3 73 21 4 45 12

IBM 73 74 18 2 76 28 2 47 9

INTC 72 73 7 2 74 13 2 43 9

JNJ 70 74 20 3 76 37 3 45 10

JPM 85 86 41 2 87 58 3 70 13

KO 71 73 11 2 74 16 2 33 10

MCD 59 65 14 6 66 16 6 29 12

MMM 62 66 12 4 68 11 4 21 9

MRK 52 55 11 2 56 15 3 27 6

MSFT 71 72 21 2 74 31 2 52 10

PG 65 68 10 3 70 13 3 30 11

PFE 59 63 16 4 66 23 6 44 11

T 65 69 20 4 71 30 4 48 15

VZ 69 72 16 3 73 20 3 37 9

UTX 68 71 10 3 72 14 2 29 11

WMT 64 67 13 3 69 23 3 31 7

XOM 67 68 6 2 71 19 2 33 5

This table reports the R2 from contemporaneous and lagged news indicators. The model estimated is given in

Equation (6):

ln FVtð Þ ¼ xþ
XK

k¼1

qkln FVt�kð Þ þ
XM
i¼1

cini;t þ
XM
i¼1

XJ

j¼1

~c i;jni;t�j þ �t

R2
Total denotes the R2 of the model. R2

news denotes the partial R2 for the variation in the firm-specific variance

that is explained with news, and R2
cont: represents the partial R2 of the contemporaneous news. AR(5) corre-

sponds to five lags of the log-level realized FVt. FVt is estimated using intraday data. In our analysis we con-

sider 83 economic information indicators and 16 media attention indicators (i.e., M¼ 99) and include up to

three lags of the corresponding information arrival indicator (i.e., J¼ 3). Sample length generally spans from

January 29, 2001 to July 31, 2009. CVX, HPQ, INTC, T, MSFT, start at the following dates: October 10,

2001; April 9, 2011; May 6, 2002; December 1, 2005; April 9, 2001.
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effects of private processing of new economic information arrival appear to be equally im-

portant in accounting for changes in firm-specific realized variance.

Our finding, that news is related to increases in volatility, is of particular interest since

earlier research using measures of news arrival found small or insignificant relationships

with return volatility. Roll (1984) examined the variability in orange juice futures prices

and found a substantial amount of unexplained volatility. While he found higher volatility

on days with Wall Street Journal articles covering oranges than on days without, he argued

that news was of little importance given the low frequency of such information events.

However, more recently, Boudoukh et al. (2019) suggest that “public information,

when appropriately identified, is a much more important source of volatility than previous-

ly found.” Boudoukh et al. (2019) contrast their results to those of French and Roll (1986)

who find “that the major source for return volatility is not public information, but instead

private information revealed either by trading or by noise trading.” Results from testing

our private processing of public information hypothesis of return volatility using a full

cross-section of news sources further reinforce the notion that return volatility is related to

public information arrival.

The idea that public information arrival generates additional information, previously

not publicly available, through private processing of new public information is related to

Roll’s (1988) finding that the probability of information arrival is higher on days without

public news arrival. Roll (1988) describes the prevailing paradigm about changes in asset

prices and suggests that through observation and measurement of unanticipated economic

information a large proportion of changes in stock prices should be explainable.

Glasserman and Mamaysky (2019), based on empirical results using measures of senti-

ment and unusualness of news articles contained in the Thomson Reuters database for the

top 50 global banks between January 1996 and December 2014, find that unusual news

with negative sentiment predicts an increase in volatility while unusual positive news fore-

casts lower volatility at both the company-specific and aggregate levels.

In this article, by exploiting the full cross-section of news sources, we have sought a

measure of firm-specific news that is as collectively exhaustive as possible. As presented in

the seventh column (R2
news) of Table 5, we find that on average 26% (9–65%) of changes in

firm-specific realized variance are related to information arrival. Considering that 58–77%

of realized variance is firm-specific,15 we argue that our ability to, ex-post, relate 9–65% of

changes in variance to basic measures of information arrival is of economic importance.

Even so, our conclusion is similar to Roll (1988) since we find that public news cannot ac-

count for all variation in returns. Interestingly, our study shows that lagged news effects,

which were not accounted for in Roll (1988), are significant alongside contemporaneous

effects. To summarize, our results favor the paradigm that changes in volatility can be

related to the arrival of unanticipated economic information.

Across stocks, we find that on average 26% (9–65%) of changes in firm-specific vari-

ance are related to the arrival of unexpected firm-specific information. Our finding contrib-

utes to the discussion raised by French and Roll (1986) and supports the conclusions of

Boudoukh et al. (2019).16 French and Roll (1986) use the distinction between trading and

15 Refer to Column 8 of Table 3.

16 Boudoukh et al. (2019) report that fundamental information in news accounts for 12.4% of idiosyn-

cratic volatility during trading hours versus 49.6% during overnight periods.
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nontrading periods as a proxy for the rate of information arrival in order to study informa-

tion processing in financial markets. French and Roll (1986) suggest three hypotheses for

patterns in stock return variances: public information is more likely to arrive during trading

hours; private information is incorporated into prices only through trading by informed

investors during trading hours; and pricing errors occur during trading hours. They con-

clude that variation in the information flow is the most likely determinant of volatility, and

that private information is likely to be the largest component. We measure the rate of infor-

mation arrival directly and our results suggest that the relationship between public and pri-

vate information is more complex and, based on the relative size of the partial R2 in

column seven (R2
news) of Table 5 for regressions including indicators of information arrival,

that public information and related processing of public information are of economic im-

portance for stock return variances.

Since on average 26% (9–65%) of changes in firm-specific return volatility can be

explained by such a basic measure of information arrival, it is likely that news is an import-

ant missing piece in Shiller’s (1981) volatility puzzle, which states that stock price volatility

is too high to be accounted for by new information about the economic performance of the

firm.

The results in Table 5 also have implications for a large body of literature exploring dif-

ferent methods to estimate the underlying information flow of financial assets by using

observed returns and TV. Past studies have proposed models that explain characteristics of

the return generating process best described as autoregressive properties in the variance of

returns. The MDH is one theoretical explanation for this phenomenon. The MDH suggests

that a serially correlated mixing variable, measured as the rate of information arrival,

causes the autoregressive properties of the variance of returns of financial assets. Maheu

and McCurdy (2004) put forth a version of the MDH where the return generating process

is assumed to be directed by a latent news process. The conditional variance of returns is

specified to have a smoothly evolving component, related to the diffusion of past news ar-

rival, and a component related to the contemporaneous information arrival process that

generates jumps. Our empirical approach can be considered a direct test of the MDH,

where measures of new economic information are related to changes in the rate of price in-

formativeness. Again, our results support our proposed specification of the return generat-

ing process and in particular mixture models with lagged effects of information arrival such

as the diffusion of past information arrival in Maheu and McCurdy (2004).

Jeon, McCurdy, and Zhao (2019) find that news flow measures explain 24% of the

jump size volatility of top 20 firms in their sample. Our finding, using a sample of 28 large

U.S. companies included in the Dow Jones Industrial Average, that on average 26% of

changes in firm specific realized variance are related to information arrival, further sup-

ports the economic importance of the impact of information contained in firm-specific

news on volatility as well as on return jump intensities.

5.1 Categories of Economic Information

We now turn to characterizing the firm-specific news that we find is related to changes in

stock return volatility. Table 6 shows that news items categorized as covering Management

Issues are most commonly found in regressions explaining changes in firm-specific realized

variance. In time series regressions that only include contemporaneous news series, our
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model selection procedure includes it 11 times, while in regressions where we also consider

lagged information indicators, it is included 9 times across our sample of 28 stocks.

Table 6 also shows that Earnings Surprise is the second most common information ar-

rival indicator across stocks. This series includes earnings announcements deemed by news

agencies and the Dow Jones Intelligent Indexing system to convey material change in per-

formance. Newsflow in this category often contains headlines mentioning earnings or prof-

itability measures and such words as decline, disappoint, drop, loss, plunge, jump, strong,

beat, and boost. American Express (NYSE: AXP) is one of the companies where Earnings

Surprise newsflow is included. The news items often refer specifically to changes in the per-

formance of individual business units and end-markets. For example, trends in card issu-

ance and delinquencies associated with American Express’s credit card business. Moreover,

it is not uncommon to find news items discussing earnings surprises for competitors and

companies in the same lines of business.

The results found in Table 6 are in line with Patell and Wolfson (1984) since we find

that Earnings Surprise is the information arrival indicator most likely to have a lagged rela-

tionship with firm specific realized variance. This can be observed by examining the num-

ber of lagged indicators for the Earnings Surprise category that are used in stock specific

regressions. We see that the contemporaneous Earnings Surprise indicator is included for

nine stocks, while between three and six of the stock specific regressions include lagged

effects of this indicator. This pattern suggests that the release of Earnings Surprise informa-

tion is more likely to provide information-based investors with an advantage from informa-

tion processing activities, since there are information-related effects up to three days after a

shock to the Earnings Surprise newsflow.

An interesting result in Table 6 is that no category, other than Management Issues and

Earnings Surprises, is included across more than one third of our 28 stocks. An examin-

ation of the underlying newsflow significant for each stock also reveals material differences

in the type of issues surfacing within any single newsflow category. For example, we exam-

ine the Corporate Crime/Legal/Judicial category which is significant for both IBM (NYSE:

IBM) and Citigroup (NYSE: C). For IBM, an information technology products and services

provider, themes in the newsflow include a series of lawsuits including a lawsuit by

Compuware for misappropriation of source code used in mainframe testing, a civil lawsuit

by the SCO Group related to licensing rights to the UNIX computer operating system, as

well as investigations into IBM’s accounting practices by the SEC. For Citigroup, a financial

services provider, the same newsflow category covers an investigation by the German finan-

cial services regulator into Citigroup’s alleged manipulation of European bond markets as

well as litigation with respect to underwriting activities for WorldCom, Enron, and

Parmalat. These examples illustrate the diversity of the events covered in the news for dif-

ferent companies.

Many of the corporate information events covered by our indicators have previously

been studied. In fact, the idea that new economic information drives changes in asset prices

is supported by a large body of literature using event study methodologies to explore how

different corporate events are related to changes in stock prices. Neuhierl et al. (2013) re-

port significant stock price reaction to news contained in corporate press releases classified

as related to corporate strategy, customers and partners, products and services, manage-

ment changes, and legal developments. A common concern in event studies is the ability to

control for confounding events. On average, the stocks in our sample have between 12 and
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195 news items each per trading day.17 In fact, it is seldom that these stocks a have a day

where they are not mentioned in the media. Despite the presence of multiple news items,

our model selection procedure still identifies certain news subjects as significant. Results in

Table 6 confirm the importance of several corporate events studied in prior research while

controlling for the vast number of simultaneously occurring news items available for a

given company.

5.2 Media Attention

Table 7, like Table 6, presents an overview of the media attention indicators found signifi-

cant across our sample of stocks. The indicators in this table have all been included in order

to simultaneously control for the media attention hypothesis put forth by studies such as

Huberman and Regev (2001), Barber and Odean (2008), and Engelberg and Parsons

(2011).

Results presented in Table 7 indicate that newswire media attention is important when

explaining changes in firm specific realized variance. This can be observed by examining

the number of lagged indicators for the Newswires category that are used in stock-specific

regressions. We see that the contemporaneous Newswires indicator is included for 22

stocks, while 9 to 10 of the stock specific regressions include lagged effects of this indicator.

Our results appear to be at odds with the results of Engelberg and Parsons (2011).

Engelberg and Parsons (2011) compare the behavior of investors with access to different

media coverage of the same information event. They find that local media coverage predicts

local trading while controlling for the characteristics of earnings announcements, investors,

and individual newspapers. They suggest that their results would also apply to large media

outlets, such as newspapers with substantial circulation, and that the media attention rela-

tionship is more likely to drive trade than unanticipated economic information.

We test the information processing hypothesis while controlling for the media effects.

From Tables 6 and 7, we conclude that while several economic information categories are

relevant for explaining changes in firm-specific variance, the media attention hypothesis

cannot be ruled out. However, the main channel for the media attention effect in our study

appears to be the aggregate attention from newswires as opposed to that from leading

newspapers with large circulation, such as USA Today. We argue that the newspaper media

attention effect is more plausible when thought of as a channel for the resolution of asym-

metric information between informed and noninformed traders as modeled in Foster and

Viswanathan (1990) and as examined in Tetlock (2010). On the other hand, the signifi-

cance of the newswire media attention indicator may arise from the indicator’s ability to

proxy for the number of informed traders. For example, Holden and Subrahmanyam

(1992) show that price change variance increases with the number of informed traders.

Table 7 confirms the evidence in Tetlock (2010) that the number of newswire items has

predictive power for news day price changes. Tetlock (2010) uses 2.2 million articles from

the Wall Street Journal and the Dow Jones News Service to examine if public news elimi-

nates information asymmetry from two types of traders for a sample of 13,842 firms from

1979 to 2007. He suggests that public news levels the playing field for other investors by

resolving asymmetric information. In addition, he finds that the number of newswire

17 Derived from the ratio of fourth column in Table 4 to last column in Table 3.
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messages subsumes the predictive power of news day returns but finds a small positive rela-

tionship between contemporaneous public information and absolute returns.

The results in Tables 6 and 7 differ in one key way from Tetlock (2010). We find a sig-

nificant relationship between contemporaneous information arrival and changes in realized

variance. We think that Tetlock’s (2010) finding that public information cannot account

for news day returns may be due to the omission of sources other than the Dow Jones news-

wires and the Wall Street Journal, in order to measure content materiality better. For ex-

ample, as presented in Table 7, measures of increases in aggregate newswire attention are

included in the time series regressions of 22 out of 28 companies. Moreover, we find that

the main Dow Jones and Reuters news wires are often included, 13 and 11 times, respect-

ively. In addition, the Wall Street Journal is included between four and five times across

stocks. This may reflect the fact that it is focused on in-depth analysis of corporate informa-

tion events originally disclosed by Dow Jones, the Wall Street Journal’s corporate parent,

Table 7 Parameter overview—media attention indicators

Indicator

Number of stocks for which each information

arrival indicator is included the model

News only News and lagged news

c0 c0 c1 c2 c3

Newswires 18 22 9 10 9

Dow Jones newswires 16 13 5 2 2

Reuters newswires 16 11 4 3 2

Newspapers 13 3 2 3 6

Associated press 9 5 4 2 1

Industry publications (DJ) 6 2 8 1 0

Press release newswires 6 5 4 5 2

Wall Street Journal 5 4 1 2 1

Newsletters (DJ) 4 8 3 2 2

Washington Post 4 1 5 1 1

Government and Politics

publications (DJ)

4 2 1 5 0

New York Times 3 1 2 2 2

Financial Times 3 2 1 1 4

Press release newswire 3 2 2 3 0

Major business news (DJ) 2 4 4 1 0

Other sources 2 4 4 1 4

This table summarizes which indicators of economic information arrival generally are included in the time ser-

ies regressions in the cross-section of our sample of 28 large U.S. stocks. The Number column presents the

number of stocks for which the respective time series of a given information arrival indicator was included in a

model, given in Equation (6), describing the changes in daily FVt of a given stock. In our analysis we consider

83 economic information indicators and 16 media attention indicators (i.e., M¼ 99) and include up to three

lags of the corresponding information arrival indicator (i.e., J¼ 3). FVt is estimated using intraday data.

Sample length differs from stock to stock but generally spans from January 29, 2001 to July 31, 2009. CVX,

HPQ, INTC, MSFT, T start at the following dates respectively: October 10, 2001; April 9, 2011; May 6,

2002; December 1, 2005; April 9, 2001. DJ indicates that source is the Dow Jones & Company.
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family of newswires. In other words, we find support for the resolution of information

asymmetry due to arrival of public information (Foster and Viswanathan, 1990, Tetlock,

2010) as a result of inclusion of several media attention indicators for leading newspapers;

however, we suggest that, by exploiting the full cross-section of news sources, our empirical

approach more accurately measures firm-specific news arrival.

Our view, that lagged information effects are related to the processing of public infor-

mation, is further supported by a study by Engelberg, Reed, and Ringgenberg (2012).

Engelberg et al. (2012) examine the trading pattern of short sellers when news from the

Dow Jones newswires and the Wall Street Journal arrives. Using a sample covering 2005–

2007, they find a significant increase in short selling after news events and that the most in-

formative trades appear to be on days following news arrival. In addition, the most profit-

able trades are made on days where trades arrive later than those of other investors. They

suggest that informed traders do not predict information arrival but rather gain their infor-

mation advantage from processing publicly available information. They conclude that pub-

lic news arrival creates trading opportunities for skilled information processors.

6 Robustness Checks

In this section, we perform a series of robustness tests. First, we check the robustness of our

results to the alternative dependent variables, which are related to information arrival.

Second, we investigate the impact of mixing the firm specific newsflow across the 28 stocks.

Finally, we check the sensitivity of our results to data period used by splitting the sample

into nonoverlapping periods of three sub-samples.

6.1 Alternative-dependent Variables

First, we use dependent variables that differ from realized FV: TV, squared returns (SQs),

and IV from 1 month at-the-money call options (IV). When using TV, squared close-to-

close returns, and IV, we aim to check the relationship of news with other measures, linked

to the firm’s common stock that we expect are related to the arrival of new information.

Several empirical studies have shown that TV, SQ, and IV are related to information

arrival.

Berry and Howe (1994) and Mitchell and Mulherin (1994) use aggregated news meas-

ures and document a positive relationship between broad market activity and the number

of news items from the Reuters and Dow Jones news wires, respectively. Tetlock (2010)

finds that the contemporaneous cross-correlation between absolute returns and abnormal

TV is temporarily higher by 3.5% on days with Dow Jones or Wall Street Journal news

items. At high-frequency, Groß-Klußmann and Hautsch (2011) find that volatility and TV

are most sensitive to news arrival. With the media attention hypothesis in mind, Engelberg

and Parsons (2011) are able to explain roughly 30% of the variation in log-transformed TV

by using proxies for local media attention and indicators of earnings announcements. These

studies suggest that reasonable proxies for information arrival and media attention should

also be related to excess TV and excess volatility in close-to-close returns. Table 8 provides

evidence that our indicators of information arrival and changes in media attention are able

to explain significant amounts of changes in these alternative measures.

TV and SQ are directly related to realized variance through the trading process, this is

not the case for IV from options on a given common stock. To add further flavor to our
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Table 8 Estimation results with alternative dependent variables

Ticker TV SQ IV

R2
Total R2

News R2
Cont. R2

Total R2
News R2

Cont. R2
Total R2

News R2
Cont.

AA 86 34 3 24 9 4 98 5 0.2

AXP 79 23 2 40 8 4 99 3 0.1

BA 62 26 8 20 8 4 98 3 0.1

BAC 96 64 1 45 16 4 99 11 0.1

C 94 58 2 45 14 4 99 10 0.1

CAT 84 29 5 25 10 6 98 3 0.2

CVX 89 29 1 17 7 2 96 16 0.3

DD 69 21 3 25 5 1 98 1 0.0

DIS 66 28 7 26 6 3 98 6 0.1

GE 86 49 5 34 10 3 99 3 0.1

HD 76 19 5 26 10 5 98 3 0.2

HPQ 61 37 17 23 8 5 96 18 0.3

IBM 62 24 8 26 7 3 98 11 0.3

INTC 51 34 20 26 9 4 97 14 0.3

JNJ 68 29 8 17 8 3 97 15 0.2

JPM 89 50 3 42 11 5 99 2 0.1

KO 70 25 4 20 7 4 98 5 0.1

MCD 62 26 11 13 6 5 96 13 0.2

MMM 69 27 8 23 5 3 97 2 0.2

MRK 68 24 2 19 8 3 96 4 0.1

MSFT 52 31 7 28 11 5 98 5 0.1

PG 85 34 3 13 4 2 97 3 0.1

PFE 83 50 6 21 10 5 96 11 0.4

T 65 15 6 23 7 2 98 3 0.2

VZ 73 39 5 23 6 2 98 5 0.1

UTX 75 37 3 24 6 2 98 2 0.1

WMT 75 36 6 18 8 3 97 4 0.1

XOM 83 43 1 19 9 4 97 19 0.2

Notes: TV and squared close-to-close returns (SQ) are obtained from the CRSP database, while IV is obtained

from Bloomberg.

This table presents R2s from estimating Equation (6) using alternative dependent variables: TV, squared close-

to-close returns (SQ), and IV calculated using 1-month at-the-money call options (IV):

ln TVtð Þ ¼ xþ alnðSQSP500;tÞ þ
XK

k¼1

qkln TVt�kð Þ þ
XM
i¼1

cini;t þ
XM
i¼1

XJ

j¼1

~c i;jni;t�j þ �t

ln SQtð Þ ¼ xþ alnðSQSP500;tÞ þ
XK

k¼1

qkln SQt�kð Þ þ
XM
i¼1

cini;t þ
XM
i¼1

XJ

j¼1

~ci;jni;t�j þ �t

ln IVtð Þ ¼ xþ alnðIVSP500;tÞ þ
XK

k¼1

qkln IVt�kð Þ þ
XM
i¼1

cini;t þ
XM
i¼1

XJ

j¼1

~c i;jni;t�j þ �t

where ni, t are indicators of new information arrival. R2
Total denotes the R2 of the model. R2

news denotes the par-

tial R2 for the variation in the firm-specific variance that is explained with news, and R2
cont: represents the par-

tial R2 of the contemporaneous news. Sample length generally spans from January 29, 2001 to July 31, 2009.
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robustness check, we examine the relationship between information arrival and changes in

IV. Beyond the obvious connection, previous research suggests that the options market

reflects the characteristics of the realized volatility process. Using the news tone scores for

firm-specific news announcements contained in the Thomson Reuters News Analytics data-

base, between January 2003 and December 2011, Dzielinski and Hasseltoft (2017) find a

significant and positive relation between news-tone dispersion and IV. Glasserman and

Mamaysky (2019), using news articles in the Thomson Reuters database for the top 50 glo-

bal banks between January 1996 and December 2014, show that measures of sentiment

and unusualness of news stories are able to predict IV.18 In other words, prior empirical re-

search suggests that IV should be related to measures of firm-specific news.

Table 8 confirms the evidence found in prior research suggesting that TV and IV are

related to the arrival of firm-specific information. We argue that this robustness check illus-

trates the strength of the evidence in Table 5 and supports our proposition that positive

changes in newsflow are indicators of the arrival of relevant information.

6.2 Newsflow Mix

Second, we proceed in our robustness checks by using the original-dependent variable, real-

ized firm-specific variance and mix the newsflow across our sample of stocks. In other

words, we use firm-specific newsflow for companies other than the company whose firm-

specific realized variance we are using as the dependent variable. Figure 2 shows that for

the stocks in our sample, using the correctly matched newsflow mostly yield higher R2’s

than using the incorrect newsflow, that is, news related to other companies. This is in par-

ticular the case for the stock where the newsflow has most explanatory power. These results

suggest that our measures of information arrival and media attention are firm-specific. Still,

we see for some stocks that new from other stocks have notable explanatory power. This is

to be expected as some of the stock belongs to the same sector. Hence, we should, for ex-

ample, except some news about one of the pharmaceutical companies to affect the stock

prices of the other pharmaceutical companies.

6.3 Sub-Sample Analysis

Our third robustness check consists of splitting our sample into different periods and subse-

quently investigating the sensitivity of our results to this approach. We split our sample into

three nonoverlapping sub-samples corresponding to the ranges 2001–2003, 2004–2006,

and 2007–2009. Comparing results in Table 9 to those in Table 5 suggests that in most

cases the R2 measures are somewhat higher across sub-samples. While we observe that

R2
news, that is, how much of the variation in the firm-specific variance that is explained with

news, during the first, second and third 3-year sub-samples are higher for 17, 17, and 23

stocks, respectively, compared to the entire sample period, on average partial R2’s consist-

ently increase over each sub-sample. Except for four stocks in the 2007–2009 sub-sample,

18 Calomiris and Mamaysky (2019) also utilize the TRNA database in their investigation of the context

of news articles to predict risk and return in 51 developed and emerging stock markets between

1996 and 2015. They find that the information extracted from news text flow, using measures such

as sentiment, frequency, and unusualness, forecasts 1-year ahead returns and risk, measured by

rolling 20-day realized volatility as well as 12-month drawdowns.
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we find that all partial R2’s for models including the contemporaneous and lagged news

(R2
news) are higher.

Results from sub-sample estimations highlight the time-varying relationship between

volatility and firm-specific news arrival. Observed increases in partial R2’s over each sub-

sample could be due to enhancements in technology employed by the news media industry

over time.

These results could be due to a true data generating process where new information has

a time-varying relationship with volatility, for example, the impact of similar corporate

events, for example, a new product launch, may be different depending on the state of the

macroeconomic environment.

Our investigation also highlights the challenge inherent in correctly measuring economic

information arrival once all relevant news items are observed. Boudoukh et al. (2019) also

discuss the role of appropriate identification of public information. Improving corporate

Figure 2 R2’s when mixing newsflow across stocks.

Notes: Blue triangles indicate the R2 from models where contemporaneous news (top plot) and con-

temporaneous and lagged news (bottom plot) is included from a model where a company’s Firm

Specific newsflow is used to explain changes in daily FVt. The box plot for each stock ticker corre-

sponds to the distribution of R2 for models using the newsflow related to other companies. Each box-

plot consists of 27 model estimations using newsflow for each of the other companies in the sample.

AT&T (NYSE: T) is excluded due to its substantially smaller sample.
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event and information taxonomies and documenting characteristics of corporate newsflow

are clear steps forward in resolving such measurement issues.

Finally, while we have attempted to gather as collectively exhaustive a dataset of firm

specific newsflow as possible, the database that we use, while extensive, does not include

Table 9 Results from sub-sample estimation

Ticker 2001–2003 2004–2006 2007–2009

AR(5) þ contemporaneous

news þ lagged effects of news

AR(5) þ contemporaneous

news þ lagged effects of news

AR(5) þ contemporaneous

news þ lagged effects of news

R2
Total R2

News R2
Cont. R2

Total R2
News R2

Cont. R2
Total R2

News R2
Cont.

AA 58 14 5 47 26 7 75 19 4

AXP 78 31 2 45 23 14 85 10 1

BA 63 27 7 40 21 15 73 37 5

BAC 79 24 1 42 24 6 91 37 2

C 80 50 3 38 15 7 92 74 3

CAT 65 26 4 46 28 11 80 30 4

CVX 76 33 4 64 30 3 70 26 1

DD 72 27 3 37 21 9 73 26 5

DIS 69 34 4 44 29 5 79 27 3

GE 69 27 3 38 19 3 88 50 3

HD 69 17 3 39 21 11 79 30 3

HPQ 83 79 5 45 28 15 78 40 6

IBM 75 36 1 47 33 13 77 52 4

INTC 74 11 2 40 22 7 74 35 5

JNJ 58 19 6 56 38 14 76 31 5

JPM 78 60 4 43 26 11 90 69 4

KO 68 28 6 48 30 11 74 20 2

MCD 53 30 15 41 25 14 72 16 6

MMM 73 16 3 40 29 18 75 36 6

MRK 53 23 2 31 14 2 73 37 9

MSFT 65 16 3 39 23 6 78 50 5

PG 74 20 2 46 34 19 77 25 4

PFE 60 22 4 43 32 20 81 43 5

VZ 66 24 2 41 20 11 75 25 4

UTX 65 21 2 42 21 10 77 19 5

WMT 74 30 3 37 26 10 71 32 6

XOM 72 16 1 60 27 4 75 37 3

This table presents R2s from models using nonoverlapping sub-samples, in estimating Equation (6), describing

the changes in daily FVt of a given stock. In our analysis, we consider 83 economic information indicators and

16 media attention indicators (i.e., M¼ 99) and include up to three lags of the corresponding information ar-

rival indicator (i.e., J¼ 3). AR(5) corresponds to five lags of the log-level realized FVt. FVt is estimated using

intraday data. Sample length differs from stock to stock but generally spans from January 29, 2001 to July 31,

2009. CVX, HPQ, INTC, and MSFT start at the following dates, respectively: October 10, 2001; April 9,

2011; May 6, 2002; April 9, 2001. R2
Total denotes the R2 of the model. R2

news denotes the partial R2 for the vari-

ation in the firm-specific variance that is explained with news, and R2
cont: represents the partial R2 of the con-

temporaneous news.
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all news sources. For example, any news published by Bloomberg’s news agency is not com-

pletely included in our dataset. Bloomberg news items are only represented when other

publications or newswires import content created by Bloomberg’s news agency. Like the

Dow Jones Factiva database, Bloomberg provides access to a wide range of news sources.

The extent and impact of missing news sources had been examined and reveals that there

are significant overlaps in the stories reported by leading news agencies. On a more general

note, both Bloomberg and Factiva report that they provide access to more than 20,000

sources, suggesting a high degree of overlap between the two databases. As a final remark,

we highlight our focus on news items as the source for measuring economic information ar-

rival. For example, filings with the SEC and other corporate disclosure suggest that industry

supply and demand for aluminum should affect the economic performance of Alcoa

(NYSE: AA). We have not included such sources of economic information unless they are

specifically covered by news articles within Factiva database. However, it should be noted

that the firm-specific newsflow contains news items describing events related to aluminum

and other commodities. Our results control for firm-specific newsflow covering General &

Political, Macroeconomic, and Financial Market subject categories to the extent news agen-

cies and the Dow Jones Intelligent Indexing system mark such information as being relevant

to the specific company. We believe that any omitted sources of economic information ar-

rival will be independent of the information identified and measured in this investigation.

7 Conclusion

In this article, we develop the information processing hypothesis of return volatility to in-

vestigate the relation between firm-specific news and volatility. We propose a novel dynam-

ic econometric specification and test it using time series regressions employing a machine

learning model selection procedure. Our primary contribution originates from the unique

hypothesis we develop to directly test the impact of firm specific news on firm specific vola-

tility for which we present economically significant results.

We identify a collectively exhaustive measure of firm-specific newsflow by gathering all

firm-specific news in the cross-section of approximately 30,000 different news sources for a

sample of 28 large U.S. companies from more than 3 million news items labeled with 83

subject categories.

Our proposed econometric specification for firm-specific return volatility is a simple

mixture model with two components: public information and private processing of public

information. The public information processing component is defined by the contemporan-

eous relation with public information and volatility, while the private processing of public

information component is specified as a general autoregressive process corresponding to

the sequential price discovery mechanism of investors as additional information, previously

not publicly available, is generated and incorporated into prices.

Our results show that changes in return volatility are related to public information ar-

rival. For all 28 stocks in our sample, adding contemporaneous and lagged firm specific

news explains a significant proportion of changes in firm-specific return volatility. Firm-

specific volatility generally accounts for 58% to 77% of all variation in 5-min returns with-

in the trading day. Including contemporaneous and lagged indicators explains on average

26% (between 9% and 65%) of changes in firm-specific volatility.
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Robustness checks confirm that our measures of information arrival are indeed firm-

specific and capture relevant information related to the firm. Furthermore, robustness

checks underscore the time-varying relationship between volatility and firm-specific news

arrival.

Although early finance literature found little evidence for the impact of public informa-

tion on volatility, results from testing our information processing hypothesis of return vola-

tility further reinforce the notion that return volatility is related to public information

arrival, which is also supported by few other recent investigations, as news arrival triggers

some form of information processing. Furthermore, combined with the findings of Jeon,

McCurdy, and Zhao (2019) who focus on news and jump diffusion, our information proc-

essing hypothesis of return volatility could enrich certain option pricing models, such as the

one developed by Christoffersen, Jacobs, and Ornthanalai (2012) who incorporate both dy-

namic volatility and dynamic jump intensities.
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Abstract
I introduce an index of market return autocorrelation based on the prices of index
options and of forward-start index options and implement it at a six-month horizon.
The results suggest that the autocorrelation of the S&P 500 index was close to zero
before the subprime crisis but was negative in its aftermath, attaining values around
–20% to –30%. I speculate that this may reflect market perceptions about the likely
reaction, via quantitative easing, of policymakers to future market moves.

Do past returns on the market forecast future returns? Is the return on the market autocor-

related? It is well known that any asset return has zero risk-neutral autocorrelation

(Samuelson, 1965).1 But true autocorrelation may diverge significantly from zero—a point

first made by LeRoy (1973)—and fluctuate over time. It is not clear whether one should ex-

pect positive or negative autocorrelation; indeed, both might be present simultaneously at

different horizons. The former might be attributed to the influence of return-chasing invest-

ors in the investor population, as in the models of Hong and Stein (1999) and Vayanos and

Woolley (2013), or to sluggish response to information; and the latter to bid-ask bounce, to

overreaction as in the model of Barberis et al. (2015), or to the response of monetary

authorities to fluctuations in asset prices.2

* I thank Anthony Neuberger, Anna Cieslak, Leifu Zhang, Fabio Trojani (the editor) and two referees

for their comments; Can Gao for research assistance; and Dimitri Vayanos for posing the question

that prompted this article. This work was carried out with the support of the Paul Woolley Centre

and the ERC (Starting Grant 639744).

1 This statement is precisely true only if interest rates are deterministic; see below.

2 This is a highly incomplete, and somewhat arbitrary, list. Many other authors have studied the

properties of autocorrelation; see, for example, Roll (1984), Grossman and Miller (1988), and

Campbell, Grossman, and Wang (1993).
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Several authors, including Fama and French (1988), Lo and MacKinlay (1988), Poterba

and Summers (1988), and Moskowitz, Ooi, and Pedersen (2012), have studied the proper-

ties of realized autocorrelation of the market return, with results that vary depending

on the horizon studied and on the sample period (on the latter, see Campbell, 2018, pp.

125–127). But how can we infer the forward-looking autocorrelation perceived by sophisti-

cated investors? One straightforward approach is simply to ask investors what they think,

following Shiller (1987) and others. But the expectations reported in such surveys appear to

be far from rational: for example, Greenwood and Shleifer (2014) argue that times when

surveyed investors are optimistic about future returns are in fact associated with low, not

high, subsequent returns.

I therefore take a different approach and ask what autocorrelation must be perceived by

a rational, risk-averse investor—specifically, by an unconstrained rational investor with log

utility who chooses to invest his or her wealth fully in the market. It turns out to be possible

to give a precise answer to this question in terms of the prices of various types of options.

The fact that the autocorrelation index is computed directly from forward-looking asset

prices, rather than from historical measures, is the major innovation of the article. The price

to pay is that one has to accept the log investor’s perspective as being a reasonable one to

adopt. Nonetheless, related approaches have proved fruitful in forecasting returns on the

stock market (Martin, 2017), on individual stocks (Martin and Wagner, 2019), and on cur-

rencies (Kremens and Martin, 2019); and the approach has the obvious advantage of bring-

ing a novel type of evidence to bear on a classic question. Moreover, as in these earlier

papers, we have the benefit of not requiring statistical assumptions on the underlying

process (e.g., that it is stationary or ergodic). Such assumptions are widely made in the em-

pirical literature, but they are not uncontroversial.

The theoretical results are derived in Section 1. They show that the autocorrelation

index can be calculated from the prices of European index options and of forward-start

index options. The latter options are relatively exotic, but I have been able to obtain indica-

tive price quotes from a major investment bank for a small number of days between June

2007 and December 2013. Section 2 uses these prices to calculate the autocorrelation index

and compares the implied forward-looking autocorrelations that emerge to the correspond-

ing realized autocorrelations. Section 3 concludes.

1 Measuring Autocorrelation

Today is time t; the price of the underlying asset at time t is St. The goal is to measure the

correlation between the return on the asset over the next period, Rt!tþ1 and the return over

the following period, Rtþ1!tþ2. I assume that the underlying asset does not pay dividends,

so Rt!tþ1 ¼ Stþ1=St. I write the rate at which money can be risklessly invested from time u

to time v as Rf ;u!v, so Rf ;t!tþ1 and Rf ;t!tþ2 are one- and two-period spot rates.

I write E
�
t for the risk-neutral expectation operator whose defining property is that the

time-t price of a time-ðt þ 2Þ payoff Xtþ2 is 1
Rf ;t!tþ2

E
�
t Xtþ2; and cov�t and corr�t for the corre-

sponding risk-neutral covariance and risk-neutral correlation operators.

When seeking a measure of autocorrelation that can be computed directly from asset

prices, the natural first thought is to consider risk-neutral autocorrelation. Unfortunately,

we have the following well-known result.
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Result 1. Suppose that interest rates are deterministic. Then the return on any asset has

zero risk-neutral autocorrelation: corr�t ðRt!tþ1;Rtþ1!tþ2Þ ¼ 0.

Proof. By the defining property of the risk-neutral expectation operator, we have

E
�
t Rt!tþ1 ¼ Rf ;t!tþ1 and E

�
tþ1Rtþ1!tþ2 ¼ Rf ;tþ1!tþ2. As interest rates are deterministic, the

second equality implies that E
�
t Rtþ1!tþ2 ¼ Rf ;tþ1!tþ2 by the law of iterated expectations.

So we can write

cov�t ðRt!tþ1;Rtþ1!tþ2Þ ¼ E
�
t ½ðRt!tþ1 � Rf ;t!tþ1ÞðRtþ1!tþ2 � Rf ;tþ1!tþ2Þ�

¼ E
�
t ½ðRt!tþ1 � Rf ;t!tþ1ÞE�tþ1ðRtþ1!tþ2 � Rf ;tþ1!tþ2Þ�

¼ 0;

using the law of iterated expectations again for the second equality. h

Although interest rates are not deterministic, they are typically extremely stable by com-

parison with returns on stock indices, so Result 1 rules out the autocorrelation perceived by

a risk-neutral investor as a useful measure. Moreover, it is easy to adapt the proof above to

show that the risk-neutral autocorrelation of excess returns is zero even if interest rates are

stochastic.

How, then, can we define a non-trivial measure of autocorrelation? This article introdu-

ces an index that can be interpreted as the autocorrelation perceived by a rational, uncon-

strained investor with log utility whose wealth is fully invested in the market. The next

result, which is also exploited by Martin (2017), provides the key to calculating this

quantity.

Result 2. Let XT be some random variable of interest whose value becomes known at time

T, and suppose that we can price a claim to XTRt!T delivered at time T. Then we can com-

pute the expected value of XT from the perspective of an investor with log utility whose

wealth is invested in the market:

EtXT ¼ time t price of a claim to the time T payoff XTRt!T : (1)

Proof. An investor with log utility who chooses to hold the market must perceive that

the return on the market is growth-optimal. As the reciprocal of the growth-optimal return

is a stochastic discount factor (SDF), the right-hand side of Equation (1) equals

Et
1

Rt!T
XTRt!T

h i
, and the result follows. h

This result provides a general strategy for inferring the true expectation of the log investor

from traded asset prices. If we can price the claim XTRt!T , then we can infer the investor’s

expectation of XT, even if XT is not itself a tradable payoff. In particular, Result 2 will

allow us to calculate corrtðRt!tþ1;Rtþ1!tþ2Þ.

To that end, we wish to compute

covtðRt!tþ1;Rtþ1!tþ2Þ ¼ EtRt!tþ2 � EtRt!tþ1EtRtþ1!tþ2: (2)
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By Result 2, EtRt!T is equal to the price of a claim to the square of the return on the mar-

ket, R2
t!T . This price can be calculated by a replication argument, as in Martin (2017),

using the fact that

R2
t!T ¼

ST

St

� �2

¼ 2

S2
t

ð1
0

maxf0; ST � KgdK:

This equation expresses the desired payoff—the squared return—as the payoff on a port-

folio that holds equal quantities of calls of all strikes. Thus

EtRt!T ¼
2

S2
t

ð1
0

callt;TðKÞdK; (3)

and setting T ¼ t þ 1 and T ¼ t þ 2 in this expression delivers the first two expectations on

the right-hand side of Equation (2).

It is more difficult to compute EtRtþ1!tþ2, and doing so is the main innovation of the

article. In view of Result 2, to calculate this quantity we need the time-t price of a claim to

Rtþ1!tþ2Rt!tþ2 delivered at time tþ 2. That is, we must price a claim to S2
tþ2=ðStStþ1Þ.

It will turn out that we can replicate this claim using forward-start options. A forward-

start call option that is initiated at time t, for settlement at time tþ2, has the payoff

maxf0; Stþ2 � KStþ1=Stg

for some fixed K. The unusual feature of a forward-start option is that its strike price,

KStþ1=St, is not determined until the intervening time tþ 1. (The introduction of St, a

known constant from the perspective of time t, is simply a convenient normalization.) In

contrast, the strike price of a conventional option is determined at the initiation of the

trade. I write FScalltðKÞ for the time-t price of the above payoff, and FSputtðKÞ for the price

of the corresponding put payoff, maxf0;KStþ1=St � Stþ2g.
If we hold a portfolio consisting of 2=S2

t dK forward-start calls for each K, the portfolio payoff

is

2

S2
t

ð1
0

maxf0; Stþ2 � KStþ1=StgdK ¼
S2

tþ2

StStþ1
: (4)

Since the payoff on the portfolio of forward-start calls replicates the desired payoff, the price of

the payoff S2
tþ2=ðStStþ1Þ is the price of the portfolio of forward-start calls, and hence

EtRtþ1!tþ2 ¼
2

S2
t

ð1
0

FScalltðKÞdK: (5)

Before using Equations (3) and (5) to compute the covariance covtðRt!tþ1;Rtþ1!tþ2Þ, it

will be convenient to rearrange them by replacing in-the-money calls and forward-start

calls with out-of-the-money puts and forward-start puts. For vanilla options, we can do so

by exploiting put-call parity, which in our context states that

callt;TðKÞ � putt;TðKÞ ¼ St �
K

Rf ;t!T
:
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The next result provides the corresponding relation for forward-start options.

Result 3 (Put-call parity for forward-start options). Let Gt be defined by the equation

FScalltðGtStÞ ¼ FSputtðGtStÞ (so Gt is observable at time t, assuming the prices of forward-

start options of all strikes are available). Then

FScalltðKÞ � FSputtðKÞ ¼ St �
K

Gt
: (6)

If interest rates are deterministic, then Gt equals the forward (gross) interest rate for invest-

ment from time tþ 1 to tþ 2.

Proof. The time-ðt þ 2Þ payoff on a portfolio that is long a forward-start call and short a

forward-start put, each with strike K, is Stþ2 � KStþ1=St. It follows that

FScalltðKÞ � FSputtðKÞ ¼ St �
1

Rf ;t!tþ2
E
�
t

KStþ1

St

� �
¼ St � kK;

where k is the time-t price of a claim to Stþ1=St delivered at time tþ 2. We can pin down k

by applying the equation immediately above in the case K ¼ GtSt to conclude that

k ¼ 1=Gt. This gives the result of Equation (6).

If interest rates are deterministic, k ¼ 1=Rf ;tþ1!tþ2. For we can replicate the payoff Stþ1=St,

paid at time tþ 2, by investing 1=Rf ;tþ1!tþ2 in the market from time t to tþ1, and then at

the riskless rate from time tþ1 to tþ 2. h

Martin (2017) defined the volatility index SVIX2
t;T ¼ 1

T�t var�t ðRt!T=Rf ;t!TÞ:

SVIX2
t;T ¼

2

ðT � tÞRf ;t!TS2
t

½
ðStRf ;t!T

0

putt;TðKÞdKþ
ð1

StRf ;t!T

callt;TðKÞdK�:

We can define a forward volatility index FSVIXt that is new to this article:

FSVIX2
t ¼

2

GtS2
t

½
ðStGt

0

FSputtðKÞdKþ
ð1

StGt

FScalltðKÞdK�:

Using the put-call parity relations to substitute out calls and forward-start calls that have

low strikes (i.e., are in-the-money), and then introducing these definitions, Equations (3)

and (5) can be rewritten as

EtRt!T ¼ Rf ;t!T

�
1þ ðT � tÞSVIX2

t;T

�
(7)

EtRtþ1!tþ2 ¼ Gtð1þ FSVIX2
t Þ: (8)

These definitions lead to the following characterization.

Result 4. The forward-looking autocovariance of returns, as perceived by the log investor,

can be expressed in terms of spot and forward volatility indices as
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covtðRt!tþ1;Rtþ1!tþ2Þ ¼ Rf ;t!tþ2ð1þ 2SVIX2
t;tþ2Þ

� Rf ;t!tþ1Gtð1þ SVIX2
t;tþ1Þð1þ FSVIX2

t Þ: (9)

This expression simplifies if interest rates are deterministic:

covtðRt!tþ1;Rtþ1!tþ2Þ ¼ Rf ;t!tþ2ð2SVIX2
t;tþ2 � SVIX2

t;tþ1 � FSVIX2
t � SVIX2

t;tþ1FSVIX2
t Þ:
(10)

Proof. Equation (9) follows on substituting Equations (7) and (8) into the definition (2) of

autocovariance. If interest rates are deterministic, then Rf ;t!tþ1Gt ¼ Rf ;t!tþ2 (because, as

shown in Result 3, Gt is then equal to the forward rate from tþ1 to tþ 2); Equation (10)

follows. h

Result 4 has the intuitive implication that forward-looking autocorrelation is positive if

long-dated options (whose prices are embedded in SVIXt;tþ2) are sufficiently expensive rela-

tive to short-dated and forward-start options (whose prices are embedded in SVIXt;tþ1 and

FSVIXt).

The remaining task is to compute vartRt!tþ1 and vartRtþ1!tþ2. As one might by now

expect, the former can be computed from vanilla options and the latter from forward-start

options. We have already calculated EtRt!tþ1 and EtRtþ1!tþ2, so it only remains to find

EtR
2
t!tþ1 and EtR

2
tþ1!tþ2. By Result 2, the first of these is equal to the time-t price of a

claim to R3
t!tþ1 paid at time tþ1, and since

Stþ1

St

� �3

¼ 6

S3
t

ð1
0

K maxf0; Stþ1 � Kg dK;

the desired quantity is

EtR
2
t!tþ1 ¼

6

S3
t

ð1
0

K callt;tþ1ðKÞdK: (11)

The remaining term, EtR
2
tþ1!tþ2, is equal to the price of a claim to R2

tþ1!tþ2Rt!tþ2 at time

tþ2. Since

R2
tþ1!tþ2Rt!tþ2 ¼

S3
tþ2

StS2
tþ1

¼ 6

S3
t

ð1
0

K maxf0; Stþ2 � KStþ1=Stg dK;

we have

EtR
2
tþ1!tþ2 ¼

6

S3
t

ð1
0

K FScalltðKÞ dK: (12)

Using the put-call parity relations to replace in-the-money calls with out-of-the-money

puts, Equations (11) and (12) become

EtR
2
t!tþ1 � R2

f ;t!tþ1 ¼
6

S3
t

½
ðStRf ;t!tþ1

0

K putt;tþ1ðKÞ dKþ
ð1

StRf ;t!tþ1

K callt;tþ1ðKÞ dK �

(13)

and
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EtR
2
tþ1!tþ2 �G2

t ¼
6

S3
t

½
ðStGt

0

K FSputtðKÞdKþ
ð1

StGt

K FScalltðKÞdK �: (14)

Equations (7), (8), (13), and (14) provide the ingredients needed to calculate the autocorrel-

ation index

corrtðRt!tþ1;Rtþ1!tþ2Þ ¼
EtRt!tþ2 � EtRt!tþ1EtRtþ1!tþ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vartRt!tþ1vartRtþ1!tþ2

p : (15)

1.1 The Autocorrelation Index in Homogeneous Models

In many familiar theoretical models, the autocorrelation index is exactly zero. (As we will

see in the next section, this is counterfactual.) As an illustration, consider the model of

Black and Scholes (1973). At time tþ1, a forward-start call becomes identical to a vanilla

call with strike KStþ1=St, so by the Black–Scholes formula (with volatility r and a continu-

ously compounded riskless rate of r), the forward-start call is worth

Stþ1U
log St

K þ rþ 1
2 r2

r

� �
� K

Stþ1

St
e�rU

log St

K þ r� 1
2 r2

r

� �

at time tþ1. As a claim to Stþ1 at time tþ 1 is worth St at time t, the above expression

implies that at time t, the forward-start call is worth the same as a one-period vanilla call:

FScalltðKÞ ¼ callt;tþ1ðKÞ. It follows by put-call parity that FSputtðKÞ ¼ putt;tþ1ðKÞ, and

hence also that FSVIX2
t ¼ SVIX2

t;tþ1. The autocorrelation index therefore takes a particular-

ly simple form: as we have SVIX2
t;T ¼ 1

T�t er2ðT�tÞ � 1Þ
�

,

covtðRt!tþ1;Rtþ1!tþ2Þ ¼ e2r
�

e2r2 � 1� 2ðer2 � 1Þ � ðer2 � 1Þ2
�
¼ 0:

That is, the autocorrelation index is zero in the Black–Scholes model. Another way to

make the same point is that with constant risk aversion (through log utility) and constant

volatility, the risk premium is constant, so there is no room for autocorrelation to arise

through the drift term. As volatility is also constant, there is no autocorrelation at all.

More generally, let us say that a model is homogeneous if interest rates are constant and

call prices have the property that callt;TðKÞ ¼ KgðSt=K;T � tÞ for some function g. (Many

option-pricing models have this property, including the model of Black and Scholes (1973),

the jump-diffusion model of Merton (1976), the variance-gamma model of Madan, Carr,

and Chang (1998), and the model of Heston (1993) among others; the local volatility

framework of Dupire (1994) is an example of a setting in which the homogeneity property

does not hold.) We have the following result.

Result 5. In a homogeneous model, the relationship between a forward-start option and a

vanilla European option is trivial. That is, we have FScalltðKÞ ¼ callt;tþ1ðKÞ and

FSputtðKÞ ¼ putt;tþ1ðKÞ. It follows that FSVIX2
t ¼ SVIX2

t;tþ1 in homogeneous models.

Proof. A forward-start call with strike K, initiated at time t for final settlement at time

tþ2, has the payoff maxf0; Stþ2 � KStþ1=Stg at time tþ2. From the perspective of time

tþ1, this is equivalent to the payoff on a vanilla call with strike KStþ1=St. By the
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homogeneity assumption, at time tþ1, the vanilla call (and hence also the forward-start

call) is worth

KStþ1

St
g

Stþ1

KStþ1=St
; 1

� �
¼ KStþ1

St
gðSt=K; 1Þ:

The forward-start call is therefore worth KgðSt=K; 1Þ at time t. In other words, by the

homogeneity property, FScalltðKÞ ¼ callt;tþ1ðKÞ. Hence FSputtðKÞ ¼ putt;tþ1ðKÞ, by the

put-call parity relations for vanilla and forward-start options. It follows that FSVIX2
t ¼

SVIX2
t;tþ1 as an immediate corollary. h

1.2 Beyond Log Utility

Our measure of implied autocorrelation exploits asset price data alone, without reference

to, say, survey forecasts, or accounting or macroeconomic data. Several recent papers,

including Martin (2017), Kadan and Tang (2019), Kremens and Martin (2019), Martin

and Wagner (2019), and Schneider and Trojani (2019), have adopted similar

approaches. But we have made a stronger structural assumption on the form of the sto-

chastic discount factor than these papers do, so it is natural to wonder whether the ap-

proach of this article can be generalized to allow for, say, power utility rather than log

utility.

Unfortunately, it cannot. To be concrete, suppose we wish to compute the autocorrel-

ation perceived by a hypothetical investor who has power utility over wealth at time tþ2

and who chooses to invest fully in the market. As shown by Martin (2017, online appen-

dix), the “easy” terms that appear in Equation (2)—namely, EtRt!tþ1 and EtRt!tþ2—can

be calculated in this more general setting.

The difficulty lies in the term EtRtþ1!tþ2. To compute this quantity3 with power util-

ity (i.e., with an SDF proportional to R�c
t!tþ2), we would have to replicate (and hence

price) the payoff S1þc
tþ2=ðS

c
t Stþ1Þ. To do so by holding a portfolio of f ðKÞdK forward-start

calls for each K—where f(K) is some function that we can choose freely—we would

need to have

ð1
0

f ðKÞmaxf0; Stþ2 � KStþ1=StgdK ¼
S1þc

tþ2

Sc
t Stþ1

:

In the log utility case c¼ 1, Equation (4) shows that f(K) can be taken to be a constant

known at time t. More generally, dividing through by Stþ1, we require that

ð1
0

f ðKÞmaxf0; Stþ2=Stþ1 � K=StgdK ¼
S1þc

tþ2

Sc
t S

2
tþ1

: (16)

The left-hand side of Equation (16) is a function of Stþ2=Stþ1 (as St is known at time t).

Therefore the right-hand side must also be a function of Stþ2=Stþ1; but this forces c¼1.

Thus, log utility is the only case in which this article’s approach works.

3 Given a random variable X and SDF M, one can compute EX if the payoff X/M can be priced, as

EX ¼ E M X
M

� �
, and the latter is the price of the payoff X/M.
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2 Empirical Results

To show how the theoretical results of Section 1 might be applied in practice, I obtained in-

dicative price quotes for 6-month and 12-month vanilla call and put options on the S&P

500 index, together with 6-month-into-6-month forward-start options, from a major in-

vestment bank. All prices were supplied for a range of dates—June 15, 2007; June 20,

2008; November 21, 2008; February 20, 2009; December 17, 2010; July 15, 2011;

December 20, 2012; and December 20, 2013—and for at-the-money, 5% and 10% out-of-

the-money strikes for puts and for calls, together with the level of S&P 500 spot and the

bank’s internally marked 6-month and 12-month interest rate. I also obtained daily

updated prices of vanilla European call and put options on the S&P 500 index from

OptionMetrics in order to plot the daily time-series shown in Figure 1.

It should be emphasized at the outset that this exercise is a first step, given the limited

data I have been able to obtain. A serious empirical exploration of the theoretical results of

the previous section would require better data in the form both of a longer time series and

of a more extensive range of strikes at each point in time.

I calculate the autocorrelation index (15) using expressions (7), (8), (13), and (14), inter-

polating linearly between option prices inside the range of observed strikes. I report results

using two alternative methods to extrapolate option prices outside the observed range of

strikes. In the first, I assume a flat volatility smile outside the range of observed strikes, fol-

lowing the approach of Carr and Wu (2009): in other words, for out-of-the-money puts

with moneyness below the lowest observed strike, I use the Black–Scholes implied volatility

at the lowest observed strike price, and for out-of-the-money calls, I use the Black–Scholes

implied volatility at the highest observed strike price. In the second, I extrapolate implied

volatilities linearly outside the range of observed strikes.4 Lastly, I set Gt equal to the for-

ward rate from tþ1 to tþ2.

Figure 1 shows the six-monthly autocorrelation of the S&P 500 index—that is,

corrtðRt!tþ6mo;Rtþ6mo!tþ12moÞ—on a sample of dates. The solid line uses a flat volatility

smile for options with strikes outside the observed range; the dashed line extrapolates

implied volatility linearly outside the observed range, as described in the previous para-

graph. Both methods deliver similar conclusions: autocorrelation was close to zero at the

beginning of the sample period, and declined sharply following the subprime crisis.

For comparison, Figure 2 plots the realized autocorrelation of six-monthly price

changes, Ptþ6mo=Pt, of the S&P 500 index over various time periods. I take the end-of-

month level of the S&P 500 index from CRSP, over the period January 1950 to September

2019. The sample autocorrelation depends on which start month is chosen, so in each

panel, I show every possible choice. For example, the autocorrelation of January–July and

July–January price changes was around 0.08 over the full sample period and around –0.2

over the most recent decade, whereas the autocorrelations of the corresponding March–

September and September–March price changes were around –0.1 and –0.6, respectively.

4 I introduce a floor at zero volatility in cases where a downward-sloping smile would lead to nega-

tive implied volatilities at very high strikes; the results are not sensitive to where the floor occurs

because the associated prices of deep-out-of-the-money calls are essentially zero for any reason-

able level of volatility.
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In the context of Figure 2, the magnitude of the autocorrelation index shown in Figure 1

appears reasonable.

Even so, it might seem, given Figure 1, that strategies designed to exploit reversals

should earn Sharpe ratios that are too good to be true. In order to assess this possibility, the

next result shows how to use vanilla option prices to calculate the maximum attainable

Sharpe ratio perceived by the log investor.

Result 6. The maximal Sharpe ratio over the period from t to tþ n, as perceived by the log

investor, satisfies

(a) (b)

(c) (d)

Figure 2 Realized autocorrelation in six-monthly price changes of the S&P 500 index over various time

periods. (a) 1950–2019. (b) 1970–2019. (c) 1990–2019. (d) 2010–2019.

Figure 1 The autocorrelation of the S&P 500, corrt ðRt!tþ6mo;Rtþ6mo!tþ12moÞ. The solid line imposes a

flat volatility smile for strikes outside the observed range of strikes. The dashed line extrapolates

implied volatility linearly outside the observed range of strikes.
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max Sharpe ratio � Rf ;t!tþn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1
0

2St

K3
Xt;tþnðKÞdK

s
; (17)

where Xt;tþnðKÞ is the time t price of an out-of-the-money European option with strike K

expiring at time tþn:

Xt;tþnðKÞ ¼ f
putt;tþnðKÞ if K � StRf ;t!tþn

callt;tþnðKÞ if K > StRf ;t!tþn

Proof. Using the result of Hansen and Jagannathan (1991) and the fact that

Mt!tþn ¼ 1=Rt!tþn, we have

max Sharpe ratio � Rf ;t!tþn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vart

1

Rt!tþn

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

f ;t!tþnEt
1

R2
t!tþn

� 1

s
:

(18)

By the result of Breeden and Litzenberger (1978), as rewritten by Carr and Madan (1998),

the time t price of a claim to f ðStþnÞ paid at time tþ n is

Et
f ðStþnÞ
Rt!tþn

¼
f ðStRf ;t!tþnÞ

Rf ;t!tþn
þ
ð1

0

f 00ðKÞXt;tþnðKÞdK:

Setting f ðKÞ ¼ St=K, this implies that

Et
1

R2
t!tþn

¼ 1

R2
f ;t!tþn

þ
ð1

0

2St

K3
Xt;tþnðKÞdK: (19)

The result follows on substituting Equation (19) into Equation (18). h

Figure 3 The maximal Sharpe ratio (one-year horizon). Crosses indicate the dates on which the auto-

correlation index is computed in Figure 1.
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Figure 3 plots the time series of the right-hand side of inequality (17) of Result 6, which

provides an upper bound on the maximal Sharpe ratio at a one-year horizon. The dates on

which the autocorrelation index is calculated in Figure 1 are marked with crosses. While

the maximum attainable Sharpe ratio (as perceived by the log investor) spiked in late 2008,

it was not implausibly high. Thus, although there are several potential ways reversal strat-

egies might be implemented in practice, none of them has an unreasonably high Sharpe

ratio from the perspective of the log investor.

3 Discussion

This article has introduced a new index of autocorrelation and constructed it at the six-

month horizon using indicative prices obtained from a major investment bank on various

days between mid-2007 and late 2013. Implied autocorrelation was close to zero at the be-

ginning of the sample period but turned negative, in the range of –0.2 to –0.3, following the

subprime crisis.

Negative autocorrelation during this period may have been driven by market partici-

pants’ expectations about the behavior of policymakers. The Federal Open Market

Committee (FOMC) statement of September 21, 2010 contains the following paragraph,5

which heralded a second round of quantitative easing (QE2):

The Committee will continue to monitor the economic outlook and financial developments and

is prepared to provide additional accommodation if needed to support the economic recovery

and to return inflation, over time, to levels consistent with its mandate.

Based on this statement, it would have been reasonable to conclude that policy would

be more expansive conditional on further declines in the market and relatively more con-

tractionary conditional on further rises and, hence, to anticipate a decline in market auto-

correlation. Indeed, Cieslak, Morse, and Vissing-Jorgensen (2018) argue that the behavior

of stock returns over the “FOMC cycle” is consistent with this view (though they focus on

shorter horizons and emphasize the importance of timing within the cycle). Consistent with

this interpretation, the low point of the autocorrelation measure occurs in December 2010.

As the autocorrelation index depends only on asset prices, it has the great advantage of

being computable, in principle, in real time. The central novel feature of the index is that it

is based on the prices of forward-start index options. As shown by Hobson and Neuberger

(2012), the prices of forward-start options are not tightly constrained by the prices of osten-

sibly closely related vanilla options. This fact is precisely what makes them interesting;

nonetheless, it should be emphasized that they are exotic derivatives, with all the caveats

that entails—most notably, that the forward-start option market is not nearly as liquid as

the vanilla option market. A full empirical investigation of the theoretical results of this art-

icle would require considerably more data than I have been able to obtain.

5 The precise phrasing of the paragraph was discussed extensively during the meeting: see pages

78, 98, 101, 113, and 124–126 of the Transcript of the Federal Open Market Committee Meeting on

September 21, 2010, which is available at https://www.federalreserve.gov/monetarypolicy/files/

FOMC20100921meeting.pdf (last accessed on September 4, 2020). One consequence of the discus-

sion was that the phrase “as needed” was replaced with “if needed,” which was felt to emphasize

the conditionality of any potential Fed action more clearly.
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A further contribution of the article, however, is to point out that such options—var-

iants of the more familiar “plain vanilla” European call and put options—have a natural

economic application. It is sometimes tempting, when confronted with a cliquet, a look-

back, a Napoleon, Himalayan, Bermudan, Asian, best-of, worst-of, or rainbow option, or

with any other member of the bewildering menagerie of exotic derivatives, to conclude that

such contracts play no more significant a role than to transfer resources between groups of

quants. Precisely because there is an element of truth in this caricature, financial economists

have a role to play in pointing out when some seemingly obscure derivative contract is in

fact of economic interest.
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Abstract

In response to the Subprime mortgage crisis, the Basel Committee on Banking
Supervision (BCBS) has spent the previous decade overhauling the regulatory
framework that governs how banks calculate minimum capital requirements. In
2019, the BCBS finalized the Basel 3 regulatory regime, which changes the regula-
tory measure of market risk and adds new complex calculations based on liquidity
and risk factors. This article is motivated by these changes and seeks to answer the
question of how regulation affects banks’ choice of risk-management models,
whether it incentivizes them to use correctly specified models, and if it results in
more stable capital requirements. Our results show that, although the models that
minimize regulatory capital for a representative bank portfolio also result in the
most stable requirements, these models are generally rejected as being correctly
specified and tend to produce inferior forecasts of the regulatory risk measures.
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The regulatory environment that governs how banks calculate minimum capital require-

ments has changed dramatically in recent years. First, in response to the 2008 Subprime

Mortgage Crisis, the Basel Committee on Banking Supervision (BCBS) adopted the Stressed

Value at Risk (VaR) measure. VaR is the conditional quantile of the loss distribution at a

given confidence level, and Stressed VaR is defined as the VaR on a 1-year historical dataset

with significant financial stress (BCBS 2011). This change significantly increased the capital
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charges banks faced. Second, in 2019 the BCBS finalized the Fundamental Review of the

Trading Book (FRTB) regulatory regime as part of Basel 3. This will change the regulatory

measure of market risk from VaR at the 99% confidence level to Expected Shortfall (ES) at

the 97.5% confidence level (BCBS 2019). ES is defined as the expected loss conditional on

VaR being exceeded and is widely perceived to be a more appropriate risk measure as it

captures both the size and likelihood of losses (BCBS 2013). Additionally, in Basel 3

Stressed ES at the 97.5% confidence level, defined as the ES during the most severe 1-year

period of losses available, replaces Stressed VaR as the key risk measure.

The new capital requirements for market risk present an interesting trade-off for banks.

Assuming bank capital is costly and hence banks minimize their capital requirements, Basel

3 incentivizes them to use models producing low Stressed ES. At the same time, Basel 3

penalizes banks by increasing their capital requirements when their model generates too

many VaR exceedances, which incentivizes banks to use more conservative models. It is not

obvious how different models for VaR and Stressed ES perform in terms of this trade-off

and which model is therefore privately optimal in the sense that it minimizes banks’ capital

requirements. Moreover, it is likely even more costly, and sometimes impossible, for banks

to raise capital during times of high volatility, so prudence might suggest building a buffer

stock of capital during good times that can be drawn down during times of stress. Basel 3

aims at creating more stable capital requirements by focusing on stressed risk measures. It

is also not obvious how different models for VaR and Stressed ES perform in terms of mini-

mizing measures of capital requirement stability.

Our article is motivated by these changes and seeks to answer the question of how regu-

lation affects banks choice of risk-management models and whether it incentivizes them to

use correctly specified models. We also analyze whether the changes made to regulation in-

centivize banks to use models that lead to more stable (through-the-cycle) capital require-

ments rather than more dynamic (point-in-time), and therefore potentially more

systemically risky, capital requirements. To preview our results, we find that, although the

proposed regulation under Basel 3 seems to incentivize banks to use models that have more

stable capital requirements through time, the models that minimize average capital require-

ments appear misspecified, in the sense that they are rejected using standard backtests, and

produce inferior forecasts of the regulatory risk measures.

To answer these questions we construct a portfolio of diverse assets, with different risk fac-

tors and subject to different levels of liquidity risk, that a bank might realistically hold, and we

consider three classes of models for the dynamics of the losses of this portfolio: (i) ad hoc meth-

ods like Historical Simulation (HS) and RiskMetrics (RM) that involve no parameter estima-

tion, (ii) models within the classical GARCH framework of Engle (1983) and Bollerslev (1986)

that are estimated by fitting model parameters to the entire dynamic distribution of losses, and

(iii) a new class of models developed by Patton, Ziegel, and Chen (2019) that are estimated by

fitting model parameters directly to the dynamics of the risk measures instead, which we refer

to as “FZ” models. For the dynamic models, and the GARCH models, in particular, we con-

sider several types of conditional distributions that can accommodate stylized facts like heavy

tails and skewness toward losses as documented by Hansen (1994) among others.1

1 Using a rolling window estimation setup we also accommodate the recent observation that the

conditional distribution and tails in particular of financial returns vary significantly over time and

this particularly so during times of crisis (Bollerslev and Todorov 2014 and Kelly and Jiang 2014).

54 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/19/1/53/6188440 by O

xford U
niversity Press U

SA user on 31 August 2021



We first examine which of the models are correctly specified using both traditional VaR

backtests and a battery of recent joint VaR and ES backtests, and we examine which models

produce optimal forecasts of the risk measures.2 As expected our results show that the ad

hoc models and the HS model, in particular, fail the backtests and provide inferior forecasts

of the risk measures. More interestingly though, our results also show that the FZ models

fail some backtests and provide inferior forecasts of the VaR and ES compared to the subset

of GARCH models that allow for skewed conditional distributions and are not rejected by

the backtests.

Next, we carefully calculate the capital requirements for each model using the Basel 3

formulas and compare the results to those using previous regulatory regimes. Our results

show that the HS model has the lowest average Basel 3 capital of 17.21% whereas the best

model in the FZ class has average capital requirements of 17.42%. However, both of these

models, along with several other models that have low capital requirements, are rejected as

being correctly specified or shown to produce inferior forecasts of the regulatory risk meas-

ures. The best performing model which is not rejected by the backtests, a skewed GARCH

model, provides superior risk measure forecasts but requires nearly 1.55 times higher cap-

ital than the HS model. The Filtered Historical Simulation (FHS) model, which is also not

rejected and in the set of models that provide superior risk measure forecasts, has capital

requirements that are roughly 1.78 times larger than the incorrectly specified HS model.

Under Basel 3, there is therefore little incentive for a capital requirement minimizing bank

to choose correctly specified models. Compared across the previous regimes our results

show that correctly specified models are in fact never the models that minimize capital

requirements.

Finally, we measure the variability of the minimum capital requirements under Basel 2,

2.5, and 3 to determine whether the new regulation is successful at increasing the stability

of capital requirements. We consider several measures of the volatility of regulatory capital

and we also measure peak-to-trough variation as the maximum difference in capital

requirements. The BCBS has also focused on the procyclicality of regulation, often meas-

ured as peak-to-trough variation in minimum capital requirements (Gordy and Howells

2006; Heid 2007; Shim 2013). Our results show that capital requirements became signifi-

cantly more stable from Basel 2 to Basel 2.5 due to the introduction of Stressed VaR. Basel

3 will further increase the stability of capital requirements by decreasing nonstandardized

and standardized volatility across most models and could also reduce the procyclicality of

capital requirements as evidenced by the lower peak-to-trough variation across most mod-

els under this regime compared to previous regimes. However, the results also show that

the models that result in the most stable capital requirements across regulatory regimes and

across variability metrics are generally not the correctly specified models.

2 The methods we use to backtest predicted VaR are standard and can be found in, for example,

Christoffersen (2009). In terms of joint VaR and ES backtests, we consider Mcneil and Frey (2000)’s

residual test (ER), Bayer and Dimitriadis (2018)’s strict, auxiliary, and one-sided regression tests

(ESR), Nolde and Ziegel (2017)’s conditional calibration test, and Gordy and Mcneil (2020)’s spectral

backtests. To assess the optimality of a model’s forecasts, we consider the Model Confidence Set

of Hansen, Lunde, and Nason (2011), the pairwise forecast performance tests from Diebold and

Mariano (2002), and Ziegel et al. (2017)’s Murphy Diagrams.
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Our findings have important implications for current regulation. In particular, our

results show that Basel 3 regulation strongly disincentivizes banks from using correctly

specified models. In fact, banks can minimize both the mean and volatility of Basel 3 capital

by using the hybrid FZ model of Patton, Ziegel, and Chen (2019) which is not only rejected

by some of the backtests but also provides inferior risk measure forecasts for our portfolio.

Although the same holds for previous regulatory regimes, the changes suggested in Basel 3

make the relative differences even larger. For example, under Basel 2.5 FHS is only margin-

ally worse than HS and would require only 1.09, instead of 1.78 under Basel 3, times the

capital. We identify two possible reasons for this. First, and this is somewhat subtle, it

appears that the requirement under Basel 3 to penalize low liquidity assets, that is, assets

with long liquidity horizons, additionally, in fact disincentivizes banks from using the cor-

rectly specified skewed GARCH models due to their consistently high Stressed ES across li-

quidity horizons. Second, and this is more obvious, given the low level of the Basel 3

multiplier banks have little incentive to choose conservative and correctly specified models.

Thus, if the regulator’s objective is to incentivize the use of correctly specified models they

would have to reconsider the effect of these changes.3

Our article is related to at least three strands of existing literature. First of all, there is a

large literature on empirically backtesting VaR (see e.g., Christoffersen, Hahn, and Inoue

2001; Gencay and Selcuk 2004) and a growing literature on backtesting VaR and ES joint-

ly. Our article complements this literature in several ways. First, while most backtesting

papers focus on one asset class (most commonly equities), we consider a large and diverse

set of assets spanning the multiple risk factors and liquidity horizons that banks may be

exposed to. Second, we use cutting-edge ES backtesting techniques recently developed by

academics to determine if models are correctly specified and we compare these models’

forecasts of VaR and ES. Finally, we go beyond simple backtesting by calculating Basel 3

capital requirements for the representative bank portfolio and by evaluating the trade-off

between correctly specified models and models that minimize not only the level but also the

variability of the capital requirements.

Next, our article is related to studies of backtesting that use actual bank P&L or VaR

data. For example, Berkowitz and O’brien (2002) show that U.S. banks had conservative

VaR estimates during the 1998 Asian crisis with few exceedances, but the exceedances were

clustered indicating bank models did not adapt to dynamic volatility. Pérignon, Deng, and

Wang (2008) find that Canadian banks also have conservative VaR forecasts and Pérignon

and Smith (2008) extend the results to international banks. O’brien and Szersze�n (2017),

on the contrary, show that these early results were driven by a calm sample period and that

U.S. banks had excessive exceedances and clustering during the 2008 financial crisis. Their

findings suggest that the banks used misspecified models that do not adapt to time-varying

volatility. Berkowitz, Christoffersen, and Pelletier (2011) compare the accuracy of VaR

forecasts for trading desks in a commercial bank using a novel spectral backtest. Gordy and

Mcneil (2020) study model-implied probabilities associated with bank-reported P&L and

reject the hypothesis of correct specification for many U.S. bank models. While these

3 Another possibility is that regulators could attempt to incentivize the use of correctly specified

models by penalizing models with high standardized volatility, the only capital stability measure for

which correctly specified models, in this case models based on Extreme Value Theory, perform the

best.
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studies use actual bank data, they are limited in that they do not observe the bank’s internal

model or portfolio composition. They also do not calculate capital requirements under

Basel 3. Our study complements this literature by using a transparent representative bank

portfolio and well-known models.

Finally, our study is similar in spirit to the annual BCBS monitoring exercise that pro-

vides a hypothetical portfolio for banks to calculate actual risk measures and capital

requirements, see, for example, BCBS (2014). However, in these exercises, the banks’ in-

ternal models are confidential and the BCBS only reports aggregate capital results. Also,

formal backtests are not performed to determine if the internal models used by banks are

correctly specified as a part of these exercises. Our research complements the BCBS exer-

cises by examining model VaR and ES forecasts on a hypothetical portfolio. We are able to

backtest if the models are correctly specified and compare the mean and variability of their

capital requirements. Hence, a bank’s regulatory supervisor could assess the trade-off be-

tween correct specification, capital requirements, and capital stability for the bank’s intern-

al model.

The article is organized as follows: Section 1 describes how the regulatory environment

has changed over time and outlines the requirements and objectives of the current regula-

tion. Section 2 presents the data used, reviews the different classes of dynamic models con-

sidered, and explains how multiperiod risk measures can be calculated with these models.

Section 3 contains extensive backtests for the models considered, analyzing which of them

are correctly specified and which produce the best risk measure forecasts. Section 4 calcu-

lates the regulatory capital under Basel 3 and the previous regulatory regimes and assesses

the stability through time of different model’s capital requirement. Section 5 concludes.

The Online Appendix contains further details on the regulatory calculations, on how to se-

lect optimal thresholds for Extreme Value Theory (EVT) models, on the backtesting meth-

ods used for ES, and some additional results.

1 Regulatory Capital Calculations

The last 25 years have seen significant changes to the regulation faced by banks when it

comes to the regulatory capital requirements. In particular, over this period the Basel

Accord has had three regimes for calculating market risk capital requirements: Basel 2,

Basel 2.5, and the incoming Basel 3. While banks are currently adapting to the new require-

ments of Basel 3, it remains important to consider how we arrived at this regulation as well

as the motivation and implications of this changing regulation.

To set the scene for the rest of the article, this section first provides a brief background

on the regulation that led to Basel 3 paying special attention to how this has changed the

calculations of minimum capital requirements. We then provide details on the proposed

Basel 3 capital requirements and its formulas for calculating market risk capital. Finally,

we discuss the intended and expected impact of this regulation on banks and the require-

ments it imposes on them.

1.1 Background

The Basel 2 market risk requirements were first introduced by the BCBS in the 1996

Amendment to the Basel Accord (BCBS 1996a) and allowed banks to use their own

“internal” models to calculate regulatory capital. The internal model-based approach for
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setting market risk capital involved calculating a VaR measure with a 10-day time horizon

and at a 99% confidence level. Denoting daily losses, or negative returns, on a single asset

or portfolio by Lt then formally the VaR measure at time t is defined as the value VaRp
tþ1

such that

PrðLtþ1 > VaRp
tþ1jItÞ ¼ p; (1)

where It is the information at time t and p is the coverage probability. That is, at period

tþ1, losses exceed VaRp
tþ1 only with probability p, given the available information. The

day t capital requirement for a bank with this VaR is then set as

CAB2
t ¼ maxðVaRt�1;mc � VaRt�1Þ; (2)

where mc is a multiplicative factor, VaRt�1 is the previous day’s VaR, and VaRt�1 is the

average VaR over the previous 60 days. The multiplicative factor mc has a minimum value

of three and adds a scaling factor between zero and one that depends on the model’s back-

testing performance and penalizes models that backtest poorly, see BCBS (1996b). Basel 2

backtesting compares VaR with a one-day time horizon at the 99% confidence level to real-

ized exceedances (losses above VaR) over the previous 250 days.4

A given internal model’s multiplication factor is set according to the “traffic light” sys-

tem of exceedances reproduced in Table 1. Column 3 shows that if the number of exceedan-

ces in the previous 250 days is four or fewer, the model is in the Green Zone and the

multiplicative factor mc is three. If the number of exceedances is between five and nine, the

model is in the Yellow Zone and mc is between 3.4 and 3.85. Note that the large discrete

jump between four and five exceedances increases the penalty with >10%. If the number of

exceedances is >10, the model is in the Red Zone and mc is set at four. Additionally, during

Red Zone periods, regulatory supervisors can disallow the use of a particular internal

model, which forces the bank to use the standard model approach. This could potentially

increase overall capital requirements significantly.

The 2008 Subprime Mortgage Crisis revealed that the Basel 2 requirements were far too

low to capture systemic risks, which resulted in banks holding insufficient capital before

the crisis. Additionally, the sudden jump in capital requirements during the crisis caused

banks to deleverage by sharply shedding risk exposures (Adrian and Shin 2014), resulting

in fire-sales, liquidity spirals, and disinflation (Brunnermeier and Sannikov 2016). The re-

duction in bank balance sheets and credit at the height of the financial crisis caused by the

procyclicality of Basel 2 capital requirements amplified the downturn (Adrian and Shin

2014).

To address the shortcomings of Basel 2, the BCBS introduced the current regulatory re-

gime, Revisions to the Basel 2 Framework (Basel 2.5), with an implementation date of

December 31, 2011 (BCBS 2009). In Basel 2.5, the level and stability of capital require-

ments are increased by introducing the Stressed VaR measure. Stressed VaR is VaR calcu-

lated during a 12-month period of significant financial stress. The stress period is identified

4 Backtesting is not done on a 10-day horizon, since the portfolio composition may change within

this horizon.
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as the 12 months in history that maximizes VaR with a 10-day time horizon and a 99%

confidence level (EBA 2012). The Basel 2.5 capital charge is set at

CAB2:5
t ¼ maxðVaRt�1;mc � VaRt�1Þ þmaxðSVaRt�1;ms � SVaRt�1Þ; (3)

where the first term is the Basel 2 capital charge, SVaRt�1 is the previous day’s Stressed

VaR, SVaRt�1 is the average Stressed VaR over the previous 60 days, and ms is the stressed

multiplicative factor set by the regulatory supervisor. Since Stressed VaR is always at least

as large as VaR and assuming mc¼ms, the Basel 2.5 capital charge is at least double the

Basel 2 charge. Also since the period for Stressed VaR rarely changes Basel 2.5 should result

in more stable capital requirements.

1.2 Basel 3

While Basel 2.5 was implemented to temporarily increase the level and stability of capital

requirements to address some of the serious flaws in the capital regulation framework

exposed by the 2008 crisis, the BCBS has continued to work on implementing more strin-

gent capital calculations. In 2014, the BCBS proposed Basel 3, formally named the FRTB,

as a new and comprehensive approach to determining minimum regulatory capital for mar-

ket risk. The key changes to market risk calculations under Basel 3 include the use of ES in-

stead of VaR, calculations based on liquidity horizons, calibration to periods of significant

financial stress, and diversification restrictions. We now summarize each of the changes

and explain the Basel 3 market risk formula based on the finalized FRTB documentation

(BCBS 2019).

In Basel 3, the measure used to determine capital changes from 10-day VaR at a 99%

confidence level to 10-day ES at a 97.5% confidence level. Formally, the ES measure at

time t is defined as

ESp
tþ1 ¼ EðLtþ1jLtþ1 > VaRp

tþ1;ItÞ: (4)

That is, if losses at time tþ1 exceed VaRp
tþ1, then the expected loss is ESp

tþ1. The motiv-

ation for changing risk measures is that ES reflects tail risk better than VaR, since ES

Table 1 Basel backtesting zone boundaries

Backtesting zone Exceedances Basel 2

multiplier

Basel 3

multiplier

Cumulative

probability (%)

Green 4 or fewer 3 1.5 89.22

Yellow/Amber 5 3.4 1.7 95.88

– 6 3.5 1.76 98.63

– 7 3.65 1.83 99.60

– 8 3.75 1.88 99.89

– 9 3.85 1.92 99.97

Red 10 or more 4 2 99.99

This table defines the green, yellow/amber, and red zones that supervisors use to assess backtesting results in

conjunction with the internal models approach to market risk capital requirements under Basel 2 and 3, see

BCBS (1996b) and BCBS (2019). The boundaries shown in the table are based on a sample of 250

observations.
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captures both the size and likelihood of losses in the tail (e.g., BCBS 2013). Moreover, ES is

a coherent risk measure (Artzner et al. 1999) since it satisfies the subadditivity property

while VaR does not.5

Market liquidity played a large role during the 2008 Subprime Mortgage Crisis. At the

height of the crisis, investors took large discounts to sell illiquid assets which further

lowered asset prices and caused a liquidity spiral (Brunnermeier and Sannikov (2016)).

Basel 3 proposes to account for liquidity risk by scaling the 10-day ES based on an asset’s

liquidity. Assets are assigned to one of five hj day liquidity horizons, where h1 ¼ 10, h2 ¼ 20,

h3 ¼ 40, h4 ¼ 60, and h5 ¼ 120.6 Define LH hj as the portfolio of the subset of assets with a

liquidity horizon of hj days or longer. For example, LH 10 is the portfolio of all assets, LH 20

is the portfolio of assets with a liquidity horizon of 20 days or more, and LH 120 is the

portfolio of assets with the longest liquidity horizon of 120 days only. Next, define ES(j) as

the ES of portfolio LH hj. The formula for liquidity-adjusted ES is

ES ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ESð1Þ2 þ

X5

j¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hj � hj�1

10

r
ESðjÞ

 !2
vuuut ; (5)

where hj is the liquidity horizon,

ffiffiffiffiffiffiffiffiffiffiffiffi
hj�hj�1

10

q
is the liquidity scaling based on a normality

assumption on asset returns, and ES(j) is the ES for assets with an liquidity horizon of hj or

longer. Hence, ES(1) and ES(2) have no additional liquidity scaling, ES(3) and ES(4) are

scaled by
ffiffiffi
2
p

, and ES(5) is scaled by
ffiffiffi
6
p

. The high scaling on illiquid assets such as credit

derivatives is meant to reect their additional risk of discounts during financial stress.

A key weakness of Basel 2 was that its risk measures were calibrated to current market

conditions, which resulted in undercapitalization and procyclical capital requirements dur-

ing the crisis. Basel 2.5 introduced Stressed VaR to ensure the capital charge includes peri-

ods of significant financial stress in addition to current market conditions, which may be

unnecessarily duplicative (BCBS 2013). In Basel 3, the capital charge is instead only based

on a Stressed ES, which is ES calibrated to a period of significant financial stress. Since his-

torical data may be unavailable for the full set of risk factors, Basel 3 allows Stressed ES cal-

culations to use a reduced set of risk factors, as long as the reduced set explains at least

75% of the variation in the full set. The formula for the bank’s internally modeled capital

requirement (IMCC) is

IMCCðCÞ ¼ ESR;S �
ESF;C

ESR;C
; (6)

where ESR;S is the liquidity-adjusted ES of the reduced set of risk factors calibrated to a

period of significant financial stress, ESF;C is the liquidity-adjusted ES of the full set of risk

factors calibrated to the current market, ESR;C is the liquidity-adjusted ES of the current

reduced set of risk factors, and where the ratio
ESF;C

ESR;C
is floored at one.

The IMCC calculated above naturally benefits from portfolio diversification. However,

during a financial crisis, systemic risk often causes correlations to increase and reduces this

5 A risk measure is subadditive if the risk measure for the sum of two portfolios is no greater than

the sum of the risk measures for those portfolios. Subadditivity of risk measures means that diversi-

fication may help reduce risks.

6 See Table 2 for some examples of this classification.
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effect. To account for this risk, Basel 3 requires banks to calculate partial ES capital

requirements, denoted IMCCðCiÞ for each regulatory risk class. The undiversified IMCC

for risk class i is

IMCCðCiÞ ¼ ESR;S;i �
ESF;C;i

ESR;C;i
; (7)

where i refers to interest rate risk, equity risk, foreign exchange risk, commodity risk, or

credit spread risk. The stress period used to calculate ESR;S;i is the same as the period used

to calculate the portfolio-wide ESR;S. The bank’s aggregate IMCC is then given by

IMCC ¼ qðIMCCðCÞÞ þ ð1� qÞð
X5

i¼1

IMCCðCiÞÞ; (8)

where q ¼ 0:5.

The capital charge for modellable risk factors under Basel 3 is

CAB3
t ¼ maxðIMCCt�1;mc � IMCCt�1Þ; (9)

where IMCCt�1 is the previous day’s aggregate IMCC, IMCCt�1 is the average IMCC over

the previous 60 days, and mc is the Basel 3 multiplicative factor. Similar to the previous

regimes, Basel 3 backtesting compares VaR with a one-day time horizon at the 99% confi-

dence level to realized exceedances over the previous 250 days. However, Basel 3 essentially

halves the Basel 2 multiplicative factor with a minimum value of 1.5 for mc and a scaling fac-

tor between 0 and 0.5 that depends on the model’s backtesting performance. The model’s

multiplication factor is set according to the system of exceedances in Column 4 in Table 1.

1.3 Discussion

Whereas Basel 2.5 introduced only one change to Basel 2 when it comes to calculating cap-

ital requirements for market risk, by requiring the use of Stressed VaR, Basel 3 involves sev-

eral additional changes: (i) the use of ES as the key risk metric instead of VaR, (ii) explicit

penalties for exposure to assets with liquidity risk, and (iii) reduction in the possible gains

from diversification. Although these changes may appear innocuous they in fact severely

complicate the calculations required to conduct proper risk management within banks.

First of all, under Basel 3 banks face additional requirements on the data needed to calcu-

late the relevant capital requirement. In particular, long samples of data are needed for

all the combinations of risk factors and liquidity horizons toward which the bank is

exposed. And if some of these risk factors are less liquidly traded or they do not have suffi-

cient amounts of historical data, mimicking portfolios with equivalent characteristics is

needed. Moreover, on each day under Basel 3, there are three liquidity-adjusted ES calcula-

tions (ESR;S; ESF;C; ESR;C) and twenty-one possible liquidity horizons across the five risk

factors, totaling sixty-three daily ES calculations.

Finally, while ES as a risk measure has several benefits compared to VaR, it is a coherent

risk measure that captures both the size and likelihood of losses in the tail, a downside is

that it is slightly more difficult to estimate and that historically it has been complicated to

backtest this measure as it lacks a property called elicitability (Gneiting 2011). A risk meas-

ure is elicitable if there exists a loss function such that the risk measure is the solution to

minimizing the expected loss and while VaR is elicitable ES is not so individually.
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However, ES is jointly elicitable with VaR as shown by Fissler and Ziegel (2016) and using

this result it is possible not only to jointly backtest VaR and ES, see Section 3, but also to

model these measures jointly, see Section 2.2.3. An added complication of using 10-day ES

is that it cannot be scaled from the one-day ES, and although Basel 3 does allow calculating

10-day ES by using 10-day overlapping periods in many cases this method is not applicable

and instead simulation is needed to create these multiperiod forecasts.

So why would regulators consider changing the regulatory capital requirements and, in

particular, make these much more complicated to calculate for banks? If the objective is to

incentivize banks to use models that best predict such risk measures there now exist several

tests that can be used to test the backtesting performance. Models that pass these tests are

essentially correctly specified. Moreover, if the question is one of finding the “best” fore-

casting model for risk measures, this can be examined by using an appropriate and consist-

ent loss function for the risk measures together with Diebold and Mariano (2002) type tests

to assess significant difference between two sets of forecasts or the Model Confidence Set

(MCS) of Hansen, Lunde, and Nason (2011) to examine which models among a set of mod-

els provide superior forecasts. We conduct several such tests and examine which models,

among a large class of statistical models, are indeed correctly specified and which provide

superior risk measure forecasts.

However, for regulators, it is clearly not sufficient that banks hold enough capital to

cover their losses 99% of the time and instead theyrequire banks to keep a buffer of capital

that is generally larger than the predicted risk measures by maximizing over current risk

and historical averages. Moreover, by using backtesting multipliers banks are incentivized

to use more conservative models. We show that though capital requirements have

increased, historically Basel regulation has failed to incentivize banks to use correctly speci-

fied models and Basel 3 is no exception. Moreover, an additional goal of Basel 3 is to ensure

the stability of these capital requirements by calibrating the risk measures to periods of sig-

nificant financial stress. We show that Basel 3 further dampens the cyclicality in capital

requirements by focusing on Stressed ES and by removing most point-in-time calculations.

However, the models that minimize capital requirements, though misspecified, are also gen-

erally the models that generate the most stable capital requirements for banks seeking to

minimize Basel capital variability.

2 Data, Models, and Multiperiod Risk Measures

Basel 3 puts additional requirements on the data needed to calculate regulatory capital,

requiring long samples of data for all the combinations of risk factors and liquidity horizons

toward which the bank is exposed, on the risk measures that an internal model should be

able to produce estimates of, which includes Stressed ES measures, and explicitly disallows

simple scaling techniques for generating multiperiod forecasts of risk measures, which in

many cases are available only using simulation techniques.

In this section, we first provide an overview of the data used in this article. Next, we

introduce the various dynamic models that are used to estimate VaR and ES. Finally, we ex-

plain how multiperiod VaR and ES forecasts can be generated using, in most cases, simula-

tion techniques. Readers, who are familiar with all these issues, can skip this section and go

straight to our backtesting results in Section 3.
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2.1 Data

A key feature distinguishing our article from most of the existing literature is that we con-

sider a realistic portfolio of multiple asset classes that banks likely trade in and hold on

their trading book instead of a single asset class like, for example, equities. We use the

indexes in Table 2 to proxy for the various risk exposures and liquidity horizons that enter

into the calculation of capital requirements under Basel 3. These indexes are highly liquid,

widely traded, and constitute a diverse sample that spans all risk factors and relevant liquid-

ity horizons. Our sample is from January 1989 to February 2020, and indexes are included

when they become available. All data are obtained from Bloomberg.

For interest rate risk, we use the Bloomberg US Treasury and US Treasury Inflation-

Linked indexes for exposure to U.S. government bonds. For equity risk, we include the

S&P 500 Index for exposure to large-cap firms and the Russell 2000 Index for exposure to

small-cap firms. For equity derivatives risk, we include the CBOE Putwrite Index for expos-

ure to a trading strategy that sells one-month at the money S&P 500 put options and invests

the proceeds in one- and three-month Treasury bills. For commodity risk, we include the

Bloomberg Commodities Index for exposure to energy, grains, metals, softs, and livestock.

For commodity derivatives risk, we include the Bloomberg Commodities Volatility Index.

For foreign exchange risk, we include the JP Morgan USD trade-weighted index for expos-

ure to the Australian dollar, British pound, Canadian dollar, Euro, Japanese yen, Swedish

krona, and Swiss franc. We also include the Bloomberg Dollar Index for exposure to the

Australian dollar, British pound, Canadian dollar, Euro, Japanese yen, Swiss franc,

Mexican peso, Chinese renminbi, Korean won, and Indian rupee. For credit risk, we in-

clude the Bloomberg US Aggregate, Mortgage-Backed Securities, High Yield, Corporate,

and Municipal Indexes for exposures to a large variety of U.S. fixed income securities. For

credit derivatives risk, we include the Credit Default Swap Investment Grade and High

Yield Indexes for exposure to credit default swaps, which played an important role in the

2008 crisis.

The risk factors we use are similar to those considered in Falato, Iercosan, and Zikes

(2019) who use proprietary P&L data reported to the Federal Reserve to show that bank

trading desks have exposures to these risk factors. We evaluate a representative bank port-

folio that takes an equal-weighted long position in each available index, adjusting the

weights as new indexes become available. We choose a simple equal-weighted portfolio,

since the start date of the indexes roughly coincides with their importance in the market.

Hence, we expect the portfolio to be a good representation of a typical U.S. bank’s trading

portfolio. Since the index returns are given as simple returns and our models use log

returns, we first form the representative portfolio by taking an equal-weighted mean, then

transforming the portfolio to log returns to form the representative bank portfolio used to

calculate VaR and ES. We perform the same log transformation for portfolios grouped by

risk factor (see Section A of the Online Appendix for further details).

Table 3 provides summary statistics for the representative portfolio and individual risk

factors. The representative portfolio had a mean daily return of 0.025% mainly driven by

the equity, credit, and interest risk factors. Equity had the highest mean return, but also the

highest daily volatility of 0.968% corresponding to an annualized volatility of 15%. The

representative portfolio is highly skewed toward losses and heavy-tailed, demonstrating

that models must accommodate these empirical features to accurately measure tail risk.
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Table 2 Sample of indexes used

Risk Liquidity

factor Index Symbol Start date Horizon

Interest rate Bloomberg US Treasury LUATTRUU March 1994 10

Interest rate Bloomberg US Treasury Inflation-Linked LBUTTRUU April 1998 10

Equity S&P 500 SPX January 1989 10

Equity Russel 2000 RTY January 1989 20

Equity CBOE Putwrite PUT January 1989 60

Commodity Bloomberg Commodities BCOM January 1990 20

Commodity Bloomberg Commodities Volatility GSVL1027 February 2001 120

Foreign exch. JP Morgan USD Trade Weighted JPMQUSD January 1990 20

Foreign exch. Bloomberg Dollar DXY January 2005 20

Credit Bloomberg US Aggregate LBUSTRUU January 1989 20

Credit Bloomberg Mortgage-Backed Securities LUMSTRUU January 1991 40

Credit Bloomberg Corporate LUACTRUU August 1998 40

Credit Bloomberg High Yield LF98TRUU August 1998 60

Credit Bloomberg Municipal LMBITR December 2000 60

Credit Credit Default Swap Investment Grade CDXIG April 2007 120

Credit Credit Default Swap High Yield CDXHY April 2007 120

This table shows the list of indexes used to form the representative banking portfolio. The sample is from

January 1989 to February 2020. Indexes are sorted by risk factor first and then Basel 3 liquidity horizon cat-

egory. We also provide the symbol and starting month for each index.

Table 3 Summary statistics for portfolios

Portfolios Representative Interest Equity Commodity Foreign exchange Credit

Mean 0.025 0.020 0.037 0.003 0.005 0.025

Standard

deviation

0.276 0.290 0.968 0.616 0.332 0.190

Skewness �1.016 �0.207 �0.677 �0.661 0.215 �0.815

Kurtosis 9.692 3.790 9.603 10.168 6.377 9.674

0.025 �0.567 �0.583 �2.033 �1.291 �0.648 �0.366

0.01 �0.777 �0.759 �2.865 �1.697 �0.840 �0.516

Min �3.728 �2.170 �9.747 �9.171 �2.476 �2.118

This table shows summary statistics for the representative banking portfolio and by risk factor. The sample is

from January 1989 to February 2020. The representative portfolio is formed by taking the equal-weighted

mean return of all available indexes (denoted rBank) in Table 2, then taking the log transformation

xBank ¼ logð1þ rBankÞ. Risk factor portfolios are analogously formed by taking the equal-weighted mean re-

turn of indexes in the risk factor, then taking the log transformation. Summary statistics are calculated based

on each portfolio’s daily log return and include the sample mean, standard deviation, skewness, kurtosis,

0.025 quantile, 0.01 quantile, and min in percentage terms.
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The 0.025 and 0.01 quantiles and minimum return for the representative portfolio are

roughly 2, 3, and 13 standard deviations from the mean, highlighting the non-normality of

the distribution’s loss tail.

2.2 Dynamic Models for Returns

We assume throughout that losses are governed by a dynamic model given by

Lt ¼ lt þ rt�t; t ¼ 1; . . . ;T; (10)

where lt is the conditional mean, rt is the conditional volatility, and �t are independent and

identically distributed (i.i.d.) innovations with distribution G(0, 1).

Given the dynamic model in Equation (10), VaR can be expressed as

VaRp
Tþ1 ¼ lTþ1 þ rTþ1G�1

1�p � lTþ1 þ rTþ1c1;p; (11)

where G�1
1�p denotes the ð1� pÞth quantile of G. For example, if G is the standard normal

distribution and p¼ 0.01, then G�1
0:99 ¼ U�1

0:99 ¼ 2:33, where U denotes the standard normal

distribution function, and hence VaRp
Tþ1 ¼ lTþ1 þ 2:33rTþ1. Similarly, ES can be

expressed as

ESp
Tþ1 ¼ lTþ1 þ rTþ1Eð�Tþ1j�Tþ1 > G�1

1�pÞ � lTþ1 þ rTþ1c2;p: (12)

For example, if �t � Nð0;1Þ and p¼0.01, it can be shown that Eð�Tþ1j�Tþ1 >

U�1
0:99Þ ¼ /ðU�1

0:99Þ=0:01 ¼ 2:67, where / denotes the standard normal density function, and

hence ESp
Tþ1 ¼ lTþ1 þ 2:67rTþ1. When the innovation distribution is non-normal we can

still express VaR and ES as in Equations (11) and (12), though the values of c1;p and c2;p

will depend on the distribution G.

In this article, we consider several techniques for estimating the upper tail of the innov-

ation distribution to find the tail risk measures. We first introduce two ad hoc models that

involve no estimation including the most popular model used in banks called HS. Next, we

consider a popular class of models in which the dynamics are parameterized using GARCH

processes with parameters fitted to the entire conditional distribution. Finally, we describe

a new class of models with conditional dynamics based on generalized autoregressive score

(GAS) type models where parameters are instead fitted directly to a relevant loss metric for

the risk measures considered.

2.2.1 Ad hoc models

The simplest and most popular model for estimating VaR and ES is undoubtedly HS due to

ease of implementation.7 This nonparametric and distribution-free model calculates VaR

and ES using the empirical distribution of past losses. The HS estimate for VaRp
Tþ1 is

HS� VaRp
Tþ1 ¼ Q1�pðfLtgÞ; (13)

7 Pérignon and Smith (2010) report that 73% of international banks use HS and Mehta et al. (2012)

reports that 75% of large banks use only HS.
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where Q1�pðfLtgÞ denotes the ð1� pÞth empirical quantile of losses fLtgT
t¼1. The HS esti-

mate for ESp
Tþ1 is

HS� ESp
Tþ1 ¼

1

Lt > HS� VaRp
Tþ1

� � X
Lt>HS�VaR

p
Tþ1

Lt

 !
; (14)

where ðLt > HS� VaRp
Tþ1Þ denotes the number of losses fLtgTt¼1 exceeding HS� VaRp

Tþ1.

While HS can capture the nonnormality commonly observed in financial returns it cannot

account for the conditional dynamics in Equation (10).

The HS model is a “fully” nonparametric model since no assumptions are made about

neither the dynamics nor the conditional distribution. Parametric models, on the contrary,

use explicit formulas for the dynamics together with a parameterized distribution to calcu-

late the values of ĉ1;p and ĉ2;p. The simplest parametric model is the RM model developed

by Morgan (Morgan 1996). RM assumes losses are normally distributed, that lt ¼ 0, and

that the conditional variance follows

r2
t ¼ 0:06ðLt�1Þ2 þ 0:94r2

t�1; (15)

and thus no estimation is required for this model either. The RM estimate for VaRp
Tþ1 is

RM� VaRp
Tþ1 ¼ rTþ1cNorm

1;p ; (16)

where cNorm
1;p ¼ U�1

1�p. The RM estimate for ESp
Tþ1 is

RM� ESp
Tþ1 ¼ rTþ1cNorm

2;p ; (17)

where cNorm
2;p ¼ /ðcNorm

1;p Þ=p.

2.2.2 Dynamic location-scale models

The most popular approach for specifying the dynamic model in Equation (10) in a flexible

manner is to let lt follow some Autoregressive–Moving-Average (ARMA )process and to

let r2
t follow a GARCH process. In this article, we will assume that the conditional mean is

constant (lt ¼ l) and that the conditional variance follows a GARCH(1,1) model given by

r2
t ¼ xþ aðLt�1 � lt�1Þ2 þ br2

t�1; (18)

where aþ b < 1 to ensure stationarity.8 The RM model is a special case of this framework

which sets x¼0, a ¼ 0:06, and b ¼ 0:94 in Equation (18).9

A first model that corrects the shortcomings of the HS model above is the FHS model

which computes ĉ1;p and ĉ2;p from the empirical distribution of centered innovations �̂t � �̂ .

Thus, this model uses the conditional dynamics without the need for distributional assump-

tions on the empirical innovations.10 FHS was first proposed by Barone-Adesi, Bourgoin,

8 Naturally, our approach generalizes to more complex specifications of the conditional mean and

variance.

9 Since aþ b ¼ 1, the RM model follows a IGARCH random walk process and is therefore not

stationary.

10 The parameters of ARMA-GARCH type models can be estimated consistently using Quasi-

Maximum Likelihood estimation with a Gaussian likelihood even if the underlying distribution is
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and Giannopoulos (1998), Hull and White (1998), and Diebold, Schuermann, and

Stroughair (2000). The FHS estimate of c1;p is

ĉFHS
1;p ¼ Q1�p f�̂t � �̂g

� �
; (19)

and the FHS estimate of c2;p is

ĉFHS
2;p ¼

1

�̂t � �̂ > cFHS
1;p

� � X
�̂ t��̂>cFHS

1;p

�̂t � �̂
� � !

: (20)

The FHS estimates for VaRp
Tþ1 and ESp

Tþ1 are then obtained by substituting these estimates

into Equations (11) and (12), respectively.

2.2.2.1 Parametric models

Whereas FHS makes no assumptions about the conditional distribution, the RM model

assumes losses are normally distributed. Other typical choices in the literature include the

Student’s t-distribution (STD), the Hansen (1994) Skewed Student’s t-distribution (SSTD),

or the generalized error distribution (GED) which are popular because they can capture

heavy tails exhibited by financial returns. We consider the flexible skewed generalized t-dis-

tribution (SGT) of Theodossiou (1998), which nests many of the popular parametric distri-

butional assumptions for modeling financial returns. The probability density function of

the SGT distribution is given by

f xjk; n; kð Þ ¼ k

2/
n�

1
kB

1

k
;
n

k

� ��1

1þ 1

n

jx�mjk

1þ sgn x�mð Þkð Þk/k

 !�nþ1
k

; (21)

where m is the mode, / is a scaling constant, �1 < k < 1 is a skewness parameter, k and

n are positive tail parameters, sgn is the sign function, and B is the Beta function. For a

standardized SGT random variable with mean zero and unit variance, the mode is m ¼
�2kG1/ and the scaling constant is / ¼

�
1þ 3k2ð ÞG2 � 4k2G2

1

��1
2

, where G1 and G2 are

given by Gj ¼ n
j
kB jþ1

k ; n�j
k

� �
B 1

k ;
n
k

� ��1
for j¼1, 2.

Theodossiou (2018) shows that the closed-form expression for the 1� pð Þth quantile of

the SGT distribution is

cSGT
1;p ¼ mþ ð1þ kÞ/n

1
kt

1
k
pð1� tpÞ�

1
k; (22)

where tp ¼ IB�1 2jð1�pÞ�ð1�kÞ=2j
ð1þkÞ ; 1

k ;
n
k

� �
and IB�1 is the inverse incomplete Beta function

ratio, and that

cSGT
2;p ¼ mþ ð1þ kÞ2

2p
1� IB tp;

2

k
;
n� 1

k

� �	 

G1/; (23)

where IB is the incomplete Beta function ratio. We calculate the values for VaRp
Tþ1 and

ESp
Tþ1 in Equations (11) and (12) under an SGT distributional assumption on the innova-

tions by using estimated values of k, n, and k to obtain ĉSGT
1;p and ĉSGT

2;p in Equations (22) and

(23), respectively.

non-Gaussian assuming the correct order of the dynamic processes is specified, see, for example,

Bollerslev and Wooldridge (1992) and Gourieroux (1997).
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The SGT distribution is extremely flexible and nests all the parametric distributions

used in this article. For example, the SGT distribution is equivalent to the normal distribu-

tion when k¼0, k¼2, and n!1 and an SGT distribution with k¼0, k¼2, and n¼ d is

equivalent to an STD with d degrees of freedom. When the skewness parameter

�1 < k < 1, the SGT distribution with k¼ 2, and n¼ d is equivalent to Hansen’s skewed

t-distribution with d degrees of freedom and the same skewness parameter k. Finally, the

SGT distribution with n!1 is equivalent to the (skewed when k 6¼ 0) GED distribution

with shape parameter v¼k.

2.2.2.2 Methods based on extreme value theory

Whereas the parametric model above imposes assumptions on the entire distribution of the

innovations, EVT models the behavior of the distribution’s tail. Tail values are described by

the conditional excess distribution function defined by

FgðyÞ ¼ Pr X� g � yjX > gf g ¼ Fðyþ gÞ � FðgÞ
1� FðgÞ ; y > 0; (24)

which is the probability that x exceeds threshold g by at most y given x exceeds the

threshold.11

2.2.2.2.1 Generalized Pareto distribution estimator

Balkema and de Haan (1974) show that, for a sufficiently high threshold g, the cumulative

distribution function in Equation (24) can be approximated by the Generalized Pareto

Distribution (GPD) given by

GðyÞ ¼
1� 1þ n y

r

� ��1=n
; if n 6¼ 0

1� expð�y=rÞ; if n ¼ 0;

(
(25)

where n is a shape parameter and r > 0 is a scale parameter defined for y � 0 when n � 0

and 0 � y � �r=n when n < 0. When n > 0, the distribution becomes the heavy-tailed

Pareto distribution. The probability density function of the GPD is given by

gðzt; n;rÞ ¼

1

r
1þ nzt

r

	 
�ð1þ1=nÞ

; if n 6¼ 0

1

r
exp½� zt

r
�; if n ¼ 0;

8>>><
>>>:

(26)

where the exceedances fz1; . . . ; zNgg are defined as zt ¼ �t � g for 1 � t � Ng, and Ng is

the number of exceedances above the threshold g. Maximizing the likelihood function given

by

Lðn;rÞ ¼
YNg

i¼1

1

Ng
gðzt; n; rÞ; (27)

yields estimates of n and r.

11 See Christoffersen (2011) for a highly accessible introduction to the use of EVT in risk

management.
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Using the estimated parameters n̂ and r̂, Mcneil and Frey (2000) show that the closed-

form expression for the ð1� pÞth quantile of the GPD distribution is

ĉGPD
1;p ¼ gþ r̂

n̂

Tp

Ng

� ��n̂

� 1

 !
; (28)

where T is the sample size, and that

ĉGPD
2;p ¼ ĉGPD

1;p

1

1� n̂
þ r̂ � n̂g

ð1� n̂ÞĉGPD
1;p

 !
: (29)

Hence, given a GPD assumption on exceedances, the values for VaRp
Tþ1 and ESp

Tþ1 are

obtained by substituting these estimates into Equations (11) and (12), respectively.

2.2.2.2.2 Hill estimator

Hill (1975) provides an alternative estimation method used in EVT. The Hill estimator

assumes that n > 0 and the distribution has heavy tails. Suppose the tail of the conditional

distribution of innovations is approximated by the distribution function

FðzÞ ¼ 1� LðzÞz�1=n 	 1� cz�1=n; (30)

whenever �t > u, where u is the threshold, and L(z) is a slowly varying function, which we

approximate with a constant c. Let k be the number of observations that exceed u. The Hill

estimator n̂ is the maximum likelihood estimator of n assuming innovations are i.i.d. from

an unknown distribution given in closed form by

n̂ ¼ 1

k

Xk

t¼1

lnð�̂ðT�tþ1ÞÞ � lnðuÞ; (31)

where �̂ðtÞ denotes the t-th order statistic of �̂t such that �̂ðtÞ � �̂ðt�1Þ for t ¼ 2; . . . ;T.

Huisman et al. (2001) provide an alternative estimator of n that does not require choos-

ing a threshold u. They show that the bias in the Hill estimator is a linear and increasing

function of k. Hence, a threshold-free estimate of n is the intercept b0 in the regression

n̂k ¼ b0 þ b1kþ �ðkÞ;k ¼ 1; ::;K; (32)

where n̂k is the Hill estimator in Equation (31) with threshold u ¼ �̂ðkÞ. Since the variance

of n̂k depends on k, �ðkÞ is heteroskedastic. To correct for this, they estimate Equation (32)

using weighted least squares with a ðK� KÞ weighting matrix W, which has f
ffiffiffi
1
p

; ::;
ffiffiffiffi
K
p
g as

diagonal elements and zeros elsewhere. We set K ¼ T=4.

Given n̂ we approximate the tail distribution F by setting c ¼ k
T u1=n̂ , which is derived

from the condition 1� FðuÞ ¼ k
T. The estimate of F is

F̂ðzÞ ¼ 1� k

T

z

u

� ��1=n̂

: (33)

Christoffersen and Gonçalves (2005) show that the ð1� pÞth quantile of F̂ðzÞ is

ĉHill
1;p ¼ u

pT

k

� ��n̂

; (34)
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and that

ĉHill
2;p ¼

ĉHill
1;p

1� n̂
: (35)

We substitute these estimates into Equations (11) and (12) to obtain the corresponding esti-

mates of VaRp
Tþ1 and ESp

Tþ1.

In Section B of the Online Appendix, we conduct a simulation study to estimate the opti-

mal threshold, ĝ, for GPD estimation and, û, for Hill estimation at the 99%, 97.5%, and

95% confidence levels. We find that GPD estimates are optimized by setting ĝ equal to the

0.85 quantile of innovations for all three confidence levels and that Hill estimates are opti-

mized by setting û equal to the same quantile as the confidence level, and we use these

thresholds in this article.

2.2.7 Dynamic VaR and ES models

When estimating the parameters of the location-scale models above this is typically done by

fitting to the whole conditional distribution of asset returns using Maximum Likelihood

type methods. Such methods are efficient if the dynamics and the distributional specifica-

tion are correct and in this case, the model will also yield optimal forecasts of the risk meas-

ures. However, if we think of the dynamic models only as approximations it is not obvious

that the estimated model is optimal when the application is to forecast VaR and ES. Indeed,

in this situation, it may be possible to improve the forecasted risk measures by estimating

model parameters using an alternative metric, one that is consistent for VaR and ES, rather

than using a (Quasi) Maximum Likelihood approach which focuses on the conditional

mean and variance.

An appropriate metric for this problem was provided by Fissler and Ziegel (2016), who

showed that the class of FZ loss functions given by

LFZðY; v; e; p;G1;G2Þ ¼ ð1Y� v � pÞðG1ðvÞ �G1ðYÞ þ
1

p
G2ðeÞvÞ �G2ðeÞð

1

p
1Y� vY � eÞ

� G2ðeÞ;
(36)

where Y denotes the return, -v is the VaR, -e is the ES, G1 is weakly increasing, G2 is strictly

increasing and strictly positive, and G02 ¼ G2, is consistent for VaR and ES. In other words,

minimizing the expected FZ loss returns the true VaR and ES and

ð�VaRt;�EStÞ ¼ argmin
ðv;eÞ

Et�1½LFZðYt; v; e; p;G1;G2Þ�: (37)

To implement this approach for estimation one needs to choose the functions G1 and

G2. Patton, Ziegel, and Chen (2019) suggest to set G1 ¼ 0 and G2 ¼ �1=x to obtain

LFZ0ðY; v; e; pÞ ¼ � 1

pe
1Y� vðv� YÞ þ v

e
þ logð�eÞ � 1; (38)

which they refer to as the FZ0 loss function, and they provide asymptotic theory for esti-

mating VaR and ES models by minimizing this loss. Thus, one can now use this criterion to

estimate parameters of any dynamic specifications like, for example, an ARMA-GARCH

type model.
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While GARCH type dynamics could be considered, Patton, Ziegel, and Chen (2019)

specify instead a dynamic model for VaR and ES using the GAS model of Creal, Koopman,

and Lucas (2013) and Harvey (2013) where the forcing variable is a function of the deriva-

tive and the Hessian of the FZ0 loss function instead of a log-likelihood. We first consider

their one-factor GAS model for VaR and ES, where the risk measures, vt ¼ a expðjtÞ and

et ¼ b expðjtÞ with b < a < 0, are driven by a factor jt ¼ log ðrtÞ, interpreted as the log

volatility, with dynamics given by

jt ¼ xþ bjt�1 þ c
1

b expðjt�1Þ
1

p
1Yt�1 � a expðjt�1ÞYt�1 � b expðjt�1Þ

� �
: (39)

The parameters ða; b;b; cÞ can be estimated using the FZ0 loss function while setting x¼ 0

ensures identification, see Patton, Ziegel, and Chen (2019) for details. We also consider

their Hybrid GAS/GARCH model with

jt ¼ xþ bjt�1 þ c
1

b expðjt�1Þ
1

p
1Yt�1 � a expðjt�1ÞYt�1 � b expðjt�1Þ

� �
þ d log jYt�1j;

(40)

where parameters ða; b;b; c; dÞ are estimated using the FZ0 loss function and setting x¼0

again ensures identification.12 We refer to these two models as the FZ1 and FZH models,

respectively. The one-day VaR and ES forecasts are given by

FZ� VaRp
Tþ1 ¼ �vTþ1 ¼ �a expðjTþ1Þ; (41)

and

FZ� ESp
Tþ1 ¼ �eTþ1 ¼ �b expðjTþ1Þ; (42)

where jTþ1 follows Equation (39) in the FZ1 model and Equation (40) in the FZH.

2.3 Multiperiod VaR and ES Forecasts

Basel 2 and 2.5 capital charges are based on VaR with a 10-day time horizon whereas Basel

3 capital charges are based on ES with a 10 day time horizon. During Basel 2, banks would

often approximate 10-day VaR by multiplying 1-day VaR by
ffiffiffiffiffiffi
10
p

, which is correct only

when returns are normally distributed. Due to the non-normality of returns, this scaling

method is explicitly prohibited in Basel 3 (BCBS 2019). Basel 3 regulation though, does

allow 10-day forecasts to be calculated using overlapping observations, which is how we

calculate HS forecasts. Define the sum of 10-day losses conditional on time t as

Lt½10� ¼
Xtþ10

k¼tþ1

Lk: (43)

12 Patton, Ziegel, and Chen (2019) also consider a two-factor model for VaR and ES. However, they

found the one-factor model performed better than the two-factor model, so we exclude it from our

analysis.
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The goal of multiperiod forecasts is to calculate the VaR and ES of LT 10½ � given the infor-

mation at time T. The HS estimate for VaRp
Tþ10 is

HS� VaRp
Tþ10 ¼ Q1�p fLt 10½ �g

� �
; (44)

where Q1�pðfLt½10�gÞ denotes the ð1� pÞth empirical quantile of the 10-day losses

fLt½10�gT�10
t¼1 . The HS estimate for ESp

Tþ10 is

HS� ESp
Tþ10 ¼

1

Lt 10½ � > HS� VaRp
Tþ10

� � X
Lt 10½ �>HS�VaRp

Tþ10

Lt 10½ �
 !

; (45)

where ðLt½10� > HS� VaRp
Tþ10Þ denotes the number of 10-day losses exceeding

HS� VaRp
Tþ10.

For GARCH models, the volatility forecast and conditional distribution of 10-day losses

are only available in closed form for normally distributed innovations. The 10-day

GARCH variance forecast for normal innovations is

r2
Tþ10 ¼

x
1� c

10� 1� c10

1� c

 !
þ 1� c10

1� c
r2

Tþ1; (46)

where c ¼ aþ b < 1 (Tsay 2010). The normal estimate for VaRp
Tþ10 is

Norm� VaRp
Tþ10 ¼ 10lþ rTþ10cNorm

1;p ; (47)

and the estimate for ESp
Tþ10 is

Norm� ESp
Tþ10 ¼ 10lþ rTþ10cNorm

2;p : (48)

Taking the limit as c! 1 the 10-day RM variance forecast is seen to be r2
Tþ10 ¼ 10r2

Tþ1.

Hence, the RM estimate for VaRp
Tþ10 and ESp

Tþ10 is
ffiffiffiffiffiffi
10
p

RM� VaRp
Tþ1 andffiffiffiffiffiffi

10
p

RM� ESp
Tþ1, respectively. This relationship is referred to as the square root of time

rule under RM.

In all other cases, multiperiod risk measures are obtained through simulation. We ap-

proximate the conditional distribution of LT 10½ � ¼ LTþ1 þ ::þ LTþ10 by simulating future

paths of losses

LTþk ¼ lþ rTþk�Tþk; (49)

where the conditional variance in GARCH models follows

r2
Tþk ¼ xþ a LTþk�1 � lð Þ2 þ br2

Tþk�1; (50)

for r2
Tþ1; ::; r

2
Tþ10. We perform B¼2000 simulations, resulting in a sample fLb;T 10½ �gB

b¼1 of

10-day losses indexed by b. The GARCH estimate for VaRp
Tþ10 is then

VaRp
Tþ10 ¼ Q1�p fLb;T 10½ �g

� �
; (51)

Q1�p fLb;T 10½ �g
� �

where denotes the 1� pð Þth empirical quantile of the simulated 10-day

losses fLb;T 10½ �gB

b¼1
. The GARCH estimate for ESp

Tþ10 is

ESp
Tþ10 ¼

1

Lb;T 10½ � > VaRp
Tþ10

� � X
Lb;T 10½ �>VaRp

Tþ10

Lb;T 10½ �
 !

; (52)
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where ðLb;T ½10� > HS� VaRp
Tþ10Þ denotes the number of simulated 10-day losses

fLb;T ½10�gB
b¼1 exceeding VaRp

Tþ10. The simulated innovations f�Tþ1; ::; �Tþ10g in Equation

(49) are drawn directly from the estimated distribution, or in the case of the FHS model

drawn with replacement from the empirical distribution of centered innovations �̂t � �̂ . A

similar approach is used for the FZ models with the only change that here the innovations

are given by gt ¼ Lt= exp jtð Þ.
For the EVT models, we follow the procedure in Mcneil and Frey (2000). For the GPD

model, we estimate the positive and negative threshold g6 as the 0.15 and 0.85 quantiles of

�̂t, respectively. Using the thresholds, we estimate the positive and negative shape n6 and

scale r6 parameters. We draw innovations from the empirical distribution of innovations

�̂t. If the drawn innovation is greater than gþ, we replace the innovation with gþ þ yþ,

where yþ is drawn from a GPD distribution with shape nþ and scale rþ. Similarly, if the

drawn innovation is less than g�, we replace the innovation with g� � y�, where y– is GPD

distributed with shape n� and scale r�. If the drawn innovation is between g� and gþ, we

use the innovation itself. We take a similar approach for the Hill model, estimating the

positive and negative threshold u6 as the p and 1� pð Þth quantiles of the innovations �̂t, re-

spectively. Using the thresholds, we estimate the positive and negative shape n6 parameter.

If the drawn innovation is greater than uþ, we replace the innovation with uþ þ zþ, where

zþ is drawn from a Pareto distribution with a shape parameter nþ. If the drawn innovation

is less than u–, we replace the innovation with u� þ z�, where z– is drawn from a Pareto dis-

tribution with shape parameter n�. If the drawn innovation is between u– and uþ, we use

the innovation itself.

3. Model Backtesting

Basel 3 changes the regulatory market risk measure from VaR at the 99% confidence level

to ES at the 97.5% confidence level. With this change, banks are strongly motivated to

identify which models are correctly specified under the new risk measure and regulatory

supervisors are particularly interested in identifying the set of models that underestimate

risk, since banks using these models may be undercapitalized prior to a financial shock.

When Basel 3 was introduced, though, a major criticism against using ES for regulation

was the lack of available backtesting due to the risk measure not being elicitable (Gneiting

2011).13 However, Fissler, Ziegel, and Gneiting (2015) showed that ES is in fact jointly

elicitable with VaR, and a recent literature on joint VaR and ES backtesting has been devel-

oped by academics. This section uses these recently developed and state-of-the-art methods,

which we simply refer to as ES backtests, to examine which of the models are correctly

specified and provide the best risk forecasts.

Since VaR is still used for regulatory backtesting and for setting the capital multiplier,

we first consider individual backtests for VaR. The methods we use to backtest predicted

VaR are standard and can be found in, for example, Christoffersen (2009). Specifically, we

report the actual exceedances (Actual) and p-values from Kupiec (1995)’s Unconditional

Coverage (UC) test, Christoffersen (1998)’s Conditional Coverage (CC) test, Christoffersen

13 A variable is elicitable if it can be defined as the minimizer of a mean scoring function. Gneiting

(2011) shows that ES lacks elicitability while VaR is elicitable allowing backtesting VaR but not ES

individually.
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and Pelletier (2004)’s Duration (Dur) test, and Engle and Manganelli (2004)’s Dynamic

Quantile (DQ) test. In terms of ES backtests, Nolde and Ziegel (2017) suggest that these

can be separated into two categories: (i) traditional backtests which can be used to deter-

mine the correctly specified models, and (ii) comparative backtests which can be used to se-

lect the models that provide superior forecasts. For the traditional backtests, we next report

p-values for Mcneil and Frey (2000)’s residual test (ER), Bayer and Dimitriadis (2018)’s

strict, auxiliary, and one-sided regression tests (ESR), Nolde and Ziegel (2017)’s condition-

al calibration test (CCa), and Gordy and Mcneil (2020)’s spectral backtests. Finally, for the

comparative backtests, we report average FZ0 losses with Hansen, Lunde, and Nason

(2011)’s MCS, Diebold and Mariano (2002) t-statistics from Patton (2019)’s FZ0 backtest,

and Ziegel et al. (2017)’s Murphy Diagrams.14

We empirically evaluate the various models’ performance in terms of estimating one-

day VaR and ES for our representative portfolio from January 1997 to February 2020.15

For HS and RM, we use a 250-day rolling estimation window. While most banks use short

windows for their HS estimation, dynamic models generally require a larger estimation

window to reduce estimation error. We, therefore, choose to report results using a rolling

estimation window of T¼2000 days and include data from 1989 for estimation purposes.

In addition to results at the 99% and 97.5% confidence levels, we also consider a 95% con-

fidence level. The 95% confidence level is not currently used for regulatory purposes.

However, due to the larger tail sample, estimation error could be reduced across models at

this level and hence this confidence level could be used for future regulation. For visual clar-

ity, hypothesis tests that are rejected with 95% confidence are bold. Previewing our results,

we reject that the HS, RM, Normal, STD, and GED models are correctly specified for VaR

and ES backtests at traditional levels and find that these models provide poor forecasts. We

also reject the FZ models in the conditional spectral backtests and find that these models

provide inferior forecasts. We cannot reject the hypothesis of correct specification for most

of the skewed GARCH models and find that these models also provide superior VaR and

ES forecasts.

3.1 VaR Backtests

Panel A of Table 4 reports one-day VaR backtesting results at the 99% confidence level for

which 57 exceedances are expected. The UC and CC p-values indicate we can reject the hy-

pothesis that the HS, RM, Normal, STD, and GED models are correctly specified. These

models have too many exceedances from underestimating VaR and are likely to have serial-

ly correlated exceedances. The Dur p-values indicate we can reject the hypothesis that HS

has the correct duration between exceedances, likely because the model is misspecified

against volatility clustering. Additionally, the DQ p-values indicate that the HS, RM,

Normal, STD, and FZ1 models are misspecified. Panel B of Table 4 reports results at the

97.5% confidence level for which 144 exceedances are expected. The UC and CC p-values

indicate we can reject the same set of models as with the 99% confidence level. The Dur p-

14 Further details on all these ES backtests can be found in Section C of the Online Appendix.

15 Although Basel sets capital charges based on 10-day risk estimates, multi-horizon backtests are

challenging to conduct due to overlapping observations and changing portfolio compositions. We

follow the existing literature and conduct backtests at a 1-day horizon which is also the horizon

used for Basel backtesting.
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values indicate we can reject the hypothesis that the HS, RM, STD, GED, GPD, and FZ1

models have independent durations between exceedances. Additionally, the DQ p-values

indicate that the HS, RM, Normal, STD, FZ1, and now also the FZH models are misspeci-

fied. We cannot reject the hypothesis of correct specification for the FHS, SSTD, SGED,

SGT, Hill, and HillH models for either confidence level.

Next, Panel C of Table 4 reports the results at the 95% confidence level for which 288

exceedances are expected. The UC, CC, and Dur test results are similar to the previous con-

fidence levels. Interestingly, the DQ p-values indicate we can reject the hypothesis of correct

specification for every model except the two semiparametric FZ models. This finding is

consistent with Manganelli and Engle (2001), who find that their Conditional

Autoregressive Value at Risk (CAViaR) model outperforms GARCH models at the 95%

confidence level. The two semiparametric FZ models are an extension of the CAViaR

model and as such are expected to outperform GARCH models at this lower confidence

level.

In summary, Table 4 shows that irrespective of the confidence level we can reject that

the HS, RM, Normal, STD, and GED models are correctly specified. These models under-

estimate VaR and often have clustered exceedances. Also, since the symmetric GARCH and

Table 4 VaR backtests

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH

Panel A: Results at a 99% confidence level (expected exceedances¼ 57)

Actual 80 116 59 105 80 64 78 65 65 52 59 59 53 54

UC 0.01 0.00 0.87 0.00 0.01 0.42 0.01 0.35 0.35 0.44 0.87 0.87 0.52 0.61

CC 0.00 0.00 0.88 0.00 0.00 0.68 0.01 0.62 0.62 0.59 0.88 0.88 0.66 0.73

Dur 0.00 0.17 0.51 0.09 0.08 0.49 0.23 0.39 0.33 0.61 0.51 0.51 0.08 0.45

DQ 0.00 0.00 0.33 0.00 0.00 0.45 0.07 0.20 0.20 0.32 0.33 0.33 0.00 0.49

Panel B: Results at a 97.5% confidence level (Expected exceedances¼ 144)

Actual 178 200 141 204 197 149 180 141 151 131 141 141 165 147

UC 0.01 0.00 0.77 0.00 0.00 0.70 0.00 0.77 0.59 0.25 0.77 0.77 0.09 0.83

CC 0.00 0.00 0.21 0.00 0.00 0.31 0.00 0.21 0.31 0.06 0.21 0.21 0.05 0.06

Dur 0.00 0.03 0.05 0.07 0.04 0.05 0.03 0.07 0.08 0.02 0.05 0.05 0.03 0.07

DQ 0.00 0.00 0.24 0.00 0.00 0.12 0.00 0.12 0.16 0.11 0.24 0.24 0.01 0.02

Panel C: Results at a 95% confidence level (expected exceedances¼ 288)

Actual 314 312 297 333 357 310 331 292 314 299 297 297 329 309

UC 0.14 0.17 0.63 0.01 0.00 0.21 0.01 0.85 0.14 0.55 0.63 0.63 0.02 0.23

CC 0.00 0.12 0.30 0.02 0.00 0.38 0.04 0.53 0.25 0.31 0.30 0.30 0.06 0.33

Dur 0.00 0.02 0.28 0.42 0.27 0.58 0.54 0.32 0.31 0.22 0.28 0.28 0.89 0.78

DQ 0.00 0.00 0.02 0.00 0.00 0.04 0.00 0.02 0.01 0.01 0.02 0.02 0.13 0.58

This table shows the VaR backtesting results of the representative portfolio from January 1997 to February

2020. Each panel reports results for a particular confidence level. In each panel, Row 1 shows the actual num-

ber of exceedances. Rows 2–5 display two-sided p-values for the UC, CC, Duration, and DQ backtests.

Models with p-values <0.05 are in bold.
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FZ parametric models are often rejected, we conclude that modeling skewness is crucial for

estimating VaR in financial returns. At the extreme 95% confidence level, the FZH model

is the only model to not be rejected by any test. However, the FHS, SSTD, SGED, SGT,

Hill, and HillH models have the most accurate VaR estimates for the 99% and 97.5% con-

fidence levels, the relevant levels for Basel regulation.

3.2 Traditional ES Backtests

Panel A of Table 5 reports traditional ES backtest results at the 99% confidence level. The

ER p-values indicate that we can reject the hypothesis that the HS, RM, Normal, GED, and

SGED models have the correct ES estimates on average. Since we evaluate the one-sided hy-

pothesis of the unconditional ER test, we can conclude that these models systematically

underestimate ES. The ESR Strict and Aux p-values indicate we can reject the hypothesis

that the HS, RM, Normal, and GED models have accurate ES estimates. Specifically, we

can reject the hypothesis of zero intercept and unit intercept when regressing exceedances

from these models on ES. The ESR Int p-values for the one-sided intercept backtest show

that these models along with the STD and SGED models have intercepts that are too low,

confirming that these models underestimate ES on average. The CCa p-values indicate we

can reject the hypothesis that the HS, RM, Normal, and GED models have accurate VaR

and ES estimates. Since we conduct the one-sided CCa test where the null hypothesis is that

the VaR and ES estimates are weakly greater than their true values on average, we conclude

that the rejected models underestimate risk. We cannot reject the hypothesis that VaR and

ES are correctly specified for the FHS, SSTD, SGT, GPD, Hill, HillH, FZ1, and FZH mod-

els in any traditional ES backtest at this level. The traditional ES backtest results are nearly

identical for the 97.5% and 95% confidence levels in Panels B and C, except that the HillH

model is rejected at these confidence levels.

Panel A of Table 6 reports unconditional spectral backtest results for the wide interval

from (0.95, 0.995) using the Uniform (Uni), Arcsin (Arc), and Epanechnikov (Epa) continu-

ous kernel density functions. The continuous kernel p-values indicate that we can reject the

hypothesis that the RM, Normal, STD, GED, and HillH models have uniformly distributed

probability integral transform (PIT) values. Given the results from the traditional backtests

in Table 5, we conclude that these models have thinner tails than actual losses have, which

likely results in underrepresented tail PIT values. Panel B of Table 6 reports unconditional

spectral backtest results for the narrow interval from (0.97, 0.98), which is the neighbor-

hood around the 97.5% confidence level used for Basel 3. The p-values for all three kernels

indicate we reject the same set of models as for the wide interval. Panel C of Table 6 reports

unconditional spectral backtest results for the uniform 3-level points (0.95, 0.975, 0.99),

the main confidence levels of interest in our article. The p-values indicate that we reject the

hypothesis that the RM, Normal, STD, and GED models have uniformly distributed PIT

values. The set of models rejected is consistent across all the unconditional backtests, indi-

cating these models have nonuniform PIT-values and are unlikely to be correctly specified.

We cannot reject that the HS, FHS, SSTD, SGED, SGT, GPD, Hill, FZ1, and FZH models

have uniformly distributed PIT-values in any unconditional spectral backtest.

Panel D of Table 6 reports conditional spectral backtest results for the wide interval.

The continuous kernel p-values indicate that we can reject the hypothesis that the HS, RM,

Normal, STD, GED, HillH, FZ1, and FZH models have uniformly distributed PIT-values
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and are serially independent. Interestingly, the HS, FZ1, and FZH models pass the uncondi-

tional backtests, but are rejected in the conditional backtest. This indicates that these mod-

els exhibit correlated spectrally transformed PIT-values. These models fail to use all

available information when forecasting, resulting in temporal dependence between PIT-val-

ues.16 Panel E of Table 6 reports conditional spectral backtest results for the narrow inter-

val. The set of rejected models are the same as for the wide interval, reaffirming that these

models have nonuniform or dependent PIT-values and are unlikely to be correctly specified.

Panel F of Table 6 reports conditional spectral backtest results for the uniform three-level

points. The p-values indicate that we reject the hypothesis that the HS, RM, Normal, STD,

GED, FZ1, and FZH models have uniformly distributed and independent PIT-values. We

cannot reject that the FHS, SSTD, SGED, SGT, GPD, and Hill models have uniformly dis-

tributed and independent PIT-values in any conditional spectral backtest.

In summary, Tables 5 and 6 show that the HS, RM, Normal, STD, GED, SGED, HillH,

FZ1, and FZH models are likely not correctly specified for VaR and ES at the 99%, 97.5%,

Table 5 Traditional ES backtests

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH

Panel A: Results at a 99% confidence level

ER 0.02 0.00 0.53 0.00 0.10 0.41 0.00 0.01 0.41 0.20 0.57 0.14 0.31 0.07

ESR strict 0.00 0.00 0.98 0.00 0.09 0.79 0.01 0.26 0.73 0.96 0.99 0.62 0.28 0.87

ESR Aux 0.00 0.00 0.93 0.00 0.09 0.84 0.01 0.23 0.80 0.94 0.90 0.69 0.19 0.92

ESR Int 0.00 0.00 0.27 0.00 0.01 0.13 0.00 0.02 0.11 0.32 0.29 0.09 0.32 0.15

CCa 0.01 0.00 0.97 0.00 0.07 0.87 0.01 0.17 0.85 0.63 1.00 0.84 0.76 0.62

Panel B: Results at a 97.5% confidence level

ER 0.04 0.00 0.74 0.00 0.25 0.39 0.00 0.02 0.48 0.62 0.84 0.00 0.93 0.86

ESR strict 0.01 0.00 0.90 0.00 0.02 0.79 0.00 0.46 0.77 0.76 0.71 0.08 0.99 0.90

ESR Aux 0.00 0.00 0.85 0.00 0.02 0.84 0.00 0.49 0.81 0.70 0.65 0.11 0.95 0.85

ESR Int 0.00 0.00 0.43 0.00 0.00 0.14 0.00 0.06 0.13 0.53 0.56 0.01 0.44 0.55

CCa 0.01 0.00 1.00 0.00 0.01 0.83 0.00 0.36 0.79 0.35 1.00 0.10 1.00 0.99

Panel C: Results at a 95% confidence level

ER 0.04 0.00 0.84 0.00 0.02 0.42 0.00 0.12 0.54 0.91 0.94 0.00 0.96 0.93

ESR Strict 0.00 0.00 0.81 0.00 0.00 0.54 0.00 0.54 0.53 0.76 0.45 0.00 1.00 0.81

ESR Aux 0.00 0.00 0.90 0.00 0.00 0.58 0.00 0.57 0.55 0.80 0.54 0.00 0.98 0.85

ESR Int 0.00 0.00 0.39 0.00 0.00 0.07 0.00 0.06 0.06 0.46 0.63 0.00 0.26 0.37

CCa 0.05 0.00 1.00 0.00 0.00 0.42 0.00 0.42 0.38 1.00 1.00 0.00 1.00 1.00

This table shows the traditional ES backtesting results of the representative portfolio from January 1997 to

February 2020. Each panel reports results for a particular confidence level. In each panel, Row 1 shows the

one-sided p-values for the exceedance residual test. Rows 2 and 3 show the two-sided p-values for the Strict

and Auxiliary ES regression backtests. Rows 4 and 5 show the one-sided p-values for the Intercept ES regres-

sion and Conditional Calibration backtests. Models with p-values below 0.05 are in bold.

16 This is confirmed by these models inferior performance in comparative backtests below.
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and 95% confidence levels. These models either underestimate tail risk or have dependent

forecasts. The FHS, SSTD, SGT, GPD, and Hill models are, on the contrary, never rejected

by the traditional ES backtests. In particular, we cannot reject that these models have inde-

pendent forecasts or PIT-values, suggesting that they are using the full information set

when making forecasts. These models can accommodate the heavy tails and skewness of fi-

nancial returns and appear to be correctly specified for VaR and ES. While the traditional

Table 6 Spectral backtests

HS RM FHS Norm STD SSTD GED SGED SGT GPD Hill HillH FZ1 FZH

Panel A: UC on a wide interval (0.95, 0.995)

Uni 0.19 0.00 0.87 0.00 0.00 0.17 0.00 0.85 0.17 0.80 0.72 0.00 0.90 0.93

Arc 0.23 0.00 0.94 0.00 0.00 0.16 0.00 0.74 0.15 0.93 0.68 0.01 0.91 1.00

Epa 0.17 0.00 0.82 0.00 0.00 0.20 0.00 0.96 0.21 0.66 0.75 0.00 0.90 0.88

Panel B: UC on a narrow interval (0.97, 0.98)

Uni 0.11 0.00 0.62 0.00 0.00 0.43 0.00 0.69 0.46 0.28 0.78 0.00 0.99 0.93

Arc 0.13 0.00 0.61 0.00 0.00 0.40 0.00 0.68 0.43 0.29 0.78 0.00 0.99 1.00

Epa 0.09 0.00 0.63 0.00 0.00 0.48 0.00 0.69 0.49 0.27 0.78 0.00 0.97 0.86

Panel C: UC on a discrete three-level points (0.95, 0.975, 0.99)

Uni 0.21 0.00 0.92 0.00 0.00 0.31 0.00 0.83 0.21 0.77 0.73 0.11 0.88 0.92

Panel D: CC on a wide interval (0.95, 0.995)

Uni 0.00 0.00 0.32 0.00 0.00 0.09 0.00 0.15 0.08 0.32 0.82 0.06 0.00 0.01

Arc 0.00 0.00 0.37 0.00 0.00 0.11 0.00 0.19 0.10 0.38 0.86 0.18 0.00 0.02

Epa 0.00 0.00 0.29 0.00 0.00 0.08 0.00 0.14 0.08 0.27 0.77 0.02 0.00 0.00

Panel E: CC on a narrow interval (0.97, 0.98)

Uni 0.00 0.00 0.23 0.00 0.00 0.12 0.00 0.12 0.13 0.18 0.85 0.01 0.00 0.00

Arc 0.00 0.00 0.24 0.00 0.00 0.13 0.00 0.12 0.13 0.17 0.82 0.01 0.00 0.00

Epa 0.00 0.00 0.22 0.00 0.00 0.11 0.00 0.12 0.13 0.19 0.87 0.01 0.00 0.00

Panel F: CC on a discrete three-level points (0.95, 0.975, 0.99)

Uni 0.00 0.00 0.36 0.00 0.00 0.12 0.00 0.15 0.08 0.52 0.93 0.52 0.00 0.02

This table shows the spectral backtest results of the representative portfolio from January 1997 to February

2020. Each panel reports results for a particular test type and interval. Panels A and B show p-values for the

unconditional Z-test using a uniform, arcsin, and Epanechnikov kernel. Panel C shows p-values for the uncon-

ditional Z-test using a discrete uniform kernel. Panels D and E show p-values for the conditional Martingale

Difference test using a uniform, arcsin, and Epanechnikov kernel and the conditioning variable transformation

hðpÞ ¼ j2p� 1j4 with four lags. Panel F shows p-values for the conditional Z-test using a discrete uniform ker-

nel. HS and GARCH models have the same PIT values across confidence levels. FZ PIT values are estimated at

the 95% confidence level. Models with p-values below 0.05 are in bold.
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backtests in this section determines which models are incorrectly specified for VaR and ES,

the next section compares across models to evaluate the set of best forecasting models.

3.3 Comparative ES Backtests

Table 7 shows the results for comparative ES backtests using the FZ0 loss function. Patton,

Ziegel, and Chen (2019) show that FZ0 is the only FZ loss function that generates loss dif-

ferences that are homogeneous of degree zero, a property that has been shown in volatility

forecasting applications to lead to higher power in Diebold and Mariano (2002) tests. We

consider results at the 97.5% confidence level here and, since the results are qualitatively

similar, report 99% and 95% confidence levels in Section D of the Online Appendix. Panel

A in Table 7 reports the average FZ0 loss for each model with a star besides models in the

75% MCS. The FHS, SSTD, SGED, SGT, GPD, and Hill models have the lowest average

loss of �0.47 and are the only models that belong to the MCS. This is consistent with the

traditional backtesting results, where the same set of models fails to be rejected as correctly

specified in every backtest. The Normal, STD, GED, HillH, FZ1, and FZH models, on the

contrary, have average losses between �0.46 and �0.42 and do not belong to the MCS.

This is consistent with the traditional backtesting results, where these models are sometimes

rejected as correctly specified. HS and RM have relatively higher average losses of �0.27

and �0.37 and are not in the MCS which is consistent with their rejection for nearly every

traditional backtest.

Next, Panel B in Table 7 reports Diebold–Mariano test statistics on average FZ0 losses.

Along each row, a negative number indicates the row model outperforms the column

model. A t-stat greater than 1.96 in absolute value indicates the loss difference is statistical-

ly different from zero at the 95% confidence level. The HS row is positive and statistically

significant for each column model, indicating that HS performs worse than every other

model. The RM row shows the model underperforms every column model except for HS.

The SSTD row, on the contrary, is negative for every column model indicating that SSTD

has the lowest average loss. However, the loss difference is not statistically significant for

models in the MCS. Interestingly, the FZ1 and FZH columns are positive and statistically

significant for the models in the MCS, indicating they perform worse than this group of

skewed GARCH models. This finding contradicts the results in Patton, Ziegel, and Chen

(2019) who find that semiparametric FZ models outperform GARCH models. In their ana-

lysis, however, models are estimated once whereas we use a rolling window estimation pro-

cedure. Our results show that after accounting for time-varying parameters and changes to

the distribution of innovations, GARCH models have superior forecasts compared to semi-

parametric FZ models.17

Figure 1 plots selected Murphy diagrams at the 99% and 97.5% confidence levels, com-

paring pairwise FHS to HS, FZH to HS, and FHS to FZH across the entire class of consist-

ent loss functions. As a complement to the Murphy diagrams, Table 8 reports minimal

Westfall–Young (WY) p-values, formally testing for forecasting dominance across a grid of

thresholds. Figure 1a and d compare FHS to HS at the 99% and 97.5% confidence levels

17 Section D of the Online Appendix shows that skewed GARCH models also outperform FZ models

at the 99% and 95% confidence levels, though the loss differences are not statistically significant

at the 95% confidence level. Section E of the Online Appendix confirms that skewed GARCH mod-

els have lower losses than FZ models for the risk factor portfolios and liquidity horizon portfolios.
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and show that the loss difference is negative at nearly every threshold, indicating FHS out-

performs HS. The 95% confidence interval shows that the difference is nearly always statis-

tically different from zero. The WY p-values in Row 1 of Table 8 show that we can reject

the hypothesis of HS dominating FHS at 99%, 97.5%, and 95% confidence levels. The WY

p-values in Row 2 show that we cannot reject FHS dominating HS at any confidence level.

Figure 1 Murphy diagrams at the 97.5% confidence level. (a) FHS versus HS at a 99% level. (b) FZH ver-

sus HS at a 99% level. (c) FHS versus FZH at a 99% level. (d) FHS versus HS at a 97.5%. level. (e) FZH

versus HS at a 97.5% level. (f) FHS versus FZH at a 97.5% level. This figure shows Murphy diagrams of

the representative portfolio from January 1997 to February 2020 for the 99% and 97.5% confidence

levels. In each panel, the vertical axis is the difference in average loss between models, where a nega-

tive value indicates the first model outperforms the second model. The horizontal axis is the threshold

value, where each threshold corresponds to a different consistent loss function. Confidence intervals

at the 95% level are plotted in gray.

Table 8 Tests of forecast dominance

Hypothesis 99% confidence

level

97.5% confidence

level

95% confidence

level

HS weakly dominates FHS 0.002 0.000 0.000

FHS weakly dominates HS 0.940 0.702 0.808

HS weakly dominates FZH 0.020 0.004 0.004

FZH weakly dominates HS 0.982 0.912 0.406

FZH weakly dominates FHS 0.050 0.048 0.002

FHS weakly dominates FZH 0.688 0.904 0.800

This table shows the tests of forecast dominance of the representative portfolio from January 1997 to February

2020 for the 99%, 97.5%, and 95% confidence levels. Each row shows the minimal WY p-values for the hy-

pothesis of weak dominance. Models with p-values below 0.05 are in bold.
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Next, Figure 1b and e show that FZH outperforms HS. The WY p-values in Row 3 of

Table 8 show that we can reject the hypothesis that HS weakly dominates FZH, while Row

4 shows that we cannot reject that FZH weakly dominates HS.

Finally, Figure 1c and f plot the Murphy diagram comparing FHS to FZH at 99% and

97.5% confidence levels. The negative loss difference shows that FHS outperforms FZH

across different consistent loss functions. Rows 5 and 6 of Table 8 report WY p-values for

the hypothesis of weak dominance between FHS and FZH. Row 6 shows that we cannot re-

ject the hypothesis that FHS dominates FZH at 99%, 97.5%, and 95% confidence levels.

However, Row 5 shows we can reject the hypothesis that FZH dominates FHS at 97.5%

and 95% confidence levels only. The comparative backtest found FHS outperforms FZH

for the FZ0 loss function, while the Murphy diagram and WY p-values confirm that FHS

outperforms FZH across a large family of loss functions.

In summary, the comparative ES backtests show that the FHS, SSTD, SGED, SGT,

GPD, and Hill models consistently have the best performance across the 99%, 97.5%, and

95% confidence levels. The HS, RM, Normal, STD, GED, HillH, FZ1, and FZH models

have statistically higher losses compared to the best performing models. We also find that

the best performing GARCH models had lower average losses than the FZ models, and we

fail to reject the hypothesis that FHS weakly dominates FZH. The set of best performing

models is broadly consistent with the set of correctly specified models in the traditional

backtests. Considering all the results reported in this section, we conclude that skewed

GARCH models are likely correctly specified and perform the best in terms of forecasting

risk measures. The semiparametric FZ1 and FZH models are generally outperformed by

the skewed GARCH models. The symmetric Normal, STD, and GED models perform

worse than the previous models and are likely not correctly specified. The HS and RM

models, which are frequently used by banks, are nearly always rejected as being correctly

specified and are the worst-performing models in terms of forecasting the relevant risk

measures.

4. Regulatory Capital Requirements

Assuming that capital is costly and hence banks are interested in minimizing their capital

requirements, Basel 3 incentivizes banks to select models that produce low Stressed ES.18

However, at the same time, Basel 3 also penalizes models with too many VaR exceedances

through the backtesting multiplier which increases capital requirements and incentivizes

banks to use more conservative models. Given this trade-off, it’s not clear which model

minimizes capital for banks. Moreover, from a regulatory supervisor’s perspective, banks

using incorrectly specified models that underestimate risk is problematic during a financial

crisis, since the banks’ risk management models will fail at the same time which increases

systemic risk. Considering the backtesting results from Section 3, this section determines

whether Basel regulation is in fact incentivizing banks to choose models that are correctly

specified.

18 While lower capital requirements may be privately optimal for banks, higher capital requirements

may be socially beneficial in reducing the likelihood of systemic crisis. See Birn et al. (2020) for a

review on the costs and benefits of bank capital.
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We address the question about correctly incentivizing banks by carefully calculating the

capital requirements for a representative bank with the diverse portfolio of assets described

in Section 2.1. We do this for each model under the Basel 3 regulatory framework to deter-

mine which models minimize capital requirements. We then use the same data to calculate

requirements under Basel 2 and Basel 2.5 to determine whether the set of models that min-

imize capital change across the three regimes. Finally, we measure the volatility and the

peak-to-trough variation as the maximum difference of capital requirements in Basel 2, 2.5,

and 3 to determine whether this regulation is successful at increasing the stability of the

capital requirements.

We empirically determine the capital requirements of each model for the representative

bank portfolio from January 1997 to February 2020. We calculate capital requirements for

Basel 2, 2.5, and 3 by fixing the regime and closely following the regime’s capital calcula-

tions over the entire period. Consistent with backtesting, we use a rolling estimation win-

dow of 250 days for HS and RM and 2000 days for the dynamic GARCH and FZ models.

In each table, columns are bold if the models are rejected in the traditional ES or spectral

backtesting of Section 3. Previewing our results, we find that HS and FZH have the lowest

capital requirement for Basel 3. In fact, the results show that incorrectly specified models

generally have lower capital requirements than correctly specified ones and Basel 3, there-

fore, does not incentivize banks to use correctly specified models. Moreover, we find that

while average capital requirements nearly quadruple from Basel 2 to Basel 2.5, they

decreased significantly from Basel 2.5 to Basel 3 only for incorrectly specified models.

Finally, we show that capital stability generally increases with the regulatory changes.

However, the models that have the lowest volatility, the FZ1 and FZH models, are not

among the correctly specified models.

4.1 Basel 3 Capital Requirements

Table 9 shows the average capital requirements of each model calculated under the Basel 3

framework. We also provide a detailed breakdown of the intermediary calculations by risk

factor and liquidity horizon to verify that our findings are robust to various portfolio speci-

fications. Panel A of Table 9 reports the average Basel 3 capital requirement, backtest

multiplier, and IMCC. Row 1 demonstrates that correctly specified models have significant-

ly higher average Basel 3 capital than rejected models. HS has the lowest average Basel 3

capital of 17.21%, despite having the worst backtesting performance in Section 3. The

light-tailed RM and GARCH Normal models also have low average capital of 19.47% and

21.69%, despite having poor backtesting performance. The FZ1 and FZH models outper-

form these models during backtesting and also have low average capital of 17.42% and

19.96%. The FHS, SSTD, SGT, GPD, and Hill models generally have the highest average

capital requirements of 26.61–32.38%, despite failing to be rejected in any ES backtest and

having the lowest average FZ0 losses in Table 7. While FHS weakly dominates HS and

FZH across the set of consistent loss functions, using this model requires 1.78 times the

average daily capital. SSTD has the lowest average capital among correctly specified mod-

els, but using this model still requires 1.55 times the capital relative to HS and FZH.

The multiplier and IMCC in Panel A of Table 9 explain why correctly specified models

have higher average capital than rejected models. Despite poor backtesting performance,

HS has an average multiplier of 1.57. The average multiplier of correctly specified models
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ranges from 1.52 to 1.56. Since Basel 3 capital is equal to IMCC times the multiplier, we

see that differences in average Basel 3 capital across models are almost entirely attributed

to differences in IMCC. HS has the lowest IMCC of 10.96%, while FHS has nearly double

the IMCC at 20.04% due to its dynamic volatility and heavy tails. The difference between

HS and FHS is illustrated in Panels (d) and (e) of Figure 2, which shows that FHS has a

higher average capital and IMCC on every day after the 1998 Asian crisis. SSTD has the

lowest IMCC among correctly specified models at 17.20%, which is still substantially

higher than HS. The RM and Normal models have the highest multipliers at 1.65 and 1.63,

but much lower average capital requirements than SSTD due to their low IMCC. The FZ

models have both low average multipliers of 1.53 and low IMCC, resulting in low Basel 3

capital. Generally, the least costly model for banks is the one that minimizes IMCC, or

equivalently minimizes Stressed ES at the 97.5% confidence level. The HS, RM, Normal,

FZ1, and FZH models minimize Stressed ES, resulting in significantly lower Basel 3 average

capital requirements. However, these models are either rejected using traditional backtests

or provide inferior forecasts of risk measures.

Panel B of Table 9 shows the liquidity-adjusted Stressed ES of the representative bank

portfolio as well as by individual risk factors. From Equation (8), IMCC is calculated by

taking a weighted sum of the representative portfolio and risk factor portfolios’ liquidity-

adjusted Stressed ES. Row 1 of Panel B shows that for the representative portfolio, correctly

specified models have high liquidity-adjusted Stressed ES ranging from 14.96% to 18.98%.

Figure 2 Basel capital requirements. (a) HS Basel 2 and 2.5 capital. (b) FHS Basel 2 and 2.5 capital.

(c) FZH Basel 2 and 2.5 capital. (d) HS Basel 3 capital. (e) FHS Basel 3 capital. (f) FZH Basel 3 capital.

This figure shows the returns, negative risk measures, and capital requirements of the representative

portfolio from January 1997 to February 2020 for HS, FHS, and FZH. The top panels plot the daily

returns, negative 10-day VaR, Basel 2 capital requirement, 10-day Stressed VaR, and Basel 2.5 capital

requirement. The bottom panels plot the daily returns, negative 10-day ES, 10-day Stressed ES, IMCC,

and Basel 3 capital requirement.
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The rejected HS, RM, Normal, FZ1, and FZH models have the lowest liquidity-adjusted

Stressed ES, the same set of models that minimize IMCC and Basel 3 capital. Rows 2–6 of

Panel B show that HS has the lowest ES for the interest, equity, foreign exchange, and credit

risk factors, while the Normal model has the lowest ES for commodities. The FZH model

has the lowest ES for the representative portfolio of 9.59%, but it has moderate levels of ES

for the individual risk factors explaining why its IMCC is higher than HS. The correctly

specified models have high ES for every risk factor, verifying that our results are not sensi-

tive to risk factor weights. FHS has more than twice the ES of HS for equity and credit, the

two largest risk factors. Across risk factors, the models that minimize liquidity-adjusted

Stressed ES are rejected by backtests, while correctly specified models have the highest ES.

Panel C of Table 9 shows the Stressed ES of the representative bank portfolio for each li-

quidity horizon. The liquidity-adjusted Stressed ES of the representative portfolio is calcu-

lated as a function of these liquidity portfolios. The panel shows that the HS, RM, Normal,

FZ1, and FZH models minimize Stressed ES across liquidity horizons. Since differences in

Basel 3 capital are driven by Stressed ES, this explains why these models have the lowest

average Basel 3 capital requirements. The ES backtests in Section 3 are only for the repre-

sentative portfolio (LH 10). For this portfolio, correctly specified models have the highest

Stressed ES of 7.32% to 8.15%. We show in Section E of the Online Appendix that for the

LH 20–60 portfolios, skewed GARCH and FZ models are likely to be correctly specified.

The HS, RM, Normal, STD, GED, SGED models are rejected for the LH 20–60 portfolios,

explaining their lower Stressed ES. For the LH 20–60 portfolios, FZ1 and FZH are never

rejected and also have a low average Stressed ES. These results also show that every model

except STD is rejected for the LH 120 portfolio. However, the HS, FZ1, and FZH models

have the lowest Stressed ES for LH 120.

In Basel 3, capital requirements are minimized for models that consistently minimize

Stressed ES at the 97.5% confidence level across risk factors and liquidity horizons. HS,

RM, Normal, FZ1, and FZH consistently minimize Stressed ES across portfolios, resulting

in low Basel 3 capital requirements. The HS, RM, Normal, FZ1, and FZH models are mis-

specified since they are rejected in nearly every ES backtest, have the largest FZ0 losses, or

provide inferior forecasts of risk measures. The FHS, SSTD, SGT, GPD, and Hill models

are never rejected in the traditional backtests and minimize FZ0 losses. However, they have

high Stressed ES estimates, resulting in much higher average Basel 3 capital requirements.

Thus, the first result is that under Basel 3 there is little incentive for a capital requirement

minimizing bank to choose correctly specified models. In particular, given the level of the

Basel 3 multiplier, this tool that regulators can use to punish misspecified models has only a

marginal effect on average capital requirements and banks have little incentive to choose

conservative and correctly specified models.

4.2 Evolution of Basel Capital Requirements

Table 10 summarizes the average Basel 2, 2.5, and 3 capital requirements, risk measures,

and Basel backtesting results. Panel A of Table 10 shows the average 10-day VaR at the

99% confidence level and average capital requirements of the entire sample calculated

under the Basel 2 framework. Row 1 shows that the HS average 10-day VaR is 2.17%,

which is roughly 2.5 times the 10-day volatility (0:276
ffiffiffiffiffiffi
10
p

¼ 0:87) of the representative

portfolio in Table 3. All dynamic models have a lower 10-day VaR compared to HS, since
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dynamic volatility decreases risk levels faster after a shock. This phenomenon is illustrated

in Figure 2a and b, which plots HS and FHS 10-day VaR. After a shock like that following

the 2008 Subprime Mortgage crisis, the FHS model quickly decreases VaR levels, while HS

maintains high levels of VaR for the entire estimation window. The model with the lowest

VaR though is the Normal model. Row 2 shows that the Normal model also has the lowest

average Basel 2 capital requirement of 4.98%, despite the Basel backtest results in Panel D

showing that this model has the second highest average exceedances and multiplier of 4.48

and 3.26, respectively. In contrast to Basel 3 results, HS has the highest average Basel 2 re-

quirement of 7.12% due to its high 10-day VaR and capital multiplier of 3.15. The correct-

ly specified models have high average Basel 2 capital of 5.60–6.12%, despite having low

multipliers of 3.04–3.11. This shows that Basel 2 failed to incentivize banks to choose cor-

rectly specified models.

Next, Panel B of Table 10 reports the average 10-day Stressed VaR and Basel 2.5 capital

requirement. Stressed VaR is defined as the maximum historical 10-day VaR at the 99%

confidence level and the panel shows that the average Stressed VaR is significantly higher

than VaR. In contrast to nonstressed VaR, all of the GARCH models have higher Stressed

VaR than HS does, since the stressed measure never decreases. Put differently, the VaR-

minimizing benefit of dynamic volatility disappears for Stressed VaR. The top panels of

Figure 2 show that the stressed period for HS, FHS, and FZH is set during the Asian crisis,

the Dot-Com crisis, and the 2008 recession resulting in high values of Stressed VaR. FZ1

has the lowest Stressed VaR across all models at 5.78%. Row 2 shows that the FZ1 model

also has the lowest average Basel 2.5 capital, partially due to its low multiplier. HS has a

low Stressed VaR but a high multiplier resulting in moderate Basel 2.5 capital. The correct-

ly specified FHS, SSTD, SGT, GPD, and Hill models have a high Stressed VaR but a low

multiplier and as a result reasonable capital requirements. Consequently, the correctly

specified SSTD and SGT models require less average capital than HS. These results show

that Basel 2.5 has better incentives to use correctly specified models relative to Basel 2.

Finally, Panels A–C of Table 10 together allow us to compare capital calculated under

Basel 2, 2.5, or 3. We first note that models generally require more than four times the aver-

age capital under Basel 2.5 than under Basel 2. As illustrated in the top panels of Figure 2,

this increase in capital is driven by shocks during the 1998, 2001, and 2008 crises leading

to a large Stressed VaR. Since Stressed VaR never decreases, capital levels stay elevated

after the 2008 crisis across all models. The comparison of Basel 2.5 to Basel 3 is more

nuanced. For HS, there is a significant decrease in required capital from 27.34% under

Basel 2.5 to 17.21% under Basel 3, and Figure 2a and d illustrates that HS requires more

capital under Basel 2.5 on each day. The capital requirements under Basel 3 are also much

lower than under Basel 2.5 for the FZ and light-tailed RM and Normal models but remain

mostly unchanged from Basel 2.5 to Basel 3 for the skewed GARCH models.

So what drives these differences from Basel 2.5 to Basel 3? First of all, comparing HS

Stressed 10-day VaR at the 99% level in Panel B with Stressed 10-day ES at the 97.5% level

in Panel C shows that the two stressed risk measures are nearly identical. However, Table 9

shows that HS has substantially lower Stressed ES for the 40-, 60-, and 120-day liquidity-

horizon portfolios, also causing low liquidity-adjusted Stressed ES across several risk fac-

tors. The capital requirements under Basel 3 are also much lower than under Basel 2.5 for

the FZ and light-tailed RM and Normal models due to their relatively low Stressed ES esti-

mates for longer liquidity-horizon portfolios and low liquidity-adjusted Stressed ES.
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Interestingly, it appears that the requirement under Basel 3 to penalize low liquidity assets

(i.e., assets with long liquidity horizons), additionally in fact disincentivizes banks from

using the correctly specified skewed GARCH models due to their consistently high Stressed

ES across liquidity horizons. Instead, under Basel 3 banks are incentivized to use misspeci-

fied models that consistently minimize Stressed ES across liquidity horizons.

4.3 Basel Capital Variability

Table 11 reports several measures of capital variability across the Basel 2, 2.5, and 3

regimes. We measure the daily capital volatility to capture day-to-day fluctuations in cap-

ital and report volatility standardized by capital to compare across regimes as well. We also

measure the maximum annual differences in capital to capture peak-to-trough variation in

capital requirements. Panel A of Table 11 shows the capital volatility, which is suitable for

comparing across models holding the regime fixed. Row 1 shows that FZH has the lowest

Basel 2 volatility of 1.64% followed by FZ1 with 1.85%. The non-normal GARCH models

have Basel 2 volatility ranging from 2.16% for GPD to 2.38% for FHS. The RM and

Normal models have significantly higher volatility at 2.73% and 2.91%, but HS has the ab-

solute highest Basel 2 volatility with 6.57%. Row 2 shows that FZ1 and FZH have the low-

est Basel 2.5 volatility at 4.06% and 4.46%. Compared to this, HS has more than three

times the volatility of the FZ models and double the volatility of most GARCH models.

Figure 2a shows that the high HS volatility is caused by its short estimation window and

the Basel multiplier. Figure 2c, on the contrary, shows that FZH has stable estimates of 10-

day VaR and is generally unaffected by the Basel multiplier. Row 3 shows that HS has a

moderate Basel 3 volatility of 7.17% whereas FHS has the highest volatility at 8.85% under

this regulation. FZ1 and FZH continue to have the lowest Basel 3 volatility at 5.02% and

4.66%. These numbers are close to the Basel 2.5 volatility levels for the FZ models whereas

Basel 3 volatility is significantly higher than Basel 2.5 volatility for most of the GARCH

models. Seen across the regulatory regimes, the table shows that the FZ models have the

lowest capital volatility for Basel 2, 2.5, and 3, and banks seeking to minimize capital vola-

tility in Basel 3, in particular, since it may be costly to raise capital during times of high

volatility, should consider using the FZH model.

Figure 3 visualizes the trade-off between capital minimization and stability of capital

requirements by plotting the mean against the volatility of model capital. We color code the

rejected models in red and the correctly specified models in blue. For each regime, the bot-

tom models minimize mean capital and the left models minimize capital variability. Panel

(a) shows that HS in the top-right maximizes both mean and volatility of Basel 2 capital.

The GARCH models are clustered with the Normal model minimizing mean and the cor-

rectly specified models having high means. The FZ models minimize volatility with a mod-

erate mean capital. Panel (b) shows that HS maximizes Basel 2.5 volatility with a moderate

mean capital. The GARCH models are clustered with moderate mean and volatility of cap-

ital. FZ models minimize Basel 2.5 volatility and FZ1 has the lowest mean capital as evi-

denced by its position in the bottom left, and banks can minimize both the mean and

volatility of Basel 2.5 capital requirements by using the FZ1 model. Panel (c) shows that the

FZ models minimize Basel 3 volatility with low means as evidenced by their positions in the

bottom left. HS has the lowest mean capital, but has higher volatility than the FZ models.

GARCH models have both high mean and volatility as evidenced by their positions in the
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top right. Basel 3 disincentivizes banks to use these correctly specified models, since they

have the highest means and volatilities, despite never being rejected in any ES backtest and

having the lowest FZ losses. Banks are instead incentivized to use FZ models, which minim-

ize mean and variability of capital, but perform worse than GARCH models in the com-

parative backtests. Many banks may remain with HS, since the model minimizes mean

capital and is the simplest to implement. This may be problematic to regulators, since HS

has the worst ES backtest performance across all models and systematically underestimates

ES. However, since there is negligible punishment for misspecification and the Basel backt-

ests only VaR, banks have little incentive to move away from HS. Regulators may be able

to incentivize banks to move toward correctly specified models if they penalize misspecifi-

cation in VaR and ES.

Next, we compare stability across Basel regimes using volatility standardized by capital.

We use standardized volatility to capture models with either high volatility or low capital.

Panel B of Table 11 shows that standardized volatility significantly declines between Basel

2 and Basel 2.5 as a result of including Stressed VaR. This decline is most apparent for HS,

where standardized volatility decreases from 0.92 to 0.49. Rows 2 and 3 show that HS cap-

ital volatility further declines to 0.42 from Basel 2.5 to 3, demonstrating that Basel 3 indeed

Figure 3 Basel models mean-volatility plots. (a) Basel 2 capital requirements. (b) Basel 2.5 capital

requirements. (c) Basel 3 capital requirements. This figure shows mean and volatility plots of the rep-

resentative portfolio from January 1997 to February 2020 for Basel 2, 2.5, and 3. In each panel, the ver-

tical axis is the mean capital requirement and the horizontal axis is the volatility of capital

requirements. Models in the bottom left minimize mean and volatility of capital requirements, while

models at the top right maximize mean and volatility.
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induces more stability when using HS. However, nearly every other model experiences an

increase in capital volatility from Basel 2.5 to Basel 3. Figure 2d illustrates the stability of

HS under Basel 3 relative to Basel 2.5. Figure 2e and f show that for FHS and FZH, the in-

crease in Basel 3 volatility is largely driven by variation in
ESF;C

ESR;C
, the ratio that Basel 3 uses to

adjust the reduced portfolio to the current. This point-in-time adjustment ratio causes day-

to-day capital changes in dynamic models as evidenced by the erratic IMCC changes be-

tween 1999 and 2008, but is set to 1 after the reduced set of portfolios becomes the full set

in 2008. The increase in standardized volatility for FZ models also occurs due to their sig-

nificant decrease in capital requirements from Basel 2.5 to Basel 3. In general, most of the

models are more stable in Basel 3 than the previous regimes.

Finally, Panel C of Table 11 shows the maximum annual difference in percentage terms.

The max difference measures the largest annual peak-to-trough variation in capital require-

ments, which occurs during the 2008 financial crisis for most models. Peak-to-trough vari-

ation in minimum capital requirements is a common measure of regulatory procyclicality

(Gordy and Howells 2006). Rows 1 and 2 show that the maximum difference increases

from Basel 2 to Basel 2.5 due to the introduction of Stressed VaR. The top panels in

Figure 2 illustrate that the new stressed period in 2008 combined with the multiplier causes

a large jump in capital requirements. This is particularly apparent for HS in Panel (a),

where the peak-to-trough variation in Basel 2.5 capital requirements is 58%. While Basel

2.5 was implemented after 2008, the results show that staying with Basel 2.5 can cause a

large peak-to-trough variation in capital requirements if a future shock moves the stressed

period, although this risk is somewhat mitigated by the higher Basel 2.5 capital require-

ments. Rows 2 and 3 show that the maximum difference substantially decreases from Basel

2.5 to Basel 3 for most models. This decrease is largest for HS, where the peak-to-trough

variation in Basel 3 is only 15.71% as shown in Figure 2d. FZH has the lowest maximum

difference across all models for every Basel regime, making the model suitable for banks

seeking to minimize large jumps in capital requirements.19

In summary, our results show that capital requirements became significantly more stable

from Basel 2 to Basel 2.5 due to the introduction of Stressed VaR. Basel 3 will further in-

crease the stability of capital requirements by decreasing nonstandardized and standardized

volatility across most models and could also reduce the procyclicality of capital require-

ments as evidenced by the lower peak-to-trough variation across most models under this re-

gime compared to previous regimes. Procyclicality is particularly concerning to regulators,

since it may amplify severe shocks and increase systemic risk. However, the results also

show that the models with the most stable capital requirements across regulatory regimes

and across variability metrics are generally not the correctly specified models. In particular,

FZ models most often result in the least variability although they provide inferior forecasts

of the risk measures. The exception to this is when considering the standardized volatility

of the Basel 3 capital which is the lowest for the GPD and Hill models. Thus, while banks

can minimize both the mean and volatility of Basel 3 capital by using the FZH model, regu-

lators could attempt to incentivize the use of correctly specified models under this regime

by penalizing models with high standardized volatility.

19 The FZ1 model had a large shock during the dot-com crisis resulting in high one-day Basel 3 cap-

ital requirements.

92 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/19/1/53/6188440 by O

xford U
niversity Press U

SA user on 31 August 2021



5. Conclusion

In 2019, the BCBS finalized the Basel 3 regulatory regime, which changes the regulatory

measure of market risk from VaR at the 99% confidence level to ES at the 97.5% confi-

dence level and adds new complex calculations based on liquidity horizons and risk factors

resulting in the most complex market risk framework to date. As a result, banks are eager

to know which models minimize these new capital requirements. Additionally, regulatory

supervisors are eager to know if the models incentivized by the new regulations are correct-

ly specified. Finally, regulators are also interested in whether Basel 3 increases the stability

and reduces the procyclicality of capital requirements. This article answers these questions

using cutting-edge ES backtests by carefully calculating regulatory capital under the new

Basel 3 framework for realistic portfolios banks may hold.

Our backtesting results show that HS, RM, and symmetric GARCH models are misspeci-

fied and systematically underestimate VaR and ES. In particular, HS is rejected by every trad-

itional backtest and has the worst comparative backtest results. A new class of FZ models due

to Patton, Ziegel, and Chen (2019) perform much better, but are rejected by conditional spec-

tral backtests and underperform the class of skewed GARCH models traditionally used in em-

pirical finance in comparative backtests. GARCH FHS, Skewed Student’s t, Skewed

Generalized t, GPD, and EVT based Hill models are not rejected in any traditional ES backt-

est. These skewed GARCH models also have the best performance for comparative backtests,

often belonging to the MCS and weakly dominating the class of FZ models.

Our regulatory capital results demonstrate that Basel 3 incentivizes banks to choose

models that minimize Stressed ES at the 97.5% level, since there is nearly no penalty for

using misspecified models. As a result, HS is the model that minimizes capital requirements

for Basel 3 despite failing every backtest. The Hybrid FZ model requires the second lowest

regulatory capital and leads to the most stable capital requirements whereas correctly speci-

fied GARCH models require the highest regulatory capital and have the highest capital re-

quirement variability using most metrics. Our results thus show that, although the

proposed regulation under Basel 3 seems to incentivize banks to use models that have more

stable capital requirements through time, the models that minimize average capital require-

ments appear misspecified and produce inferior forecasts of the regulatory risk measures.

Our findings have important implications for the current regulation. In particular, we

show that Basel 3 regulation strongly disincentivizes banks from using correctly specified

models. Although the same holds for previous regulatory regimes, the changes suggested in

Basel 3 makes the relative differences even larger. We identify two possible reasons for this.

First of all, it appears that the requirement under Basel 3 to penalize low liquidity assets,

that is, assets with long liquidity horizons, additionally in fact disincentivizes banks from

using the correctly specified skewed GARCH models due to their consistently high Stressed

ES across liquidity horizons. Second, given the low level of the Basel 3 multiplier banks

have little incentive to choose conservative and correctly specified models. Thus, if regula-

tor’s objective is to also incentivize the use of correctly specified models they would have to

reconsider the effect of these changes.

Supplementary Data

Supplementary data are available at Journal of Financial Econometrics online.
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The potential benefits from international diversification have been recognized in the aca-

demic finance literature since the seminal work by Grubel (1968) and Levy and Sarnat

(1970). Many empirical studies, however, find little, if any, statistically significant diversifi-

cation benefits from investments across developed countries in more recent times, unless

carried out using specific investment styles, for example, by leveraging size, value, and mo-

mentum anomalies.1 A possible explanation for these somewhat discouraging results (seen

from the perspective of an investor) is the continuing integration of international financial

markets, resulting in higher correlation among international assets and, thereby, reducing

the potential for harvesting diversification benefits, see, for example, Longin and Solnik

(1995), Bekaert et al. (2009), and Christoffersen et al. (2012).

Most of the aforementioned studies, however, neglect an important component of inter-

national investments: The currency exposure implicit in the international equity portfolio

holdings. In other words, international investments in a given foreign country are exposed

to exchange rate movements, and investors need to decide whether, and how, to hedge this

additional source of risk. In practice, investment professionals often choose to hedge a

certain fraction of their currency exposure, popular choices being the half hedge and the

full hedge. Some studies have analyzed hedging strategies that go beyond simple rule-of-

thumb guides. In particular, Glen and Jorion (1993), de Roon et al. (2003), Campbell et al.

(2010), Schmittmann (2010), Kroencke et al. (2014), and Opie and Dark (2015) analyze

diversification benefits from optimal hedging strategies based on the theory originally pro-

posed by Anderson and Danthine (1981), albeit with mixed empirical results.2 Whereas

they all reject leaving international investments unhedged, the first two studies find no

significant evidence that a static, optimal, volatility-minimizing hedging strategy provides

diversification benefits beyond what can be achieved by fully hedging international equity

investments. However, when implementing a pseudodynamic hedging strategy according to

which the optimal currency exposure to a given foreign country depends on the level of its

interest rates relative to those in the domestic country, thus mimicking some form of carry

trade, they find significant gains over full hedging. Campbell et al. (2010) find that a static

volatility-minimizing hedging strategy significantly reduces the risk of international equity

investments, compared to the gains from full hedging, and a similar pseudodynamic hedg-

ing strategy provides additional diversification benefits. However, the latter are economic-

ally modest, judging by their Sharpe ratios (SRs), and often statistically insignificant.

Furthermore, their subsample analysis suggests that optimal currency exposures are quite

sensitive to the specific sample under consideration. Similar results are obtained by

Schmittmann (2010) and Opie and Dark (2015) from different countries’ perspectives and

across various horizons, corroborating the conclusions. Finally, Kroencke et al. (2014) take

a deeper look into the diversification benefits from using traditional currency investment

styles such as carry trade, momentum, and value strategies in said framework, thus

promoting the pseudodynamic aspect of the optimal hedging strategies. They find signifi-

cant diversification benefits, particularly when including foreign exchange rates for coun-

tries outside of the G10. However, the diversification benefits from their two-step

1 This includes the mean–variance analyses in, among others, Britten-Jones (1999), Errunza et al.

(1999), Eun et al. (2008), Eun et al. (2010), and Fama and French (2012).

2 Optimal in this setting is to be understood in a mean–variance sense, that is, as the solution to a

quadratic optimization problem for an investor seeking to maximize her risk-return tradeoff.
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procedure stem from the speculative asset allocation in the second step, not from the

hedging itself, for which their results resemble those of Campbell et al. (2010). Thus, they

reflect the profitability of the three currency investment styles over the last 30–40 years.

In this article, we reconsider the first step, that is, we focus on enhancing the diversifica-

tion benefits from volatility-minimizing hedging strategies, conditionally on a given

portfolio, not on speculative currency investments.3 To set the stage, we highlight two im-

portant aspects of previous approaches to currency hedging that demand further attention.

First, all aforementioned studies of optimal currency exposure rely on the theoretical results

from Anderson and Danthine (1981), who assume that asset prices are observed at the

same frequency as that at which the investor rebalances her portfolio, that is, the frequency

at which hedging decisions are made. This implies, for example, that if an investor rebalan-

ces her portfolio at a monthly frequency, then movements in asset prices occur at the

monthly frequency, as well. Hence, this approach neglects all information from asset price

movements occurring at higher frequencies, for example, daily or intradaily. Second, the

hedging strategies are often studied in their “static,” or unconditional, form, suggesting

that optimal, volatility-minimizing currency exposures should be constant, often over a

time span of 30–40 years, and estimated using full sample information. When such hedging

strategies are given a time-varying flavor, it is by conditioning on variables related to cur-

rency investment styles, such as past interest rate differentials. The latter approach is

labeled “pseudodynamic” for two reasons: (i) All intertemporal movements in the optimal

currency exposures are determined by slowly varying conditioning variables. Hence, no

traditional time series modeling (ARMA, GARCH, or stochastic volatility) is actually per-

formed. (ii) The implementation of the hedging strategies is often in-sample, that is, the

functional link to the interest differentials is estimated using full sample information, then

used for conditional hedging decisions.4 Hence, neither the static nor the pseudodynamic

implementation of the optimal hedging strategies is designed for real-time investment deci-

sions, and they provide inadequate descriptions of the dynamic properties of optimal cur-

rency exposures. The main exception to these caveats is Opie and Dark (2015), who

perform an out-of-sample analysis in which they compare rule-of-thumb hedges to a static

optimal hedging strategy and a dynamic strategy based on a multivariate VAR-GARCH

model, both implemented with rolling windows to estimate the currency exposures. The

models are based on daily data, and rebalancing occurs if the changes in exposure generate

increases in utility. Similarly to Campbell et al. (2010), they show that the two optimal

strategies produce the lowest portfolio volatility, but also display statistically indistinguish-

able performance. That is, they find no additional improvements from actual dynamic

3 A related body of work considers optimal hedging of spot exchange rate risk using equivalent cur-

rency futures contracts in conditional frameworks resemblant of that developed by Anderson and

Danthine (1981), see, for example, Baillie and Bollerslev (1989). However, this problem is distinct

from the present setting of strategic utilization of currency exposures to improve the performance

of an existing portfolio.

4 Note that the implementation of the two-step optimal hedging strategies using currency investment

styles in Kroencke et al. (2014) does not suffer from the caveat in (ii), as the conditioning variables

for the investment styles are contemporaneously available when the investor rebalances her port-

folio. However, the caveat in (i) still describes their analysis. Similar comments apply to the robust-

ness check in Campbell et al. (2010, Section 6).
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modeling. However, despite addressing the second caveat, their framework, as well as ana-

lysis, does not explicitly treat the issue of sampling versus rebalancing frequency, but rather

implicitly via a utility function.

This article directly addresses both caveats by introducing a new economic model for

discrete-time currency hedging that not only allows the assets of interest—the portfolio and

foreign currencies—to exhibit within-period movements, but actively utilizes additional

“infill” information to construct accurate measures of optimal, volatility-minimizing, cur-

rency exposures. In particular, the latter are shown to be the negative realized regression

coefficients from a one-period conditional expectation of the intraperiod quadratic covari-

ation (QC) matrix for portfolio and currency returns, labeled the realized currency betas.

The model, hence, facilitates dynamic hedging strategies, depending exclusively on the dy-

namic evolution of the ex post QC matrix. This has the strong theoretical implication that

interest rate differentials have no asymptotic impact on the optimal currency demands for a

given international portfolio, in stark contrast with existing hedging theory, for example,

Anderson and Danthine (1981), Glen and Jorion (1993), and Campbell et al. (2010).5

Moreover, as the proposed strategies do not rely on information about local trends in cur-

rencies in their construction, they are notably different from traditional currency invest-

ment styles, such as carry, momentum, and value trading. From a theoretical perspective,

the development of the realized currency beta hedging framework involves establishing new

results for optimal currency exposures based on the notion of QC measures and infill

asymptotic limits. From a practical perspective, the theory suggests that an investor should

sample as frequently as possible within fixed time intervals between portfolio rebalances to

construct accurate estimates the QC matrix and model its dynamics. Hence, this article pro-

poses to implement the new hedging strategies using modern, yet simple, nonparametric

techniques to accurately measure and dynamically model historical QC matrices, imposing

only few parametric restrictions on the underlying processes.

The new dynamic hedging strategies are analyzed in an extensive empirical exercise,

covering different international equity portfolios, as well as a balanced fixed income–equity

portfolio, and different rebalancing horizons, sampling frequencies, and currency invest-

ment universes (sets of foreign currencies available for hedging purposes). This produces

several new and striking results that may be summarized as follows: (i) The optimal cur-

rency exposures display substantial time-variation, which is tied to important economic

events such as the 2008–2009 global financial crisis, the European sovereign debt crisis,

and the “bloody Christmas” of 2018 global stock sell-off. The Swiss Franc and Japanese

Yen are, on average, the most important hedging currencies, and the Canadian Dollar and

Euro the main funding currencies. (ii) The proposed dynamic hedging strategies produce

statistically significant, as well as economically substantial, volatility reductions for all

baseline portfolios, compared to fully hedging currency exposure, as well as to existing,

static and pseudodynamic, approaches to optimal hedging. (iii) These volatility reductions

come without sacrificing returns, especially when implemented using intradaily data to esti-

mate the QC between assets, thereby delivering SRs that are 61% larger than key bench-

marks. (iv) The estimated economic gains to the new hedging strategies are equally

5 Even the dynamic VAR-GARCH implementation of currency hedging strategies in Opie and Dark

(2015) depends implicitly on interests rate differentials via the conditional mean specification for

currency excess returns.
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substantial, being 120–465 annual basis points (BP) after transaction costs over full hedg-

ing—depending on baseline portfolio and investor risk-aversion—and 120–520 annual BP

over existing hedging procedures. (v) The quality of the input QC measure seems to be

more important for designing profitable realized currency beta hedging strategies than the

dynamic model specification or an expansion of the set of hedging currencies, with the for-

mer being the second most important feature. (vi) The currency overlay behind the dynamic

realized currency beta investment strategy is negatively correlated with the FX carry trade,

and only modestly correlated with momentum and value investments. Interestingly, the

empirical analysis strongly suggests that the unwinding of carry trades, at least partially,

fund the strong performance of the proposed dynamic hedging strategy during the global

financial crisis of 2008–2009.

All of the findings (i)–(vi) are new to the literature on global currency hedging. In par-

ticular, the empirical hedging results go well beyond those in existing studies, such as Glen

and Jorion (1993), Campbell et al. (2010), and Opie and Dark (2015), by not only showing

how dynamic hedging strategies can be designed to obtain better volatility and risk-return

trade-offs than full hedging and static optimal procedures, but also by estimating the

economic gains from such strategies to a risk-averse investor, documenting important

time-variation in optimal currency exposures, showing how this links to key economic

events, and by providing results that speak to the relative importance of currency universe,

dynamic model, and sampling frequency. Moreover, this article is the first to leverage intra-

daily data to construct currency hedging strategies, and this feature is paramount for

designing procedures that deliver significant volatility reductions and superior economic

performance.

The finding that dynamic hedging strategies based on intradaily rather than daily data

improves portfolio performance is consistent with Fleming, Kirby, and Ostdiek (2001,

2003), who study dynamic asset allocation between S&P 500, Treasury bond, and gold

futures.6 However, in addition to the present analysis being one of hedging rather than asset

allocation, the elicitation of gains from intradaily data in the international investments and

currency trading case is more challenging than in their single-country analysis, due to assets

being traded on different exchanges with only partially overlapping trading hours. Our

results demonstrating that dynamic rather than static modeling of exchange rate covarian-

ces leads to economic gains for a risk-averse investor are also consistent with Della Corte

et al. (2009), who analyze asset allocation between fixed income and currencies by applying

different univariate dynamic models to monthly data. In contrast with these studies, the

problem of currency hedging can be viewed as a constrained, or conditional, asset alloca-

tion exercise in which currency exposures are selected for a given baseline portfolio, unlike

their unconstrained approaches. Hence, it mirrors the problem faced by many institutional

6 It is also consistent with Andersen et al. (2003), who consider VaR estimation using 30-minute

returns on two currencies, and with Chiriac and Voev (2011), and Varneskov and Voev (2013), who

carry out mean–variance analyses using intradaily data on DJIA stocks. However, none of these

studies considers the interaction between equity investments and currency exposures, nor do they

use intradaily data to design currency hedging strategies. Finally, it is consistent with

Christoffersen and Diebold (2000), who show that volatility forecastability is important for risk man-

agement, see also Andersen et al. (2013) for a comprehensive review.
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investors where one investment team takes a strategy, or portfolio, of another as given, and

carries out hedging to improve its performance.

Even though individual currencies have traditionally been viewed as poor investment

vehicles with low return and high volatility, there has been a recent surge of academic

papers in a separate strand of the literature on exchange rate modeling, showing that sys-

tematic application of traditional currency trading, in particular carry trade, momentum,

and value investments, may be highly profitable, even on a risk-adjusted basis, see, for

example, the recent contributions by Lustig and Verdelhan (2007), Brunnermeier et al.

(2009), Burnside et al. (2011), Lustig et al. (2011), Menkhoff et al. (2012a, 2012b),

Moskowitz et al. (2012), Asness et al. (2013), and many references therein. The dynamic

hedging strategies proposed in this article similarly constitute systematic trading oppor-

tunities in currencies. However, they are designed with the specific purpose of improving

the performance of an already existing baseline portfolio. Moreover, as the realized cur-

rency betas are asymptotically invariant to changes in interest rate differentials and only

use information about the covariance between foreign exchange rate and portfolio

returns in their construction, that is, no information about local trends in the former,

they are notably different from traditional investment styles. In fact, their favorable cor-

relation properties, noted in (vi), suggest not only that the proposed dynamic strategies

may provide a hedge for the carry trade, but also that there may be intriguing opportuni-

ties to combine the four different methods in designing tactical foreign currency ex-

change rate trading.

The outline of the article is as follows. Section 1 introduces the new economic model

and the assumptions, then derives the theoretical foundation for the proposed dynamic cur-

rency hedging strategies. Section 2 discusses the nonparametric implementation procedure.

Section 3 introduces the data and provides empirical evidence of time variation in the opti-

mal currency exposures. The risk-return performance and economic benefits from imple-

menting different hedging strategies are examined in Section 4. Section 5 relates the returns

to the dynamic hedging strategies to those from traditional currency investment styles, and

Section 6 concludes. The Online Appendix provides additional theory, proofs of the theor-

etical results, various robustness checks, and implementation details.

1 The Dynamic Modeling Framework

This section introduces a model for discrete-time hedging based on continuous-time

within-period movements in the underlying portfolio and foreign exchange

rate returns. The model is intended to capture the decision problem of an investor who

rebalances, or rehedges, her portfolio in fixed time intervals, but observes both port-

folio and exchange rate movements within each interval. Optimal currency exposures

are established using infill asymptotic theory for a general class of continuous-time

price processes. The discrete-time framework follows along the lines of Anderson and

Danthine (1981) and Campbell et al. (2010). However, as shown below, allowing for

the continuous-time within-period movements in the processes of interest not only gen-

eralizes the framework considerably—it also simplifies the optimal, volatility-minimiz-

ing, hedging decision.
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1.1 Discrete-Time Decision-Making

Suppose that at each discrete point in time t ¼ 1; 2; . . . ;T, an investor holds a position wc;t

in country c’s equities, c ¼ 0; . . . ;C, from time t until tþ1, when the holding pays a gross

continuously compounded return of Rc;tþ1.7 For simplicity, let c¼0 index the home coun-

try, which is assumed to be the United States, and let Sc;tþ1 be the corresponding time tþ 1

spot exchange rate quoted in USD per foreign currency unit. In this setting, the U.S. investor

earns an unhedged return Ru
c;tþ1 ¼ Rc;tþ1Sc;tþ1=Sc;t on her country c investment. To hedge

the latter against currency risk, the investor buys a holding of the one-period forward

exchange rate Fc;t, equivalently measured in USD per foreign currency unit, at time t in

country c. Let hc;t be the dollar value of this holding per USD invested in the equity port-

folio. Thus, the investor gets to exchange hc;t=Sc;t units of Rc;tþ1wc;t=Sc;t back into USD at

the exchange rate Fc;t, and the remaining ðRc;tþ1wc;t=Sc;t � hc;t=Sc;tÞ units of foreign cur-

rency at the spot exchange rate Sc;tþ1. This suggests writing the hedged portfolio return as

Rh
tþ1 ¼

XC

c¼0

wc;tR
u
c;tþ1 þ

XC

c¼0

hc;t
Fc;t

Sc;t
�
XC

c¼0

hc;t
Sc;tþ1

Sc;t
: (1)

Notice that the choice of domestic hedge ratio, h0;t, is arbitrary, since S0;t ¼ F0;t ¼ 1, for all

t. Hence, for ease of exposition, the hedge ratios are normalized to sum up to one, implying

that

XC

c¼0

wc;t ¼ 1; h0;t ¼ 1�
XC

c¼1

hc;t; (2)

for all t. Maintaining an assumption of absence of arbitrage throughout, it follows by cov-

ered interest rate parity (CIP) that Fc;t=Sc;t ¼ ð1þ I0;tÞ=ð1þ Ic;tÞ, where Ic;t denotes the

nominal short-term risk-free interest rate. This identity may be inserted in Equation (1).

The form of the portfolio return in Equation (1) also allows for speculative positions in

exchange rates if, for example, the currency demand hc;t is driven by, for example, a model

for local trends in Sc;t, regardless of its correlation with the portfolio return. Hence, to

avoid confusion going forward, the label “hedging” in this article signifies that currency

demands are determined with the explicit objective of reducing the risk of the portfolio

return, thus seeking currencies with favorable correlation properties. In other words,

currency hedgers and speculators are distinguished according to whether they emphasize

correlation properties or local trends, respectively, when selecting foreign exchange rate

exposure.

1.2 Intraperiod Dynamics

Suppose that the processes of interest—equities, currencies, and bonds—are defined on a

filtered probability space, ðX;F ; ðF t;sÞ;PÞ, where s 2 ½t; t þ 1� is the within-period time

indicator. In the absence of arbitrage, prices are assumed to follow semimartingales, for

7 The exposition is laid out for equities. This may without loss of generality, however, be changed to

other assets held in foreign countries, such as corporate bonds, commodities, derivatives, etc., as

long as the assumptions on the assets, as outlined below, are satisfied. A balanced bond–equity

portfolio is examined in the empirical analysis.
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example, Back (1991). Hence, denote by Pc;s the price of the equity holdings in country c,

measured in local currency, and Bc;s the price of a country c-denominated riskless bond.

Then, for c ¼ 0; . . . ;C, the system of equity, currency, and bond prices obeys

dPc;s=Pc;s ¼ lc;sdsþ rc;sdWc;s; (3)

dSc;s=Sc;s ¼ ac;sdsþ uc;sdYc;s; (4)

dBc;s=Bc;s ¼ kc;sds; (5)

in which ðlc;s; ac;sÞ and ðrc;s;uc;sÞ capture the within-period drift and stochastic volatility of

equity and currency returns, Wc;s and Yc;s are standard Brownian motions adapted to

ðF t;sÞ, and kc;s models the instantaneous return from holding a short-term riskless bond.8

Moreover, for c 6¼ k, we define the QCs d½Wc;Wk�s ¼ rc;k;sds and d½Yc;Yk�s ¼ uc;k;sds.

Finally, let d½Wc;Yk�s ¼ wc;k;sds for all c, k. The theoretical analysis, then, necessitates add-

itional structure on the system:

Assumption 1. For all c; k 2 f0; . . . ;Cg, the components of (3)–(5) satisfy:

a. lc;s; ac;s, and kc;s are F t;s-predictable and locally bounded;

b. rc;s and uc;s are F t;s-adapted, locally bounded, càdlàg, and strictly greater than zero;

c. rc;k;s; uc;k;s, and wc;k;s are F t;s-adapted, locally bounded, and càdlàg.

The present setting generalizes the previously developed framework for deriving optimal

currency exposure in Anderson and Danthine (1981), Glen and Jorion (1993), de Roon

et al. (2003), and Campbell et al. (2010), by allowing for stochastic drift and volatility, as

well as intraperiod movements in equites and currencies. The latter are assumed to belong

to a general class of continuous Brownian semimartingales, which, again, is commonly

used in the literature on high-frequency volatility and covariance estimation, since it nests

many continuous-time models in financial economics.9 For example, the class accommo-

dates the widely documented presence of leverage effects, that is, nonzero correlation be-

tween innovations in the price process and the stochastic volatility process. The modeling

system implies that in a given time interval, ½t; t þ 1�, between the rebalancing times of the

portfolio of equities, currencies, and bonds, asset prices are allowed to evolve according to

intraperiod trajectories, which will be important for determining the investor’s optimal,

volatility-minimizing, currency position.

Remark 1. While it is convenient to work with locally riskless bonds, it is important to

note that the analytical results below are not contingent on a diffusive component being

absent in Equation (5). All our results are asymptotically invariant to replacing the latter

with dBc;s=Bc;s ¼ kc;sdsþ 1c;s;�dZc;s, where dZc;s is a standard Brownian motion, which

may have nontrivial QC with dWk;s and dYk;s, and 1c;s;� ¼ 1c;s � ðdsÞ� captures stochastic

volatility, with � > 0 and 1c;s satisfying conditions similar to Assumption 1(b). This models

8 The time t subscript is dropped for notational simplicity when describing the intraperiod price sys-

tem (3)–(5), since the representation is valid for all intervals, with s 2 ½t ; t þ 1�; t ¼ 1; . . . ; T .

9 See, for example, Andersen and Benzoni (2009) and Andersen et al. (2006, 2013) for reviews.
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the volatilities of short-term bonds as an order of magnitude smaller than the corresponding

volatilities for equity and currency prices. For �!1, Equation (5) is recovered.

Remark 2. The vector price system (3)–(5) may be extended to include jumps. This only

leads to minor changes in the interpretation of the results. The role of jumps is discussed

in Section A of the Online Appendix, where the theoretical results, provided below, are also

extended.

Before deriving the optimal currency exposures, it is important to characterize the path of

the hedged portfolio return at each time s 2 ½t; t þ 1�. Hence, with Vs denoting the value of

the hedged portfolio at time s, the evolution of its instantaneous return may be described

using Equations (3)–(5),

dVs

Vs
¼
XC

c¼0

wc;t
dðPc;sSc;sÞ

Pc;sSc;s
þ
XC

c¼0

hc;t
dðB0;s=Bc;sÞ

B0;s=Bc;s
�
XC

c¼0

hc;t
dSc;s

Sc;s
: (6)

As in Campbell et al. (2010), it simplifies the problem to work in logarithms and use matrix

notation. Hence, let rh
tþ1 ¼ lnðRh

tþ1Þ and xc;s ¼ lnðXc;sÞ for X 2 fP; S;Vg. Similarly, let

wt ¼ ðw0;t; . . . ;wC;tÞ0 be the ðCþ 1Þ � 1 vector of portfolio weights, Ht ¼ ðh0;t; . . . ; hC;tÞ0

the corresponding ðCþ 1Þ-dimensional vector of currency hedging positions, xs ¼
ðx0;s; . . . ;xC;sÞ0 for x 2 fp; s; kg, and k0;s ¼ ik0;s, with i a ðCþ 1Þ � 1 vector of ones.

Furthermore, to explicitly capture the fact that an investor can alter her currency exposure

by lending and borrowing (going long or short in bonds or forward contracts), define

bt � ðb0;t; . . . ; bC;tÞ0 ¼ wt �Ht as the net exposures to the foreign currencies. For example,

bc;t ¼ 0 corresponds to having a fully hedged position in country c’s equities, and bc;t ¼ wc;t

to leaving the exposure completely unhedged. In general, bc;t > 0 implies that the investor

demands exposure to currency c and, equivalently, she wants to be underexposed if

bc;t < 0. Note that Equation (2) implies b0ti ¼ 0, that is, the dynamic currency hedging

portfolio is a zero investment, meaning that all long positions in currencies are financed by

shorting bonds in funding currencies, similarly as in traditional currency investment styles.

Finally, a regularity condition is imposed on the elements of the vectors wt and Ht to sim-

plify the further theoretical analysis.

Assumption 2. For all t ¼ 1; . . . ;T; supc¼0;...;C jwc;tj þ supc¼0;...;C jhc;tj < 1.

Assumption 2 innocuously states that both the equity portfolio weight in and currency ex-

posure to country c, c ¼ 0; . . . ;C, must be finite.10 The following proposition provides a

representation result for the within-period currency hedged log-returns, dvs.
11

10 Strictly speaking, the condition supc¼0;...;C jhc;t j < 1 should be shown endogenously in the dy-

namic model, since hc;t will depend on the components of the intraperiod price system (3)–(5).

However, by assuming it from the outset, rather than showing it endogenously, the proofs of

Propositions 1–4 may be shortened considerably, without loss of intuition.

11 We will be using the nomenclature opðdsÞ to describe higher-order terms of the form

ðdsÞ2; ds� dWc;s; ds� dYc;s, etc., which have no asymptotic impact in the further analysis

below.
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Proposition 1. Suppose the representation (6) and Assumptions 1 and 2 hold. Then

dvs ¼ w0tðdps þ k0;sds� ksdsÞ þ b0tðdss � k0;sdsþ ksdsÞ þ Rh
s dsþ opðdsÞ;

where Rh
s is F s-adapted, locally bounded, and càdlàg.

Proposition 1, similarly to the representation in Campbell et al. (2010, Equation (1)), pro-

vides a decomposition of the hedged log-return into three components; the first is the in-

stantaneous excess return on a fully hedged portfolio; the second term represents the

instantaneous excess return on currencies, which depends on the selected exposure, bt; and

the last term is a Jensen’s inequality correction. However, unlike in the corresponding

framework in Anderson and Danthine (1981) and Campbell et al. (2010), the instantaneous

log-return on the hedged portfolio is allowed to evolve stochastically in the interval

s 2 ½t; t þ 1�, implying that the one-period log-return may be written

rh
tþ1 ¼

ðtþ1

t

dvs; t ¼ 1; . . . ;T; (7)

thus formally providing a link between their framework and ours. Equation (7) suggests

that the one-period log-return on a hedged portfolio may be interpreted as the sum of

returns at a higher frequency. For an investor with a monthly investment horizon, this

could, for example, be a sum of daily log-returns.

1.3 Optimal Dynamic Currency Exposure

The optimal dynamic selection of currency exposure requires the choice of an appropriate

objective function. Usually, in portfolio selection problems, this involves choosing the port-

folio weights to minimize portfolio variance subject to certain constraints. Similarly to the

one-period log-return Equation (7), which is measured by cumulating returns at higher fre-

quency, a measure of its variance must also reflect the stochastic intraperiod movements in

dvs. In this setting, quadratic variation (QV) offers such a variability measure, see, for ex-

ample, Andersen et al. (2010). Formally, suppose the intraperiod hedged log-return dvs is

observed on a discrete partitioning si of the time interval, t ¼ s0 < s1 < . . . < sn ¼ t þ 1.

The QV of rh
tþ1 is, then, defined as

½dvs�tþ1 � plimn!1
Xn

i¼1

ðvsi
� vsi�1

Þ2 ¼ lim
h!0

ðtþ1

t

E½MðdvsÞ2jF t;s�h�ds; (8)

with Mð�Þ isolating the martingale component of dvs, for supifsiþ1 � sig ! 0 as n!1,

see, for example, Jacod and Shiryaev (2003).12 QV captures the entire realized ex post vari-

ation of the hedged log-returns, and its use will simplify the computations of the optimal

currency exposures via the next result.

12 The QC between two appropriately dimensioned vector processes xsi
and ysi

, for a similar parti-

tion of the sample si 2 ½t ; t þ 1�; i ¼ 0; . . . ; n, is analogously defined as ½x; y�tþ1, that is, as the

probability limit of a sum of outer products of their increments as the distance between observa-

tions tends to zero.
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Proposition 2. Suppose the conditions of Proposition 1 hold. Then, as n!1,

½dvs�tþ1 ¼ ½w0tdps þ b
0
tdss�tþ1:

Proposition 2 shows that the QV of the hedged log-return depends only on the QVs of the

fully hedged log-return and the total currency exposure return, as well as on their QC.

Hence, there is no impact from movements in nominal short-term risk-free interest

rate differentials nor from the Jensen’s inequality induced term, Rh
s ds. This distinct

advantage of the proposed within-period model for equities, currencies, and bonds

is due to the fact that drift components have no asymptotic impact on QV in the infill

asymptotic limit. As a result, Proposition 2 provides a variance measure that contrasts

starkly with the corresponding long-span variance measure used for the development

of the existing currency hedging theory by Anderson and Danthine (1981), and

applied in Glen and Jorion (1993), de Roon et al. (2003), and Campbell et al. (2010),

and which depends on period-by-period movements in short-term interest rate

differentials.

Since the vector of dynamic net currency exposures, bt, represents a zero-investment

portfolio, it suffices to determine the C� 1 vector of foreign currency exposures
~bt ¼ ðb1;t; . . . ; bC;tÞ0, which spans the unique elements of bt. Formally, and consistently

with our distinction between foreign exchange hedgers and speculators, exposures

are selected to minimize the one-period conditional QV of the hedged log-return, that

is, as

~b
�
t ¼ argmin

bt jwt

‘tðbt;wtÞ; ‘tðbt;wtÞ ¼
1

2
Et½½dvs�tþ1�: (9)

Before stating the optimality result, let ~ss ¼ ðs1;s; . . . ; sC;sÞ0 denote the vector of curren-

cies corresponding to the unique exposures ~bt. Then, the following proposition solves

Equation (9).

Proposition 3. Suppose the conditions of Proposition 2 hold, and that Et½½d~ss�tþ1� is posi-

tive definite for all t ¼ 1; . . . ;T. Then the limiting, unique, optimal currency exposures

are determined by

~b
�
t ¼ �Et½½d~ss�tþ1�

�1
Et½½d~ss;w

0
tdps�tþ1�:

Proposition 3 demonstrates that the vector of optimal currency exposures is the negative

vector of realized regression coefficients from an implicit projection of the fully hedged

log-return on the vector of foreign exchange rate innovations, which is embedded in the

one-period conditional expectation of the QC matrix. This former is labeled the realized

currency beta, in analogy with the market exposure measured by the CAPM beta.

However, it is stressed that while the market beta reflects the uncertainty of a given asset in

terms of its sensitivity to market movements, the realized currency beta reflects the hedging
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potential from having active, and systematic, currency exposure in a given equity portfolio

and is, as a result, not a deep characteristic of a currency.

In addition, Proposition 3 suggests that realized currency betas may be computed dynam-

ically using only within-period equity and foreign exchange rate data by first obtaining a

time series of their QC estimates, and then specifying an appropriate dynamic model

for these, to obtain one-step-ahead conditional expectations. This is a highly desirable

property, since it implies that the optimal currency exposures are not only asymptotically

invariant to short-term interest rate differentials, but also to the validity of CIP, which

is otherwise used to substitute out forward rates with interest rate differentials in

Equations (1) and (6).13 Importantly, this invariance separates the optimal currency expo-

sures from the popular carry trade investments, which are designed with long positions in

baskets of currencies with high short-term interest rates and short in baskets of currencies

with low interest rates, resting on the failure of the uncovered interest rate parity. The

resulting realized currency beta hedging strategies may, thus, be viewed as an alternative to

traditional currency investments, such as carry, momentum, and value trading strategies,

which rely solely on the modeling of local trends, rather than cross-asset covariances.

Empirical comparisons are made in Section 5.

Finally, focusing solely on volatility reduction in the objective function (9) has two add-

itional advantages. First, it mirrors the problem faced by many institutional investors,

where one investment team takes a trading strategy as given (here, an equity portfolio),

then executes a hedging procedure to improve its risk profile. Second, from an econometric

perspective, Engle and Colacito (2006) show that the economic value of time-varying cova-

riances can only be consistently measured in a mean–variance setting by the minimum vari-

ance portfolio. Hence, the objective function (9) facilitates consistent evaluation of the

proposed intraperiod model for currency hedging.

Remark 3. Although the exposition is given from the perspective of a U.S. investor, it is im-

portant to note that the realized currency betas are dynamically invariant to base currency.

This implies that, for example, a U.K. investor with the same equity portfolio will be choosing

identical optimal currency exposures. This invariance result is formally shown in the Online

Appendix.

2 Estimating Optimal Currency Exposures

Dynamic implementation of the proposed realized currency beta hedging strategy

requires both estimation of the latent QC matrix over each discrete time interval

between portfolio rebalances, and subsequent dynamic modeling of the covariance

matrices. Hence, two different nonparametric approaches to QC estimation, which may

be applied to data sampled at different frequencies, are discussed first. Second, a simple

13 While Akram et al. (2008) find that CIP holds approximately at daily or lower frequencies, Du et al.

(2018) find persistent deviations from the no-arbitrage condition. Although realized currency betas

are invariant to CIP, the latter will have an impact on whether to apply forward rates or interest

rate differentials to evaluate the return performance of optimal hedging strategies ex post. In the

empirical analysis below, the investor is assumed to trade FX forwards, and forward rates are

applied, to avoid concerns about CIP violations.
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filtering procedure for the construction of one-period-ahead conditional expectations of

the QC matrix is then detailed.

2.1 Measuring QC

Suppose that the vector xsi
¼ ðw0tdpsi

;d~ssi

0Þ0 is observed at the nþ 1 discrete time points

from the portfolio rebalancing at t to the next, that is, at si 2 ½t; t þ 1�; i ¼ 0; . . . ; n, then the

realized covariance (RC) estimator, introduced by Andersen et al. (2003) and Barndorff-

Nielsen and Shephard (2004), represents the empirical approximation to the computations

(8). Formally, the estimator is defined as

RCðxÞ ¼
Xn

i¼1

Dxsi
Dxsi

0; (10)

where D ¼ 1� L is the usual first difference operator. Under mild conditions on the vector

price system in Equations (3)–(5), RCðxÞP½Dx�tþ1 for supifsiþ1 � sig ! 0 as n!1. Its

associated central limit theory demonstrates that convergence occurs at the optimal rate,

n1=2, to a mixed Gaussian distribution. Implicit in these statements, however, is that the in-

dividual entries in xsi
are observed synchronously and without measurement errors. This

approximation may not be too damaging if the rebalancing horizon is, for example, weekly

or monthly, and the intraperiod observations are recorded daily or even intradaily at suffi-

ciently sparse intervals.14 If the data are sampled intradaily at higher frequencies, on the

contrary, market microstructure (MMS) effects and nonsynchronicity-related errors drive a

wedge between the observed equity prices and exchange rates and their theoretical counter-

parts, leading the individual entries of standard covariance matrix estimators such as RC to

diverge. Hence, if the data are available intradaily at frequencies higher than the conven-

tional five-minute rule-of-thumb, it is pertinent to use an estimator that actively mitigates

the impact from these measurement errors while maintaining good efficiency properties. A

class of estimators fitting these requirements is the flat-top realized kernels, proposed by

Varneskov (2016, 2017).

The notion of measurement errors may be quantified as follows: Let the observable,

synchronized, intradaily observations follow an additive noise model of the form

ysi
¼ xsi

þ usi
, where usi

summarizes the effects from an array of market imperfections,

including synchronization errors, and is referred to as MMS noise.15 Next, let ChðyÞ ¼Pn
i¼jhjþ1 Dysi

Dy0si�jhj
for h � 0 and ChðyÞ ¼ C�hðyÞ0 for h<0 be the realized autocovariance

of y for given lag h. The class of flat-top realized kernels is designed to eliminate the noise-

induced bias and variance of the RC estimator by weighting higher-order realized autoco-

variances appropriately as

14 It is generally not recommended to sample much more sparsely than daily since the asymptotic

approximation of negligible drift, or local trends, may be poor at such frequencies. If the series

display nonnegligible drift, this obviously needs to be taken into account when computing the QC

estimates.

15 Besides synchronization errors, the MMS noise captures both exogenous effects, such as bid–

ask bounce movements, and endogenous effects, such as asymmetric information and strategic

learning among market participants.
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RK�ðyÞ ¼ RCðyÞ þ
Xn�1

h¼1

kðh=HÞfChðyÞ þ C�hðyÞg; (11)

for a bandwidth parameter H ¼ an1=2, a> 0, and, in particular, a nonstochastic kernel

function, kð�Þ, designed as

kðzÞ ¼ 1fjzj 	 kg þ kðjzj � kÞ1fjzj>kg; (12)

with k ¼ H�n; n 2 ð0; 1Þ, a shrinking function of the bandwidth H, and kð�Þ a second-order

smooth kernel function, satisfying some mild regularity conditions, an example being the

Parzen kernel. The properties of these heteroskedasticity and autocorrelation consistent

(HAC) style estimators depend crucially on the kernel function, and by selecting k(z) as in

Equation (12), the resulting class of flat-top realized kernels achieves optimal asymptotic

properties in this setting, such as consistency, asymptotic unbiasedness, and mixed

Gaussianity at the optimal rate of convergence, n1=4, under mild assumptions on the MMS

noise and (possibly random) sampling times.16 If optimally designed, the estimator is, in

addition, efficient in a Cramér–Rao sense. As a result, it performs well in finite samples,

even for sparse observations available at one- to five-minute frequencies. Implementation

details are provided in the Online Appendix.

When intradaily observations are only available for a certain part of a day, the trading

window, and there is no recorded trading during weekends, holidays, etc., the estimates

from the flat-top realized kernel may be supplemented with the squared close-to-open re-

turn since the preceding (trading) day. This approach essentially combines the estimates

from RCðxÞ and RK�ðyÞ.

2.2 A Simple Filtering Approach to Covariance Modeling

A number of different procedures to construct one-step conditional expectations of the QC

matrix have been proposed in the literature. However, rather than searching for the best co-

variance model, the aim of this article is to provide a baseline approach for dynamic imple-

mentation of the realized currency betas, which is simple, of nonparametric flavor, and

easy to implement for QC estimates with different degrees of measurement errors, such that

it can accommodate within-period sampling at both daily and intradaily frequencies. In

particular, the procedure that is introduced here adapts the rolling window estimator pro-

posed by Foster and Nelson (1996) and Andreou and Ghysels (2002) in the univariate case,

and extended to the multivariate case in Fleming et al. (2001), to the present setting. To

this end, let Rt and R̂t be short-hand notation for the latent conditional QC matrix and a

generic estimator of this, respectively. Then, the use of rolling window estimators implies

the relation Rt ¼
P1

i¼1 -t�i 
 R̂t�i, where -t�i is a symmetric ðCþ 1Þ � ðCþ 1Þ matrix of

weights, and 
 is the Hadamard product. As proved by Foster and Nelson (1996, Theorem

5) under weak assumptions, the mean-squared error optimal covariance weights are given

by -t�i ¼ c expð�ciÞii0, such that Rt ¼ expð�cÞRt�1 þ c expð�cÞR̂t�1: The resulting covari-

ance estimate is, however, generally downward biased since ð1þ cÞ expð�cÞ < 1 for c > 0.

Hence, a new bias-corrected version is introduced,

16 The presence of additive MMS noise slows down the best attainable rate of convergence from

n1=2 to n1=4.
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Rt ¼ ð1� ð1þ cÞ expð�cÞÞRt�1 þ expð�cÞRt�1 þ c expð�cÞR̂t�1; (13)

where Rt�1 is the prevailing mean of R̂t�1.17 In other words, this version of the rolling win-

dow covariance estimator may be thought of as an exponentially weighted multivariate

GARCH model for the time series of QC estimates, R̂t, whose rate of decay is determined

by a single parameter c. Despite being parsimoniously parametrized, this approach allows

for persistent time-variation in Rt, while implicitly reducing the impact of measurement

errors in R̂t. Despite its simplistic structure, Varneskov and Voev (2013) show that the fore-

casting performance of Equation (13), without the bias-correction, is insignificantly differ-

ent from that of more sophisticated multivariate Cholesky decomposed HAR and ARFIMA

models when evaluated using a global minimum variance criterion for a portfolio of ten

stocks and various RC measures.18 As a robustness check, however, the empirical analysis

of currency hedging strategies, presented in the next sections, has been carried out using a

multivariate HAR model in place of the MGARCH model. The results are very similar, al-

beit with slightly worse risk-return properties, and are provided in Section F of the Online

Appendix.

3 Data, Implementation, and Summary Statistics

This section introduces the data, which consist of daily and intradaily observations covering

the time span from January 2000 through December 2019. Furthermore, it provides details

on the construction of the QC estimates and forecasts, as well as the computation of the

realized currency betas. Moreover, bid–ask spread data are used to estimate transaction

costs for the evaluation of the dynamic hedging strategies. Finally, novel evidence of time

variation in optimal currency exposures is presented.

3.1 Data Collection and Construction

The empirical analysis is performed for a U.S. investor who holds either an equity portfolio

or a balanced portfolio with fixed income and equity, and may use (a subset of) the G10

currencies to hedge her foreign currency exchange rate exposure. In particular, two sets of

currencies are considered. The first includes the very liquid Canadian Dollar (CAD), Swiss

Franc (CHF), Euro (EUR), Great Britain Pound (GBP), and Japanese Yen (JPY). The second

set further allows active investments in the Australian Dollar (AUD), the Norwegian Krona

(NOK), the New Zealand Dollar (NZD), and the Swedish Krona (SEK). These currency in-

vestment universes are labeled G06 and G10, respectively. For each exchange rate, the last

daily spot price (bid, ask, trade) quoted on Bloomberg during New York Stock Exchange

(NYSE) trading hours is obtained, along with the corresponding one-month forward points,

to construct forward prices, as well as estimates of the transaction costs associated with FX

trading. Summary statistics for forward returns, spot returns, and implied returns on

17 Specifically, the present approach differs from the procedure in Fleming et al. (2003) by replacing

the outer product of returns, or RC, with a generic QC estimator, similarly to the study in

Varneskov and Voev (2013). Moreover, it differs from the latter by introducing a bias correction.

18 Using a statistical loss function, on the contrary, Varneskov and Voev (2013) find statistically sig-

nificant gains from using multivariate Cholesky decomposed HAR and ARFIMA models over the

multivariate GARCH model.
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interest rate differentials are provided in Table 1, along with estimates of transaction costs

in BP per annum. Note that all return series are log-transformed.19

Table 1 illustrates that currencies such as the CHF and JPY have lower returns on inter-

est rates than the USD, and vice versa for the AUD and NZD. Moreover, the spot return

fails to offset the interest rate differentials, consistent with the former two being funding

currencies for carry trades, and the latter being high-yielding currencies in the G10 uni-

verse, see, for example, Lustig et al. (2011). For all individual currencies, the excess returns

are modest compared to their volatility, generating annualized SRs of no higher than 0.3.

However, an extensive literature (see the introduction for references) has documented that

systematic FX trading can be very profitable, on a risk-adjusted basis. The CHF exhibits ex-

treme kurtosis relative to the remaining currencies, caused by the Swiss National Bank’s

abandonment of the EUR peg on January 15, 2015. The estimated transaction costs, com-

puted as 10; 000ðask� bidÞ=ððaskþ bidÞ=2Þ for the forward prices, show that, on aver-

age, it is cheaper to trade G06 currencies than G10. Following convention in the literature,

for example, Lyons (2001), the cost of trading is fixed at half the average spread, that is, at

3 BP for the G06 currencies and 6 BP for the G10 set. The results, however, are robust to

increasing these numbers.

Three different baseline portfolios are considered. The first is the S&P 500, whose cur-

rency exposure is determined implicitly through the international investments and cash

Table 1. Excess FX returns

Summary statistics for excess FX returns

AUD CAD CHF EUR GBP JPY NOK NZD SEK

Mean (IR) 2.16 0.15 �1.61 �0.55 0.44 �2.05 0.91 2.51 �0.34

Mean (SR) 0.31 0.52 2.32 0.44 �1.01 �0.33 �0.52 1.20 �0.54

Mean (ER) 2.47 0.67 0.71 �0.12 �0.58 �2.37 0.39 3.72 �0.88

Std. Dev. 12.43 8.75 11.12 9.60 9.10 9.75 11.75 12.65 11.75

Skewness �0.34 �0.10 3.73 0.05 �0.76 0.07 �0.15 �0.30 �0.04

Kurtosis 12.66 6.01 120.73 4.64 13.71 7.11 5.62 5.82 5.56

SR 0.20 0.08 0.06 �0.01 �0.06 �0.24 0.03 0.29 �0.07

Mean (BA) 6.92 4.45 6.47 3.08 4.22 3.78 15.13 12.76 11.58

Std. Dev. 6.60 3.90 7.84 3.20 5.67 5.00 17.33 11.61 10.83

Q05 1.52 1.05 1.21 0.82 0.68 1.04 3.67 3.99 4.08

Q95 17.95 9.81 19.31 9.45 12.24 9.66 41.47 30.62 29.79

This table presents annualized summary statistics for daily excess FX returns, in logarithms, from January

2000 through December 2019. Moreover, the mean excess return (ER) is decomposed into interest rate (IR)

differentials and spot FX returns (SR). The bottom part of the table provides the mean and standard deviation

as well as the 5% and 95% quantiles of estimated bid–ask (BA) spreads in BP. Specifically, the latter are com-

puted as 10; 000ðask� bidÞ=ððaskþ bidÞ=2Þ for the forward prices.

19 Since all summary statistics are computed directly from log-returns, there is no need to consider

the Jensen’s inequality correction in Proposition 1. The latter is only important when transferring

log-returns back into gross return form. Moreover, as seen by the general identity from Itô’s

lemma, Rt ¼ rt þ ½r �t=2, the use of log-returns leads to a conservative assessment of the benefits

from applying the proposed dynamic hedging strategies.
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flows of its constituents. The second is an equally weighted portfolio in the DAX, FTSE

100, and S&P 500. All equity index investments are carried out via futures contracts. The

third portfolio has a 60% weight on the S&P 500 and 40% on 10-year Treasury bond

futures. This balanced, risk-parity-style, benchmark has been popularized by mutual funds,

such as Vanguard, and is a prominent benchmark for passive investors. As such, the setup

resembles the one in Campbell et al. (2010), who consider currency hedging for the S&P

500 and equal-weighted (EW) international equity investments, that is, the first two port-

folios. The main differences are that they use either monthly or quarterly observations,

while we collect daily data on the futures contracts. Moreover, they include the AUD in

their set of (seven) hedging currencies, whereas we consider both the G06 and G10 sets of

currencies. Finally, the investment horizons considered here are weekly and monthly, rather

than monthly and quarterly.

In addition to the daily futures data for the baseline portfolios and FX forwards, we col-

lect intradaily, one-minute data for the baseline portfolios and spot prices of the G06 cur-

rencies. The intradaily data are generally nonsynchronous, and refresh time sampling is

used to align observations, see, for example, Varneskov (2016, Definition 1). Then, from ei-

ther the daily or intradaily data, estimates of QC are constructed using RC or flat-top real-

ized kernels, respectively.20 Hence, our final dataset consists of either weekly or monthly

observations of returns on the baseline portfolios and FX forwards, QC estimates for G06

and G10 constructed from daily data, as well as QC estimates for G06 constructed from

intradaily data. This facilitates assessments of whether the new dynamic realized currency

beta hedging theory generates improved portfolio performance, whether there are differen-

ces across baseline portfolios, or across different sets of hedging currencies, G06 versus

G10, and whether there are additional gains from leveraging intradaily data to increase pre-

cision of the QC estimates.

3.2 Implementing Realized Currency Betas

The empirical analysis features several benchmark implementations of the dynamic realized

currency beta hedging strategies. First, to extrapolate expectations of the QC matrix, the

dynamic MGARCH specification in Equation (13) is estimated using standard multivariate

Gaussian maximum likelihood techniques in conjunction with either the RC estimates from

Equation (10) for the G06 currency set in place of R̂t, the corresponding for the G10 set, or

the flat-top realized kernel estimates from Equations (11)–(12) for the G06 set. Specifically,

the smoothing parameter c is estimated recursively using an expanding window of observa-

tions and a two-year initialization period. Given this, a QC forecast is generated from

Equation (13) and used to compute the realized currency betas from Proposition 3. These

three adaptive dynamic hedging (ADH) methods are labeled ADH-06, ADH-10, and ADH-

HF to indicate the FX set for daily data-based QC estimates and high-frequency data-based

estimates, respectively. In addition, a standard MGARCH model is included as a bench-

mark in the same G06 framework. This model is nested in the setting (13) by replacing R̂t

with the outer product of returns (weekly or monthly, according to rebalancing frequency)

and is labeled ADH-SM for Standard MGARCH.

20 Details on the cleaning of the intradaily data as well as its characteristics, for example, number of

synchronized observations, noise-to-signal ratios, etc., are provided in Section E of the Online

Appendix.
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These dynamic strategies are compared to a fully hedged baseline portfolio to examine

if active currency hedging adds economic value to the existing investments. Moreover, a

real-time version of the strategy in Campbell et al. (2010), labeled CMV, is implemented,

using the negative slope from a regression of the portfolio returns on excess FX returns.

This is included for both the G06 and G10 sets of currencies, labeled CMV-06 and CMV-

10, respectively, and utilizes an expanding window of either weekly or monthly observa-

tions, depending on rebalancing frequency. Finally, to examine the relative importance of

the dynamic model for intraday-based QC estimates, a further benchmark is added, in

which the QC expectations are based on the average flat-top realized kernel estimates using

an expanding window up to and including ten years, and subsequently a rolling ten-year

window. This simple procedure circumvents the forecasting step (13) and is dubbed the

ROL-HF estimator.

Table 2. Average exposures

Average exposures for currency hedging strategies

CAD CHF EUR GBP JPY AUD NZD SEK NOK USD

S&P 500

CMV-06 �0.96 0.83 �0.69 0.09 �0.08 – – – – 0.81

CMV-10 �0.45 0.70 0.34 0.17 �0.04 �0.40 �0.03 �1.03 0.22 0.53

ADH-SM �0.99 0.53 �0.46 0.01 0.06 – – – – 0.86

ADH-06 �0.69 0.61 �0.49 �0.06 0.34 – – – – 0.29

ADH-10 �0.42 0.54 0.05 0.04 0.32 �0.27 �0.12 �0.32 �0.05 0.23

ADH-HF �0.43 0.30 �0.26 �0.03 0.39 – – – – 0.04

ROL-HF �0.42 0.43 �0.35 �0.01 0.36 – – – – �0.01

EW

CMV-06 �0.99 1.04 �0.91 0.30 0.07 – – – – 0.48

CMV-10 �0.48 0.93 0.14 0.39 0.11 �0.39 �0.05 �1.00 0.17 0.20

ADH-SM �1.39 0.76 �0.58 0.13 0.12 – – – – 0.96

ADH-06 �0.63 0.59 �0.44 0.01 0.30 – – – – 0.17

ADH-10 �0.36 0.52 0.13 0.10 0.29 �0.30 �0.04 �0.33 �0.11 0.10

ADH-HF �0.48 0.37 �0.32 0.01 0.44 – – – – �0.02

ROL-HF �0.47 0.46 �0.38 0.03 0.44 – – – – �0.08

Balanced

CMV-06 �0.54 0.45 �0.44 0.09 �0.12 – – – – 0.56

CMV-10 �0.26 0.38 0.13 0.13 �0.10 �0.21 �0.01 �0.60 0.14 0.40

ADH-SM �0.57 0.27 �0.28 0.04 �0.03 – – – – 0.56

ADH-06 �0.39 0.32 �0.27 �0.04 0.13 – – – – 0.25

ADH-10 �0.23 0.28 0.03 0.02 0.12 �0.14 �0.09 �0.18 �0.03 0.21

ADH-HF �0.24 0.15 �0.15 �0.02 0.17 – – – – 0.10

ROL-HF �0.23 0.22 �0.20 �0.01 0.16 – – – – 0.07

This table presents the average exposures for seven different approaches to currency hedging and the three dif-

ferent baseline portfolios using a monthly rebalancing frequency. The baseline portfolios are the S&P 500, an

EW basket of DAX, FTSE 100, and S&P 500 futures contracts, and a balanced portfolio with 60% S&P 500

and 40% 10-year U.S. Treasury bond futures. The different hedging strategies are detailed in Section 3.2. The

sample spans January 2000 through December 2019. The dynamic covariance models are estimated using an

expanding window with a two-year initialization period.
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As a preliminary gauge of the similarities and differences between strategies, the average

currency exposures are provided in Table 2 for each benchmark portfolio. Some interesting

discrepancies between average exposures obtained from the various hedging procedures ap-

pear. First, for the S&P 500 portfolio, the CMV-06 strategy takes large long positions in

the CHF and USD, funded by short positions in CAD and EUR. The ADH-HF procedure

holds JPY rather than USD, and the ADH-06 strategy has approximately equal (long) expo-

sures to the JPY and USD. This is consistent with the CHF, JPY, and USD being considered

as safe haven currencies during episodes of financial turmoil. Second, the absolute magni-

tude of the average FX exposures vary, with exposures in CMV-06 larger than those in

ADH-06, which in turn are larger than the corresponding in ADH-HF. Third, when the FX

set is extended from G06 to G10 for the CMV and ADH strategies, this generates a reduc-

tion in the short positions in CAD and EUR (whose exposure actually changes sign), in

favor of shorting the AUD and SEK. Moreover, the CMV procedure indicates positive ex-

posure to NOK. Fourth, whereas the average exposures are similar in magnitude and sign

for the S&P 500 and EW portfolios, the optimal exposures for the balanced portfolio are

significantly reduced. This is consistent with the latter having lower volatility (cf. Table 3),

implying that the hedging strategies must match a lower volatility target.

Table 3. Risk-return performance

Risk-return performance for currency hedging strategies

Full CMV-

06

CMV-

10

ADH-

SM

ADH-

06

ADH-

10

ADH-

HF

ROL-

HF

CON-

HF

S&P 500

Mean 5.93 5.31 4.39 2.71 6.34 4.14 7.87 7.24 8.00

Std. Dev. 14.29 12.79 12.47 15.49 12.22 11.58 11.76 12.85 11.79

Skewness �0.92 �0.78 �0.37 �1.54 �0.74 �0.43 �0.81 �0.81 �0.82

Kurtosis 5.23 4.89 3.77 9.42 6.73 5.97 6.33 4.66 6.29

SR 0.41 0.41 0.35 0.17 0.52 0.36 0.67 0.56 0.68

EW

Mean 4.40 3.41 2.10 1.29 4.02 1.81 6.73 6.01 6.90

Std. Dev. 14.96 14.02 13.80 16.59 12.74 12.23 13.27 13.99 13.33

Skewness �0.93 �0.54 �0.43 �0.16 �0.45 �0.65 �0.58 �0.57 �0.55

Kurtosis 5.24 6.09 5.33 4.18 7.35 6.31 7.77 5.87 7.58

SR 0.29 0.24 0.15 0.08 0.32 0.15 0.51 0.43 0.52

Balanced

Mean 5.03 4.89 4.38 2.92 5.05 3.71 5.96 5.73 5.96

Std. Dev. 8.15 7.37 7.20 8.59 7.13 6.65 6.88 7.49 6.88

Skewness �1.00 �0.39 �0.19 �1.52 �0.40 �0.13 �0.73 �0.80 �0.73

Kurtosis 6.55 4.13 3.79 8.60 6.61 6.52 6.38 5.35 6.38

SR 0.62 0.66 0.61 0.34 0.71 0.56 0.87 0.76 0.87

This table presents annualized risk-return performance for nine different approaches to currency hedging and

three different baseline portfolios using a monthly rebalancing frequency. The baseline portfolios are the S&P

500, an EW basket of DAX, FTSE 100, and S&P 500 futures contracts, and a balanced portfolio with 60%

S&P 500 and 40% 10-year U.S. Treasury bond futures. The different hedging strategies are detailed in Section

3.2. The sample spans January 2000 through December 2019. The dynamic covariance models are estimated

using an expanding window with a two-year initialization period.
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Figure 1 depicts the optimal exposures for the ADH-HF procedure applied to the three

baseline portfolios. While this underscores the propensity of the hedging strategy to go long

CHF and JPY, and funding this by shorting the EUR and CAD, there are interesting dynam-

ic patterns. First, the exposures to the CHF and JPY are much larger during the global fi-

nancial crisis of 2008–2009 than during the years leading up to and following it. Hence,

the strategy takes on larger “safe haven bets” during financial turmoil. Second, the status of

the CHF as a hedging currency is dramatically affected by the Swiss National Banks’s aban-

donment of its EUR peg during January 2015, and while the optimal exposure remains

positive afterward, it leaves the hedging demand much smaller. The optimal exposure to

the JPY, on the contrary, remains large after the financial crisis, with further spikes occur-

ring in early 2016, when fears of a slowdown of China’s economy lead to global stock sell-

offs, and during late 2018, when, again, stocks exhibit massive sell-offs over Christmas.

Third, the optimal exposure to the USD is flat both before 2010 and after 2015. However,

the model suggests to hold USD during the European sovereign debt crisis. Finally, Figure 1

also illustrates that it is optimal to hold more than a 6100% exposure to certain currencies

over short portions of the sample period. This may not be feasible for all institutional

investors. Hence, as a robustness check, we will also examine the performance of a

Figure 1. Exposure plots. This figure depicts the optimal currency exposures to the CAD, CHF, EUR,

GBP, JPY, and USD, respectively, computed using the ADH-HF procedure for three different baseline

portfolios and a monthly rebalancing frequency. The exposures are depicted for January 2005 through

December 2019.
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modified version of the ADH-HF strategy, in which, if the optimal exposure is larger than

61, it is fixed at 61. This constrained version is labeled the CON-HF strategy.

4 Benefits from Dynamic Global Currency Hedging

This section demonstrates that beside displaying interesting time-variation closely tied to

important economic events (cf. Figure 1), the estimated dynamic realized currency betas

give rise to hedging strategies that provide economic benefits to an investor beyond what is

achieved by either fully hedged equity investments or existing optimal hedging strategies

from Campbell et al. (2010), which ignore within-period variation in the economic system.

Specifically, the gains from dynamic currency hedging are illustrated from three different

perspectives. First, standard risk-return results are provided. Second, the statistical signifi-

cance of the volatility reductions is formally tested. Third, the economic benefits to a risk-

averse investor are assessed. The results are described for monthly returns. The correspond-

ing results for weekly returns are very similar and available in Section F of the Online

Appendix, together with robustness checks using the multivariate HAR model.

4.1 Risk-Return Benefits

As an initial gauge of the benefits to dynamic currency hedging, Table 3 reports the annual-

ized mean return, standard deviation, and SR, along with skewness and kurtosis, for an

equity investor who implements one of the eight hedging strategies, for each of the three

baseline portfolios. There are several striking findings, which are described in detail for the

S&P 500 portfolio and subsequently generalized to the remaining two portfolios. First,

all strategies except ADH-SM provide nontrivial volatility reductions relative to full

hedging. Second, the dynamic ADH-06 and ADH-HF strategies generate larger volatility

reductions than the corresponding CMV-06 procedure, with the HF version performing

best. Specifically, the ADH-HF strategy delivers a 100 BP improvement in volatility over

CMV-06, in addition to average returns that are 150 BP higher. Consequently, the SR of

ADH-HF is 61% higher than those for the fully and CMV-06 hedged portfolios, and

29% higher than for ADH-06. Third, while the CMV-06 procedure delivers substantial

volatility reductions, these come at a cost of returns, thus failing to improve the SR rela-

tive to the fully hedged portfolio. This is consistent with the empirical findings in

Campbell et al. (2010), despite the different setup. Fourth, when comparing equivalent

strategies using either the G06 or G10 sets of currencies, the latter is seen to generate the

largest volatility reductions, but these are very costly, and the strategies deliver worse

overall risk-return performance. From Table 2, this follows since these strategies, on

average, substitute a large part of the short position in the CAD to the high-yielding

AUD, which is very expensive.

The results in Table 3 demonstrate that a better risk-return trade-off can be achieved

by the proposed realized currency beta framework. Moreover, they show that obtaining

precise high-frequency data-based estimates of QC delivers the best results, judging by

the SR, and that daily data-based QC estimates also provide economic value over stand-

ard benchmarks. They further illustrate that the selection of currency universe is import-

ant for overall performance, and that active trading in high-yielding currencies can be

expensive. Interestingly, the results also indicate that reasonable performance can be

achieved by the simple ROL-HF procedure, which has higher SR than ADH-06,
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suggesting that the input covariance measure is relatively more important than the dy-

namic model. Finally, and not surprisingly, given Figure 1, the results for ADF-HF and

CON-HF are almost identical. The few and small violations of 61 exposure have little

impact on overall performance.

In sum, the risk-return benefits from applying the realized currency beta hedging strat-

egies, especially those leveraging intradaily data, appear substantial. Importantly, they are

also not confined to the S&P 500 portfolio. The remaining portions of Table 3 show that

the same performance pattern appears for the EW and balanced portfolios. Specifically, the

relative volatility and SR gains are similar in magnitude for ADH-HF, thus delivering super-

ior risk-return performance. The next two subsections test the significance of the gains and

assess them from the perspective of a risk-averse economic agent.

4.2 Significance Testing of Volatility Reductions

This subsection elaborates on the risk-return results by testing whether the volatility reduc-

tions achieved by the dynamic hedging strategies are statistically significant. Specifically,

the best set of hedging models is determined by their ability to reduce volatility of the base-

line portfolio. To this end, the model confidence set (MCS) approach of Hansen et al.

(2011) is applied to identify the models in a manner that is robust against multiple testing

biases. The testing procedure requires the selection of an ex post QC proxy and is imple-

mented using both the RC and the flat-top realized kernel estimates. Since the hedging strat-

egies using the G10 universe consistently exhibit lower SRs than those actively trading G06

currencies, and since flat-top realized kernel estimates are only available for the latter, this

Table 4. Volatility reductions

Volatility reductions for currency hedging strategies

Full CMV-06 ADH-SM ADH-06 ADH-HF ROL-HF CON-HF

S&P 500

FTRK 15.47 15.51 16.26 13.72 13.29* 14.34 13.30*

RC 15.37 13.85 14.61 12.35* 12.51* 13.69 12.52*

EW

FTRK 16.02 15.71 17.65 13.69 13.49* 14.75 13.50*

RC 14.83 13.75 15.55 12.28* 12.43 13.52 12.45

Balanced

FTRK 8.70 9.02 9.42 7.99 7.74* 8.23 7.74*

RC 8.75 8.28 8.60 7.41* 7.46* 8.03 7.46*

This table presents the average, annualized, ex post volatility for seven approaches to currency hedging and

three baseline portfolios using a monthly rebalancing frequency. The ex post QC measures are constructed

using either RC based on daily data or the flat-top realized kernel (FTRK) based on intradaily data. The base-

line portfolios are the S&P 500, an EW basket of DAX, FTSE 100, and S&P 500 futures contracts, and a bal-

anced portfolio with 60% S&P 500 and 40% 10-year U.S. Treasury bond futures. The hedging strategies are

detailed in Section 3.2. The sample spans January 2000 through December 2019. The dynamic covariance

models are estimated using an expanding window with a two-year initialization period.

*Signifies that the hedging strategy belongs to the 10% MCS of Hansen et al. (2011).
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exercise will focus on the G06 universe. Moreover, the MCS is configured with the T-max

statistic and a 10% significance level (see Hansen et al., 2011 for details).

Results are collected in Table 4. The table shows the average ex post volatility for each

of the QC measures, and indicates (by an asterisk) whether a given strategy belongs to the

MCS. The message is clear. The ADH-06 and ADH-HF strategies consistently deliver the

largest volatility reductions, significantly outperforming the fully hedged portfolio, as well

as the CMV-06, ADH-SM, and ROL-HF strategies, for all three baseline portfolios. The

ADH-HF strategy achieves the most significant volatility reductions when the flat-top real-

ized kernel estimates are used as QC proxy, while the ADH-06 is also included in the set of

best performing strategies when the RC estimate is used to calculate ex post volatility. In

fact, the latter is the best strategy for the EW portfolio in this case, although its average

volatility edge over ADH-HF is small. As for the risk-return results in Table 3, there is no

significant difference between ADH-HF and CON-HF.

The volatility reductions from applying the dynamic ADH-HF strategy rather than fully

hedging currency exposure or applying the existing CMV-06 approach to currency hedging

are not only economically meaningful, for the S&P 500 portfolio of the order 250 BP and

100 BP for the two strategies (cf. Table 3), they are also statistically significant, based on

the results in Table 4. Moreover, whereas ADH-HF achieves the highest SRs in Table 3 for

all baseline portfolios, the results in Table 4 show that similar volatility reductions can be

achieved by ADH-06. The advantage in terms of SR from using intradaily data in the imple-

mentation, thus, stems mainly from enhancing the returns to the hedging strategy.

4.3 Economic Benefits from Dynamic Currency Hedging

The economic benefits are assessed via three different measures. First, using the SRs in

Table 3, the gain is quantified as the number of BP an investor is better off at a 10% volatil-

ity level, that is, by

-b;s ¼ ðSRb � SRsÞ � 10� 100; (14)

where SRb and SRs are the SRs of a benchmark strategy b and an alternative strategy s, re-

spectively. However, as emphasized by Han (2006) and Della Corte et al. (2009), the SR

may underestimate the performance of dynamic portfolio strategies. In particular, as the SR

is computed using the full sample realized portfolio return and standard deviation, it may

not adequately describe the conditional risk faced by an investor at each point in time.

Hence, following Fleming et al. (2001), the economic value of a benchmark hedging strat-

egy b relative to the alternative s is also assessed by determining the fee that may be sub-

tracted from the hedged portfolio return corresponding to the benchmark each period,

while still leaving average utility unchanged, compared to that achieved by investing

according to the alternative hedging strategy. In other words, this fee equals the amount a

risk-averse investor is willing to pay in order to switch from the alternative strategy s to the

hedging benchmark b. Formally, as in Della Corte et al. (2009), let Zb
t ¼ 1þ rb

t and Zs
t ¼

1þ rs
t be the payoffs to the benchmark and the alternative hedging strategy, respectively,

then the switching fee Ub;s solves
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XT

t¼T1þ1

ðZb
t � Ub;sÞ �

d
2ð1þ dÞ ðZ

b
t � Ub;sÞ2

� �
¼

XT

t¼T1þ1

Zs
t �

d
2ð1þ dÞ ðZ

s
tÞ

2

� �
: (15)

Specifically, Equation (15) equates the average realized period-by-period utility across the

benchmark and alternative hedging strategies for an investor with quadratic preferences

and relative risk-aversion indexed by the parameter d. In the empirical application, d 2
f3; 8g is fixed (see Fleming et al., 2001; Della Corte et al., 2009, for detailed discussions of

this preference specification).21

Finally, while both -b;s and Ub;s speak to the (conditional) properties of means and vola-

tilities for returns to the currency hedging strategies, it is worth examining the robustness to

higher moments. For example, from Table 3, kurtosis and negative skewness are reduced

by an expansion of the currency universe, for otherwise identical strategies. Thus, the hedg-

ing strategies are further evaluated using a measure capturing features of the whole return

distribution, specifically, the Omega ratio statistic introduced by Bernardo and Ledoit

(2000) and Keating and Shadwick (2002), and studied extensively by Caporin et al. (2018).

The ratio is defined as

Xsð.Þ ¼
E½rs

t � .jrs
t > .�

E½.� rs
t jrs

t 	 .� �
1� Fsð.Þ

Fsð.Þ
; (16)

with the conditional expectation taken with respect to a threshold ., and Fsð.Þ the cumula-

tive distribution function. Hence, the statistic quantifies the ratio of favorable and unfavor-

able outcomes with respect to a given threshold, where . 2 f0;0:1g is selected, following

Caporin et al. (2018). As above, define Xb;sð.Þ ¼ Xsð.Þ=Xbð.Þ to assess the Omega ratio

relative to a benchmark strategy.

Table 5 reports the estimates of -b;s; Ub;s, and Xb;sð.Þ using ADH-HF as the benchmark

strategy for all three baseline portfolios. Interestingly, when considering the results for gains

in SR, -b;s, the ADH-HF strategy delivers 210–250 BP improvements over full hedging,

200–350 BP over the existing CMV procedures, and 150–190 BP over ADH-06. These

numbers are substantial, clearly illustrating the value of using intradaily data and the pro-

posed economic model that actively utilizes within-period information to carry out dynamic

currency hedging. The differences are smaller relative to the ROL-HF strategy, 70–100 BP,

further underscoring the importance of QC measure quality relative to dynamic model spe-

cification. The ADH-HF and CON-HF strategies are economically identical.

When turning to the corresponding estimates of switching fees, Ub;s, thus speaking to

the relative conditional risk of the hedging strategies, the qualitative rankings are identi-

cal.22 However, there are differences between the absolute magnitudes of the -b;s and Ub;s

estimates. The results for the S&P 500 and EW equity portfolios indicate even larger return

differences than before. For the balanced portfolio, on the contrary, the estimated switching

21 Fleming, Kirby, and Ostdiek (2001, 2003) fix d 2 f1; 10g and Della Corte et al. (2009) let d 2 f2; 6g.
A higher value of d, such as ten, implies that the investor is willing to pay a higher fee for strat-

egies that reduce volatility.

22 Note that the switching fee estimates in Table 5 are new to the currency hedging literature and,

thus, provide further perspectives on the economic value a risk-averse investor receives from

implementing also the existing optimal hedging procedures in Glen and Jorion (1993), de Roon

et al. (2003), and Campbell et al. (2010).
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fees are generally lower. However, since these fees are always greater than the 96 BP

reported for the ADH-06 strategy, they remain economically large. The exception is the

ROL-HF strategy, for which the relative gain is 35–60 BP, again demonstrating the value

arising from using the precise flat-top realized kernel estimates of QC. The smaller switch-

ing fees for the balanced portfolio may readily be explained by the latter having substantial-

ly lower volatility than both equity portfolios. Hence, a risk-averse investor places a smaller

premium on further volatility reductions, despite the -b;s measure indicating that the risk-

return gains are large.

Finally, the Xb;sð.Þ estimates show that these conclusions remain robust when allowing

higher-order return moments to impact the economic evaluation. The ADH-HF strategy,

and its constrained version, consistently outperforms other approaches to currency hedging.

In sum, the economic benefits achieved by the dynamic realized currency beta hedging

Table 5. Economic gains

Economic benefits of currency hedging strategies

Full CMV-

06

CMV-

10

ADH-

SM

ADH-

06

ADH-

10

ADH-

HF

ROL-

HF

CON-

HF

S&P 500

-b;s 255.06 254.74 318.02 494.84 151.06 311.96 0.00 106.49 �8.72

Ub;sð3Þ 294.68 294.97 374.87 669.15 170.37 366.85 0.00 104.57 �11.31

Ub;sð8Þ 465.80 360.71 419.66 923.56 199.82 356.25 0.00 175.52 �9.22

Xb;sð0Þ 0.82 0.82 0.78 0.69 0.90 0.79 1.00 0.92 1.01

Xb;sð0:1Þ 0.84 0.82 0.78 0.70 0.90 0.79 1.00 0.93 1.01

EW

-b;s 213.25 264.07 355.11 429.66 191.55 358.77 0.00 77.41 �10.20

Ub;sð3Þ 305.27 363.10 484.79 692.49 250.14 451.80 0.00 101.56 �14.15

Ub;sð8Þ 427.19 415.37 520.96 936.57 214.06 384.15 0.00 152.88 �10.30

Xb;sð0Þ 0.83 0.80 0.74 0.70 0.85 0.74 1.00 0.93 1.01

Xb;sð0:1Þ 0.84 0.80 0.74 0.71 0.85 0.74 1.00 0.93 1.01

Balanced

-b;s 248.43 203.09 258.29 526.20 158.09 308.95 0.00 101.99 0.00

Ub;sð3Þ 121.73 118.13 165.19 343.91 96.47 220.81 0.00 36.97 0.00

Ub;sð8Þ 170.97 136.07 176.83 410.97 105.57 212.79 0.00 59.87 0.00

Xb;sð0Þ 0.84 0.85 0.82 0.68 0.91 0.80 1.00 0.93 1.00

Xb;sð0:1Þ 0.86 0.86 0.82 0.69 0.90 0.79 1.00 0.94 1.00

This table presents estimates of the economic gains arising from applying the ADH-HF strategy in place of

eight alternative currency hedging strategies. The gains are computed for three baseline portfolios and a

monthly rebalancing frequency. Specifically, as described in Section 4.3, -b;s quantifies the SR difference,

Ub;sðdÞ the switching fee for a risk-averse investor with quadratic utility function and risk-aversion parameter

d 2 f3; 8g, and Xb;sð.Þ the relative Omega ratio for . 2 f0; 0:1g. The return differences -b;s and Ub;sðdÞ are

quoted in annualized BP, and an Omega ratio less than one indicates that ADH-HF achieves a higher value.

The baseline portfolios are the S&P 500, an EW basket of DAX, FTSE 100, and S&P 500 futures contracts,

and a balanced portfolio with 60% S&P 500 and 40% 10-year U.S. Treasury bond futures. The different hedg-

ing strategies are detailed in Section 3.2. The sample spans January 2000 through December 2019. The dynam-

ic covariance models are estimated using an expanding window with a two-year initialization period.
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strategies, especially when implemented using intradaily data, are economically large, and

volatility reductions statistically significant.

5 Realized Currency Beta and Traditional Currency Investment Styles

The previous section demonstrates that the investor can achieve substantial gains in base-

line portfolio performance by supplementing the latter with a tactical foreign exchange rate

overlay based on the proposed realized currency beta (RCB) hedging procedure, especially,

the dynamic ADH-HF approach. To synthesize and further explore these findings, this

Table 6. FX trading strategies

Risk-return performance for FX trading strategies

Summary statistics Correlation

Mean Std. Dev. Skewness Kurtosis SR RCB MOM CARRY VALUE

RCB 1.95 9.15 1.35 7.97 0.21 1.00 0.21 �0.62 0.24

MOM �1.24 7.39 0.52 6.23 �0.17 0.21 1.00 �0.10 �0.03

CARRY 3.38 8.01 �0.88 6.86 0.42 �0.62 �0.10 1.00 �0.60

VALUE 0.34 7.30 1.42 9.28 0.05 0.24 �0.03 �0.60 1.00

This table presents annualized risk-return performance for four different FX trading strategies using a monthly

rebalancing frequency. These are carry, momentum, and value investments based on the G10 currency set, as

well as the FX overlay of the ADH-HF RCB hedging strategy for the S&P 500 portfolio. Moreover, correla-

tions between the strategies are reported. The sample spans January 2000 through December 2019. The dy-

namic covariance model is estimated using an expanding window with a two-year initialization period.

Figure 2. Exposure plots. This figure depicts cumulative (log-)returns to four different FX trading strat-

egies using a monthly rebalancing frequency. These are carry, momentum, and value investments

based on the G10 currency set, as well as the FX overlay of the ADH-HF RCB hedging strategy for the

S&P 500 portfolio. The sample spans January 2000 through December 2019. The dynamic covariance

model is estimated using an expanding window with a two-year initialization period.

122 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/19/1/97/6188438 by O

xford U
niversity Press U

SA user on 31 August 2021



section relates the performance of the zero net currency portfolio from the ADH-HF strat-

egy to traditional currency investment styles, in particular, carry, momentum, and value

strategies. Following, among others, Lustig et al. (2011), Menkhoff et al. (2012a, 2012b),

and Asness et al. (2013), the carry trade is constructed by sorting on interest rate differen-

tials, momentum on three-month excess currency returns, and the value trade by betting on

mean-reversion against five-year average returns. Each of these strategies is implemented

with standard rank-based weights and using the G10 set of currencies.

Table 6 reports summary statistics of the FX strategies, as well as correlations between

them, with the currency overlay in the ADH-HF approach being designed to hedge the S&P

500 portfolio.23 Moreover, their respective cumulative returns are depicted in Figure 2.

In line with prior work, the carry and momentum investment strategies are very profitable

until the 2008–2009 global financial crisis, when, specifically, carry trades exhibit a

massive drawdown during the fall of 2008, culminating with a 12.4% loss in October.

The strategy subsequently recovers, but has only delivered modest returns since 2010. This

observed tail behavior of carry trades is consistent with prior findings in the literature, doc-

umenting that the strategy is exposed to “crash risk,” for example, Brunnermeier et al.

(2009), Burnside et al. (2011), and Menkhoff et al. (2012a). Momentum, on the contrary,

acts as a hedge during the financial crisis, delivering a positive return of 11.5% in October

2008, but has performed abysmally since 2012. Finally, the value trading strategy similarly

performed well during the financial crisis, but has been largely flat since 2010.

When traditional FX investment styles are compared to the ADH-HF overlay, the latter is

also seen to provide protection during the financial crisis, returning 13.5% in October 2008.

Interestingly, when comparing its performance to carry trades, keeping in mind the time-vary-

ing exposures of ADH-HF from Figure 1, the long positions in traditional carry funding cur-

rencies, such as CHF and JPY, suggest that the strong performance of ADH-HF is, at least

partially, funded by carry traders unwinding their positions. In addition, the hedging strategy

provides protection during other episodes of financial turmoil, such as those surrounding the

downgrade of Greece’s sovereign debt to junk bond status during the European sovereign debt

crisis in April–May 2010, the Brexit vote in June 2016, and the “bloody Christmas” equity

sell-off in 2018, delivering returns of 6.4, 5.0, and 4.5%, respectively, during these episodes.

In contrast, momentum and value strategies return �ð1:4; 5:9; 2:7Þ% and ð0:6; 1:5; 2:2Þ%
over the same time intervals. Hence, as intended, the ADH-HF overlay provides a robust

hedge for an equity portfolio when protection is needed the most, and it performs better than

existing FX strategies during such episodes. Moreover, the hedging strategy has lost less, on

average, during bull market periods than it has gained during sell-offs, thus providing a posi-

tive return on average, albeit not as high as carry. Finally, the correlation between carry and

the ADH-HF overlay is strongly negative, at –0.62 (cf. Table 6), suggesting that a profitable

trading strategy could be constructed by combining the two. However, asset allocation among

currency investment styles is beyond the scope of this article.

23 The results are very similar when applying the other two baseline portfolios and are, thus, omitted

for brevity.
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6 Conclusion

This article proposes a model for discrete-time currency hedging based on continuous-time

movements in portfolio and foreign exchange rate returns. The vector of optimal currency

exposures is shown to be given by the negative realized regression coefficients computed

from a one-period conditional expectation of the intraperiod QC matrix for portfolio and

foreign exchange rate returns, labeled the realized currency betas. The theoretical model,

hence, facilitates the design of dynamic hedging strategies that depend exclusively on the

evolution of the intraperiod QC matrix. This implies that interest differentials have no

asymptotic impact on optimal currency hedging demands, and that an investor should sam-

ple observations as frequently as possible in fixed time intervals between portfolio rebalan-

ces to improve the accuracy of the QC estimates. Both implications contrast with prior

theoretical results in the extant currency hedging literature, which assume that assets are

observed at the same frequency as that at which the portfolio is being rebalanced.

Moreover, since the proposed strategies only use information about the covariance between

exchange rate and portfolio returns, not about local trends in the former, they are notably

different from traditional currency investment styles, such as carry, momentum, and value.

The realized currency beta hedging strategies are implemented using modern, yet simple,

nonparametric techniques to accurately measure the historical QC between assets and, subse-

quently, capture their dynamic evolution. Methodologically, this procedure addresses two

general caveats in the literature. First, there has been a lack of dynamic modeling when

computing optimal currency exposures, except when tied to slowly varying conditioning varia-

bles, such as past interest rate differentials. Second, previous work has been plagued by the use

of forward-looking information when estimating optimal exposures, thus providing investors

with the benefit of hindsight. Addressing both caveats is important for accurate assessments

of intertemporal currency hedging demands and real-time investment decisions.

In an extensive empirical analysis, the use of the new hedging strategies, based on

realized currency betas, produces novel results: (i) The optimal currency exposures display

substantial time-variation, which is tied to important economic events, such as the 2008–

2009 global financial crisis, the European sovereign debt crisis, and the “bloody

Christmas” 2018 global stock sell-off. (ii) The proposed dynamic hedging strategies pro-

duce statistically significant, as well as economically substantial, volatility reductions for

international equity portfolios and a balanced fixed income–equity portfolio, compared to

either fully hedging currency exposure or applying existing approaches to (static) optimal

hedging. (iii) These volatility reductions come without sacrificing returns, especially when

implemented using intradaily data, delivering SRs 61% larger than key benchmarks. (iv)

The estimated economic gains to the new hedging strategies are substantial, at 120–465 an-

nual BP over full hedging—depending on baseline portfolio and investor risk-aversion—

and 120–520 BP over existing static approaches. (v) The quality of the input QC measure

seems to be more important for designing profitable realized currency beta hedging strat-

egies than the dynamic model specification or an expansion of the hedging universe beyond

the G06 currencies. (vi) The currency overlay behind the dynamic realized currency beta in-

vestment strategy is negatively correlated with the FX carry trade, and only modestly corre-

lated with momentum and value investments. Interestingly, the empirical analysis suggests

that carry traders, at least partially, fund the strong performance of the proposed dynamic

strategy during the global financial crisis of 2008–2009.
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Supplementary Data

Supplementary data are available at Journal of Financial Econometrics online.
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The econometrics of option data has been a rapidly developing research area in recent

years. Nonetheless, the full range of available data is underexploited, as empirical studies

typically rely on closing (end-of-day) option prices. We advocate for a change in this regard.

High-frequency option data have the potential to convey accurate real-time information

regarding investors’ expectations about a company, a sector, or even the entire market.

Through the tight connection between option and underlying stock prices, intraday data

provide a more comprehensive view of the realized and expected asset price dynamics,

offering potential insights for short-term asset return predictability, intraday risk manage-

ment, price discovery, information processing, and the role of liquidity. Finally, intraday

option data allow for a more precise construction of popular model-free option-implied

risk-neutral measures concerning the future return distribution and volatility. As such, they

convey information regarding how strongly investors’ expectations and risk appetites

change in response to the intraday order flow and news arrivals.1

Among the vast literature on the U.S. options market, the use of high-frequency option

prices is relatively rare.2 There is a stream of literature employing high-frequency data to

explore the intraday option price dynamics and provide inference on key quantities, includ-

ing jumps, implied volatility surfaces, and risk-neutral densities, for example, Birru and

Figlewski (2012), Andersen et al. (2015b), Audrino and Fengler (2015), Amaya, Bégin,

and Gauthier (2018), Taylor, Tzeng, and Widdicks (2018), Kapetanios et al. (2019), and

Dalderop (2020). However, these studies predominantly focus on options written on indi-

ces or index futures, while there is little work on the high-frequency dynamics of individual

equity options.

Another severely under-researched area is the microstructure of equity option markets.

The structure and organization of the U.S. market for exchange-traded options has under-

gone dramatic changes over recent decades. The number of exchange holding groups and

trading venues has increased rapidly, the regulatory oversight has strengthened, infusing

the markets with a higher degree of transparency and competition, the trading technology

has developed at a rapid pace, experimentation with diverse incentives for market making

and provision of order flow is rampant, and product innovation has been strong, with en-

tirely new option categories gaining market share quickly. The implications of these devel-

opments for trading costs, price efficiency, liquidity, and market depth across exchanges

and product categories are largely unexplored. A few recent studies are Muravyev and

Pearson (2020) on trading costs, exploiting minute-by-minute option trades and quotes for

stocks in the S&P 500 index, as well as Anand, Hua, and McCormick (2016) and Battalio,

1 In summary, intraday option prices are useful in improving our understanding of many of the issues

explored by our friend, collaborator, and colleague Peter Christoffersen, including the valuation of

options when volatility has multiple components (Christoffersen et al., 2008), the risk-neutral dy-

namics of volatility (Christoffersen, Jacobs, and Mimouni, 2010), the dynamic behavior of the

implied volatility smirk (Christoffersen, Heston, and Jacobs, 2009), estimates of systematic equity

risk provided by option prices (Chang et al., 2012), and the existence of liquidity premiums in option

prices and quotes (Christoffersen et al., 2018).

2 See Section 2 for a comprehensive review.
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Shkilko, and Van Ness (2016), who study the impact of the fee structure on the effective op-

tion bid–ask spread and total trading costs.

The paucity of research on the microstructure and high-frequency dynamics for the full

cross-section of securities and option venues is due to a variety of factors. One primary rea-

son is the large amount of data storage and processing resources required to analyze even a

short sample comprising all options for a limited number of underlying assets. This is par-

ticularly striking for actively traded securities. For example, from January to August 2015,

for the Apple stock, we observe an average of 271,641 trades and 3,283,067 quotes per

day, implying a quote-to-trade ratio of 12.1. This activity is greatly surpassed by the option

market featuring, on average, 77,849 trades and 226,822,053 quotes per day across all

1169 option classes written on Apple, suggesting an option quote-to-trade ratio of almost

3000. Second, the maturity structure evolves every day, with maturities dropping and new

option contracts entering the sample, as others expire. Hence, the panel is unbalanced and

it contains many thinly traded options. Third, the market environment is constantly shift-

ing, with new venues appearing, exchange mergers eliminating existing ones, and trading

protocols undergoing frequent modification. It can be difficult to generate a sufficiently

large sample under stable conditions to obtain good empirical estimates of relevant struc-

tural quantities in this setting, but high-frequency data should help. Fourth, no single source

exists for option trades and quotes, reported in a homogenous manner, over the full period

of exchange-based options trading in the U.S. Fifth, obtaining a complete record of the mar-

ket activity at the highest frequency has, at least until very recently, come at a high financial

cost. As a result, scholars have exploited a plethora of ad hoc arrangements to obtain par-

tial coverage of the market activity over limited sample periods.

Our main objective is to provide an overview of the current U.S. exchange-based option

market, with an emphasis on the pitfalls and opportunities associated with high-frequency

data. We rely on the most comprehensive database—the CBOE OPRA Data (Bulk) pack-

age—provided by the Options Price Reporting Authority (OPRA), which collects and dis-

seminates intraday trade and quote data at a millisecond precision from all option

exchanges operating in the United States. It covers all option classes written on more than

3500 equities, more than 500 exchange-traded products (ETPs), and about 50 index-driven

assets. Hence, we seek to provide scholars with guidance on how to process and utilize such

data, provide an explorative overview, and present some initial illustrations regarding the

data’s potential and benefits.

Therefore, we contribute to the literature by providing (i) an overview of the institution-

al and regulatory settings of the fragmented option market in the United States, based on

all 16 U.S. security exchanges eligible for options listing and trading, (ii) a selective, yet fair-

ly extensive, descriptive analysis of the intraday trades and quotes for options written not

only on equity indices, but also individual stocks and other ETPs, and (iii) a few illustrative

applications, implemented to demonstrate the feasibility of constructing high-frequency op-

tion-based measures through standard procedures, and then assess their advantages and

drawbacks relative to end-of-day option data.

As a consequence, we do not pursue any specific research question in depth, but review

relevant market institutions and features. Along the way, we identify opportunities for new

research, that are opening up with the increasing availability of databases covering the op-

tion market activity at the tick-by-tick level, coupled with the rapid advances in processing

power and the declining data storage costs.

130 Journal of Financial Econometrics

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/19/1/128/6066685 by O

xford U
niversity Press U

SA user on 31 August 2021



We first briefly review the history and competitive forces that have shaped the market

evolution since the start of organized option trading in the early 1970s. We then outline the

most critical regulatory initiatives determining the transparency of trading, price formation,

and market maker quoting obligations. The latter are especially important given the domin-

ance of quotes relative to trades in option markets.

We next explore the quality of the raw (bulk) data. We identify the extent of potential

faulty recordings, other data errors, non-informative or irregular quotations, outliers, and

the occurrence of records with identical time stamps. To provide practical guidance, we de-

velop a filtering algorithm in the spirit of the cleaning algorithm proposed by Barndorff-

Nielsen et al. (2009) for high-frequency equity data.

To keep the analysis manageable, we focus on data originating from 12 representative

underlying equities and 5 exchange traded funds, with parts of the study concentrating on

the trading during January 2015. The latter still leaves us with approximately 27 billion

trades and quotes. We summarize the trading and quoting activities for each underlying

asset, with further categorization based on option maturity and moneyness. We also ex-

plore the liquidity characteristics through bid–ask spread measures. The latter are critical

for assessing the signal-to-noise ratio associated with the option quotes. Finally, we check

for arbitrage violations associated with a basic put-call parity relation. These occur at non-

trivial frequencies and are observed from quotes at all exchange venues, albeit at somewhat

different intensities.

A unique feature of the new OPRA database is that it allows for a study of the quoting

and trading of an instrument across all exchange venues. This enables us to compare the

cross-exchange trade and quote flows and to assess potential price leadership, determined

by the degree to which the exchange participates in the National Best Bid and Offer

(NBBO) quoting pair. We find that CBOE, AMEX, and ARCA most often match the

NBBO, but participation is otherwise quite evenly distributed across all active exchanges,

lending credence to the hypothesis of an integrated national options market.

Finally, we provide a pair of illustrations using OPRA data to gauge the feasibility and

reliability of standard techniques for constructing popular option-implied measures at very

high frequencies. The first application involves estimation of the risk-neutral return vari-

ance. We construct these measures second-by-second from option prices written on SPY (an

exchange traded fund) and GOOG (Google stock). We verify that they display substantial,

genuine intraday variation, so they add significantly to the information content provided by

typical end-of-day measures extracted from, say, OptionMetrics data. However, we also

find that the series suffer from significant serial correlation, indicating a non-trivial impact

of noise. We find that such effects only vanish for sampling frequencies of about 1 min or

lower.

In the second application, we estimate the risk-neutral return density (RND) from

intraday option prices. We compare the estimated RND curves for all underlying 30 min

before and after the news release from the FOMC meeting in March 2015. We document

a uniform reduction in implied volatility along with a dampening of the left tail of the

distribution after the FOMC statement. The point is that such analyses are perfectly

feasible across a wide cross-section of equity options, allowing for future studies investi-

gating heterogeneity in the response across stocks in different sectors or with distinct

characteristics.
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The rest of the paper is organized as follows. Section 1 provides an overview of the

U.S. option exchange trading industry. Section 2 reviews the relevant literature that uses

high-frequency options data. Section 3 contains an overview of the OPRA dataset,

the characterization of its special records, and develops suggestive data filtering rules.

A thorough description of the observed trade and quote record for the selected data sample

are presented in Section 4. Section 5 provides our empirical illustrations using intraday op-

tion prices to estimate the risk-neutral variance and density of the underlying asset returns.

Section 6 concludes the paper. All additional materials are relegated to the Online

Appendix.

1 OPTION TRADING IN THE UNITED STATES

1.1 The Evolution of the U.S. Options Market

Exchange-based options trading in the U.S. began in April 1973 with the foundation of the

Chicago Board Options Exchange (CBOE). During 1973–1999, three additional exchanges

opened and continued operating as independent trading venues for options till 1999, name-

ly the American Stock Exchange (AMEX), the Philadelphia Stock Exchange (PHLX), and

the Pacific Exchange (PCX). These four exchanges were all floor-based with either an open

outcry or a specialist structure. Over this period, the market was highly fragmented, as ac-

tively traded options, almost exclusively, were listed on a single exchange, so the trading

activities were governed by the listing options exchange only, see, for example, Battalio,

Hatch, and Jennings (2004).

This fragmentation was targeted by an options listing campaign in August 1999, when

prior exchange-exclusive options began to be listed at competing exchanges. This campaign

sharpened the competition among exchanges so that, in short order, 37% of all equity option

volume were for contracts traded on multiple exchanges (De Fontnouvelle, Fishe, and Harris,

2003). Mayhew (2002) and De Fontnouvelle, Fishe, and Harris (2003) find the enhanced com-

petition to improve market quality in terms of smaller quoted or effective spreads.

Inspired by the heightened exchange competition, in 2000, the Security and Exchange

Commission (SEC) approved the Plan for the Purpose of Creating and Operating an

Intermarket Options Linkage3 (the “Linkage Plan”) and Firm Quote and Trade-Through

Disclosure Rules for Options4 to facilitate the creation of a national market. The Linkage

Plan is essentially a central routing system operated by the Options Clearing Corporation

(OCC) for the participating exchanges to route order flows with the aim to limit trade-

throughs and execute at the National Best Bid and Offer (NBBO) price. Comparing market

quality before and after the Linkage Plan, Battalio, Hatch, and Jennings (2004) find the

quality of the options market to be substantially improved, with the number of crossed

quotes reduced by 85%, a 7% decrease in the trade-through rates, and an overall reduction

in the effective spread of over 60%, suggesting the Linkage Plan was a major driver in

transforming the fragmented options market into a national market system.

The year 2000 also witnessed the foundation of the International Securities Exchange

(ISE)—a fully electronic options venue without a physical trading floor. This innovative de-

sign presented a challenge to the traditional floor-based options exchanges. According to

3 See, for example, https://www.sec.gov/rules/sro/34-43086.htm (accessed 23 October 2020).

4 https://www.sec.gov/rules/final/34-43591.htm (accessed 23 October 2020).
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Simaan and Wu (2007), ISE generated more informative and executable option quotes with

a smaller bid–ask spread compared with its rivals. These advantages catapulted ISE into the

leading exchange in terms of trading volume by 2003, and the electronic-based market

structure was adopted by CBOE in 2001, PCX in 2003, and the new Boston Options

Exchange (BOX) in 2004.

The development of electronic option trading platforms and the associated boom in

market activity in the mid-2000s created a problem for the Linkage Plan, as the centralized

routing system was not designed to handle the elevation in order flow. This problem was

compounded by the introduction of the Penny Quoting Pilot Program5 (the “Penny Plot”)

in 2007, which increased the possibility of trade-throughs and locked/crossed markets due

to a smaller tick size. Based on the Regulation National Market System (NMS) for the

equity market in 2005, in 2009, the SEC approved the Options Order Protection and

Locked/Crossed Market Plan6 (the “Decentralized Linkage Plan”). This plan augments the

former central routing channel with the Intermarket Sweep Order, which allows market

makers to route their orders in an efficient and decentralized manner. The intention was to

eliminate locked/crossed markets and allow for more efficient price protection following

the Regulation NMS.

In 2007, the newly formed NYSE Arca exchange introduced a make-take fee structure

to the option classes affected by the Penny Pilot. This led to direct competition with the

traditional payment for the order flow (PFOF) model used by other exchanges. Anand,

Hua, and McCormick (2016) find that NYSE Arca’s shift to a make-take fee structure

reduced the execution costs for liquidity demanders and improved the quotes posted by

market makers. This is partially confirmed by Battalio, Shkilko, and Van Ness (2016), al-

though they note that the PFOF may lead to lower effective transaction costs for low-priced

options. Subsequently, the make-take model was adopted by various exchanges, including

Nasdaq, BOX, BATS, ISE, and PHLX in 2010.

The number of option venues has doubled over the past decade in parallel with multiple

exchange mergers. As of January 2020, 16 option exchanges operate in the United States,

with five holding companies owning one or more of these. They include Nasdaq (PHLX,

NOM, BX Options, ISE, GEMX, MRX), CBOE Holdings (CBOE, C2, BATS BZX, BATS

EDGX), Intercontinental Exchange (NYSE AMEX, NYSE Arca), Miami International

Holdings (MIAX, MIAX Pearl, MIAX Emerald), and TMX Group (BOX). Table 1

summarizes major events that influenced the evolution of option trading venues in the

United States. A detailed description of all exchanges is provided in Table A.1 of Online

Appendix A.

Figure 1 depicts the total annual number of option contracts traded on various

exchanges along with the corresponding market shares for 1973–2016. In the two decades

leading up to 2000, the trading activity was fairly stable, with CBOE being the dominant

venue. The foundation of ISE in 2000 and the introduction of electronic trading triggered

unprecedented growth, tripling the overall volume by 2010 and leading to a sharply

increased market share for ISE. Finally, after 2010, the trading activity has stabilized, while

also becoming more evenly distributed across exchanges.

5 https://www.sec.gov/news/press/2007/2007-10.htm (accessed 23 October 2020).

6 https://www.sec.gov/rules/sro/nms/2009/34-60405.pdf (accessed 23 October 2020).
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1.2 Market Regulation

The option exchanges are authorized by SEC to act jointly, as parties to a number of NMS

plans, including the aforementioned decentralized linkage plan. These plans centralize

requirements across exchanges to ensure cross-exchange protection, transparency, surveil-

lance, standardization, and audit trails.

The “Plan for Reporting of Consolidated Options Last Sale Reports and Quotation

Information”7 is one of the NMS plans aimed at reporting trading information from all

U.S. option exchanges. The OPRA is registered as a securities information processor,

Table 1. The evolution of options exchanges in the United States

Date Event Number of

venues

April 1973 The Chicago Board Options Exchange (CBOE) was launched. 1

January 1975 Options trading initiated at the American Stock Exchange (AMEX) 2

June 1975 Options trading initiated at the PHLX 3

April 1976 Options trading initiated at the PCX 4

December 1976 Options trading initiated at the Midwest Stock Exchange (MSE) 5

June 1980 Options business at MSE was consolidated with CBOE 4

June 1985 Options trading initiated at the New York Stock Exchange (NYSE) 5

April 1997 Options business at the NYSE was consolidated with CBOE 4

May 2000 The ISE was launched 5

February 2004 The BOX was launched. 6

September 2005 The Archipelago Exchange (ArcaEx) acquired PCX. 6

February 2006 The NYSE Group acquired ArcaEx to form NYSE Arca Options 6

July 2007 Nasdaq acquired PHLX to form Nasdaq PHLX 6

March 2008 Nasdaq Options Market (NOM) was launched 7

October 2008 The NYSE Group acquired AMEX to form NYSE AMEX Options 7

February 2010 BATS Options was launched 8

October 2010 CBOE C2 was launched 9

June 2012 Options trading initiated at Nasdaq BX Options (NOBO) 10

July 2013 ISE Gemini was launched 11

December 2013 The MIAX Options Exchange was launched 12

November 2015 BATS EDGX Options was launched 13

February 2016 ISE Mercury was launched 14

June 2016 Nasdaq acquired ISE to form Nasdaq ISE, Nasdaq GEMX (former ISE

Gemini), and Nasdaq MRX (former ISE Mercury)

14

February 2017 CBOE acquired BATS to form CBOE BZX (former BATS Options) and

CBOE EDGX

14

February 2017 MIAX Pearl was launched 15

August 2017 NYSE AMEX Options was renamed to NYSE American Options 15

March 2019 MIAX Emerald was launched 16

The active options exchanges as of February 2020 are in bold. The information in the table is partially based

on Mayhew (2002).

7 In accordance with Section 11A of the Securities Exchange Act of 1934.
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responsible for the implementation of this plan, and is regulated by a committee comprising

all participating exchanges.

OPRA currently processes option trading data from all 16 U.S. option exchange mar-

kets. OPRA requires participants to report information on last sale and current quotes in

accordance with Rule 602 of Regulation NMS (including prices, quotation sizes, and some

regulatory auditing information). The Securities Industry Automation Corporation (SIAC)

provides technological infrastructure for collection, consolidation, and dissemination of

this real-time information. OPRA provides market data to professional (directly or through

vendors) and non-professional subscribers (only through vendors) for a fee.

There are three additional mandatory plans for the exchanges. The Options Regulatory

Surveillance Authority (ORSA) Plan was adopted in 2006. It seeks to deter insider trading.

The Options Listing Procedures (OLP) Plan was introduced in 2006 “to facilitate the listing

and trading of standardized option contracts on each of the exchanges.” The Consolidated

Audit Trail (CAT) was filed in 2014 to collect all orders and identify them as cancellations,

modifications, or executions for the exchange-listed equities and options across all U.S.

markets.

1.3 Options Trading and Market Maker Obligations

The core trading session in the U.S. option markets begins at 8:30 and lasts until 15:00

Central Time (CT) every business day. Index- and ETP options have an extended session

ending at 15:15 CT. In addition, some exchanges (BATS BZX and BATS EDGX) provide a

premarket trading session, initiated up to 2 h prior to the regular market open.

The OCC summarizes the most important product-specific information, sets daily pos-

ition limits (250,000 contracts for most liquid stocks), and requires minimum customer

margins—up to 120% of the aggregate contract volume for writers of uncovered options.
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Figure 1. Total annual option contract volume traded on different exchanges. The “Others” category

contains C2, EDGX, MIAX, MRX, NOBO, and GEMX. We exclude NYSE, MSE, and NASDAQ, as their

respective option trading activities amassed only minor market shares during brief periods prior to

2000. The data stem from the CBOE Annual Market Statistics.
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The most heavily traded options are written on single stocks, cash indices, and ETF/

ETPs, but many other types of underlying are available, for example, commodities, interest

rates, and foreign exchange. A standard equity or ETF/ETP option contract is an American-

type option covering 100 shares of the underlying, and exercise of the contract results in

physical delivery of the underlying shares. In case of stock splits or dividend payments,

the number of shares and exercise prices are adjusted accordingly. Index options are, in

contrast, mostly European-style and settled in cash. Regular options usually expire at the

close of trading on the third Friday of each month. In 2005, CBOE issued weekly options

that expire every Friday8 for some indices and ETFs, and expanded it to cover individual

securities in 2012. Monday and Wednesday-expiring weekly options were launched in

2016 for selected indices and ETFs.9

The option market is a hybrid quote-driven market, where market makers are respon-

sible for providing continuous bid and offer quotes. Often, there are multiple types of

market makers that differ in privileges and responsibilities. More senior categories (e.g.,

lead or primary market makers) are granted allocation priority in the relevant option

classes, but are subject to stricter capital requirements, quoting obligations, and other

responsibilities. Regular market makers may also be registered as preferred or directed mar-

ket makers with certain privileges in executing preferenced and directed orders. Since the

type and role of market makers differ across exchanges and over time, we only discuss

some of their general obligations. We refer interested readers to Mayhew (2002) and

Simaan and Wu (2007) for a more detailed account.

There are several market-wide obligations for option market makers. First, in February

2001, the SEC introduced a market-wide firm quote obligation through an amendment of

the Quote Rule (Securities Exchange Act Rule 11Ac1-1), which was previously applied

only to the equity market. This rule requires the market makers to post firm quotes that are

valid for order executions of at least one contract. Before that, option exchanges imposed

their own firm quote requirements on market makers independently of each other. Second,

in 2010, the SEC proposed an amendment to the local exchange rules that prohibit market

maker stub quotes, that is, quotes that are far away from the prevailing market. Stub quotes

might be posted, when market makers attempt to fulfill quoting obligations without an ac-

tual intent to trade. Stub quotes were viewed as a contributing factor to the Flash Crash on

May 6, 2010. The new rule requires quotes to be within a certain percentage band around

the NBBO (or the consolidated last sale, if the NBBO is not available). These requirements

seek to make options trading less risky for investors and prevent transactions from being

executed at irrational prices.

By the Quote Rule, market makers must provide continuously updated two-sided quotes

throughout the trading day. Each option exchange (or a self-regulatory organization)

imposes additional obligations on its market makers. In general, these quoting obligations

are in force irrespective of the prevailing market conditions. Therefore, during episodes of

stress, market makers are supposed to maintain liquidity, absorbing the impact of shocks

8 Weekly options are not issued when an existing option of the same specification also expires on

the same Friday.

9 Underlyings with weekly options available can be found in http://www.cboe.com/products/

weeklys-options/available-weeklys.
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on individual investors.10 The requirement of continuous quoting is especially important

for option markets, because an appreciable fraction of the securities is thinly traded.

Most exchanges require market makers to quote at least 90% of the time during the

trading day, with compliance assessed on a monthly basis. Moreover, the quote size should

exceed a minimum number of contracts, usually determined on a class-by-class basis, and

may vary with market maker type. Moreover, market makers must quote continuously in

some minimum fraction of the option classes and series to which they are assigned. These

fractions range from 60% to 100% across exchanges and market maker type. More

detailed information on quotation requirements is collected in Table A.2 of Online

Appendix A.

The minimum tick size—the smallest possible price increment—depends on the price

level of an option. For those traded below $3, the minimum tick constitutes $0.01 for the

option classes participating in the option penny pilot program and $0.05 for other classes.

For options traded above $3, the minimum tick is $0.05 for the classes from the penny pilot

program and $0.10 for the other series. The options written on many market-wide ETFs

(namely, QQQQ, IWM, and SPY) and option-related products (XSP and VIXW) represent

exceptions with a minimal increment of $0.01 for all corresponding option series.

2 LITERATURE REVIEW ON HIGH-FREQUENCY OPTIONS DATA

This section provides a brief and selective review of the existing literature using U.S. high-

frequency options data and discusses the differences across the data sources with emphasis

on the distinction between the OPRA bulk dataset and those used in prior studies. Toward

that purpose, Table 2 references a number of papers along with their associated datasets,

sampling periods, and option classes used.

The first widely adopted intraday U.S. stock options data stem from the Berkeley

Options Data Base (BODB), which collected each transaction and bid/ask update for every

option series on the CBOE from the Market Data Report, time-stamped to the second. The

BODB only covers CBOE trades and quotes until 1997, as the systematic collection of

BODB data seems to end by December 1996.11 However, some authors may still, subse-

quently, have acquired this type of data directly from the CBOE.12

After the termination of BODB, scholars focused on an older version of the OPRA data-

set for intraday stock options data, stemming from the early 2000s, labeled OPRA (old) in

Table 2. This edition of OPRA provides a complete record of option trades and best avail-

able quotes for all exchanges, time-stamped to-the-second, but depth information is un-

available. This dataset appears to have been discontinued later in the 2000s. We have been

unable to establish the exact sample period covered.

The old OPRA is considerably less granular than the up-to-date, to-the-millisecond

OPRA dataset exploited in this article, and labeled OPRA (new) in Table 2. New OPRA

10 See, for example, https://www.sec.gov/comments/s7-05-15/s70515-34.pdf (accessed 23 October

2020) and Nagel (2012).

11 See, for example, https://libguides.stanford.edu/az.php?a¼b and https://catalog.princeton.edu/

catalog/2593696 (accessed 23 October 2020).

12 Bollen and Whaley (2004) use such data covering 01/1995–12/2000 for the 20 most heavily traded

stock options.
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Table 2. List of papers using high-frequency options data from the U.S. market

Authors Dataset Sampling Period Sampled Options Classes

Bhattacharya (1987) BODB 06/1977–08/1978 Options on the 32 top stocks by

volume

Stephan and Whaley

(1990)

BODB 01/1986–03/1986 All call options

Vijh (1990) BODB 03/1985–04/1985 Options on NYSE-listed stocks

Chan, Chung, and

Johnson (1993)

BODB 01/1986–03/1986 All options

Sheikh and Ronn (1994) BODB 01/1986–09/1987 30 most heavily traded stock options

Chan, Chung, and

Johnson (1995)

BODB 01/1986–03/1986 Options on NYSE-listed stocks

Mayhew, Sarin, and

Shastri (1995)

BODB 09/1985–06/1986,

01/1988–10/1988

Short-dated options on approximate-

ly 110 stocks

Bakshi, Cao, and Chen

(1997)

BODB 06/1988–05/1991 Options on the S&P 500 index

Easley, O’Hara, and

Srinivas (1998)

BODB 10/1990–11/1990 Options on the 50 top stocks by

volume

Lee and Yi (2001) BODB 01/1980–12/1990 Call options on NYSE-listed stocks

Chan, Chung, and Fong

(2002)

BODB 01/1995–03/1995 Options on the 60 top stocks by

volume

Mayhew (2002) BODB 01/1986–08/1997 All stock options traded on CBOE

Pan (2002) BODB 01/1989–12/1996 Options on the S&P 500 index

Chakravarty, Gulen,

and Mayhew (2004)

BODB 01/1988–12/1992 Sixty most heavily traded stock

options

Cao, Chen, and Griffin

(2005)

BODB 01/1986–12/1994 Options on firms involved in merger

and acquisition activities

George and Longstaff

(1993)

CBOE 01/1989–12/1989 Options on the S&P 100 Index

Bollen and Whaley

(2004)

CBOE 06/1988–12/2000 Options on the S&P 500 index and

20 individual stocks

De Fontnouvelle, Fishe,

and Harris (2003)

OPRA (old) 08/1999, 08/2000 28 multilisted option classes

Battalio, Hatch, and

Jennings (2004)

OPRA (old) 06/2000, 01/2002 71 (615) option classes in 2000

(2002)

Harris and Mayhew

(2005)

OPRA (old) 01/2003 Options on 451 stocks

Battalio and Schultz

(2006)

OPRA (old) 01/2000–06/2000 Options on up to 49 stocks

Holowczak, Simaan, and

Wu (2006)

OPRA (old) 05/2002–07/2002 Options on the 40 most actively

traded stocks

Anand and Chakravarty

(2007)

OPRA (old) 07/1999–08/1999 Options on 100 sample firms

Simaan and Wu (2007) OPRA (old) 01/2002 Options on the 50 top stocks by

volume

Battalio and Schultz

(2011)

OPRA (new) 08/2006–10/2008 Options on stocks subject to the

short sale ban and a matched

sample

(continued)
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also includes depth information at the best quotes for each exchange. The new OPRA dates

back to July 2004, but is discontinued after September 2019. Moreover, not all papers

using new OPRA acquire data from CBOE, for example, Battalio and Schultz (2011) cites a

market maker as their source, Hu (2014) uses data from Trade Alert LLC, while Muravyev,

Pearson, and Paul Broussard (2013) and Muravyev (2016) rely on data from NANEX,

time-stamped every 25 ms. The OPRA data in Anand, Hua, and McCormick (2016) is

preprocessed by the Baruch College Options Data Warehouse, and the source for

Zhang (2018) is Thomson Reuters Tick History (TRTH). These third-party vendors receive

feeds directly from OPRA, but apply various data cleaning and aggregation procedures

which, inevitably, imply some (unknown) loss of information. For example, TRTH proc-

esses the raw quote messages from OPRA and provides time-stamped NBBO quotes, but

Table 2. (continued)

Authors Dataset Sampling Period Sampled Options Classes

Birru and Figlewski

(2012)

OPRA (new) 09/2006–10/2006, 09/

2007–10/2007, 09/

2008–11/2008

December-expiry options on S&P

500 Index

Muravyev, Pearson, and

Paul Broussard (2013)

OPRA (new) 04/2003–10/2006 Options on 36 liquid U.S. stocks and

3 ETFs

Cakici, Goswami, and

Tan (2014)

OPRA (new) 05/2010 Options on S&P 500 and S&P 100

constituents

Holowczak, Hu, and Wu

(2014)

OPRA (new?)02/2006–12/2006 Options on QQQQ

Hu (2014) OPRA (new?)04/2008–08/2010 Options on all individual stocks

Mishra and Daigler

(2014)

OPRA (new?)10/2008–12/2008, 10/

2009–12/2009

Options on SPX and SPY

Chatrath et al. (2015) OPRA (new) 01/2011–05/2012 Options on S&P 500 Index

Anand, Hua, and

McCormick (2016)

OPRA (new) 01/2007–12/2010, 11/

2012–01/2013

Options traded on NYSE Arca and a

matched sample

Muravyev (2016) OPRA (new) 04/2003–10/2006 Options on 39 most actively traded

stocks (including four ETFs)

Amaya, Bégin, and

Gauthier (2018)

OPRA (new?)07/2004–12/2012 Options on S&P 500 Index

Zhang (2018) OPRA (new) 01/1996–01/2015 Options on S&P 500 Index and its

constituents, and sector ETFs

Muravyev and Pearson

(2020)

OPRA (new)

LiveVol (?)

04/2003–10/2006

01/2004–04/2013

Options on 39 most actively traded

stocks (including two ETFs)

Simon (2013) LiveVol 05/2005–04/2010 Options on SPY ETF

Battalio, Shkilko, and Van

Ness (2016)

LiveVol 05/2010–06/2010 3233 options classes on all stocks

and ETFs

Christoffersen et al.

(2018)

LiveVol 01/2004–12/2012 Options on S&P 500 constituents

Battalio, Figlewski, and

Neal (2020)

LiveVol 03/2010 Options on 2945 stocks

We report the number of option classes before any filtering. BODB stands for the Berkeley Options Data Base.

For datasets with unidentifiable data source, we insert a question mark.
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exchange identifiers for the NBBO quotes and exchange-level best quotes are not provided

by TRTH.

As recent alternatives to new OPRA, LiveVol,13 also based at the CBOE, offers two sep-

arate intraday datasets. One contains to-the-minute NBBO quotes and trades for all

exchanges, obtained by aggregating all underlying individual OPRA entries. A second data-

set provides all (tick-by-tick) option transaction prices and volume along with the concur-

rent best bid–ask quotes for the option and the underlying (time and sales data). These

datasets have dramatically reduced granularity relative to OPRA new, but have the advan-

tage of a more manageable size, and the former includes the disseminated NBBO quotes.

In summary, OPRA new is more granular than all of the alternative datasets referenced

in Table 2. Moreover, along with LiveVol and TRTH, it is the main source of information

regarding recent intraday option market activity. Hence, our study of the OPRA new

sample, covering 01/2015–08/2015, provides a detailed look at the most granular option

dataset available to scholars.

3 DATA OVERVIEW, SPECIAL RECORDS, AND DATA FILTERING

In this section, we provide a broad overview of the bulk OPRA data, select a working sam-

ple, and inspect the associated trade and quote records. Next, we categorize trades and

quotes, which might be irrelevant, or even detrimental, for certain types of analyses.

Furthermore, we explore the frequency with which such potentially problematic records ap-

pear in the bulk data. Finally, we explore the extent to which intraday option quotes

recorded by OPRA imply violations of a basic no-arbitrage put–call parity relation.

3.1 Data Overview

The CBOE OPRA Data (Bulk) package covers all transactions and top-level quotes dissemi-

nated from all U.S. option exchanges on a millisecond basis in accordance with the OPRA

Plan. Each record reflects either a quote or trade event realization for one of the available

contracts [identified with the underlying, expiration date (tenor), strike price and put versus

call type] on one of the U.S. option markets.

Each transaction record displays the price and corresponding trading volume. Each

quote record contains top-level bid and ask prices along with the quoted amounts, implying

that each such record reflects an update of a bid–ask pair (a change in the quoted prices or

amounts) relative to the preceding quote record for a given exchange market. In addition,

each option quote or trade record contains the most recent first-level quotes for the under-

lying.14 A more detailed description of the content and structure of the OPRA dataset is

provided in Online Appendix B.

Our dataset spans the first eight months of 2015, containing a total of 167 trading days.

Altogether, we identify 3686 equities, 566 exchange-traded funds (ETF) or exchange-

13 https://datashop.CBOE.com/option-quotes-intervals (accessed 23 October 2020).

14 This applies only when the underlying is a tradable instrument. For example, for SPX options, such

quotes are not available, while records for SPY options, written on a tradable ETF, contain the

most recent top quotes of the underlying. For an in-depth comparison between SPX and SPY

options, see Mishra and Daigler (2014).
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traded notes (ETN), and 47 indices as underlying instruments. In addition, 335 underlyings

have a non-standard deliverable, resulting in multiple listed option symbols for the same

underlying entity.15 On average, 160 contracts are listed per option symbol on a daily basis

but, for the most liquid underlyings, there may be up to 4000 different contract variations.

In terms of tenor, 45% of the contracts may be classified as standard (equity, ETF, or index

options), while weekly (20%), quarterly (25%), and long-term equity anticipation secur-

ities (LEAPS, 10%) options are listed in sizable proportions as well. In contrast, Mini

Options rarely appear and are only found for five of the most traded equities and ETFs.16

Between January and August 2015, OPRA recorded 1.22 trillion quotes and nearly 159

million trades, as the trading volume exceeded 2.76 billion contracts with a total notional

value of $7.95 billion. Table 3 summarizes the average daily quote and trade activity for

the three main asset classes, with the most active constituents within each class being

AAPL, SPY, and SPX. These underlyings have multiple option classes, but for illustrative

purposes we only report statistics for the standard categories.17

To provide a representative overview of the OPRA data, while keeping it reasonably

succinct, we select a small subset of the underlyings. This sample of 12 stocks and 5 ETFs

from different sectors mirrors the general heterogeneity in terms of the (average) number of

records (see Table 4). We focus on equities and ETFs to study the cross-exchange patterns,

which are absent for index options. Furthermore, we exclude option classes such as Mini

and Jumbo options, or corporate-action adjusted ones.18

3.2 Potentially Irrelevant or Faulty Observations

Depending on the analysis, some OPRA records might be irrelevant, redundant, or even

introduce undesirable noise through data errors or market microstructure peculiarities. We

classify such special records in line with the criteria used for algorithms developed for clean-

ing the TAQ data in the prior literature (Brownlees and Gallo, 2006; Barndorff-Nielsen

et al., 2009). Our classification contains, however, several categories specific to high-fre-

quency options data.

3.2.1 Classification of special records

We identify six categories of OPRA records that, depending on the context, may be sup-

pressed. We characterize these special records in Table 5, along with the detailed rules for

authentication. For each group, we introduce a filter that applies separately for trade and

quote records from a given exchange.

The F1 category consists of all observations recorded before the start of the regular trad-

ing session (8:30 CT), or after the close (15:00 CT for stock options and 15:15 CT for ETF/

ETP options). Although some exchanges (e.g., BATS) accept early quotation, such records

15 Often, non-standard deliverables are Mini and Jumbo options, but can also be, for example, cor-

porate-action affected stocks.

16 There is trading in some non-standard S&P 500 index contracts, such as binary (BSZ) and range

(SRO) options. Another binary option exists for the S&P 500 Volatility Index (BVZ). These contracts

are only listed and traded on the CBOE.

17 For example, the mini options AAPL7 and SPY7 were excluded.

18 However, by including AAPL and SPY, two of the most liquid assets among the 4562 option class

symbols, we still cover more than 10% of the entire OPRA quote data, see Table 3.
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are often noisy and may induce misalignments in terms of timing, if observations from mul-

tiple exchange markets are considered jointly.

The F2 category includes entries that likely involve data error. In particular, we identify

trade records with a zero transaction price or zero size. Likewise, we filter quotes associated

with negative spreads and entries with zero offer price or size. Note that, in contrast to the

stock market cleaning algorithm from Barndorff-Nielsen et al. (2009), we do not eliminate

quotes with zero bid prices (and positive offer prices). This occurs regularly for deep out-of-

the-money options and is typically not associated with an error.

The F3 category represents trades and quotes with specific conditions, indicative of po-

tentially irregular features of the given entry. This occurs for records of cancelled trades

and non-firm quotes.

The F4 group contains quote records of minimum size. Such quotes might be less in-

formative about the latent equilibrium option price. The presumption is that market makers

experiment, when uncertain about the fair price, by posting minimally sized quotes at a dis-

tinct price level—simply to uncover latent demand with minimal exposure. Alternatively,

due to the obligation to continuously maintain quotes throughout the trading day (see

Table A.2 in Online Appendix A), market makers may at times post minimum sized quotes

to satisfy requirements without providing genuine liquidity. Thus, we flag quotes when the

size is less than or equal to a single contract at both the bid and offer side.19

Table 3. OPRA average daily statistics from January to August 2015

Asset classes Specific examples

Equity ETF/ETN Index AAPL SPY SPX

Underlyings 3686 566 47

Option

symbols

3814 585 53

Option

classes

620,123 156,162 33,690 1169 3685 2544

Quotes 5,021,787,050 1,965,243,131 321,813,772 226,822,053 520,188,594 10,183,398

Trades 678,120 222,143 50,896 77,849 75,509 10,994

Volume 8,871,502 6,024,324 1,672,754 1,029,155 2,521,188 493,663

Notional $19,523,973 $9,016,319 $19,080,347 $3,436,161 $4,534,401 $13,133,924

MPS 214,635 83,994 13,755 9697 22,234 436

QPC 8098 12,585 9552 194,031 141,164 4003

QPT 7405 8847 6323 2914 6889 926

QPV 566 326 192 220 206 21

QPN 257 218 17 66 115 0.78

MPS refers to messages per second, while QPC, QPT, QPV, and QPN are the number of quote messages div-

ided by option classes, trade messages, traded number of contracts, and notional trading volume in dollar

terms, respectively.

19 We do not remove quotes, which feature minimal size at only one side. Such scenarios often ma-

terialize when one side of the market dominates the quoting activity. Specifically, for deep out-of-

the-money options ask orders tend to dominate, while, conversely, bid orders prevail for in-the-

money options.
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We caution that, since only the top bid and ask quotes are available in (new) OPRA, we

cannot always identify whether a quote is of minimal size. For example, whenever a bid or

ask quote changes, we observe a different set of contracts available at the new level. Since

this figure is unobserved prior to the quote shift, it is impossible to determine the exact size

of the new quote. As a result, we allocate only those minimally sized quotes, that can be

identified with certainty, to category F4.

The F5 group contains outliers. For trades, we focus on abnormally high or low transac-

tion prices relative to the current spread. For quotes, we identify entries with excessive

spreads, extraordinarily high or low mid-quotes, and entries for which the ratio between

ask and bid is unusually high. Our detection rules are similar to those of Barndorff-Nielsen

et al. (2009) for trades and quotes. Such outliers may introduce unwarranted irregularities

into the data structure, complicating the analysis. In particular, outliers may reflect data

errors or market microstructure artifacts, such as stub quotes.

Table 4. Sample of underlying assets for the descriptive analysis

Sector Asset Ticker Name Industry Average

records

(per day)

Consumer Equity PG The Procter & Gamble

Company

Personal Products 22,194,052

staples Equity WMT Wal-Mart Stores, Inc. Discount, Variety Stores 20,171,655

Equity K Kellogg Company Processed & Packaged

Goods

5,461,349

ETF XLP Consumer Staples Select

Sector SPDR Fund

5,517,801

Energy Equity XOM Exxon Mobil

Corporation

Major Integrated Oil &

Gas

31,764,057

Equity CVX Chevron Corporation Major Integrated Oil &

Gas

28,095,240

Equity MPC Marathon Petroleum

Corporation

Oil & Gas Refining &

Marketing

4,389,222

ETF XLE Energy Select Sector

SPDR Fund

42,901,922

Financial Equity JPM JPMorgan Chase & Co. Money Center Banks 32,209,032

Equity BAC Bank of America Corp Money Center Banks 24,726,836

Equity BLK BlackRock, Inc. Asset Management 1,701,449

ETF XLF Financial Select Sector

SPDR Fund

7,465,856

Technology Equity AAPL Apple, Inc. Electronic Equipment 226,899,902

Equity GOOG Alphabet, Inc. Internet Information

Providers

61,812,973

Equity EA Electronic Arts, Inc. Multimedia & Graphics

Software

11,184,655

ETF XLK Technology Select Sector

SPDR Fund

6,963,341

Global ETF SPY SPDR S&P 500 ETF 520,264,103
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Records with identical time-stamps are collected in category F6. Often, multiple quotes

or transactions are recorded at the same millisecond. When treating the observed option

prices as a time series, it is convenient to replace such entries with a single record. This can

be done in several ways.

First, OPRA captures the exact execution time for each record, so the final entry within

a given millisecond may be used as the single price observation in lieu of the multiple

records with the same time stamp. Obviously, this approach has drawbacks, as it discards

Table 5. Classification of special trade and quote OPRA records according to six groups

Group Description Trades Quotes

F1 Records outside

the regular

trading hours

Entries with timestamps outside the normal trading period (from 8:30 until

15:00 CT for underlying stocks and until 15:15 CT for underlying ETF/

ETP)

F2 Records with

possible

misrecordings

and data errors

Entries with zero transaction price or

size

(a) Entries with zero offer price

or size

(b) Entries with a negative spread

F3 Records with

irregular

conditions

Entries which correspond to canceled

transactions (observations with condi-

tion codes “A”, “C”, “E”, “G”, and

“O”)

Entries which correspond to non-

firm quotes (observations with

condition code “F”)

F4 Records corre-

sponding to

non-inform-

ative quotes

Entries for which both bid and

offer sizes do not exceed 1

contract

F5 Possibly outlying

records

Entries for which a transaction price

is either lower than the current bid

price minus the current spread, or

higher than the current offer price

plus the current spread

(a) Entries for which the spread

exceeds 50 median spreads on

that day

(b) Entries for which the mid-quote is by

more than 10 mean absolute deviations

apart from the rolling centered median

(that is based on a rolling window of

50 observations)

(c) Entries for which the ratio of offer

price to bid price exceeds 5 when the

bid price is non-zero.

F6 Records with

identical

timestamps

At the millisecond frequency, can be

replaced with a single entry with me-

dian/mean/volume-weighted transac-

tion price and the total size. For lower

frequencies, the observations with the

latest millisecond time stamp can be

used.

At the millisecond frequency, can

be replaced with a single entry

with median/mean/volume-

weighted bid and offer prices

and the total sizes. For lower

frequencies, the observations

with the latest millisecond

time stamp can be used.
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the information contained in the other records and, in particular, fails to take advantage of

the possibility of constructing a more robust observation from the available records. An al-

ternative is to develop a procedure that aggregates the “simultaneous” records within a

given millisecond by computing the median, mean, or volume-weighted average of the

trade/quote prices and summing up individual trade/quote sizes. Specifically, for time series

analysis, where the frequency is considerably lower than a millisecond, for example, a se-

cond or minute, it is sensible to consider an approach that mitigates the distortions induced

by potential outliers or other microstructure noise effects associated with the reliance on a

single end-of-interval observation.

We note that the frequency of records in group F2 and, to a lesser extent, F5 might pro-

vide a signal regarding the overall data quality, as such observations are more likely to be

associated with data errors.

Finally, we stress that the filters are intended solely as a tool for option selection in the

context of a given research objective. They can be ignored or imposed independently of

each other. Moreover, they apply separately to the trade and quote records from a given ex-

change. If a specific study needs to guard against data errors, deal with multiple records at

a single timestamp, or remove noisy and outlying observations, the filters in Table 5 pro-

vide a guide for identifying the relevant records in the dataset.20

3.2.2 Summary statistics of special records

We inspect trade and quote records from our selected raw OPRA option sample throughout

all trading days in January 2015 for contracts expiring on February 20, 2015. This sample

consists of 2.77 billion quote and 730,000 trade records. Tables A.3 and A.4 in Online

Appendix A provide detailed aggregated statistics on the presence of records in the special

categories identified above across underlyings and exchange markets, respectively.

Figures 2 and 3 summarize key aspects of the findings. They report the average fraction of

daily records belonging to one of the categories F1–F6 (white bars) and the fraction belong-

ing to multiple categories (colored bars). Figure 2 depicts the fraction of special option

records for each underlying asset. Figure 3 displays the fraction of special option records

for each exchange venue.

Quote records are far more numerous than trade records. For example, in January

2015, SPY options expiring on February 20 feature, on average, more than 66 million daily

quotes across the exchanges21 compared with less than 16,500 transactions. The average

number of special entries for SPY options exceeds 8.4 million quotes (more than 12% of all

SPY quote records) and about 2000 trades (again, more than 12% of all SPY trade records)

per trading day.

Depending on the underlying asset, 5–25% of the trade records have non-unique milli-

second time stamps (category F6), which may reflect the execution of larger aggressive

orders hitting several smaller limit orders in the book simultaneously. In fact, this group

constitutes more than 99% of the special trade records. Importantly, the categories F1, F2,

F3, and F5 are largely absent for trade data. This suggests that the trade records are

20 Studies focusing on specific topics will often apply additional filters. For example, Christoffersen

et al. (2018) impose a positive daily volume requirement and check for violations of minimal tick

size rules implied by the option quotes.

21 It implies an average of about 240,000 quotes for the 282 distinct contract specifications.
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remarkably clean and free of extreme outliers. As seen from Figure 3, trades with identical

timestamps are especially prevalent on the NYSE Amex (exchange symbol A), BOX (B),

and MIAX Options Exchanges (M), reaching 30–35% of all trade records on these plat-

forms. In contrast, for Nasdaq BX (T) and C2 (W), the fraction of such trade records is less

than 1.5%.

In total, between 10% and 30% of the quote records for a given option class are deemed

special and fall into one of six categories. Quote records outside regular trading hours (F1)

or appearing erroneous (F2) are rare (less than 0.1%). Non-firm quotes (F3) are also infre-

quent, never exceeding 0.5% of the total quote records. Minimal two-sized quotes (F4) are

common on all exchanges, exceeding 15% of all quotes for the BOX exchange (B). Quote

records representing potential outliers (F5) amount for up to 7.5% of the total for certain

underlyings, and are about equally common across all markets. Figure 2 shows that the

fraction of quotes with identical millisecond stamps (F6) is substantial, varying between

3% and 12% of all entries across underlyings. For example, for Apple options, such quotes

amount to almost 2 million entries per day. Although group F6 contributes substantially to

the amount of special records, its relative contribution is less important than for trades.

Figure 2. Average daily percentage of special option trade (top panel) and quote (bottom panel)

records across selected underlying assets. White bars correspond to the total fraction of special

records in the raw data (all categories, F1–F6). Yellow bars (available for quotes only) correspond to

the fraction of records with minimal quote size (category F4). Blue bars correspond to the fraction of

potentially outlying records (category F5). Red bars correspond to the fraction of records with the

same millisecond time stamps (category F6). The results cover data for all options traded in January

2015, expiring on February 20, 2015, observed across all available exchange markets.
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Thus, we conclude that OPRA quote records are mostly void of obvious data errors and in-

valid observations, but contain a non-trivial amount of potential outliers, which may re-

quire some attention, depending on the research objective.

3.3 Intraday Deviations from Put–Call Parity

Identifying records violating no-arbitrage principles is important for some applications, as

it suggests the presence of frictions, market failures, faulty data entries, or non-synchronous

recording of option and underlying asset prices. Consequently, the frequency of such viola-

tions at a given venue may be indicative of the relative exchange efficiency and the reliabil-

ity of the associated option price and quote record.

We hasten to add that minor deviations from the put-call parity may not offer actual ar-

bitrage opportunities. Whether the violation is economically relevant hinges on the proxy

for the risk-free interest rate, representing a cost of capital for the option trader, and certain

Figure 3. Average daily percentage of special option trade (top panel) and quote (bottom panel)

records across 12 option exchange markets. White bars correspond to the total fraction of special

records in the raw data (all categories, F1–F6). Yellow bars (available for quotes only) correspond to

the fraction of records with the minimal quoting size (category F4). Blue bars correspond to the frac-

tion of potentially outlying records (category F5). Red bars correspond to the fraction of records with

the same millisecond time stamps (category F6). The results are based on the data for all option con-

tracts traded in January 2015, which expire on February 20, 2015, observed on all available exchange

markets.
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shadow costs associated, for example, with margin requirements and inventory control.22

As such, one may think in terms of “apparent” violations instead. Nonetheless, near arbi-

trage violations may also be informative, as they reflect scenarios with high call option

quotes relative to the corresponding put options. In particular, the measures capturing the

put–call parity deviations potentially can be relevant for asset pricing more broadly. For ex-

ample, Cremers and Weinbaum (2010) find that such end-of-day metrics are indicative of

price pressures, which provide significant predictability for future asset returns.

Theory predicts that the price of European options must be convex and monotone func-

tions—increasing for put and decreasing for calls—of the strike price, see, for example,

Breeden and Litzenberger (1978). For brevity, we focus on one specific relation—the put–

call parity—which establishes a no-arbitrage pricing relationship between put and call

options at a given strike jointly with the price of the underlying asset.23

For American options, put–call parity cannot be represented as an equality. Instead, cer-

tain inequalities apply, including the following24:

Ct þ Ke�rf s � Pt þ St;

where Ct and Pt are call and put option prices at time t, respectively, K is the strike price, St

is the underlying asset price, rf denotes the risk-free rate, and s is the tenor of the option

pair. Consequently, put–call parity is violated if

CB
t > PA

t þ SA
t � Ke�rfs;

where the superscripts A and B refer to ask and bid prices, respectively.

For all underlying assets in our sample, we identify violations of this inequality using

intraday option quote records separately for each of the 12 exchanges. We restrict our at-

tention to data from 20 trading days in January 2015 and consider only options expiring

on February 20, 2015. Consequently, the tenor ranges from seven to three weeks. For each

trading day, underlying security and strike price, we inspect all put–call quote pairs, check-

ing the put–call inequality record-by-record.

Table A.5 in Online Appendix A presents aggregate results from this analysis, spanning

all 17 underlying assets for each of 12 option venues that were active at the time. The

results reveal strong heterogeneity in the (apparent) violations across options for different

underlyings. Quotes for JPM, BAC, and SPY options display the highest rate of violations,

22 For example, when using the 3-month Libor instead of the Treasury rate in our analysis, we detect

significantly lower numbers of such violations.

23 The filters described in the previous section might also identify records that violate general no-ar-

bitrage principles. To identify all records violating a given restriction, prices over a cross-section

of options contracts (possibly along with the underlying prices) may need to be analyzed jointly.

This type of comprehensive analysis necessitates additional assumptions for the construction of

option cross-sections from non-synchronous intraday prices and specific criteria for identifying

records that violate the specific arbitrage condition in question. In general, such studies differ

substantively from the analysis of special records in the previous section, based only on the data

from a single contract.

24 There is a closely related upper bound on the put plus asset price. However, given the illustrative

nature of this exercise, we ignore that constraint, which involves data on the dividend yield as

well.
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whereas we detect none at all for XOM, CVX, and MPC in January 2015. The variation of

put–call parity violations across exchanges is much less pronounced, reinforcing the point

that such violations are linked closely to features of options for specific underlying asset.

We illustrate how the (apparent) violations vary over time and depend on both money-

ness and exchange venue by providing a more granular visualization in Figure 4. Each small

square reflects a particular trading day and strike price in January 2015. The color is red, if

put–call parity was violated for a combined period exceeding 1 min; otherwise, the color is

blue. To conserve space, we display results only for the BAC option quotes recorded on

two exchanges, NYSE Arca and CBOE. This choice is useful in exemplifying the type of

economic events and exchange-specific features that can be explored through high-fre-

quency options data. To put the results in context, we note that the financial sector per-

formed poorly over the first half of the month, with the BAC stock displaying heightened

volatility and suffering a cumulative loss of approximately 14% over that period.

Figure 4. An illustration of the put–call parity violations for BAC option quotes posted at NYSE Arca

(left panel) and CBOE (right panel) in January 2015. A square represents BAC options expiring on

February 20, 2015, if the corresponding strike price (vertical axis) were available for trade on the speci-

fied date (horizontal axis). Red color implies that the put–call parity has been violated for more than 1

min for a given strike price (in dollars) on a given date. Otherwise, the blue color is used.
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Several patterns stand out in Figure 4. First, there is a clustering of the violations in the

first half of the month, when volatility was elevated. Second, they center on the ATM strike

price, which was close to $18 at the start of the month and between $14 and $16 over the

last two weeks. Third, they are asymmetric across the strikes, as there are more violations

for lower strikes. Fourth, they are almost absent for the deep ITM and deep OTM contract

pairs. Fifth, for BAC during this month, the violations are much more prevalent on NYSE

Arca than CBOE.

For a different, but related perspective, Figure 5 displays the frequency with which we

observe a violation of put–call parity for any one of the quoted BAC or JPM options within

a given 10-min interval for a specific exchange in January 2015 with February 20 expiry.

Here, two observations are striking. First, the violations are concentrated on a few venues,

NYSE Arca, Nasdaq Options Market (NOM), and BATS plus, in the case of BAC, also ISE

Gemini. Nonetheless, violations are observed occasionally for almost every venue. Second,

the violations seem to be less frequent around the opening of the trading day, when the

underlying assets typically display high volatility and wide bid–ask spreads.

The above observations raise numerous research questions that fall outside the scope of

the current paper. One, is the volatility of the underlying a primary driver in the put–call

parity violations? Two, does the direction of the violations possess short-term predictive

Figure 5. Intraday frequency of put–call parity violations for BAC and JPM options. The figure displays

the frequency of put–call parity violations for BAC and JPM option quotes across all exchange venues

in January 2015, for options which expire on February 20, 2015. The violations are compiled for 10-

min intervals across the trading day. The color coding reflects the frequency of observed violations

within the given interval and exchange across the full month.
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power for the asset return? Three, do effective bid–ask spread measures (using trade prices

relative to mid-quotes) also display arbitrage violations? Four, do the violations cluster

around the ATM strike because the posted spreads are particularly narrow, in an economic-

ally meaningful sense, for this (liquid) part of the strike range? Five, why do we observe

large discrepancies in violations across exchange venues? Six, does the option bid–ask

spread display strong intraday patterns, possibly explaining why there may be fewer viola-

tions during morning trading? In Section 4, we present some findings related to the three

latter points, so, at that stage, we shed a bit more light on a few of these issues, even if we

do not provide comprehensive evidence.

In summary, instances of put–call parity violation are observed across all exchanges,

they do at times cluster across consecutive trading days, they are more frequent on certain

exchanges, they are more prevalent for some underlyings at a given point in time, and they

vary in intensity across the trading day. Although such observations often are filtered out,

they may potentially bring forth new and interesting market microstructure issues, and

even broader asset pricing questions. However, we also recall the opposite argument: the

violations may be economically inconsequential, as other (shadow) costs may render ex-

ploitation unprofitable, or they arise solely because the cost of capital is understated.

Irrespective, a thorough analysis, expanding on our approach above, requires a comprehen-

sive dataset like the bulk OPRA package, as one needs to monitor the top-level quotes

across all active exchanges.

4 AN EXPLORATIVE ANALYSIS OF OPRA TRADES AND QUOTES

4.1 Basic Trade and Quote Statistics

Table 6 reports the daily number of trades and quotes for option contracts written on the

17 underlying assets in January 2015, before and after applying all the filtering algorithms

in Section 3.2. On average, 14.53% of the records are eliminated due to this (aggressive)

data cleaning. The number of option quotes and trades varies greatly across underlyings,

reflecting largely the liquidity of the latter. The most actively quoted (and traded) option

contracts are those written on the ETF SPY and Apple, with on average, respectively, more

than 628 million and 279 million clean quotes daily. On the most active trading day, the

SPY quotes exceed 872 million after filtering and close to 1 billion prior to cleaning.

The average order-to-trade ratio ranges between 3036.9 (for BAC) and 22,433.6 (for

EA), implying a dramatic excess of quotes relative to trades in option markets. This is an

order of magnitude larger than for equity markets, where order-to-trade ratios rarely ex-

ceed 100, even for algorithmic and high-frequency traders, see, for example, Hagströmer

and Nordén (2013) and Brogaard et al. (2015).

4.2 Trade and Quote Records by Tenor and Moneyness

The usual expiration day for a standard option contract—following conventions adopted

when exchange-based option markets were initially established—is the third Friday of the

month. Given the diverse economic incentives for option trading, the subsequent successful

introduction of quarterly and yearly option contracts for most underlyings is not surprising.

In addition, over the past decade, weekly options, or weeklies, have increased dramatically

in importance. For instance, the trading volume of S&P 500 weeklies (SPXW) grew from
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Table 6. Descriptive statistics for daily OPRA data records in January 2015

Ticker Avg Standard

deviation

Median Min Max

Number of records (before cleaning)

SPY 700,838,009 139,414,541 694,355,725 409,607,244 984,010,543

AAPL 301,575,942 78,014,816 310,310,810 159,094,428 417,942,352

GOOG 73,543,546 17,064,430 71,363,687 45,479,752 113,190,636

EA 15,184,625 4,269,292 14,629,507 9,744,870 23,388,291

XLK 9,489,613 2,406,511 8,729,688 5,399,868 13,105,051

XOM 36,198,297 7,548,864 34,021,556 24,735,171 49,712,308

CVX 28,728,799 5,085,071 27,206,324 21,143,683 38,714,736

MPC 5,215,386 1,290,710 5,066,729 3,245,001 8,314,240

XLE 59,890,142 11,537,807 58,010,337 45,196,390 84,261,758

PG 23,723,427 8,134,120 24,989,843 9,543,493 38,230,503

WMT 22,802,939 6,288,729 23,184,688 12,224,635 33,970,789

K 745,353 120,562 718,706 574,871 981,853

XLP 8,778,407 2,341,311 8,477,310 4,851,901 13,133,224

JPM 43,001,824 8,747,138 41,790,218 25,718,345 59,398,468

BAC 36,051,422 6,725,070 34,030,353 23,281,419 49,911,031

BLK 3,166,838 724,910 3,139,884 1,968,863 5,340,371

XLF 11,930,495 2,642,094 11,100,126 6,549,215 17,999,368

Number of trades (after cleaning)

SPY 80,476 15,585 80,004 44,787 104,560

AAPL 78,298 27,043 72,670 45,928 162,313

GOOG 8078 3932 6637 4947 20,738

EA 607 643 424 185 2898

XLK 462 125 456 224 706

XOM 3846 1028 3820 1847 5809

CVX 2979 1084 2828 1568 6149

MPC 405 261 301 143 936

XLE 3635 1223 3277 1933 6542

PG 1728 742 1513 912 3714

WMT 1699 623 1515 858 2911

K 127 59 122 52 243

XLP 375 179 337 164 826

JPM 4117 1941 3443 1617 9552

BAC 9895 3724 8869 3649 19,100

BLK 157 79 115 55 350

XLF 1388 449 1321 685 2299

Number of quotes (after cleaning)

SPY 628,611,886 125,112,503 622,338,806 368,646,694 872,278,526

AAPL 279,290,504 72,431,205 286,858,000 147,174,936 389,048,310

GOOG 64,487,534 14,818,791 61,416,002 40,321,726 97,324,007

EA 13,617,224 3,903,640 13,364,134 8,347,573 20,947,630

XLK 7,987,132 2,323,915 7,488,202 3,747,030 11,382,152

XOM 32,616,857 7,434,977 29,583,046 22,156,109 46,440,632

CVX 25,518,930 4,757,349 24,582,347 19,131,646 34,812,831

(continued)
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about 10% in early 2010 to nearly 30% in mid-2015 (Andersen, Fusari, and Todorov,

2017) .

According to current OCC contract specifications, regular options expire on the third

Friday each month, weeklies on any other near-term Friday (up to five consecutive weeks),

quarterlies on the financial quarter-end (not necessarily Fridays), and LEAPS are character-

ized by tenors greater than 12 months. For the first eight months of 2015, we classify about

45% of the contracts in our sample as regular (i.e., equity, ETF, or index options), but

weekly (20%), quarterly (25%), and LEAPS (10%) options are also listed in considerable

proportions. To convey how quotes and volume are distributed across maturities, we cat-

egorize options as ultra short-, short-, medium-, or long-term, depending on tenor

Time to expiry :¼

ultrashort� term for T � t � 7;
short� term for T � t 2 ð7; 30�;
medium� term for T � t 2 ð30; 90�;
long� term for T � t > 90;

8>><
>>:

where t and T denote the current and expiration date, respectively, measured in calendar

days.

Figure 6 displays the average daily proportion of quotes and trading volume by tenor.

For most option classes, the trading volume is relatively more concentrated among the ultra

short-term contracts compared to the corresponding quoting activity. For example, listed

options on GOOG can be traded for 12 separate expiration dates (14 for AAPL and 24 for

SPY), but contracts for the nearest maturity account for 51.5% of all trades (48.1% for

AAPL and 40.0% for SPY) relative to about 15% of the quotes (22% for AAPL and 8%

for SPY). Hence, not only is the weekly maturity profile increasing in popularity and trad-

ing activity, but less liquid option classes without weeklies, for example, BLK, MPC, and K

with 46.2%, 17.0%, and 25.1%, respectively, are also traded more intensively in the week

prior to expiration.

We now turn toward the option trade and quote activity as a function of moneyness.

Figure 7 tabulates the percentage of option contracts traded across different degrees of

moneyness between January 2 and February 18, with expiration February 20, 2015. Across

the securities, the vast majority of the option trading is in close-to-the-money options. For

Table 6. (continued)

Ticker Avg Standard

deviation

Median Min Max

MPC 3,958,422 1,572,582 4,098,120 1,293,294 7,343,634

XLE 54,090,705 11,359,835 51,518,109 37,783,596 77,700,703

PG 21,348,654 7,476,082 22,057,529 8,222,172 34,932,632

WMT 20,543,501 5,899,002 20,700,550 10,856,256 31,134,228

K 508,302 136,216 465,697 318,438 838,467

XLP 7,325,981 2,196,516 7,268,446 3,309,087 11,548,186

JPM 38,322,047 7,838,284 366,82,359 22,522,639 51,724,816

BAC 30,050,269 5,886,635 28,184,448 19,449,233 43,635,724

BLK 2,532,815 699,342 2,534,352 1,336,222 4,508,035

XLF 9,503,469 2,421,343 9,194,951 4,186,745 14,354,507

“Trades-only” contracts are not considered for the calculation.
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the individual stocks, the trading volume for options with positive moneyness tends to ex-

ceed that of options with negative moneyness, when the options are within two (Black-

Scholes) “sigmas” of the ATM strike. However, the reverse is true, when considering mon-

eyness beyond two “sigmas,” where the options with “downside” strikes command the

highest volume, almost uniformly across all the underlyings in our sample, and often by a

wide margin. The equity indices are clearly different, as we observe a very strong asym-

metry toward excess trading in options with below ATM strikes, irrespective of the degree

of moneyness. This is, of course, consistent with a strong motive for downside hedging by

fund managers who hold net long positions in equities.

Figure C.3 in Online Appendix C confirms that these findings apply qualitatively for the

total option trading volume as well, while the quote activity is much more balanced for

“up” and “down” strikes, as seen in Figure C.4, even though a slight tilt toward the down-

side strikes remains.

4.3 Activity across Exchange Platforms

A distinct feature of the OPRA data is the availability of trade and quote records dissemi-

nated by all of the individual U.S. option exchanges. Figure 8 shows the relative proportion

of quoting and trading volume across exchange holding groups and individual exchanges.

In general, the pattern for the trading activity across exchanges is in line with the evidence

from Figure 1.25

Within each holding group, the longest-serving venues account for the majority of the

trading, as seen from the bottom right chart in Figure 8. The same is generally true for

quotes, which typically are more than twice as frequent for these exchanges than for the

secondary venues within each group. However, NYSE is an exception, as the AMEX (A)

exchange was launched three years after ARCA (N), but has double the number of quota-

tion messages by 2015. Both markets offer floor and complex trading, but they differ in

PG WMT K XLP XOM CVX MPC XLE JPM BAC BLK XLF AAPL GOOG EA XLK SPY
0

20

40

60

80

100

Quotes very short-term short-term mid-term long-term Volume very short-term short-term mid-term long-term

Figure 6. Average daily proportions of quote and trading volume by tenor (in %). The two stacked bar

charts represent the proportion of quotes (left) and volume of traded option contracts (right) for each

underlying between January and August 2015. The bars are partitioned in segments by time-to-expiry,

as ultra short-term (bottom), short-term, medium-term, and long-term (top).

25 This figure is based on market activity in January 2015, when ISE and BATS were still independent

from NASDAQ and CBOE, respectively. Furthermore, the option exchanges MCRY, EDGX, MPRL,

and EMLD had not yet been launched.
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their pricing and allocation structures, as documented in Table A.1 of Online Appendix A.

AMEX utilizes the classical customer-priority model with a pro-rata allocation, which

encourages deeper liquidity. In contrast, ARCA focuses on price efficiency, exploiting

Figure 7. Proportions of contracts traded (in %) by moneyness for the selected option classes. The

results are obtained using the OPRA quote records for put and call option contracts traded between

January 2 and February 18, 2015, which expire on February 20, 2015. The moneyness is defined as

m ¼ logðK=Ft Þ=ðrt
ffiffiffi
s
p
Þ.
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maker-taker and price-time procedures. In this case, the liquidity-inducing approach is

more quote-rich, but generates a lower trading volume relative to the alternative. It is evi-

dent, however, that the pricing structure is not the only factor accounting for the heterogen-

eity in quotation and trading activity across markets. The MIAX exchange, which also

follows the maker-taker model, had the highest number of quote updates in 2015 among all

option marketplaces in the United States for this set of underlyings.

Given our relatively short sample and the high variability of market shares in options

trading, we cannot identify a clear trend in exchange competitiveness. From Figure 9, the

leading groups NASDAQ and CBOE started out with a market share of approximately

25% each, ahead of ISE and NYSE with about 15%. The remaining exchange holdings,

BATS, MIAX, and BOX, sported significantly lower daily volumes in 2015. By August,

however, the four largest exchange holdings went head-to-head with market shares of

around 20% each, suggesting a stronger degree of competition, but also a shift in trading

interest toward the smaller exchanges. In addition, there was remarkable growth in the vol-

ume at BATS in August 2015, when it gained an additional 5% market share, possibly in
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Figure 8. Quotation and trading volume market shares per exchange. Pie charts on the left-hand side

reflect the quotation distribution among holding groups (top) and individual exchanges (bottom) for

our sample of underlying assets. Analogously, the trading volumes are indicated on the right-hand

side. The identity of the individual venues associated with letter codes can be gleaned from the header

in Table 7.
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response to a bout of market stress.26 By posting limit orders in the pre-market session,

offered solely by BATS, traders obtain time priority for the opening call auction and, if not

executed at that stage, within the following regular trading session.

In contrast, the relative number of quotations is fairly stable across exchanges. This is

not unexpected. As the price on the underlying asset fluctuates, option prices change as

well, necessitating adjustments to a wide range of quotes. Hence, if the exchanges maintain

a menu of options with similar characteristics across this period, the frequency of their

quote updates is naturally aligned with the volatility of the underlying assets, irrespective of

the actual transactions they facilitate. Consequently, the relative quotation shares may well

remain stable, unless there is an underlying shift in the market structure. Such changes are

often associated with an innovation on one or more venues in the type of marketed options,

in the incentive structure for giving and taking liquidity, and in technology-driven changes

in trading costs, along with affiliated shifts in trading strategies. In the absence of major

developments in these areas, the quote frequency for a given type of option is likely relative-

ly stable.

Tables 7 and 8 provide the market shares of trading volume and quoting activity across

the exchange platforms for the option contracts written on our sample of underlying secur-

ities. The most striking feature is the wide dispersion in trading across the venues, with the

largest market share being the 22% obtained by MIAX for BAC options. Overall, the dom-

inant venue is CBOE, but BATS and MIAX are not very far behind, followed by PHLX,

Figure 9. Market shares for the daily contract trading volume (top plot) and quotation activity (bottom

plot) per exchange holding group for our option sample.

26 Notable events include the Greek default on June 30, 2015, and a market crash in China, where

the Shanghai Composite shed 38% between June 12 and August 24.
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NOM, ARCA, and ISE. In fact, all exchanges display non-trivial participation, except for

the marginal activity on OBO, C2, and, to some extent, GEMX. The quoting activity on

the individual venues is correlated with the trading volume, but AMEX, ISE, and PHLX are

relatively more active in this dimension, while the quoting activity on BATS, NOM, and

Table 8.Shares of aggregate quotation activity per exchange for selected underlying securities

Code A B C H I M N Q T W X Z
Exchange AMEX BOX CBOE GEMX ISE MIAX ARCA NOM NOBO C2 PHLX BATS

PG 0.16 0.04 0.15 0.09 0.12 0.14 0.07 0.03 0.03 0.03 0.10 0.04
WMT 0.15 0.04 0.13 0.06 0.13 0.14 0.05 0.04 0.05 0.05 0.13 0.04

K 0.16 0.03 0.16 0.08 0.13 0.11 0.05 0.04 0.05 - 0.13 0.05
XLP 0.13 0.03 0.14 0.05 0.19 0.14 0.05 0.04 0.05 0.05 0.10 0.03

XOM 0.18 0.03 0.15 0.06 0.13 0.14 0.05 0.04 0.05 0.03 0.11 0.04
CVX 0.14 0.04 0.15 0.04 0.12 0.15 0.06 0.05 0.05 0.04 0.13 0.04
MPC 0.25 0.02 0.17 0.07 0.10 0.12 0.04 0.03 0.03 - 0.15 0.03
XLE 0.15 0.03 0.14 0.07 0.15 0.13 0.05 0.04 0.05 0.05 0.10 0.03

JPM 0.14 0.03 0.14 0.07 0.15 0.14 0.05 0.04 0.04 0.04 0.12 0.04
BAC 0.10 0.03 0.13 0.11 0.13 0.12 0.05 0.05 0.07 0.03 0.13 0.04
BLK 0.14 0.04 0.15 0.06 0.09 0.15 0.06 0.05 0.07 - 0.15 0.04
XLF 0.12 0.03 0.13 0.10 0.15 0.14 0.04 0.04 0.05 0.06 0.10 0.03

AAPL 0.13 0.03 0.16 0.07 0.11 0.15 0.04 0.04 0.05 0.06 0.11 0.04
GOOG 0.15 0.04 0.11 0.08 0.09 0.13 0.08 0.06 0.07 0.03 0.12 0.06

EA 0.16 0.03 0.16 0.05 0.13 0.10 0.06 0.05 0.04 0.03 0.13 0.05
XLK 0.11 0.02 0.13 0.14 0.15 0.13 0.04 0.04 0.04 0.05 0.10 0.03

SPY 0.11 0.04 0.12 0.06 0.13 0.14 0.06 0.06 0.05 0.06 0.12 0.05

Highlighting: x ≥ 0.15 , 0.15 > x ≥ 0.1 , and 0.1 > x ≥ 0.05 .

Table 7.Shares of trading volumes per exchange for selected underlyings

Code A B C H I M N Q T W X Z
Exchange AMEX BOX CBOE GEMX ISE MIAX ARCA NOM NOBO C2 PHLX BATS

PG 0.08 0.07 0.18 0.03 0.04 0.10 0.13 0.10 0.01 0.02 0.12 0.13
WMT 0.06 0.07 0.14 0.03 0.12 0.11 0.09 0.09 0.01 0.03 0.12 0.13

K 0.08 0.08 0.12 0.04 0.10 0.11 0.16 0.08 0.02 - 0.10 0.11
XLP 0.07 0.06 0.12 0.03 0.07 0.13 0.11 0.08 0.02 0.02 0.09 0.19

XOM 0.06 0.06 0.18 0.02 0.05 0.09 0.10 0.14 0.01 0.02 0.09 0.17
CVX 0.07 0.05 0.15 0.02 0.07 0.14 0.09 0.15 0.01 0.02 0.10 0.13
MPC 0.08 0.06 0.15 0.04 0.11 0.08 0.12 0.10 0.01 - 0.10 0.16
XLE 0.08 0.06 0.20 0.03 0.09 0.10 0.09 0.10 0.01 0.03 0.09 0.12

JPM 0.06 0.08 0.17 0.02 0.06 0.09 0.10 0.14 0.01 0.01 0.15 0.11
BA C 0.06 0.07 0.15 0.03 0.08 0.22 0.10 0.08 0.01 0.01 0.08 0.11
BLK 0.05 0.03 0.19 0.04 0.12 0.06 0.10 0.06 0.02 - 0.13 0.20
XLF 0.10 0.08 0.13 0.04 0.06 0.18 0.07 0.06 0.01 0.04 0.12 0.11

AAPL 0.07 0.07 0.18 0.03 0.08 0.13 0.09 0.11 0.01 0.02 0.08 0.15
GOOG 0.06 0.04 0.14 0.06 0.09 0.06 0.12 0.09 0.01 0.02 0.14 0.17

EA 0.06 0.05 0.12 0.02 0.06 0.05 0.12 0.15 0.01 0.04 0.19 0.14
XLK 0.07 0.06 0.12 0.03 0.07 0.16 0.08 0.07 0.02 0.02 0.13 0.16

SPY 0.07 0.07 0.18 0.03 0.15 0.16 0.07 0.07 0.01 0.03 0.07 0.10

Highlighting: x ≥ 0.15 , 0.15 > x ≥ 0.1 , and 0.1 > x ≥ 0.05
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ARCA is very subdued compared to their share of trading volume. Clearly, there is a strong

heterogeneity in the mode of operation across exchanges, altering the relative quoting

versus trading frequency substantially in some cases. As an aside, we note that the

venue-specific trade and quote frequencies are not reliable indicators of the put–call parity

violations identified in Section 3.3.

The participation of the different markets in the NBBO is of substantial interest, as this

figure may be suggestive of the relative price efficiency of the venues. For each exchange,

underlying asset, and second-to-second stamp, we compare the BBO of a given venue

against the NBBO. We only consider the core trading session, from 8:30 am until 3:00 pm

CT, to avoid the results being trivially tilted in favor of BATS—the only exchange group

offering a form of pre-trading session.27

Table 9 indicates that C2 and GEMX are the least competitive venues with respect to

NBBO participation for most underlyings and, not surprisingly, these exchanges have less

than half the quote updates of the market leaders. However, two other “small” exchanges,

BATS and BOX, with even less quotation messages (Figure 8) exhibit significantly higher

rates of NBBO participation. Nonetheless, the general impression from Table 9 is that the

overall price quality for first-level quotations is remarkably similar across all 12 options

exchanges. Undoubtedly, this is an important factor behind the highly dispersed option

Table 9.Heatmap on NBBO participation per exchange and underlying

Code A B C H I M N Q T W X Z
Exchange AMEX BOX CBOE GEMX ISE MIAX ARCA NOM NOBO C2 PHLX BATS

PG 0.56 0.62 0.64 0.47 0.55 0.65 0.69 0.63 0.63 0.43 0.54 0.64
WMT 0.57 0.56 0.64 0.59 0.62 0.62 0.65 0.58 0.61 0.50 0.61 0.55

K 0.52 0.44 0.43 0.37 0.40 0.47 0.52 0.45 0.47 0.00 0.44 0.47
XLP 0.53 0.47 0.47 0.42 0.41 0.47 0.55 0.47 0.47 0.33 0.45 0.47

XOM 0.61 0.50 0.57 0.60 0.56 0.58 0.57 0.56 0.54 0.44 0.64 0.53
CVX 0.63 0.43 0.54 0.48 0.49 0.55 0.55 0.51 0.55 0.30 0.62 0.50
MPC 0.58 0.58 0.56 0.49 0.54 0.61 0.62 0.59 0.59 0.00 0.55 0.59
XLE 0.68 0.67 0.69 0.66 0.64 0.69 0.71 0.69 0.68 0.48 0.70 0.62

JPM 0.67 0.68 0.70 0.69 0.62 0.71 0.71 0.72 0.70 0.57 0.66 0.71
BA C 0.38 0.36 0.41 0.29 0.36 0.40 0.45 0.44 0.40 0.31 0.41 0.45
BLK 0.61 0.49 0.57 0.38 0.37 0.61 0.66 0.53 0.49 0.00 0.64 0.47
XLF 0.63 0.51 0.53 0.51 0.46 0.52 0.63 0.52 0.52 0.42 0.49 0.52

AAPL 0.76 0.58 0.74 0.62 0.69 0.72 0.73 0.71 0.72 0.66 0.69 0.70
GOOG 0.66 0.46 0.62 0.67 0.42 0.54 0.57 0.58 0.69 0.20 0.69 0.53

EA 0.51 0.53 0.54 0.38 0.51 0.51 0.60 0.50 0.53 0.45 0.47 0.52
XLK 0.57 0.51 0.54 0.51 0.53 0.54 0.57 0.51 0.55 0.46 0.53 0.52

SPY 0.47 0.36 0.50 0.40 0.45 0.44 0.47 0.42 0.41 0.39 0.49 0.41

Percentages of average time each exchange displays the two-sided NBBO prices, calculated from all option

contracts within a given class. For multiple messages per minute, only the last quoted levels per exchange and

asset were considered. Quotation before 8:30 a.m., after 3:00 p.m. and those having either zero bid or ask sizes

were neglected. Highlights: green ≥ 0.6, 0.6 > light green ≥ 0.5 and yellow ≤ 0.4.

27 For example, the value “0.50” in Table 9 for CBOE and underlying SPY means that CBOE market

makers match or improve on the best bid-offer quotes for SPY options across all other venues for

3.25 h per day (i.e., 50% of the daily trading period) on average.
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trading volumes, and it is consistent with the notion of a competitive national options

market.

These tentative conclusions do not, however, clarify why we see large differences in the

rate of apparent arbitrage violations across venues, as illustrated for BAC options quoted at

CBOE and NYSE Arca in Section 3.3. From Tables 7 to 9, we find NYSE Arca to be an ac-

tive venue for BAC option trading, but more marginal in its quoting intensity. Moreover, it

is one of the most competitive venues in terms of matching the NBBO quotes for BAC

options. Hence, while CBOE is more actively engaged in BAC option trading and quota-

tion, NYSE Arca is, on average, providing equal or better top-level quotes. This suggests

that, during turbulent periods, a slow quote update frequency may be an important con-

tributor to the arbitrage opportunities identified in Section 3.3.28

4.4 Quoted Spreads

We explore the size of the spreads in option quotes across different markets, stocks, tenor,

and moneyness. We focus on the relative spread, defined as

RSt ¼
QA

t �QB
t

MQt
;

where MQt is a mid-quote price at time t. To keep the analysis manageable, we restrict our

attention to option contracts traded from January 2 to February 18 with expiry February

20, 2015. Thus, the option tenor ranges from a couple of days to seven weeks. We remove

entries belonging to the filtering groups F1, F2, F3, and F5, so our results reflect only regu-

lar quotes and mitigate the impact of outliers.

Numerous factors may help rationalize the size and variability of the option bid–ask

spread. We convey our main findings through a few illustrative figures, while deferring ex-

tensive tabulations to Online Appendix A and additional illustrative evidence to Online

Appendix D.

First, for equity indices, it is known that put options tend to be more liquid and have

lower spreads than call options, but corresponding stylized facts for individual equity

options are less well established. Figure 10 displays the relative quoted spread differential

between calls and puts at the identical degree of moneyness. The figure renders the asym-

metry in the option spread across the full set of underlying assets transparent. The discrep-

ancy is particularly dramatic for OTM spreads, with only positive, and often very large,

entries appearing for moneyness in excess of unity. In contrast, for ITM options, the

spreads are quite closely aligned and, if anything, they are slightly smaller for call options,

as indicated by the negative entries on the left-hand side of the figure. Consequently, the

evidence on spreads is qualitatively quite similar for the individual equity and equity index

options.

Next, Figure 11 displays the average intraday spreads for put options over three distinct

tenor categories, covering the same period as above.29 The left column depicts an

“L-shaped” pattern in the spread over the trading day for three separate equity options.

28 A robust exploration of this conjecture requires an elaborate empirical analysis and is outside the

scope of this paper.

29 The corresponding figure for call options conveys the identical qualitative results, see Online

Appendix D.
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These are representative of the results for our individual stock options. In contrast, the op-

tion spreads for the two equity indices in the right column are approximately “U-shaped,”

while the Apple spread configuration in the middle panel looks like a mixture of the two

Figure 10. Difference in average relative spreads between call and put options across moneyness for

each underlying asset in our sample. The results are based on OPRA quote records for put and call

options between January 2 and February 18, 2015, that expire February 20, 2015. Moneyness is

defined as m ¼ logðK=Ft Þ=ðrt
ffiffiffi
s
p
Þ with m multiplied by �1 for put options.
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patterns. Apple is also noteworthy by having the smallest relative option spread, by far,

among all the underlying securities in our sample, followed by the SPY ETF. Interestingly,

the energy ETF, XLE, has the largest uptick in relative spread toward the close of trading,

while XOM, a large constituent of this energy ETF, shows no signs of an elevation at the

end of the session. This divergence in trading costs mimics the discrepancies often observed

in the volatility of the underlying equity indices and ETFs relative to individual stocks to-

ward the market close. Finally, we note that the relative spread is almost monotonically

Figure 11. Relative spread measures (average over 15 min intra-daily intervals) computed from the

OPRA quote records for put option contracts traded in January and February, 2015, which expire on

February 20, 2015. The reported results are obtained using only those local 15-min intervals, where

moneyness is in the range �1 � m � 1. The moneyness is defined as m ¼ logðK=Ft Þ=ðrt
ffiffiffi
s
p
Þ.
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increasing as time-to-maturity shrinks, which aligns well with the fact that option implied

volatilities increase dramatically, as the tenor approaches zero.

The actual relationship between tenor and spreads is a bit more involved than conveyed

above. Figure 12 displays the relative spreads for a set of SPY options observed on NYSE

Arca exchange in January 2015.

Figure 12 exemplifies the strong asymmetry in spreads between puts and calls. In the

top panel, OTM call options hit the maximum relative spread of 2 for moneyness 2–3. In

Figure 12. Relative spread measures (average within 15-min intraday intervals observed between 9:00

and 10:00 CT) of SPY options across maturity groups computed from the OPRA quote records for call

(upper plot) and put (bottom plot) option contracts traded on NYSE Arca exchange between January 2

and February 18, 2015, which expire on February 20, 2015. The moneyness is defined as

m ¼ logðK=Ft Þ=ðrt
ffiffiffi
s
p
Þ.
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the bottom panel, a large fraction of the OTM put options feature much lower relative

spreads for moneyness well beyond �5. It is also evident that certain spread values domin-

ate for the short-maturity options, visible as straight horizontal red lines for both OTM put

and calls. This stems from identical posted bid and ask quotes for a string of options across

adjacent strikes, which is indicative of clustering at certain ticks.

Further instances of non-monotonicity in spreads as a function of tenor may be gleaned

from Figure 12, where moderately ITM put options with long maturities attain the largest

relative spreads (the blue dots lie above the red for low positive m values in the bottom

panel). This feature is corroborated more broadly for our option sample in Tables A.6–A.7

(Online Appendix A), which capture the relation between moneyness and spreads along

with Figures 7, C.3, and C.4 (Online Appendix C), that relate moneyness to trade and

quote activity. We conjecture this stems from opposing effects of liquidity and tenor on the

spread.

In summary, the relative option trading costs, as represented by the quoted bid–ask

spread, are highly heterogeneous, varying substantially from one underlying to another,

even within the same sector, and also showing non-trivial deviations across exchanges. A

second factor is the option tenor, since relative spreads tend to increase, as the time value of

the options shrinks in line with maturity. Nonetheless, the most important determinant is

the identity of the underlying and the associated liquidity of the options market.

Specifically, the actively traded options written on SPY and AAPL have dramatically nar-

rower spreads than the less liquid options, irrespective of the exchange market and control-

ling for option tenor. Moreover, as short-dated options often are quite liquid, we do

observe a non-monotonic tenor-spread or volume-spread relation across a subset of the ma-

turity spectrum.

5 Empirical Applications

This section explores whether a couple of commonly used option-implied measures may be

generated in a meaningful manner from high-frequency option prices exploiting standard

techniques. If shortcomings become evident, it serves as motivation for future work on gen-

erating more robust intraday measurement procedures. It is beyond the scope of the present

paper to pursue any such comprehensive remedies.

The first application involves second-by-second model-free estimation of the risk-neu-

tral variance for an underlying security based on the intraday cross-section of option prices.

The second focuses on estimation of the risk-neutral asset return distribution from high-fre-

quency option prices.

5.1 Intraday Risk-Neutral Return Variation Measures

The expected future return volatility is a critical input to numerous financial and economic

applications. As is well known, the cross-section of European-style option prices, covering

the full range of strikes for a given expiration date, enables model-free computation of the

expected return variation for the underlying security return under the risk-neutral probabil-

ity measure, see, for example, Carr and Madan (1999) and Britten-Jones and Neuberger

(2000). This model-free implied-volatility (MFIV) measure contains both a predictive and a

risk premium component, as it reflects the expected future variance as well as the risk pric-

ing for a security with a payoff equal to the future realized return variation.
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In practice, the MFIV can only be approximated, as we do not observe “true spot” op-

tion prices, but rather bid–ask quotes. Likewise, the set of strikes is discrete, finite, and

does not cover the entire positive real axis. As such, there are legitimate questions about the

reliability of high-frequency MFIV measures.

The typical option data used in the academic literature consists of end-of-day cross-sec-

tions of prices or quotes (e.g., OptionMetrics data). This precludes investigation of the

implied variance dynamics in real time, the reaction of volatility expectations to specific

events within the trading day, the intraday co-dynamics of implied variances across mul-

tiple assets, and so on. Furthermore, the quality of a MFIV measure, based on a single

cross-section of option prices, depends on the degree of noise or data error at the observa-

tion time. Intuitively, we obtain a more robust measure using multiple cross-sections from

adjacent seconds, much in the spirit of pre-averaging for the measurement of the return

variation from intraday log asset prices, see, for example, Jacod et al. (2009).

For the broader U.S. market, we already have a popular high-frequency return variation

measure. The VIX index disseminated by the CBOE, capturing the expected risk-neutral

volatility of the S&P 500 index over a 30-day period, is computed on a continuous basis

throughout the trading day and released at a 15-s frequency, providing a real-time bench-

mark volatility indicator. Unfortunately, the intraday VIX series is not a reliable real-time

MFIV measure. Andersen, Bondarenko, and Gonzalez-Perez (2015a) document significant

spurious outliers in the high-frequency VIX index, due largely to the random tail truncation

of the OTM option prices. In addition, it is subject to a non-trivial delay of 15–45 s stem-

ming from random variation in the processing and dissemination speed. As a consequence,

direct use of the high-frequency VIX series can result in severely distorted inference, espe-

cially during periods of market stress, when accurate real-time measures, arguably, are

most needed. A number of studies recognize the potential distortion arising from the tail

truncation inherent in the VIX computation and provide alternative recipes that amend the

tails in different ways using the observed cross-section of option quotes. However, these

procedures are almost invariably implemented at the daily frequency, and not on an intra-

day basis.

The highly accurate time-stamps in the OPRA data allow for the construction of MFIV

series for a large number of stocks and ETFs traded on the U.S. equity market across a

range of time horizons and at almost arbitrarily high frequencies. Of course, it remains an

open question whether lack of liquidity or other distinct market microstructure features

will render such measures excessively noisy or biased.

For our empirical illustration, following Carr and Wu (2009), we rely on a log-linear ex-

trapolation of option prices in the strike domain for the tails of the return distribution ra-

ther than using tail truncation, as applied in the official VIX computation, or a robust

corridor-based measure, as suggested in Andersen and Bondarenko (2007). Online

Appendix E.1 provides a detailed description of our option portfolio design.

Our illustration focuses on MFIV’s extracted at the 1-s frequency using intraday quotes

for American-style SPY and GOOG options. The former provide an alternative way to con-

struct a high-frequency S&P 500 volatility measure, while the GOOG options speak to the

possibility of generating reliable intraday MFIV estimates for individual stocks. The choice

of very liquid options provides us with a near best-case scenario to assess the properties of

such measures at extremely high frequencies. We use options with only 3 days till expir-

ation. This generates a return variation measure that is closely related to the spot volatility
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of the underlying series, given the very short tenor.30 Moreover, it ensures that the price dif-

ferential between American- and European-style options truly is negligible.

Figure 13 plots the intraday prices for SPY and GOOG (top panel) and corresponding

second-by-second annualized MFIV estimates (bottom panel). Several features stand out.

First, the MFIV exhibits an appreciable amount of variation within the trading day, allow-

ing for direct identification of shifts in the value across 10–20 min intervals. Nonetheless,

the series are quite choppy, indicating a fair degree of measurement error, inducing negative

serial correlation over short horizons. This suggests it may be worthwhile to construct

more robust measures by smoothing suitably across adjacent second-by-second MFIV

measures. Second, for both SPY and GOOG, the extracted MFIV is very volatile immedi-

ately after the market open. This is consistent with the elevated return volatility and high

bid–ask spreads for the underlying securities in the morning. It likely reflects (option) price

discovery, when overnight information and newly arriving orders are absorbed into the

market. Finally, we note that the leverage effect, defined as a negative return-volatility rela-

tion, is evident, but clearly more pronounced for the SPY index than GOOG. The realized

correlation between MFIV and the underlying price, computed from 2-min increments,

equals �0.85 for SPY and �0.36 for GOOG. Existing studies of the high-frequency lever-

age effect from option data has focused exclusively on equity indices, see, for example,

Figure 13. On the top plots, intraday prices of SPY (left side) and GOOG (right side) observed on

January 14, 2015. On the bottom plots, intraday MFIV series constructed from SPY and GOOG options

on January 14, 2015 (expiring January 17, 2015). Real-time MFIV is calculated on a second-by-second

basis and normalized to annual volatility units.

30 There is a gap between spot (diffusive) volatility and the above option-based measure due to the

risk-neutral jump variation, which can differ significantly from its statistical counterpart. This com-

ponent of the option-based variation measure can be further removed in a nonparametric way

using the approach of Todorov (2019).
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Andersen, Bondarenko, and Gonzalez-Perez (2015a) and Kalnina and Xiu (2017), but

Figure 13 points to the feasibility of extending such studies to individual equity series.

To gauge the degree of noise in our intraday series, Figure 14 displays the serial correl-

ation pattern for MFIV increments at different lags and sampling frequencies. The top pan-

els present the empirical autocorrelations across lags ranging from 1 to 120 s. The bottom

panels depict the first-order autocorrelation of MFIV increments for sampling frequencies

D ¼ 1; . . . ;120 seconds across different sampling grids, obtained by initiating the computa-

tion of the autocorrelations at each possible 1-s grid point D ¼ 1; . . . ;120. The first obser-

vation of the initial grid is set to 8:35:00 CT and consecutive observations follow with a

step of D seconds.31 Hence, for each sampling frequency D, we have D serial correlation

estimates (blue dots) generated from D distinct sampling grids. The red solid line corre-

sponds to the average first-order autocorrelations calculated across all grids for each sam-

pling frequency D.

The MFIV increments for both SPY and GOOG exhibit substantial negative autocorre-

lations for ultra-short lags (3–4 s) while, for higher lags, the autocorrelations change signs

Figure 14. Autocorrelation functions for MFIV series constructed with SPY options (left side) and with

GOOG options (right side) on January 14, 2015 (expired on January 17, 2015). Top plots show the

autocorrelations as functions of lags constructed for the second-by-second increments of intraday

MFIV (with the maximum lag of 120 s). Bottom plots picture the first-order serial correlations as func-

tions of a sampling frequency (D) calculated for the increments of intraday MFIV obtained at the corre-

sponding frequency. We consider D ranging from 1 to 120 s with a second step. Blue dots represent

the first-order autocorrelations computed for a given D on multiple sampling “grids” achieved by

shifting the initial MFIV observation by 1 s (thus, for D¼ 1 s we have one “grid” and for D¼120 s we

have 120 “grids”). Solid red line is an average autocorrelation across all “grids” for a given D.

31 We exclude MFIV estimates for the first 5 min of trading to avoid distortions related to market

opening effects, including a lack of mid-quotes for some strikes and excessively volatile mid-

quote revisions due to active price discovery.
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randomly and become smaller in magnitude. However, the bottom plots of Figure 14 also

suggest important discrepancies. The negative first-order serial dependence in the SPY

MFIV increments vanishes, on average, for sampling frequencies of 70 s or lower, whereas,

for GOOG, they remain sizable, even as D reaches 120 s. This is consistent with the SPY

MFIV series being less impacted by measurement error, which may be due to the lower

spreads and moderately richer set of observations available for the OTM SPY relative to

GOOG options, with cross-sections of 182 and 155 strikes for SPY and GOOG,

respectively.

The illustration highlights the feasibility of generating, but also the need for additional

scrutiny of, high-frequency option-implied return variation measures. In Figures E.9–E.14

in Online Appendix E.2, we provide the corresponding January 14, 2015, MFIV measures

for another six securities in our sample. The negative autocorrelations vanish fairly rapidly,

within 50 s, for AAPL, but for the remaining ETFs and stocks, we observe non-zero correla-

tions throughout the 120-s horizon. Our tentative conclusion is that MFIV measures

obtained at the 1–2 min frequency using standard procedures may be reliable, when based

on quotes from the most active option markets. In general, however, caution is warranted,

and sampling at distinctly lower frequencies is advised for less liquid markets.32

5.2 High-Frequency Risk-Neutral Density Extraction

Another popular source of information extracted from the cross-section of option prices is

the risk-neutral density (RND) of the underlying asset price over the period until option ex-

piry. Since this measure seeks to provide a detailed picture of the risk-neutral distribution,

while the corresponding MFIV only reflects the return variation, the RND is likely to be

estimated with a greater degree of imprecision. However, they may still provide useful

insights across lower intraday sampling intervals, and they may be particularly informative

regarding the response to specific events across the cross-section of underlying assets.

In this section, we examine the intraday changes in the RND of both the market index

ETF and several individual stocks before and after a Federal Open Market Committee

(FOMC) meeting. The FOMC meetings are closely related to the equity risk premium and

can have a significant impact on the prices of both stocks [e.g., Bernanke and Kuttner

(2005), Savor and Wilson (2013), Lucca and Moench (2015) among others] and the under-

lying options (Andersen, Fusari, and Todorov, 2017). By exploiting high-frequency options

data, we document immediate market-wide and idiosyncratic RND responses to scheduled

macroeconomic news announcements, which is otherwise not feasible using only end-of-

day options data.

Firstly, we introduce some notations. The price of a call option written on an underlying

asset at time t with a strike price K and expiration date T is given by

CðKÞ ¼ e�rfsE
Q

�
maxðST � K; 0Þ

�
¼ e�rfs

ð1
ST¼K

ðST � KÞfQðSTÞdST ;

32 We leave for future work the formal analysis of microstructure noise in option panels observed at

high frequency.
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where ST is the price of the underlying asset at expiry, s ¼ T � t is the time to maturity of

the call option, rf is the risk-free interest rate, and fQðSÞ denotes the RND of the asset price.

The object of interest is the RND fQðxÞ. We adopt the well-established mixture of log-

normals (MLN) approach, advocated by Ritchey (1990), Melick and Thomas (1997), and

Liu et al. (2007). It implies that the call option price equals the weighted average of the op-

tion prices implied by the individual lognormal densities, which may be calculated in closed

form via the Black (1976) formula. Improved estimates are obtained, asymptotically, by

employing a larger number of distinct lognormal densities. A detailed description of the

MLN methodology is provided in Online Appendix F.1.

For all securities with sufficiently liquid option markets, we estimate the RND before

and after the FOMC announcement, released at 13:00 CT on March 18, 2015. To this end,

for each underlying, we construct cross-sections containing the last observed option quote

for each strike 30 min before and after the announcement. We use the shortest dated

options with tenor exceeding three calendar days, leading to cross-sections with 9 days to

expiry for this trading day.33

We follow standard procedures (e.g., Andersen et al., 2015a; Song and Xiu, 2016) to re-

move potentially erroneous quote entries.34 Furthermore, to avoid excessively noisy esti-

mates, we proceed only if the option cross-section has at least seven strikes after the data

cleaning.35 For brevity, we only discuss results for the most liquid stock and ETF in each

sector, relegating the remaining results to Online Appendix F.3.36

Figure 15 depicts the price series for seven underlyings over the 1-h window straddling

the FOMC announcement. At 13:00 CT, it was announced that the federal funds rate

would remain at the 0% to 1/4% target range and the stance of monetary policy would be

reassessed only after further market indicators became available. This decision triggered an

immediate price jump for all seven underlyings, ultimately generating 1-h returns ranging

from 1.20% to 1.51%.

Figure 16 depicts the implied RND for the return, rT ¼ ST=Ft � 1, obtained from a mix-

ture of M¼ 3 lognormal densities, using SPY options with 9 days to maturity at 12:30 and

13:30 CT on March 18, 2015.37 Both RND curves exhibit pronounced negative skewness,

consistent with the extant literature. This notwithstanding, the pertinent question is

whether the RND changes shape in response to the FOMC announcement. In fact, from the

log-density plot, we do identify a thinning of the left SPY tail and we find both the ATM

Black–Scholes implied volatility and the implied risk-neutral return dispersion, r̂R, to have

33 We exclude K (Kellogg Company) and BLK (BlackRock), because their shortest-dated options

have a 30-day tenor—much longer than the available tenor for the remaining underlyings.

34 A detailed description of our data preparation steps and estimation procedure are available in

Online Appendix F.2.

35 This leads to the removal of BAC (Bank of America) and XLF (Financial Sector ETF) from this

analysis.

36 We only report results for three sectors, Consumer Staples, Energy, and Technology, as all finan-

cial sector assets, except for JPM (JPMorgan & Chase), are excluded by our liquidity filter.

37 These RNDs are readily derived from fQðST Þ using a Jacobian transformation.

Andersen et al. j High-Frequency Trade and Quote Option Data 169

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/19/1/128/6066685 by O

xford U
niversity Press U

SA user on 31 August 2021



dropped.38 This suggests that market participants, in response to the policy statement, have

lowered their expectations regarding near-term unfavorable events impacting the SPY.

Of course, the statistical significance of the above shift in the RND is hard to assess. The

ability to estimate concurrent shifts in the RND curves for a number of diverse assets is one

way to gauge the robustness of this finding.
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Figure 16. The left plots depict the estimated RNDs, as a function of return ST =Ft � 1, for the shortest

time to maturity obtained from intraday OPRA data for options written on SPY in the Global sector at

30 min before and after the FOMC announcement at 14:00 Eastern time (i.e., 13:00 CT) on March 18,

2015. Each RND curve is estimated from a mixture of M lognormal distributions. In each subplot, the

number of strikes (N), the ATM Black–Scholes implied volatility (rATM), the number of lognormal den-

sities in each mixture (M), and the estimated annualized standard deviation (r̂R ) of each RND curve

are reported. Vertical red dashed lines indicate the observed return (K=Ft � 1) range. Right plots show

the logarithm of the RNDs (left axis) and the Black–Scholes implied volatility (right axis) over the

observed return range. Time in each plot is CT.
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Figure 15. Time series plots of prices of different underlyings during 30 min before and after the FOMC

announcement at 14:00 Eastern time (i.e., 13:00 CT) on March 18, 2015. Time in each plot is CT.

38 We define the dispersion of the RND curve (rR) as the annualized risk-neutral standard deviation

of return 1ffiffi
s
p rrT

, which equals 1ffiffi
s
p

Ft
rST
¼ 1ffiffi

s
p

Ft

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½
PM
i¼1

wi F 2
i expðr2

i sÞ� � F 2
t

s
, as implied by Equations

(F.1) and (F.2) in Online Appendix F.1.
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Figures 17 and 18 reveal how the RND for three ETFs and the most liquid stock within

each of these sectors react to the announcement. In analogy to the SPY, the estimated RND

(left plots) for all these securities become less dispersed (have lower standard deviation r̂R)

and experience a downward shift in ATM Black–Scholes implied volatilities after the
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Figure 17. The left plots depict the estimated RNDs, as a function of return ST =Ft � 1, for the shortest

time to maturity obtained from intraday OPRA data for options written on ETFs of different sectors at

30 min before and after the FOMC announcement at 14:00 Eastern time (i.e., 13:00 CT) on March 18,

2015. Each RND curve is estimated from a mixture of M lognormal distributions. In each subplot, the

number of strikes (N), the ATM Black–Scholes implied volatility (rATM), the number of lognormal den-

sities in each mixture (M), and the estimated annualized standard deviation (r̂R ) of each RND curve

are reported. Vertical red dashed lines indicate the observed return (K=Ft � 1) range. Right plots show

the logarithm of the RNDs (left axis) and the Black–Scholes implied volatility (right axis) over the

observed return range. Time in each plot is CT.

Andersen et al. j High-Frequency Trade and Quote Option Data 171

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/19/1/128/6066685 by O

xford U
niversity Press U

SA user on 31 August 2021



FOMC statement. This is consistent with the policy decision reducing the uncertainty about

the future price and volatility of not only the equity index, but also each of the sector ETFs

and individual stocks. In addition, consistent with SPY, the left tail of the estimated RNDs
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Figure 18. The left plots depict the estimated RNDs, as a function of return ST =Ft � 1, for the shortest

time to maturity obtained from intraday OPRA data for options written on individual stocks in different

sectors at 30 min before and after the FOMC announcement at 14:00 Eastern time (i.e., 13:00 CT) on 18

March 2015. Each RND curve is estimated from a mixture of M lognormal distributions. In each sub-

plot, the number of strikes (N), the ATM Black–Scholes implied volatility (rATM), the number of lognor-

mal densities in each mixture (M), and the estimated annualized standard deviation (r̂R) of each RND

curve are reported. Vertical red dashed lines indicate the observed return (K=Ft � 1) range. Right plots

show the logarithm of the RNDs (left axis) and the Black–Scholes implied volatility (right axis) over the

observed return range. Time in each plot is CT.
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of the sector ETFs shrinks after the FOMC announcement. This is generally also true for

the individual stocks, but the estimation uncertainty concerning the tail shape is occasional-

ly quite severe due to the limited number of OTM strikes, so the evidence is at times

ambiguous.

Figures F.15 and F.16 in Online Appendix F.3 provide the corresponding evidence for

the remaining securities in our sample. The findings are qualitatively similar, although we

once again encounter a few cases where the shift in the RND is ambiguous. Nonetheless,

across all the underlying assets explored, we find the left RND tail to either shrink or re-

main largely unaltered, while the measures of dispersion and volatility almost uniformly

drop. In other words, the high-frequency options data indicate a reduction in the risk-

neutral risk measures both for the aggregate equity index and across the various sectors and

individual stocks. For other types of economic news, the reaction across different sectors

and individual stocks is likely to be more heterogenous, which should facilitate interpret-

ation regarding the shift in the perception of underlying risks and associated risk premiums.

Since many other factors impact the RND across the full trading day, inference based solely

on end-of-day option implied measures is much less efficient.

We conclude that the construction of meaningful intraday RND estimates is feasible for

the assets with liquid option trading, as long as the sampling frequency is moderate. At the

same time, it is evident that further research into the construction of robust and reliable ex-

traction procedures is warranted for less liquid option markets. These issues notwithstand-

ing, it is clear that the increasing availability and richness of high-frequency, short-dated

option quotes enhances our ability to explore the economic and financial effects of various

types of news events through their differential impact on a large option cross-section.

6 Conclusion

This study provides a detailed description of high-frequency trade and quote data for

options traded in the United States. It reviews the current structure of the U.S. market by

characterizing the 16 constituent option exchanges, summarizing the market regulatory

plans governing the option trading, and discussing specific market maker quoting obliga-

tions that are pertinent to the functioning of the markets.

Our data are provided by OPRA in accordance with the “Plan for Reporting of

Consolidated Options Last Sale Reports and Quotation Information.” It contains more

than 150 million trade and 1.2 trillion quote records at a millisecond resolution for all op-

tion classes written on individual equities, stock indices, and ETPs traded in the U.S. during

the first eight months of 2015. Our dataset is more comprehensive than the alternative

high-frequency option datasets employed in the limited number of existing studies, which,

typically focus strictly on index options. We provide a detailed assessment of the quality of

our dataset, and develop a general filtering algorithm for data cleaning the spirit of the

Barndorff-Nielsen et al. (2009) algorithm for tick-by-tick data on equities.

Based on a representative sample in January 2015, we find a very small fraction of erro-

neous and irregular records, suggesting that the OPRA records are of high quality. An ana-

lysis of various liquidity measures confirms our expectation that options written on more

liquid underlyings generally have tighter spreads. In addition, a cross-exchange investiga-

tion suggests that in 2015, CBOE, AMEX, and ARCA were the more competitive

exchanges, participating most frequently in the NBBO quoting pair.
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We characterize the trade and quote intensities across the securities and exchange ven-

ues as a function of option tenor and moneyness. Likewise, we explore the association be-

tween the size of the quoted option bid–ask spreads and the moneyness, tenor, and type of

option (call or put).

Finally, we present two illustrative applications—the estimation of the risk-neutral re-

turn variance and the RND—using intraday OPRA data. We confirm that such measures

can be constructed and yield information beyond what can be gleaned from end-of-day op-

tion data, but we also point toward limitations associated with the measures at the very

highest frequencies.

The various findings serve as inspiration for new studies addressing either market micro-

structure or asset pricing questions related to the option markets. The literature on high-fre-

quency equity data is voluminous. We expect the much richer, but also less manageable,

option data to provide a stimulating basis for novel work in the future, both through ex-

ploration within the option space itself, but also in terms of the interaction between the op-

tion and equity markets at a fine resolution. In order for this to materialize, however, the

rather complex market structure and regulatory environment should be recognized, so that

appropriate hypotheses and empirical procedures can be designed.

Overall, we hope this overview will serve as inspiration to explore the OPRA dataset to

its fullest. We are convinced it holds the key to progress on many market microstructure

and high-frequency asset pricing questions.

Supplementary Data

Supplementary data are available at Journal of Financial Econometrics online.
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Brogaard, J., B. Hagströmer, L. Norden, and R. Riordan. 2015. Trading Fast and Slow:

Colocation and Liquidity. Review of Financial Studies 28: 3407–3443.

Brownlees, C., and G. Gallo. 2006. Financial Econometric Analysis at Ultra-High Frequency:

Data Handling Concerns. Computational Statistics & Data Analysis 51: 2232–2245.

Cakici, N., G. Goswami, and S. Tan. 2014. Options Resilience during Extreme Volatility:

Evidence from the Market Events of May 2010. Journal of Banking & Finance 49: 262–274.

Cao, C., Z. Chen, and J. M. Griffin. 2005. Informational Content of Option Volume Prior to

Takeovers. The Journal of Business 78: 1073–1109.

Carr, P., and D. B. Madan. 1999. Option Valuation Using the Fast Fourier Transform. The

Journal of Computational Finance 2: 61–73.

Carr, P., and L. Wu. 2009. Variance Risk Premiums. Review of Financial Studies 2: 1311–1341.

Chakravarty, S., H. Gulen, and S. Mayhew. 2004. Informed Trading in Stock and Option

Markets. The Journal of Finance 59: 1235–1257.

Chan, K., Y. P. Chung, and W.-M. Fong. 2002. The Informational Role of Stock and Option

Volume. Review of Financial Studies 15: 1049–1075.

Chan, K., Y. P. Chung, and H. Johnson. 1993. Why Option Prices Lag Stock Prices: A

Trading-Based Explanation. The Journal of Finance 48: 1957–1967.

Chan, K., Y. P. Chung, and H. Johnson. 1995. The Intraday Behavior of Bid–Ask Spreads for NYSE

Stocks and CBOE Options. The Journal of Financial and Quantitative Analysis 30: 329–346.

Chang, B.-Y., P. Christoffersen, K. Jacobs, and G. Vainberg. 2012. Option-Implied Measures of

Equity Risk. Review of Finance 16: 385–428.

Chatrath, A., R. A. Christie-David, H. Miao, and S. Ramchander. 2015. Short-Term Options:

Clienteles, Market Segmentation, and Event Trading. Journal of Banking & Finance 61:

237–250.

Andersen et al. j High-Frequency Trade and Quote Option Data 175

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/19/1/128/6066685 by O

xford U
niversity Press U

SA user on 31 August 2021



Christoffersen, P., R. Goyenko, K. Jacobs, and M. Karoui. 2018. Illiquidity Premia in the Equity

Options Market. The Review of Financial Studies 31: 811–851.

Christoffersen, P., S. Heston, and K. Jacobs. 2009. The Shape and Term Structure of the Index

Option Smirk: Why Multifactor Stochastic Volatility Models Work so Well. Management

Science 55: 1914–1932.

Christoffersen, P., K. Jacobs, and K. Mimouni. 2010. Volatility Dynamics for the S&P500:

Evidence from Realized Volatility, Daily Returns, and Option Prices. Review of Financial

Studies 23: 3141–3189.

Christoffersen, P., K. Jacobs, C. Ornthanalai, and Y. Wang. 2008. Option Valuation with

Long-Run and Short-Run Volatility Components. Journal of Financial Economics 90: 272–297.

Cremers, K., and D. Weinbaum. 2010. Deviations from Put–Call Parity and Return Predictability.

Journal of Financial and Quantitative Analysis 45: 335–367.

Dalderop, J. 2020. Nonparametric Filtering of Conditional State-Price Densities. Journal of

Econometrics 214: 295–325.

De Fontnouvelle, P., R. P. H. Fishe, and J. H. Harris. 2003. The Behavior of Bid–Ask Spreads and

Volume in Options Markets during the Competition for Listings in 1999. The Journal of

Finance 58: 2437–2463.

Easley, D., M. O’Hara, and P. S. Srinivas. 1998. Option Volume and Stock Prices: Evidence on

Where Informed Traders Trade. The Journal of Finance 53: 431–465.

George, T. J., and F. A. Longstaff. 1993. Bid–Ask Spreads and Trading Activity in the S & P 100

Index Options Market. The Journal of Financial and Quantitative Analysis 28: 381–397.
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Abstract

In empirical equity asset pricing, the stochastic discount factor (SDF) is implicitly
modeled as a linear function of equity factors and is influenced by the empirical
properties of the factor returns. We investigate the pricing error introduced by a mis-
specified SDF which ignores each of the following established empirical phenom-
ena: autocorrelation, dynamics of covariances, dynamics of correlations, and heavy
tails for the conditional factor return distribution. We consider near-linear SDFs and
nonlinear specifications characterized by a high degree of risk aversion. We find that
assuming constant covariances or constant correlations can significantly overprice
certain equity portfolios at all risk-aversion levels and that ignoring fat tails can lead
to large pricing errors for some derivative assets for highly nonlinear SDFs.

Key words: equity factors, volatility clustering, correlation dynamics, tail thickness, asset pricing

JEL classification: C32, G12

The most common model in empirical asset pricing is the linear factor model which identi-

fies a linear expected return–beta relationship between the excess returns of risky assets and

the expected returns of the primitive assets, also known as factors. The classical formula-

tion of an asset pricing model, however, expresses current prices as an expectation of the

discounted future payoffs in which the discount factor is a random variable that summa-

rizes investor preferences over different states of the world. It can be shown that the linear

expected return–beta model is equivalent to a stochastic discount factor (SDF) which is a

linear function of the primitive assets, see, for example, Cochrane (2005).

In this article, we investigate the relative importance of certain empirical properties of

established equity factors on asset prices. Because the SDF is implicitly or explicitly mod-

eled as a function of the primitive assets, a misspecified econometric model introduces a

pricing error. We consider the market, size, value, investment, and profitability factors of

the five-factor Fama–French model developed by Fama and French (2005) extended with
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the momentum factor as proposed by Carhart (1997). Using an autoregressive (AR) dynam-

ic conditional correlation (DCC) GARCH model, we estimate the pricing error arising

from an SDF which is misspecified by ignoring each of the following empirical phenomena

captured by the econometric model: autocorrelation, dynamics of covariances, dynamics of

correlations, and the fat tail of the conditional distribution of factor returns.

There are related studies in the empirical literature. Christoffersen and Langlois (2013)

investigate the effect of tail behavior, the dynamics of volatility and correlations, and tail

dependence of the market, size, value, and momentum factors on portfolio construction.

Employing a DCC GARCH model with various parametric models including the Gaussian,

Student’s t, and skewed Student’s t copulas, they find that volatility and correlation dynam-

ics in factor returns are persistent. Christoffersen and Langlois (2013) conclude that the

heavy tails, the correlation dynamics, and the tail dependence of factor returns represent

phenomena of economic significance for investment management.

Even though linear models in which SDF is a linear function of the equity factors are

standard in the asset pricing literature, econometric techniques for dealing with nonlinear

models have been developed, see (Cochrane, 2005, Section 9.3). For example, Almeida and

Garcia (2016) consider a class of SDFs that arise by imposing moment conditions on the

space of admissible SDFs by means of a class of convex discrepancy functionals. The dual

formulation can be related to a portfolio problem with a hyperbolic absolute risk-aversion

(HARA) utility the solution of which is a nonlinear function of the factors. Highly nonlin-

ear SDFs are associated with a higher degree of risk aversion. Several models in the asset

pricing literature, such as Hansen and Jagannathan (1991), Snow (1991), and �Cern (2003),

arise as special cases. An empirical application of the nonlinear model is provided in

Almeida, Ardison, and Garcia (2020).

Our article contributes to the literature by ranking the relative importance of the empir-

ical properties of equity factors for near-linear and highly nonlinear SDFs with a high de-

gree of risk aversion. The asset pricing model is based on Almeida and Garcia (2016) and

the pricing error is estimated using the upper bound of Hansen and Jagannathan (1997). In

our case, the upper bound can be interpreted as the maximal possible difference between

the Sharpe ratios computed using the admissible SDF and a misspecified SDF across all

risky assets. We focus on near-linear SDFs because of their relevance for the practice of fi-

nance but we also consider highly nonlinear specifications. We use monthly returns of the

five Fama–French and the momentum factors from July 1963 to September 2017.

The main findings can be summarized as follows. First, we find that correlation dynam-

ics are of first-order importance. Ignoring the autocorrelation of the factor returns leads to

much smaller pricing errors on a relative basis. Moreover, assuming the conditional distri-

bution of factor returns is Gaussian leads to relatively small pricing errors for near-linear

SDFs but can become more pronounced for highly nonlinear SDFs.

Second, we assess the pricing error of the same types of misspecification on portfolios

whose systematic exposure is a linear function of the five Fama–French factors and momen-

tum. We find that, with some exceptions, the mispricing of the factors on a stand-alone

basis leads to insignificant pricing errors in general. However, some linear combinations of

factor exposures can be significantly overpriced by the misspecified SDF. This holds for all

levels of risk aversion when the misspecification includes constant covariances and constant

correlations and for some levels of risk aversion when autocorrelation is ignored and when

the conditional excess return distribution is incorrectly assumed to be Gaussian.
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Our results complement Christoffersen and Langlois (2013), Bali, Engle, and Tang

(2016), and Engle (2016) by emphasizing the importance of correlation dynamics in asset

pricing with linear SDFs. Also, our results suggest that underestimating the heavy tail of the

conditional distribution of factor returns can introduce a more pronounced pricing error

for high levels of risk aversion especially when considering derivative claims.

The article is organized in the following way. The statistical methodology is described in

Section 1. Sections 2 and 3 discuss the data and the empirical results, respectively. Our con-

clusions are summarized in Section 4.

1 Methodology

Consistent with the asset pricing literature, we assume that transactions take place at two

time instants, t and T> t. At the time instant t, financial assets are purchased and at time T

the payoffs are received; the payoffs are viewed as random variables as of time t. The prices

of financial assets at time t are then represented as the expected discounted value of the fu-

ture payoffs conditional on the information at time t in which the payoffs are discounted

state-by-state by means of an SDF.

More formally, let ðX;F;PÞ denote a probability space and pi;t denote the price of a fi-

nancial asset at time t in a set of assets under consideration. Denote the gross return of an

asset by Ri;T ¼ pi;T=pi;t and suppose that there are K primitive assets (or basic assets) with

gross returns XT ¼ ðX1;T ; . . . ;XK;TÞ.
The fundamental asset pricing equation can be written in the following form in terms of

excess returns rather than prices,

E½Ri;T � Rf ;T � ¼ �
covðMT ;Ri;T � Rf ;TÞ

E½MT �
; (1)

where MT is the SDF at time T, Rf ;T ¼ 1=E½MT � denotes the risk-free rate, see, for example,

Campbell (2000) and Cochrane (2005).

In empirical asset pricing, the most common models are linear expected return–beta

models such as CAPM, APT, etc. In these models, the expression in Equation (1) is not ex-

plicitly utilized but they are known to be equivalent to an SDF which is a linear function of

the primitive assets, see Cochrane (2005). Consider the following linear factor model

Ri;T � Rf ;T ¼ ðXT � Rf ;TÞ
0
bi þ �i (2)

where bi ¼ ðb1;i; . . . ;bK;iÞ denotes the beta exposures of the i-th risky asset and �i is the cor-

responding residual. Equation (1) can be represented (see Cochrane, 2005; Engle, 2016) as

E½Ri;T � Rf ;T � ¼ �
covð� 1

Rf ;T
E½XT � Rf ;T �C�1

X XT ;Ri;T � Rf ;TÞ
E½MT �

;

where CX is the covariance matrix of the excess returns XT � Rf ;T computed at time t,

implying the following expression for the SDF

MT ¼
1

Rf ;T
� 1

Rf ;T
E½XT � Rf ;T �C�1

X ðXT � E½XT �Þ; (3)

which is a linear function of the primitive assets. Even though the parameter CX is of first-
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order importance, other empirical characteristics can be relevant. For example, if the multi-

variate distribution of XT is heavy tailed, an econometrician may choose an estimation pro-

cedure that recognizes this fact.1

Furthermore, as noted by (Cochrane, 2005, Section 9.3), the asset pricing model need

not be linear. In nonlinear models, characteristics of the distribution of XT other than CX

may become significant. For example, if the SDF is a nonlinear function of the primitive

assets MT ¼MTðXTÞ, then in the classical two-period model the properties of MT depend

on the entire joint distribution of the random vector XT. Therefore, neglecting a relevant

empirical fact results in a misspecified random vector X�T and a misspecified SDF,

M�
T ¼M�

TðX�TÞ.
In empirical asset pricing, it is uncommon to work with an ex-ante formulation which

requires a full specification of the joint distribution of the basic assets and the set of risky

assets in order for the right-hand side of Equation (1) to be determined completely. In em-

pirical research, it is common to use time series averages to estimate unconditionally the

corresponding expectations, which means that the researcher takes advantage of the corre-

sponding empirical joint distribution. Regarding the specification of MT, the vast majority

of the empirical research is focused on which factors should be included in the vector XT.

In conditional asset pricing models, however, a nonparametric estimation is not as

straightforward and parametric formulations are common. For instance, in the linear case,

as noted by Engle (2016), assuming a CX which is not time-varying implies an SDF M�
T

computed by Equation (3) which may differ from an MT computed by the same equation

assuming a dynamic CX. As a consequence, working with M�
T instead of MT may introduce

a pricing error if the constant covariance assumption represents a significant misspecifica-

tion. An empirical study of the value added of asset pricing models such as Equation (2)

assuming a dynamic CX and, therefore dynamic beta exposures bi, is provided by Bali,

Engle, and Tang (2016) using a parametric setup.

In this article, we develop a method to test the incremental impact of several stylized

facts of XT. We work with the unconditional formulation provided in Equation (1) and the

method allows us to exclude certain empirical features while holding the set of basic assets

fixed when evaluating the right-hand side. An advantage of the unconditional formulation

is that it allows us to consider nonlinear SDFs which, to the best of our knowledge, have

not been adopted in conditional models yet.

The remainder of this section is organized in the following way. We begin with a de-

scription of the nonlinear SDF model and the method for sampling from the misspecified

SDF. Then, we explain how the pricing error for a portfolio of basic assets is computed and

we describe an algorithm that bootstraps its distribution in order to test for significance.

1.1 Evaluating the Impact of a Misspecified SDF

Instead of focusing on linear models only, we consider a more general framework. Almeida

and Garcia (2016) construct an SDF by imposing moment restrictions on all admissible

SDFs which are determined by a homogeneous discrepancy function selected to be the

Cressie–Read family of discrepancies, Cressie and Read (1984). The model generalizes

Hansen and Jagannathan (1991), Snow (1991), and �Cern (2003) among others.

1 Toda and Walsh (2017) discuss this issue in the context of the generalized methods of moments.
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Subject to some regularity conditions, Almeida and Garcia (2016) derive the following

expression for the SDF,

MT ¼ f ða
c þ ck0ðXT � Rf ;TÞÞ1=c; c 6¼ 0

aek0ðXT�Rf ;T Þ; c ¼ 0
(4)

where a ¼ EðMTÞ ¼ 1=Rf ;T ; c 2 R can be interpreted as a risk-aversion parameter and k is

the solution to the following problem,

max
v

E½ucðv;XTÞ�
s:t: ac þ cv

0 ðXT � Rf ;TÞ > 0:
(5)

where the objective function is given by

ucðv;XTÞ ¼
acþ1

cþ 1
� 1

cþ 1

�
ac þ cv0ðXT � Rf ;TÞ

�cþ1
c
; c 6¼ 0

a� aev0ðXT�Rf ;T Þ; c ¼ 0

8<
:

Almeida and Garcia (2016) show that this model prices exactly the factors XT and that

the model is arbitrage-free, that is, E½MTðXi;T � Rf ;TÞ� ¼ 0; i ¼ 1; . . . ;K, and MT > 0 in all

states of the world.2

The optimization problem in Equation (5) is interpreted as an optimal portfolio problem

of a representative investor with a HARA type of utility function in which c is a risk-

aversion parameter. Almeida and Garcia (2016) show that specific values of c correspond

to common utility functions, such as logarithmic (c ¼ �1), exponential (c¼ 0), and quad-

ratic (c¼ 1). Finally, c changes the relative weight of the higher-order moments of the distri-

bution of vXT in the objective function: c close to one implies negligible weights of all

higher-order moments, c < 1 increases the relative weight of skewness and kurtosis and

corresponds to an increasing degree of risk aversion, see Almeida and Garcia (2016).

A linear asset pricing model arises with c¼1 and is a special case. Because linear SDFs

are equivalent to linear factor models, see for example (Cochrane, 2005, Chapter 6), we

pay special attention to linear and near-linear SDFs that belong to the class of SDFs defined

by Equation (4).

The SDF MT as calculated in Equation (4) depends on the empirical properties of the ex-

cess returns of the primitive assets XT. If some empirical properties are ignored, then the

resulting SDF is misspecified and can fail to price the primitive assets correctly leading to

pricing errors of some magnitude. It is, therefore, of practical and theoretical interest to

quantify the magnitude of the pricing errors that can result from a misspecified SDF.

In particular, we are interested in finding an estimate of the pricing error arising from a

misspecified SDF where the misspecification concerns failure to incorporate the following

stylized facts: (i) autocorrelations, (ii) dynamics of the conditional covariances, (iii) dynam-

ics of correlations, and (iv) the fat tails of the residual process. A discussion of these proper-

ties for commonly used equity factors is provided by Christoffersen and Langlois (2013).

We note that such misspecifications may not necessarily lead to large pricing errors. For

instance, an empirical phenomenon may not be very pronounced in the data and may be of

2 Without loss of generality, we consider the normalized SDF MT ¼ a
ðacþck �ðXT�Rf ;T ÞÞ1=c

E½acþck �ðXT�Rf ;T Þ�1=c
which guaran-

tees EMT ¼ 1=Rf ;T .
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little consequence for asset prices for some (or all) levels of risk aversion. Alternatively, a

well-pronounced empirical property may turn out to be insignificant for asset prices.

Denote by M�
T a misspecified SDF computed in Equation (4) by ignoring certain empir-

ical phenomena. If the correctly specified MT and the misspecified M�
T provide identical pri-

ces for the risk-free asset,

E½MT � ¼ E½M�
T � ¼

1

Rf ;T
;

then the pricing error resulting from the misspecification can be quantified in the following

way

E½Ri;T � Rf ;T � � E
�½Ri;T � Rf ;T � ¼ �

covðMT �M�
T ;Ri;T � Rf ;TÞ

E½MT �
; (6)

where i denotes a financial asset and E
�½Ri;T � Rf ;T � denotes the expected risk premium

computed according to M�
T . Equation (6) holds for any financial asset or a portfolio of fi-

nancial assets.

Equation (6) can be used directly only if we can specify a set of financial assets for which

we wish to assess the asset pricing error because the right-hand side depends on that choice.

For example, in empirical asset pricing, it is common to work with certain portfolios of

stocks or with a certain cross-section of stocks. The right-hand side of Equation (6) is then

evaluated for each of the portfolios or the stocks.

We adopt the more general approach of Hansen and Jagannathan (1997) which is asset

independent. Consider the following bound,

j
E½Ri;T � Rf ;T � � E

�½Ri;T � Rf ;T �
rðRi;T � Rf ;TÞ

j �

�
EðMT �M�

TÞ
2
�1=2

E½MT �
; (7)

which follows from the Cauchy–Schwartz inequality applied to Equation (6). The upper

bound is asset independent and has a direct economic interpretation as the maximal abso-

lute Sharpe ratio difference across all risky assets, see Hansen and Jagannathan (1997) and

Almeida and Garcia (2012) for a generalization. Our setting is simpler in that MT is defined

through Equation (4) and we do not consider the infimum of the upper bound in Equation

(7) across all admissible SDFs as in Hansen and Jagannathan (1997). Our objective is to

study the behavior of the upper bound as a function of c.

We consider four types of misspecification for different values of the c parameter in

Equation (4) describing near-linear and also highly nonlinear SDFs:

A. The excess factor returns are not autocorrelated.

B. The covariance matrix of the excess factor returns is constant.

C. The correlations of the excess factor returns are constant but the volatilities are time-

varying.

D. The excess factor returns are conditionally Gaussian with time-varying volatilities and

correlations.

Using the upper bound in Equation (7), we can rank the misspecifications A through D.

Furthermore, by comparing Case B to Case C we can draw conclusions about the relative

significance of volatility dynamics and correlation dynamics.
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To evaluate the upper bound in Equation (7), we need the bivariate distribution of the

random vector ðMT ;M
�
TÞ. We suggest obtaining a sample of the joint distribution by using

a model general enough to describe the corresponding stylized properties which we also use

to obtain synthetic data by simplifying the model while keeping the states of the world

fixed.

1.2 Sampling from Misspecified SDFs

In this section, first we describe our assumption for the multivariate process of the excess

factor returns and then we explain how joint observations on ðMT ;M
�
TÞ are obtained. In

the remaining part of this article, the notation changes in the following way. Because we es-

timate the expectation in Equation (7) by a time series average, the index t is used to denote

the time of observation and essentially identifies a state of the world. To simplify notation

further, we drop the index T in the SDF notation.

We assume that the K-dimensional vector of factor returns Xt follows a multivariate

AR-DCC-GARCH process3 of the following type

Xt ¼ lþ /
0
Xt�1 þ gt; gtjIt�1 2 Nð0;DtRtDtÞ

D2
t ¼ diagðxiÞ þ diagðjiÞ�gt�1g

0

t�1 þ diagðkiÞ�D2
t�1

Zt ¼ D�1
t gt

Qt ¼ Qð1� a� bÞ þ aðZt�1Z
0

t�1Þ þ bQt�1

Rt ¼ diagðQtÞ
�1QtdiagðQtÞ

�1

(8)

in which / is a vector of coefficients, D2
t is a diagonal matrix with the factor return varian-

ces on the main diagonal, the notation � denotes the Hadamard product, Qt is the covari-

ance matrix of the vector of i.i.d. residuals Zt, Rt is the dynamic correlation matrix, and a

and b are positive constants with aþ b < 1 and have the general interpretation of the

parameters of the one-dimensional GARCH(1,1).4 The notation diagðxiÞ is a diagonal ma-

trix with x ¼ ðx1; . . . ;xKÞ on the main diagonal, diagðQ̂tÞ denotes a diagonal matrix with

the diagonal of Q̂t on the main diagonal, and gtjIt�1 denotes conditioning on the informa-

tion set at t � 1.

The structure of the process in Equation (8) is standard in the empirical literature, see,

for example, Engle (2002). The variances of the components of gt follow a univariate

GARCH(1,1) process with parameters xi, ji, and ki satisfying the condition ji þ ki < 1 for

the i-th component.

The model is estimated using the Gaussian quasi-maximum likelihood method which

can lead to a consistent and asymptotically normal estimator even if the true distribution is

non-Gaussian under the assumption that the innovation has a finite fourth moment, see

Elie and Jeantheau (1995), Hall and Yao (2003), and Horv and Kokoszka (2003).5 After

estimating the model, we calculate the normalized residual

3 Christoffersen and Langlois (2013) note that very small differences are observed between the modi-

fied DCC model by Aielli (2013) and the original formulation by Engle (2002) in their empirical study.

Our empirical setup is very similar and we use the original formulation by Engle (2002).

4 The choice of the lag in the AR component is justified in Section 4.1.

5 As a robustness check, we also estimate the model parameters using a multivariate Student t dis-

tribution and obtain very similar results.
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�̂t ¼ R̂
�1=2

t D̂
�1

t ĝt: (9)

The intuition behind the method to obtain joint samples can be explained as follows.

Suppose for simplicity that the true values of the parameters are known. Then, the actual

observed excess returns are deterministic functions of �t provided by Equation (8). In this

context, the four misspecifications can be viewed as special cases of the model in Equation

(8); that is, each misspecification is represented by a simpler function of the same residual

process.

Consider misspecification A. Joint observations on the two SDFs ðM;M�Þ are obtained

in the following way:

A1. M is obtained from Equation (4) by solving Equation (5) with the historical data.

A2. We estimate the AR-DCC-GARCH model in Equation (8) using the full available his-

tory of the equity factors and compute �̂t using Equation (9).

A3. Synthetic data X�t for the excess factor returns are computed by

X�t ¼ l̂/ þ D̂tR̂
1=2

t �̂t;

in which we ignore the autocorrelation term in Equation (8).6 Each component of l̂/ equals

l̂/;i ¼ l̂i=ð1� /̂ iÞ.
A4. M� is computed from Equations (4) and (5) for a fixed c using the synthetic data X�t .

Because the states of the world as represented by �̂t are fixed, we obtain joint observations

on the pair ðM;M�Þ and the calculation of the upper bound in Equation (7) is

straightforward.

Because the states of the world defined by the normalized residuals are kept the same, the

only difference between Xt and X�t , and therefore between M and M�, is the autocorrelation

component of Equation (8).

Steps A1, A2, and A4 are the same for all misspecifications A through D. The differences

are in the way the synthetic data X�t are generated. In the following, we describe the third

step for the remaining three misspecifications.

Step B3 of misspecification B takes the following form:

B3a. Compute the unconditional covariance matrix Ĉ of the estimated residual process ĝt.

B3b. Synthetic data X�t for the excess factor returns are computed by

X�t ¼ l̂ þ /̂X�t�1 þ Ĉ
1=2
�̂t:

In this case, the difference between Xt and X�t is that the matrix multiplying �̂t is not time-

varying.

Step C3 of misspecification C takes the following form:

C3a. Compute the unconditional correlation matrix R̂ of the estimated residual process ĝt.

C3b. Synthetic data X�t for the excess factor returns are computed by

6 Note that by virtue of the estimation process, if we set X �t ¼ l̂ þ /̂X �t�1 þ D̂ t R̂
1=2

t �̂t , then we re-

cover the historical data; that is, Xt ¼ X �t .
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X�t ¼ l̂ þ /̂X�t�1 þ D̂tR̂
1=2
�̂t:

This misspecification is different from Case B in that the conditional correlation matrix is

not time-varying while the volatilities are allowed to be time-varying.

Step D3 of misspecification D takes the following form:

D3a. For each equity factor, the empirical distribution function of the normalized residual

is evaluated at the value of the observed normalized residuals. The resulting values have a

uniform distribution.

D3b. For each equity factor, the results from the previous step are plugged into the quantile

function of a Gaussian distribution estimated from the corresponding normalized re-

sidual. As a result, we have a new ��t such that the vector component follows a Gaussian

distribution while retaining the historical joint dependence of the components.

D3c. Synthetic historical data X�t are generated using Equation (9) with the fitted D̂t and R̂t,

X�t ¼ l̂ þ /̂X�t�1 þ D̂tR̂
1=2

t �̂�t :

Note that by construction �̂�t is a function of �̂t and the assumption that the states of the

world should be fixed has not been violated. Furthermore, the transformation affects not

only the marginal distributions but also the severity of the joint extremes. Because the pair

ðXt;X
�
t Þ has to be defined jointly in the same states of the world, disentangling the impact

of the marginal distribution from that of the joint extremes is not straightforward.

In this case, the conditional covariances remain as initially estimated and the difference be-

tween M and M� are driven by the assumption of normality. If the estimated normalized

residuals are almost Gaussian, then Xt and X�t would be very similar which would result in

similar M and M� in each state of the world.

1.3 The Pricing Error for Portfolios of Basic Assets

The upper bound in Equation (7) may not be attained in a given set of risky assets. Across

all assets, the parameter that determines the proximity to the upper bound is the correlation

between the SDF difference Mc �M�
c and Ri;T � Rf ;T where Ri;T denotes the gross return of

a risky asset. This is demonstrated by rewriting Equation (6) in the following way

E½Ri � Rf � � E
�½Ri � Rf �

rðRi � Rf Þ
¼ �qi

ðE½Mc �M�
c �

2Þ1=2

E½Mc�
; (10)

where qi is the correlation between Mc �M�
c and Ri � Rf . The upper bound in Equation (7)

is attained for risky assets with jqij ¼ 1.

In order to find portfolios of the primitive assets most affected by the misspecification,

we solve the following problem for every type of misspecification A through D.

min
w

EðDM �w0XÞ2 (11)

where X ¼ ðX1; . . . ;XKÞ denotes the excess returns of the basic assets. The solution to this

problem replicates DM in the best possible way in the mean-squared sense and represents a

linear combination of systematic exposures which is most overpriced by M�. The optimiza-

tion problem in Equation (11) is a projection onto the linear span of the basic assets and
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has the closed-form solution w ¼ ðX0XÞ�1X
0
DM. Flipping the sign of w provides the linear

combination of systematic exposures which is most underpriced by M�
T .

Because M and M� are in general nonlinear functions of the basic assets, the upper

bound of the pricing error may not be attained in the linear span of the basic assets.

Therefore, a large upper bound in Equation (7) does not necessarily imply a significant pric-

ing error on the linear span of the basic assets. The asset most affected by the misspecified

SDF might be a highly exotic derivative of little practical significance. For this reason, apart

from evaluating the upper bound in Equation (7), we also evaluate the impact of the mis-

specification on portfolios of basic assets by means of solving the problem in Equation (11).

1.4 Computing the Significance of the Pricing Error

Equation (6) computes the pricing error of a risky asset, which can be one of the basic assets

or a portfolio of them. In practice, the right-hand side is estimated by a time series average

in which the two SDFs are computed using Equations (4) and (5) together with the corre-

sponding specifications of Xt. As a consequence, it is important to be able to test if the esti-

mated pricing error is statistically significant given a pair ðM;M�Þ.
The distribution of the pricing error for a particular asset is bootstrapped numerically

using the following approach:

1. Take the real and the synthetic data ðXt;X
�
t Þ where t 2 T denotes a period of time. The

algorithms in Section 1.2 guarantee that the real and the synthetic data are defined on a

common probability space.

2. Draw a random sequence of indices T b from T with replacement.

3. Calculate the pair ðM;M�Þ by solving the optimization problem in Equation (5) using

the data ðXt;X
�
t Þ where t 2 T b.

4. Calculate the right-hand side of Equation (7) using T b for the particular asset being

considered.

Repeating this process many times results in a sample from the distribution of the pric-

ing error. The calculation of the p-value of the pricing error obtained from the original data

ðXt;X
�
t Þ where t 2 T is straightforward.

2 Data

The dataset used in the risk assessment application consists of monthly returns of the five

factors in the five-factor model by Fama and French (2005)—market (MKT), size (SMB),

value (HML), investment (CMA), and profitability (RMW)—as well as momentum

(MOM) for the period from July 1963 to September 2017. We use the one-month Treasury

bill rate for the same period as a proxy for the risk-free rate. We set the risk-free rate to be

the average one-month Treasury bill rate for the full period, which equals 0.39%. The

returns were downloaded from the data library of Kenneth French.7 In total, we work with

651 monthly observations.

As a robustness study, we repeat the analysis with weekly data for the same period and

for the same factors. The empirical analysis is, however, based on the monthly data.

7 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. We use excess

returns for the market factor.
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3 Empirical Analysis

The empirical analysis is divided into three parts. First, we discuss the relevant stylized facts

of the empirical data and the degree to which they are pronounced in the monthly returns.

Second, we quantify the relative importance of the misspecifications in A through D

described in Section 1.1 for different levels of risk aversion by means of the upper bound in

Equation (7). We look at both near-linear and highly nonlinear SDFs characterized by high

levels of risk aversion.

Finally, we focus on equity portfolios whose systematic risk is a linear combination of

the six factors. We calculate both the pricing error of the primitive assets and the factor

exposures which result in the largest possible overpricing by the misspecified SDF.

Because we work with monthly returns of the five Fama–French and the momentum fac-

tors, our results in the section are reported as monthly statistics. Even though the upper

bound in Equation (7) is related to the Sharpe ratio, we do not annualize because the econo-

metric model in Equation (8) does not allow for a straightforward way to do that, see Lo

(2002).

3.1 Stylized Facts of the Data

In this section, we confirm the presence of the following phenomena in the monthly returns

data: autocorrelation, clustering of volatility, correlation dynamics, and a non-Gaussian re-

sidual process. Christoffersen and Langlois (2013) report similar phenomena in the weekly

returns but because our analysis is based on monthly data, as a first step we verify if at that

frequency the same empirical phenomena are sufficiently pronounced.

The autocorrelation plots of the factor returns in Figure 1 indicate that HML, RMW,

and CMA have a significant autocorrelation of order one while the same order is borderline

insignificant for MKT. The AR component of the model in Equation (8) is supposed to cap-

ture that statistically.

The estimated parameters of the AR-DCC-GARCH model for each factor are provided

in Table 1. These parameter estimates include the intercept vector l̂, the autoregression

coefficients in the vector /̂, and the individual factor GARCH(1,1) parameters x̂ i; ĵi, and

k̂i. The estimates of the joint parameters are â ¼ 0:104 and b̂ ¼ 0:802 and both are strong-

ly significant. Table 1 suggests significant volatility and correlation dynamics.

An illustration of the volatility and correlation dynamics is provided in Figures 2 and 3.

Figure 2 includes plots of the monthly data together with 95% confidence bands computed

using the estimated AR-DCC-GARCH model. The dynamics of the confidence bands reflect

the temporal behavior of the volatility as captured by the model.

Figure 3 provides plots of the estimated conditional correlations of all factor pairs which

include the market factor (MKT). Correlation dynamics tend to be rather pronounced in

some cases with correlations changing from �0.4 to 0.4 in the course of several months. All

factor pairs exhibit a similar degree of correlation dynamics, Figure 3 includes only the

pairs with MKT because of the significance of that factor for asset pricing.

Finally, Table 2 includes descriptive statistics of the normalized residual. The skewness

and kurtosis indicate substantial departures from normality in some cases. The Shapiro–

Wilk test (Shapiro and Wilk, 1965) shows that we can accept normality only for the nor-

malized residual of CMA. The normalized residuals of MKT, SMB, and MOM are strongly

non-Gaussian.
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3.2 Impact on the Upper Bound

The empirical analysis in Section 3.1 implies that autocorrelations and fat tails are pro-

nounced for some of the factors and the volatility and correlation dynamics are significant

for all variables. In this section, we quantify the relative significance of these phenomena

for asset pricing when the SDF is constructed according to Equation (4).

We introduce the following notation for the upper bound in Equation (7) for each of the

four misspecifications,

dMissp;c ¼ 1

E½Mc�
ðE½Mc �M�

Missp;c�
2Þ1=2;

in which the following abbreviations are used for the misspecifications in the subscript of

M�
Missp;c and dMissp;c: AR assumes no AR effect (misspecification A), Cov assumes a constant

Figure 1. Estimated autocorrelation functions (ACF) of the monthly returns of the six factors up to lag

ten with 95% confidence bounds. The HML, CMA, and RMW factors have significant autocorrelation of

order one while the MKT, SMB, and MOM factors do not exhibit significant autocorrelations.
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conditional covariance matrix (misspecification B), Cor assumes a constant conditional cor-

relation (misspecification C), and N assumes that the AR-DCC-GARCH residuals for all

factors are Gaussian (misspecification D). Based on the average one-month Treasury bill

rate, we estimate E½Mc� ¼ 1=Rf ¼ 0:9961.

The misspecified SDFs M�
Missp;c and Mc are computed according to the algorithms in

Section 1.1 with c fixed to one and the same value. We are interested in the behavior of the

bounds for SDFs which are linear and near-linear functions of the factors and also in SDFs

which are highly nonlinear. For this reason, we choose values for c which are close to one

and values that deviate away from one in both directions.

Plots of estimated SDFs are provided in Figure 4. The top plot shows the estimated Mc, the

plot in the middle corresponds to MCov;c, and the bottom plot corresponds to MN;c. The plots

are produced with the risk-aversion parameter set to c¼ 1. High values of an SDF identify un-

favorable states of the economy such as recessions or market crashes. This is clearly visible on

the top plot in which the most extreme values correspond to the market declines in October

1978, October 1979, March 1980, the Black Monday crash, the aftermath of the tech bubble

bursting, and the financial crisis of 2008. Because the covariance matrix is assumed constant,

the SDF MCov;c would fail to recognize states with high conditional correlations and volatilities

as very risky and states with low conditional correlations and volatilities as very favorable. As

a consequence, M1 is expected to have more pronounced extremes than MCov;1. This is con-

firmed by comparing the top plot to the middle plot in Figure 4.

Comparing the top plot to the bottom plot in Figure 4 suggests that the main differences

between M1 and MN;1 are in the upper tails. Because the conditional distribution of the re-

sidual process is incorrectly assumed to be Gaussian, MN;1 underestimates the risk of states

associated with severe market crashes. The lower tails of M1 and MN;1 appear to be rather

similar.

Estimated values of the upper bound in Equation (7) are provided in Table 3. Because we

work with monthly data, the numbers in each row are interpreted as maximal differences

Table 1. Estimated parameters of the model in Equation (8) and their p-values corresponding to

each of the factors

l / x j k

MKT Estimate 0.006441 0.044134 0.000073 0.128153 0.843764

p-value 0.000121 0.306824 0.06154 0.000078 0

SMB Estimate 0.001742 0.084794 0.000053 0.125718 0.821851

p-value 0.153421 0.06585 0.033159 0.003065 0

HML Estimate 0.002346 0.182289 0.000051 0.160977 0.771699

p-value 0.037872 0.000045 0.019095 0.000045 0

MOM Estimate 0.004571 0.022973 0.000137 0.419083 0.567123

p-value 0.000476 0.620436 0.01574 0.001877 0

RMW Estimate 0.002041 0.146328 0.000024 0.182671 0.753058

p-value 0.002682 0.000304 0.008662 0.00323 0

CMA Estimate 0.001861 0.148197 0.000017 0.159319 0.799946

p-value 0.013726 0.000505 0.112547 0.000117 0

The estimated values for the joint parameters are â ¼ 0:10447 and b̂ ¼ 0:802321 both have p-values of zero.

The factors are MKT, SMB, HML, MOM, CMA, and RMW.
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between the monthly Sharpe ratios computed according to Mc and the respective M�
Missp;c across

all risky assets with the risk-aversion parameter c fixed to the corresponding value in the column.

Table 3 shows that in the case of linear and near-linear SDFs (c close to one), ignoring

the covariance dynamics and the correlation dynamics lead to the largest pricing errors. If

we compare d̂Cov;c to d̂Cor;c, we notice that correlation dynamics seem to be of relatively

higher significance than volatility dynamics.8 In contrast, if the misspecification consists of

ignoring autocorrelations or the fat tails, then the pricing errors are expected to be much

smaller.

When the level of risk aversion increases (c declines), the estimated values of the upper

bound increase suggesting higher sensitivity to all misspecifications. The largest increase,

Figure 2. Monthly factor returns together with 95% confidence bands computed through the fitted

model. The clustering of volatility effect is clearly visible. The factors considered are MKT, SMB, HML,

MOM, CMA, and RMW.

8 Both correlations and volatilities are assumed constant in d̂Cov;c, while only correlations are

assumed constant in d̂Cor;c.
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Figure 3. Estimated conditional correlations of the monthly returns of the market factor and the

remaining five factors. The correlation dynamics present in the other pairs is of similar magnitude.

The following abbreviations are used: MKT, SMB, HML, MOM, CMA, and RMW.

Table 2. Distributional characteristics of the normalized residual from the DCC AR-GARCH

model together with p-values of the Shapiro–Wilk normality test

Mean Std Skewness Kurtosis SW p-value

MKT �0.041 0.995 �0.632 4.81 1.4e-08

SMB 0.019 1.025 0.239 4.13 4.3e-05

HML �0.021 1.008 0.191 3.64 0.0158

MOM 0.064 0.996 �0.679 6.20 1.1e-12

RMW �0.027 0.962 �0.080 3.66 0.0109

CMA 0.002 1.006 �0.070 3.29 0.2282

The row in bold is the only case in which the Gaussian distribution is not rejected by the Shapiro–Wilk test.

The factors considered are the MKT, SMB, HML, MOM, CMA, and RMW factors.
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Figure 4. Monthly values of estimated SDFs using the historical data (top), assuming a constant covari-

ance matrix (middle), and assuming a Gaussian residual (bottom). The risk-aversion parameter c¼ 1

for all cases.
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however, is in d̂N;c which shows that ignoring the heavy tail may become marginally more

important when the level of risk aversion is higher.

Table 3 contains only point estimates and we need interval estimates to assess the sig-

nificance of the differences between the numbers. To sample from the corresponding esti-

mators, we repeat the procedure from Section 1.4 500 times where T is the collection of all

months from July 1963 to September 2017.

Boxplots of the bootstrapped distributions for near-linear cases and nonlinear cases

are provided in Figure 5. The top plot suggests that even though some of the correspond-

ing values in Table 3 appear similar in magnitude, they are statistically different from

each other. The bottom plot confirms that the increase in all estimates as c declines is

significant.

Based on the results in Table 3 and Figure 5, we draw the following conclusions. First,

across all levels of risk aversion, the phenomenon with highest impact on pricing errors is

the dynamics of the covariance matrix of the returns of the basic assets. Correlation dynam-

ics is of first-order importance—assuming constant correlations while allowing for cluster-

ing of volatility can lead to monthly Sharpe ratio errors of up to 0.109 in the linear case.

Given that most of the theory and practice of finance in equity asset pricing is based on lin-

ear models, this conclusion emphasizes the importance of research in dynamic beta models

for asset pricing, see, for example, Engle (2016) and Bali, Engle, and Tang (2016).

Second, assuming the monthly returns are not autocorrelated leads to significantly

smaller pricing errors compared to the remaining three types of misspecification. This result

is surprising and the reason may be the relative simplicity of the AR model which is only

statistical and has no state variable to provide a structural explanation. Candidates for such

state variables include macroeconomic variables such as inflation and money supply, see

Flannery and Protopapadakis (2002) for a comprehensive analysis albeit in a different

context.

Finally, working with a Gaussian model when in fact the excess returns of the basic

assets are fat-tailed leads to much more significant pricing errors when the degree of risk

aversion is more pronounced. This is not surprising given that the skewness and kurtosis of

the SDF have a higher weight in the corresponding Taylor series expansion (see Almeida

and Garcia, 2016) when c declines below one. Thus, the fat tails of the basic assets can lead

to higher pricing errors on a relative basis as c declines.

Table 3. Estimated values of the upper bound in Equation (7) for different values of the risk-aver-

sion parameter c with monthly data

c �1.5 �1 �0.5 0 0.4 0.8 1 1.2 1.6 2

d̂AR;c 0.081 0.054 0.049 0.047 0.045 0.032 0.030 0.027 0.026 0.028

d̂Cov;c 0.782 0.530 0.333 0.238 0.209 0.188 0.193 0.189 0.184 0.166

d̂Cor;c 0.341 0.251 0.198 0.169 0.153 0.118 0.109 0.099 0.093 0.086

d̂N;c 0.391 0.215 0.163 0.113 0.084 0.055 0.049 0.048 0.040 0.038

The classical linear SDF arises with c¼ 1 and is in bold. The numbers represent the maximal monthly Sharpe

ratio deviations resulting from the corresponding misspecification. The following abbreviations are used: AR

assumes no AR effect, Cov assumes a constant conditional covariance matrix, Cor assumes a constant condi-

tional correlation, and N assumes the conditional distribution for all factors is Gaussian.
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3.3 Impact on Portfolios of Primitive Assets

Hansen and Jagannathan (1997) note that a misspecified SDF may introduce pricing errors

on the set of primitive assets as well as on the collection of all derivative claims. Because we

assess the pricing errors by the upper bound in Equation (7), it is unclear if the pricing

errors on the primitive assets and some portfolios of them can approach the upper bound.

In this section, we verify if the pricing errors of risky assets whose systematic risk is repre-

sented by a linear combination of the primitive assets are substantial.

The pricing error represented by the right-hand side of Equation (10) for each single

primitive asset and type of misspecification is provided in Table 4. Using the algorithm in
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Figure 5. Bootstrapped distributions of the upper bounds estimated in Table 3 for near-linear SDFs

(top) and nonlinear SDFs (bottom). The case of linear SDF (c¼ 1) is included in both plots as a bench-

mark. The following abbreviations are used: AR assumes no AR effect, Cov assumes a constant condi-

tional covariance matrix, Cor assumes a constant conditional correlation, and N assumes the

conditional distribution for all factors is Gaussian.
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Section 1.3, we calculate the p-values of the pricing errors using 500 bootstrapped samples.

The pricing errors which are significant at the 5% level of significance are provided in bold.

In general, the pricing errors across all panels in Table 4 are insignificant and remain

relatively small compared to the upper bounds reported in Table 3 with some notable

exceptions such as MKT and CMA in Panel B and RMW in Panel C for some values of c1.

Risky assets with systematic exposures which are linear combinations of the primitive

assets may have higher pricing errors. We check that hypothesis by finding a linear combin-

ation that best replicates the corresponding SDF difference DM ¼Mc �M�
Missp;c which is

done by first solving problem (11) and then by computing the right-hand side of Equation

(10) for the asset.

The results are presented in Table 5. Each panel corresponds to one of the four misspeci-

fications and contains the optimal exposures, the pricing error for different values of the

risk-aversion parameter c, and its p-value computed using 500 bootstrapped samples gener-

ated according to the algorithm in Section 1.4. The pricing errors resulting from the as-

sumption of constant covariances and constant correlations (Panels B and C) are significant

at all levels of c with one exception. Ignoring autocovariances and assuming the returns are

Gaussian (Panels A and D) also leads to significant pricing errors for some levels of risk

aversion, but the magnitude of the pricing errors is much smaller compared to Panels B and

C indicating smaller economic significance.

From a more general perspective, the results in Table 4 indicate that the basic assets are

not severely mispriced by any of the misspecified SDFs. Nevertheless, Table 5 shows that

certain portfolios, viewed as linear functions of the basic assets, can be substantially mis-

priced. For example, ignoring the dynamics of covariances (Panel B) or the dynamics of cor-

relations (Panel C) can lead to a monthly Sharpe ratio overvaluation of about 0.108 for the

linear SDF (c¼1) of Panel B and about 0.054 for the linear SDF of Panel C. Finally, the

maximal Sharpe ratio deviations reported in Table 3 are larger in absolute value as they

represent the maximal possible error which materializes for a very particular derivative

claim.

The gap between the numbers in Table 5 and Table 3 indicates that larger errors are

possible for certain derivative instruments, which can be viewed as certain nonlinear func-

tions of the basic assets, as illustrated by Equation (10). As a consequence, the relatively

larger gap between the pricing errors reported in Panel D of Table 5 and the upper bound

in Table 3 implies that assuming a Gaussian conditional distribution can have a larger im-

pact on the price of certain derivative instruments. The same observation can be made for

the no-autocorrelation misspecification. However, its upper bound in Table 3 is much

smaller than that of the no-fat-tails misspecification which limits the impact on the pricing

error of all risky assets with either linear or nonlinear exposures to the equity factors.

3.4 Robustness Analysis

Even though it is common to work with monthly returns in empirical asset pricing, we

check if the conclusions change in any material way if we use weekly data. As noted previ-

ously, the weekly returns exhibit similar empirical properties which are carefully docu-

mented by Christoffersen and Langlois (2013) for a similar time period.

The same analysis performed on the weekly returns indicates that largely the same con-

clusions hold. Like the case of monthly returns, the pricing errors of the basic assets are
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Panel B: Constant covariances

�1.5 �1 �0.5 0 0.4 0.8 1 1.2 1.6 2

MKT �0.013 �0.003 0.006 0.010 0.011 0.075 0.094 0.090 0.083 0.072

SMB 0.021 0.024 0.023 0.020 0.018 0.030 0.037 0.033 0.033 0.031

HML �0.038 �0.025 �0.014 �0.010 �0.008 �0.032 �0.031 �0.039 �0.049 �0.047

MOM 0.057 0.044 0.035 0.033 0.034 0.023 0.026 0.027 0.029 0.029

RMW 0.057 0.048 0.043 0.043 0.043 �0.027 �0.044 �0.045 �0.045 �0.042

CMA 0.027 0.018 0.012 0.011 0.012 �0.041 �0.050 �0.056 �0.061 �0.051

Panel C: Constant correlations

�1.5 �1 �0.5 0 0.4 0.8 1 1.2 1.6 2

MKT 0.000 0.000 0.000 0.000 0.000 0.038 0.048 0.037 0.033 0.022

SMB 0.006 0.005 0.004 0.004 0.004 0.003 0.007 0.001 �0.001 �0.002

HML �0.011 �0.010 �0.009 �0.006 �0.004 �0.020 �0.006 �0.005 �0.004 0.004

MOM 0.045 0.041 0.039 0.037 0.035 0.006 0.005 0.004 0.003 0.002

RMW 0.059 0.057 0.050 0.041 0.035 �0.017 �0.022 �0.015 �0.010 �0.012

CMA 0.010 0.009 0.009 0.011 0.011 �0.014 �0.004 0.005 0.011 0.016

Panel D: The conditional excess returns are Gaussian

�1.5 �1 �0.5 0 0.4 0.8 1 1.2 1.6 2

MKT �0.022 �0.018 �0.014 �0.010 �0.008 �0.001 0.000 �0.012 �0.006 �0.009

SMB �0.008 �0.006 �0.003 �0.001 0.000 0.003 0.003 �0.003 0.000 0.001

HML 0.004 0.004 0.003 0.002 0.002 0.000 �0.001 �0.009 �0.011 �0.009

MOM �0.059 �0.039 �0.015 �0.002 0.004 0.013 0.014 0.014 0.012 0.013

RMW 0.016 0.013 0.009 0.007 0.006 0.005 0.004 0.012 0.012 0.012

CMA �0.004 �0.002 0.001 0.002 0.002 0.001 0.000 0.000 �0.004 �0.007

The panels correspond to the four types of misspecification. Negative errors imply that the misspecified SDF

M�
c overprices the corresponding primitive asset. A linear SDF corresponds to c¼ 1, a lower level of c indicates

a higher degree of risk aversion. The factors considered are the MKT, SMB, HML, MOM, CMA, and RMW

factors. The numbers in bold indicate statistical significance at 5%.

Table 4. The pricing errors of the primitive assets computed by Equation (10) using monthly

data for different levels of the risk-aversion parameter c

Panel A: No autocorrelation

�1.5 �1 �0.5 0 0.4 0.8 1 1.2 1.6 2

MKT �0.002 �0.002 �0.002 �0.002 �0.002 �0.002 �0.003 �0.002 �0.001 �0.008

SMB 0.000 0.000 �0.001 �0.002 �0.003 �0.004 �0.005 �0.006 �0.005 �0.005

HML 0.011 0.010 0.008 0.005 0.004 0.011 0.010 0.008 0.008 0.013

MOM 0.002 0.002 0.002 0.001 0.001 0.001 0.000 0.000 0.000 0.000

RMW �0.001 0.000 0.001 0.002 0.002 0.010 0.011 0.011 0.010 0.008

CMA 0.015 0.014 0.011 0.008 0.007 0.014 0.013 0.013 0.012 0.012
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Table 5. Linear combinations of factor exposures most exposed to the SDF difference

DM ¼Mc �M�
c , the corresponding pricing errors, and their p-values

Panel A: No autocorrelation

�1.5 �1 �0.5 0 0.4 0.8 1 1.2 1.6 2

MKT �0.089 �0.082 �0.068 �0.052 �0.042 �0.139 �0.133 �0.133 �0.161 0.059

SMB �0.036 �0.024 0.000 0.031 0.054 0.017 0.057 0.069 0.078 0.046

HML �0.018 �0.002 0.028 0.048 0.037 �0.028 0.056 0.119 0.142 �0.248

MOM �0.054 �0.045 �0.034 �0.021 �0.012 �0.017 0.023 0.037 0.039 �0.003

RMW �0.028 �0.068 �0.095 �0.105 �0.100 �0.515 �0.533 �0.532 �0.508 �0.278

CMA �0.804 �0.739 �0.635 �0.498 �0.381 �0.757 �0.809 �0.835 �0.837 �0.310

error �0.016 �0.015 �0.012 �0.009 �0.007 �0.019 �0.018 �0.018 �0.017 �0.016

p-value 0.036 0.028 0.046 0.084 0.176 0.018 0.034 0.052 0.060 0.082

Panel B: Constant covariances

�1.5 �1 �0.5 0 0.4 0.8 1 1.2 1.6 2

MKT �0.179 �0.290 �0.434 �0.546 �0.599 �1.525 �1.872 �1.727 �1.473 �1.288

SMB �1.656 �1.548 �1.352 �1.178 �1.093 �0.146 �0.023 0.114 0.041 �0.059

HML 4.128 2.741 1.719 1.402 1.291 �0.157 �0.909 �0.658 �0.206 0.203

MOM �0.665 �0.567 �0.505 �0.506 �0.536 �0.773 �1.021 �1.012 �0.973 �0.905

RMW �3.705 �3.178 �2.822 �2.742 �2.711 0.677 1.495 1.650 1.661 1.492

CMA �5.791 �4.037 �2.829 �2.569 �2.522 0.930 1.898 2.053 2.076 1.274

error �0.124 �0.096 �0.079 �0.075 �0.074 �0.084 �0.108 �0.106 �0.102 �0.091

p-value 0.006 0.006 0.004 0.004 0.002 0.002 0.000 0.000 0.000 0.000

Panel C: Constant correlations

�1.5 �1 �0.5 0 0.4 0.8 1 1.2 1.6 2

MKT �0.421 �0.401 �0.377 �0.352 �0.329 �0.891 �1.214 �1.068 �1.033 �0.759

SMB �0.870 �0.812 �0.711 �0.594 �0.516 0.386 0.379 0.417 0.409 0.355

HML 1.315 1.264 1.131 0.948 0.788 0.511 0.043 0.477 0.750 0.456

MOM �0.751 �0.671 �0.642 �0.643 �0.645 �0.224 �0.295 �0.174 �0.102 �0.104

RMW �3.180 �3.055 �2.695 �2.221 �1.885 0.528 0.671 0.348 0.124 0.309

CMA �2.268 �2.151 �2.009 �1.847 �1.672 �0.447 �0.750 �1.484 �2.033 �1.775

error �0.084 �0.079 �0.071 �0.062 �0.056 �0.043 �0.054 �0.046 �0.046 �0.038

p-value 0.024 0.000 0.000 0.002 0.012 0.026 0.024 0.042 0.044 0.074

Panel D: The conditional excess returns are Gaussian

�1.5 �1 �0.5 0 0.4 0.8 1 1.2 1.6 2

MKT 0.697 0.534 0.365 0.240 0.160 �0.019 �0.036 0.227 0.115 0.252

SMB �0.175 �0.166 �0.141 �0.122 �0.109 �0.139 �0.132 �0.101 �0.191 �0.229

HML 0.410 0.234 0.070 �0.005 �0.032 �0.111 �0.054 0.570 0.593 0.236

MOM 1.552 1.036 0.413 0.083 �0.053 �0.307 �0.334 �0.206 �0.169 �0.228

RMW �0.922 �0.707 �0.422 �0.283 �0.242 �0.190 �0.185 �0.512 �0.596 �0.489

CMA 0.267 0.225 0.137 0.081 0.051 0.046 0.024 �0.380 �0.349 0.270

error �0.071 �0.049 �0.024 �0.012 �0.010 �0.015 �0.016 �0.023 �0.021 �0.022

p-value 0.086 0.128 0.190 0.152 0.110 0.048 0.022 0.014 0.008 0.004

Negative errors imply overpricing by the misspecified SDF M�
c . The portfolios are computed by Equation (11)

and the pricing errors are calculated by Equation (10) using monthly returns. The factors considered are the

MKT, SMB, HML, MOM, CMA, and RMW factors.
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Table 6. Linear combinations of factor exposures most exposed to the SDF difference

DM ¼Mc �M�
c , the corresponding pricing errors, and their p-values

Panel A: No autocorrelation

�1.5 �1 �0.5 0 0.4 0.8 1 1.2 1.6 2

MKT 0.015 0.004 �0.002 �0.006 �0.008 0.092 0.079 0.070 0.025 �0.285

SMB �0.050 0.003 0.031 0.041 0.045 0.198 0.180 0.168 0.270 0.433

HML 0.031 0.077 0.100 0.096 0.084 0.328 0.272 0.235 0.179 0.327

MOM 0.154 0.065 0.016 �0.005 �0.015 0.071 0.010 �0.030 0.057 0.036

RMW �0.289 �0.160 �0.080 �0.042 �0.019 0.614 0.503 0.426 0.171 0.229

CMA �0.033 �0.122 �0.168 �0.170 �0.156 0.084 0.129 0.158 0.307 �0.188

error �0.004 �0.002 �0.002 �0.001 �0.001 �0.007 �0.006 �0.005 �0.005 �0.009

p-value 0.210 0.240 0.286 0.292 0.300 0.022 0.044 0.066 0.066 0.048

Panel B: Constant covariances

�1.5 �1 �0.5 0 0.4 0.8 1 1.2 1.6 2

MKT �1.371 �1.426 �1.422 �1.417 �1.413 �1.204 �0.786 �0.754 �1.425 �1.876

SMB �1.804 �1.516 �1.392 �1.323 �1.283 �0.947 �0.320 0.065 0.567 0.805

HML �0.886 �0.357 �0.166 �0.097 �0.074 0.471 1.550 2.169 2.637 2.840

MOM �1.022 �0.954 �0.914 �0.908 �0.910 �0.701 �0.273 �0.087 0.007 0.158

RMW �4.460 �3.727 �3.514 �3.421 �3.370 �2.072 0.490 2.029 3.275 3.211

CMA �3.680 �3.800 �3.784 �3.760 �3.735 �3.295 �2.440 �2.607 �4.728 �5.326

error �0.057 �0.051 �0.049 �0.048 �0.047 �0.036 �0.025 �0.033 �0.051 �0.057

p-value 0.002 0.000 0.000 0.000 0.000 0.000 0.016 0.006 0.000 0.000

Panel C: Constant correlations

�1.5 �1 �0.5 0 0.4 0.8 1 1.2 1.6 2

MKT �1.341 �1.051 �0.828 �0.727 �0.682 �0.892 �0.752 �0.660 �0.633 �1.242

SMB �1.847 �1.378 �1.034 �0.879 �0.800 �1.073 �0.854 �0.706 �0.473 �0.447

HML �1.052 �0.183 0.301 0.452 0.486 �0.793 �0.859 �0.887 �0.941 �0.659

MOM �2.573 �1.947 �1.454 �1.154 �1.021 �1.160 �0.970 �0.837 �0.577 �0.338

RMW �4.012 �2.789 �1.863 �1.451 �1.256 �2.670 �1.881 �1.370 �0.818 �0.419

CMA �4.664 �4.359 �3.971 �3.755 �3.618 �3.444 �2.811 �2.394 �1.913 �2.656

error �0.075 �0.058 �0.045 �0.039 �0.036 �0.046 �0.038 �0.032 �0.026 �0.031

p-value 0.000 0.000 0.000 0.004 0.006 0.000 0.000 0.000 0.000 0.000

Panel D: The conditional excess returns are Gaussian

�1.5 �1 �0.5 0 0.4 0.8 1 1.2 1.6 2

MKT 0.124 0.097 0.069 0.040 0.016 0.111 0.114 0.145 0.200 0.176

SMB 0.108 0.072 0.056 0.043 0.032 0.196 0.194 0.038 �0.312 �0.277

HML �0.243 �0.203 �0.186 �0.198 �0.213 0.075 0.057 0.055 0.060 0.005

MOM �0.030 �0.052 �0.081 �0.111 �0.133 �0.023 0.004 �0.148 �0.485 �0.418

RMW �0.335 �0.226 �0.148 �0.123 �0.116 0.596 0.568 0.735 1.022 0.949

CMA �0.118 �0.123 �0.111 �0.093 �0.080 0.159 0.151 0.016 �0.222 �0.167

error �0.007 �0.005 �0.004 �0.004 �0.004 �0.005 �0.005 �0.007 �0.014 �0.013

p-value 0.048 0.036 0.064 0.060 0.060 0.042 0.038 0.088 0.002 0.000

Negative errors imply overpricing by the misspecified SDF M�
c . The portfolios are computed by Equation (11)

and the pricing errors are calculated by Equation (10) using weekly returns. The factors considered are the

MKT, SMB, HML, MOM, CMA, and RMW factors.
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insignificant with similar exceptions. We provide the optimal exposures from Equation

(11), their pricing error, and the corresponding p-values in Table 6.

One difference from the case of monthly returns is the higher relative importance of the

dynamic of correlations and the slight increase in the statistical significance in the pricing

error resulting from ignoring the fat tails. We note that it is difficult to compare the pricing

errors across frequencies, for example, Tables 5 and 6. The reason is that the pricing errors

are interpreted in terms of Sharpe ratios which are not easily transformed across frequencies

with the assumed dynamics in Equation (8).

The similarity across the weekly and monthly frequency results indicates that the con-

clusions are robust rather than strictly characteristic of a given return frequency.

4 Conclusions

In empirical equity asset pricing, the SDF is commonly assumed to be a linear function of a

certain set of primitive assets, also known as equity factors. The empirical properties of the

factors, therefore, have an influence on the properties of the SDF. Ignoring certain empirical

characteristics leads to a misspecified SDF which may introduce a pricing error.

Even though many factors have been suggested in the empirical literature, we consider

the five factors proposed by Fama and French (2005) and the momentum factor proposed

by Carhart (1997). We investigate the impact of four different misspecifications related to

well-known stylized facts for monthly returns: autocorrelation, dynamics of the covarian-

ces, correlation dynamics, and fat tails of the conditional factor return distribution. The

asset pricing model is based on the nonlinear formulation by Almeida and Garcia (2016)

and the pricing error is evaluated by means of the upper bound of Hansen and Jagannathan

(1997).

We find that correlation dynamics is of first-order significance followed by volatility dy-

namics. In contrast, the misspecification resulting from assuming no autocorrelations leads

to much smaller pricing errors. Finally, assuming the conditional distribution of the factor

returns is Gaussian results in small pricing errors for near-linear SDFs but can lead to larger

pricing errors for higher levels of risk aversion.

A misspecified SDF can misprice both the primitive assets and all derivative claims. We

find that the pricing errors of the factors on a stand-alone basis are insignificant, with some

notable exceptions. However, equity portfolios whose systematic risk is a linear combin-

ation of the five Fama–French and the momentum factors can be significantly overpriced

by the misspecified SDF. For near-linear SDFs, this holds for all misspecifications but the

pricing error is economically more significant for the constant correlation and the constant

covariance misspecifications.

For SDFs with high risk aversion, the pricing errors of linear portfolios resulting from

neglecting fat tails tend to increase but become insignificant. Our analysis, however, implies

that this misspecification can have a more significant impact on certain derivative claims

with nonlinear exposures to the equity factors.

Our results complement Christoffersen and Langlois (2013) and emphasize the import-

ance of volatility and correlation dynamics in research in conditional asset pricing models,

such as Engle (2016) and Bali, Engle, and Tang (2016).
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Abstract

In this article, we propose a nonparametric approach to estimating generalized
autoregressive conditional heteroskedasticity (1,1) models with time-varying param-
eters. We model the time-varying parameters as a smooth function of time and esti-
mate them using a local linear estimator. We show that our estimator is consistent
and is asymptotically normal and that the proposed estimator outperforms a rolling
window estimator in Monte Carlo simulation experiments. We present strong evi-
dence of parameter instabilities using daily returns of stock indices and explore
implications to risk management measures, such as value-at-risk and expected
shortfall, through backtesting.

Key words: time-varying parameters, expected shortfall, value-at-risk, realized volatility

JEL classification: C14, C51, C58

Since the seminal work of Engle (1982) and Bollerslev (1986), the generalized autoregres-

sive conditional heteroskedasticity (GARCH) model has become a workhorse in empirical

finance. Yet, there is strong evidence of parameter instability in GARCH models. For ex-

ample, Mikosch and St�aric�a (2004) and Rapach and Strauss (2008) find evidence of struc-

tural change in the GARCH parameters in S&P500 return volatility and in exchange rate

return volatility, respectively. Parameter instability may not be captured by a one-time

break model; Andreou and Ghysels (2002) find multiple breaks in stock return volatility

series. The presence of regime switching in the GARCH parameters (Cai, 1994; Hamilton

and Susmel, 1994; Gray, 1996; Bauwens et al., 2010; Kim and Hwang, 2018) can also be

thought of as evidence for multiple structural changes. Parameter instability may also exist

in multivariate GARCH models (Jin and Maheu, 2016).
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When it is not accounted for, it is known that the estimated GARCH process appears

more persistent than it actually is, as pointed out by Diebold (1986), Lamoureux and

Lastrapes (1990), and Hillebrand (2005) to name a few. Such upward biases in the

GARCH parameter estimates have undesirable consequences. For example, West and Cho

(1995) and Rapach and Strauss (2008) find that allowing for change in the unconditional

variance improve the performance of GARCH models to forecast the exchange rate volatil-

ity. This has important implications for risk management, such as value-at-risk (VaR) and

expected shortfall (ES). Under the normality assumption, these risk measures are propor-

tional to the conditional variance. When a parameter break is not taken into account, this

means that the volatility forecast is more tied to the current volatility (observed or latent)

than it should be, which may lead to under- or over-estimation of financial risk. In a multi-

variate context, changes in the data-generating process (DGP) of returns not captured by

the model will affect the accuracy of VaR and ES of a portfolio (Berens et al., 2015), the

computation of hedging ratios (Ewing and Malik, 2013). Pettenuzzo and Timmermann

(2011) also show that breaks in models used for return predictions can have a large impact

on portfolio allocation.

An important part of the literature on models with parameters changing over time

focuses on structural breaks. However, as argued for example in Chen and Hong (2016)

and Hansen (2001) smoothly changing parameters are more likely than structural breaks.

The impact of economic events (trade agreements, change in interest rate policies by a cen-

tral bank) or financial market participants (algorithmic trading) could evolve over a period

of time, not instantaneously. This increases the interest in models allowing parameters to

be time-varying. For example, in macroeconomics time-varying parameter VAR models

such as in Primiceri (2005) and Nakajima (2011), where parameters follow a random walk,

are quite popular.

In this article, we propose to estimate time-varying-parameter GARCH(1,1) models.

Although financial news may be captured by heavy-tailed distributions or by jumps, institu-

tional changes may be better captured by time-varying parameters. We model the GARCH

parameters as smooth functions of time and estimate them by a local linear estimator.

Specifically, we compute local linear estimates by maximizing a local-quasi-log likelihood

function. We show that the local linear estimator is consistent and is asymptotically nor-

mally distributed.

This article contributes to the literature on non-parametric estimation of time-varying

parameter models. To the best of our knowledge, Robinson (1989) is the first to consider

nonparametric estimation of linear regression models in which parameters are modeled as

deterministic functions of time. Cai (2007) develops local linear estimators of such models.

Viewing rolling-window estimators as a local constant estimator with the uniform kernel,

Inoue et al. (2017) develop a method for selecting the window size for out-of-sample fore-

casting. Chen and Hong (2012, 2016) propose non-parametric tests of structural change in

linear regression and GARCH models, respectively. In particular, Chen and Hong (2016)

uses a local constant estimator to allow for time-varying parameter GARCH(p, q) models

under the alternative hypothesis. Dahlhaus and Rao (2006) develop a local constant estima-

tor for ARCH 1ð Þ models with time-varying parameters. Fryzlewicz et al. (2008) develop a

kernel normalized-least-squares locally constant estimator of ARCH(p) models by using the

(linear) AR(p) representation for the squared return. Rohan and Ramanathan (2013) and

Rohan (2013) further extend this approach to GARCH(p, q) models by using the (linear)

Inoue et al. j Local Linear Estimation of GARCH Models 203
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autoregressive moving average (ARMA) representation of the squared return. The estima-

tion is performed in two steps: first, a local polynomial estimation of a long auto-regression

for the squared return is performed, then latent variances are replaced by predicted values

from the first stage and a second local polynomial estimation is performed. This is a non-

parametric version of a method introduced by Hannan and Rissanen (1982). Hafner and

Linton (2010) consider non-parametric estimation of multivariate GARCH models in

which the unconditional variance–covariance matrix is modeled as a deterministic function

of time. Kristensen and Lee (2019) develop local polynomial estimators for a general class

of dynamic models, such as Markov-type and generalized autoregressive models.1 Other

approaches to allowing for changes in the unconditional variance of GARCH models in-

clude one based on spline functions (Engle and Rangel, 2008) and another on logistic func-

tions (Amado and Teräsvirta, 2013; Amado and Terásvirta, 2014).

Unlike the estimators of Rohan and Ramanathan (2013) and Rohan (2013) that

require choosing the order of an autoregressive process for the squared return and selecting

a bandwidth in each of the two steps, our estimator is one-shot and requires selecting only

one bandwidth because it is the local-quasi-log likelihood function of a GARCH(1,1)

model. While Rohan and Ramanathan (2013), Rohan (2013), and Kristensen and Lee

(2019) focus on the consistency of intercept estimators of local polynomial approximations,

we provide sufficient conditions for the consistency of slope estimators in local linear

approximations in addition to the consistency of intercept estimators. The slopes may be

useful for long-horizon volatility forecasts based on time-varying parameter GARCH

models.

GARCH models allowing time-varying parameters can be quite interesting for risk man-

agement applications. On one hand, it is tempting to use non-parametric estimators to com-

pute risk measures, like computing VaR with Historical Simulations (HS). HS is the sample

quantile of returns from a rolling window. However, as argued by Pritsker (2006), HS is

under-responsive to risk. Christoffersen and Pelletier (2004) and Berkowitz et al. (2011)

have shown that we can develop backtests to detect that VaR computed with HS lead to

predictable violations. An improvement on HS is to use Filtered HS where we apply HS on

returns standardized by a volatility model like GARCH. This approach is more flexible,

however, could be further improved if applied in the time-varying parameter GARCH

framework we consider. Our simulation and empirical results suggest that our local-linear

(LL) estimator can give better estimates of parameters and forecasts at longer horizons. At

shorter horizons, it remains difficult to out-perform the forecasts from a model with con-

stant parameters estimated on a window.

The rest of the article is organized as follows: In Section 1, we present our model. In

Section 2, we discuss our assumptions and theoretical results. Results of Monte Carlo simu-

lations illustrating the performance of our LL estimator and our bandwidth selection pro-

cedure are in Section 3. An empirical application to daily returns on a set of indices is in

Section 4. Section 5 presents some concluding remarks. Proofs of the theorems are in the

Appendix A. The lemmas and their proofs, as well as a presentation of the backtesting

methods employed in the empirical section are in the online Appendix.

1 For time-varying-parameter GARCH models, they consider local KLs. We focus on a local linear ver-

sion of QMLE of GARCH(1, 1) models.
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1 Model Specification

In this section, we consider a GARCH(1,1) process with time-varying parameters. As in

Robinson (1989), Cai (2007), and Inoue et al. (2017), the time variation in the parameters

is represented by a smooth function of time, which is defined on an equally spaced grid

over [0,1]. The model setup for GARCH(1,1) can be rewritten as:

yt ¼
ffiffiffiffiffi
ht

p
�t; (1)

where

ht ¼ x
t � 1

T

� �
þ a

t � 1

T

� �
y2

t�1 þ b
t � 1

T

� �
ht�1; (2)

x �ð Þ; a �ð Þ, and b �ð Þ in (2) are smooth functions of time satisfying x uð Þ; a uð Þ;b uð Þ > 0, and

0 < a uð Þ þ b uð Þ < 1 for all u 2 0; 1½ �, and �t is independent and identically distributed

(i.i.d.) with zero mean and unit variance. We will state assumptions in a more precise man-

ner in the next section. We model x �ð Þ; a �ð Þ and b �ð Þ as a function of t � 1=Tð Þ rather than

(t/T) to coincide with ht being conditional on the information set at time t – 1.

Let u0 2 0;1½ � be the scaled time of interest. For example, if one is to forecast volatility

at the end of the sample, one may be interested in x 1ð Þ; a 1ð Þ, and b 1ð Þ and thus u0 ¼ 1. To

estimate xðu0Þ, aðu0Þ, and bðu0Þ, we use local linear approximations of the time-varying

parameters to construct a quasi-likelihood function:

�x
t � 1

T
;u0

� �
¼ x0 þ x1

t � 1

T
� u0

� �
; (3)

�a
t � 1

T
; u0

� �
¼ a0 þ a1

t � 1

T
� u0

� �
; (4)

�b
t � 1

T
; u0

� �
¼ b0 þ b1

t � 1

T
� u0

� �
; (5)

where a0 ¼ a u0ð Þ; a1 ¼ a 1ð Þ u0ð Þ, b0 ¼ b u0ð Þ; b1 ¼ b 1ð Þ u0ð Þ, x0 ¼ x u0ð Þ, and x1 ¼ x 1ð Þ u0ð Þ.
Our goal is to estimate a0, a1, b0, b1, x0, and x1 in Equations (3)–(5). Because a0, b0,

and x0 are a u0ð Þ; b u0ð Þ, and x u0ð Þ, respectively, in Equation (2), they are often the parame-

ters of interest. However, a1, b1, and x1 in Equations (3)–(5) may be useful for long-

horizon forecasting and testing. Let, x�0;x
�
1; a
�
0; a
�
1;b

�
0;b

�
1 denote the true parameter values

of x0;x1; a0; a1; b0; b1, respectively, h ¼ x0;x1; a0; a1;b0;b1ð Þ>, and h� ¼ x�0;x
�
1; a
�
0; a
�
1;ð

b�0; b
�
1Þ
>. The estimator of h considered in this section is the maximizer of a quasi-log-

likelihood function that is locally weighted around scaled time point u0.

~LR;T u0; hð Þ ¼
XT

s¼2

1

R
� k s� t0

R

� �
� ~ls;T u0; hð Þ; (6)

where k �ð Þ is a kernel function, R is a bandwidth and

~ls;T u0; hð Þ ¼ � 1

2

y2
s

~hs u0; hð Þ
þ ln ~hs u0; hð Þ

 !
; (7)
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~hs u0; hð Þ ¼ �x
s� 1

T
; u0

� �
þ �a

s� 1

T
; u0

� �
y2

s�1 þ �b
s� 1

T
; u0

� �
~hs�1 u0; hð Þ; (8)

�xðs�1
T ; u0Þ; �aðs�1

T ; u0Þ and �bðs�1
T ; u0Þ are defined in Equations (3)–(5), respectively.

If, u0 2 ð0;1Þ, then define interior time points t0 ¼ ½u0T� þ 1. If, u0 ¼ 0, let t0 � 1 ¼ cR

for some c 2 ½0; 1� represent the left boundary time points. Similarly, if u0 ¼ 1, let t0 � 1 ¼
T � cR represent the right boundary time points.2

To derive the consistency and the asymptotic properties of the proposed estimator, we

consider the log-likelihood function of the constant-parameter Gaussian GARCH model

whose true parameter values are given by a0, b0, and x0:

€LR;T u0; #ð Þ ¼
XT

s¼2

1

R
� k s� t0

R

� �
� €ls;T u0; #ð Þ; (9)

where

€ls;T u0; #ð Þ ¼ �1

2

€y2
s u0ð Þ

€hs u0; #ð Þ
þ ln €hs u0; #ð Þ

 !
; (10)

€hs u0; #ð Þ ¼ x0 þ a0€y2
s�1 u0ð Þ þ b0

€hs�1 u0; #ð Þ; (11)

and €ys u0ð Þ follows

€yt u0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
€hs u0; #�ð Þ

q
�t; (12)

where #� ¼ h�1; h
�
3; h
�
5

� �> ¼ x�0; a
�
0;b

�
0

� �>
. The constant-parameter GARCH process

€yt u0ð Þ
� �

and its log-likelihood function are simply a device to help develop asymptotic the-

ory for the proposed estimator. The process is not observed and is not used in the estima-

tion procedure. We locally approximate the true conditional variance ht in (2) by its locally

linearized version ~ht u0; hð Þ in (8), which in turn we locally approximate by €ht u0; #ð Þ in

(11).

2 Asymptotic Theory

To derive the consistency and asymptotic normality of our estimator, we impose the follow-

ing conditions. Note that C denotes a generic finite positive constant.

Assumption 1 Parameter functions x �ð Þ; a �ð Þ and b �ð Þ map �g;1þ g½ � to R
þ and are twice

continuously differentiable on �g; 1þ gð Þ for some g > 0.

Assumption 2 Parameter functions x �ð Þ; a �ð Þ, and b �ð Þ are positive and are uniformly

bounded above: There exist constants 0 < j � K < 1 and 0 < d � q < 1 such that

j � x uð Þ � K, a uð Þ � d and b uð Þ � 0, and a uð Þ þ b uð Þ � q for all u 2 0;1½ �.

Assumption 3 The parameter space of h, denoted by H, is a compact subset of R
6. The

population parameter value of h, h�, belongs to the interior of the parameter space H.

2 The choice of c is not unique. For example, c can be set to zero if one is concerned about bias

while it can be set to one if one is concerned about the asymptotic variance.
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Assumption 4 (a) ht0�R > 0 and E ht0�R

� �
< 1; (b) ~ht0�R u0; hð Þ is three times continuously

differentiable in h. ~ht0�R u0; hð Þ > 0 and E½suph2H j~ht0�R u0; hð Þj� � C; (c) €h0 u0; #ð Þ is drawn

from the invariant distribution.

Assumption 5 E suph2H j
@ ~ht0�R u0 ;hð Þ

@hi
j

h i
� C for i¼ 1, 3, 5 and E suph2H j

T@ ~ht0�R u0 ;hð Þ
R@hi

j
h i

� C

for i¼2, 4, 6, where h1 ¼ x0; h2 ¼ x1; h3 ¼ a0; h4 ¼ a1, h5 ¼ b0, and h6 ¼ b1.

Assumption 6 For i¼1, 3, 5 and j¼ 1, 3, 5 E suph2H j
@2 ~ht0�R u0 ;hð Þ

@hi@hj
j

	 

� C.

Assumption 7 For i¼1, 3, 5, j¼ 1, 3, 5 and k¼1, 3, 5, E suph2H j
@3 ~ht0�R u0 ;hð Þ
@hi@hj@hk

j
	 


� C.

Assumption 8 Weight function, k : �1;1½ � ! R
þ, is bounded and satisfies

Ð 1
�1 k uð Þdu ¼

1;
Ð 1
�1 uk uð Þdu ¼ 0;

Ð 1
�1 k uð Þ2du < 1 and

Ð 1
�1 u2k uð Þdu < 1.

Assumption 9 As T goes to infinity, R diverges to infinity satisfying R ¼ O T
4
5ð Þ.

Assumption 10 �t is independent and identically distributed with zero mean and unity vari-

ance, and E �4þd
t

� �
< 1 for some d > 0.

Remarks:

1. The assumption that the parameters are smooth function of time in Assumption 1 is

standard for nonparametric estimators of time varying parameters.

2. Once we assume that x �ð Þ; a �ð Þ, and b �ð Þ are continuously differentiable over the com-

pact interval 0; 1½ � as in Assumption 1, the compactness of H in Assumption 3 follows.

3. We derive the asymptotic distribution of our estimator using the first order conditions.

To work with the first-order conditions, we assume that h� belongs to the interior of H.

Together with Assumption 2, this assumption implies that x u0ð Þ > 0; a u0ð Þ > 0 and

b u0ð Þ > 0.

4. Assumption 4(a) and 4(b) are high-level conditions and guarantee that ht > 0 and ~ht >

0 hold for t ¼ t0 � R; t0 � Rþ 1; . . . ; t0 þ R.

5. The derivatives in the second inequality in Assumption 5 are the derivatives with respect

to the slope parameters x1, a1, and b1 and thus converge to zero at rate R/T over the es-

timation window. These derivatives are multiplied by T/R because they converge to

zero otherwise.

6. Assumption 4(a) can be shown to be satisfied under Assumption 2 and the assumption

that h0 > 0 and E h0ð Þ < 1, for example. Assumptions 4(b), 5, and 6 are satisfied if
~ht0�R u0; hð Þ is set to the unconditional variance given h, for example.

7. As an example, consider the case in which the parameters are linear functions of time,

that is, x t=Tð Þ ¼ �x0 þ x1 t=Tð Þ, a t=Tð Þ ¼ �a0 þ a1 t=Tð Þ, b t=Tð Þ ¼ �b0 þ b1 t=Tð Þ, and

et �iid N 0; 1ð Þ, where �x0; �a0; �b0 > 0; �x0 þ x1; �a0 þ a1; �b0 þ b1 are all positive, and �a0 þ
�b0 and �a0 þ a1 þ �b0 þ b1 are strictly smaller than one. In addition, assume that

h0 > 0; E suph2H h0 hð Þ
� �

< 1; E y2
0

� �
< 1, E suph2H j@h0 hð Þ=@hij

� �
< 1 for i ¼ 1;

2; 3;4;5; 6, E suph2H j@2h0 hð Þ=@hi@hjj
� �

< 1 for i; j ¼ 1; 2; 3;4; 5; 6, and

E suph2H j@3h0 hð Þ=@hi@hj@kj
� �

< 1 for i; j; k ¼ 1; 2;3; 4; 5;6.
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Under the constraints on �a0; a1; �b0; b1; �x0;x1, Assumption 2 is satisfied. It follows from re-

cursive substitutions that ht > 0 and Eðy2
t Þ < 1, and EðhtÞ < 1 for all t ¼ 1;2; . . . ;T

(which also implies ~htðu0; h
�Þ > 0 and Eð~htðu0; h

�Þ < 1 because of the linear specifica-

tion). By mathematical induction, Eðsuph2H
~htðu0; hÞÞ < 1 for all t ¼ 1;2; . . . ;T. Thus,

Assumption 4 is satisfied. Assumptions 5, 6, and 7 follow by using the arguments similar to

the ones used in Lemmas 3, 4, and 5 in the online Appendix.

8. To simplify the proof, we assume that the kernel function has a bounded support as in

Assumption 8.

9. As we increase R, the bias of our estimator increases while its variance decreases. The

condition R ¼ O T4=5ð Þ guarantees that the bias is not too large.

By abuse of notation, define r€hsðu0; #Þ ¼ ð@ €hsðu0; #Þ=@x1; @ €hsðu0; #Þ=@a1; @ €hsðu0; #Þ=
@b1Þ> where

@ €hs u0; #ð Þ
@x1

¼
Xs�t0þR

j¼1

s� t0 � j� 1ð Þ
R

� �
bj�1

0 ; (13)

@ €hs u0; #ð Þ
@a1

¼
Xs�t0þR

j¼1

s� t0 � j� 1ð Þ
R

� �
bj�1

0 €ys�j u0ð Þ2; (14)

@ €hs u0; #ð Þ
@b1

¼
Xs�t0þR

j¼2

Xj�1

k¼1

s� t0 � k� 1ð Þ
R

� �
bj�2

0 €cs�j u0ð Þ þ
Xs�t0þR

k¼1

s� t0 � k� 1ð Þ
R

� �
bs�t0þR�1

0
€ht0�R u0; #ð Þ:

(15)

and €ct u0ð Þ ¼ x0 þ a0€y2
t u0ð Þ.

These are not partial derivatives in the conventional sense and are introduced to ap-

proximate @ ~hs u0; hð Þ=@x1, @ ~hs u0; hð Þ=@a1, and @ ~hs u0; hð Þ=@b1 by functions of the station-

ary process €ys u0ð Þ.
In the theorem below, we first show that the estimator bhR;T ¼ argmaxh2H ~LR;T u0; hð Þ is a

consistent estimator of h.

Theorem 1 Let bhR;T ¼ ðbh1;bh2;bh3;bh4;bh5;bh6Þ> ¼ argmaxh2H ~LR;Tðu0; hÞ, b# ¼ ðbx0;

ba0; bb0Þ>, bh ¼ ðbx1;ba1; bb1Þ>, h� ¼ ðx�0;x�1; a�0; a�1;b
�
0;b

�
1Þ
>, #� ¼ ðx�0; a�0; b

�
0Þ
>, and

h� ¼ ðx�1; a�1; b
�
1Þ
>. In other words, b# consists of the constant term estimates in bhR;T while bh

consists of the slope coefficient estimates in bhR;T .

Suppose that Assumptions 1–10 hold. Then:

a. b#R;T!
p
#�.

b. In addition, if R=T
2
3 !1 and if

E
r€hs u0; #

�ð Þr€hs u0; #
�ð Þ>

€hs u0; #�ð Þ2

" #

is positive definite, then bh!p h�.
Part (a) of the theorem shows that we can estimate x u0ð Þ; a u0ð Þ and b u0ð Þ in Equation (2)

consistently. Part (b) provides sufficient conditions for consistent estimation of the slope

coefficients, x1, a1, and b1 in Equations (3)–(5). Because the dependence of the quasi-max-

imum likelihood estimation (QMLE) criterion function on h vanishes asymptotically, we
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show that h ¼ h� is the only solution to the probability limit of the scaled and linearized

first order conditions for bh. The two additional assumptions make that feasible.

Next, we show the asymptotic distribution of our estimator under Assumption 9. In the

derivation of the asymptotic properties of this estimator, we leverage a local stationary ap-

proximation €y2
s u0ð Þ and focus on the asymptotic distribution of a subvector of the

parameters.

Theorem 2 As in Theorem 1, let #, #� and b#R;T denote the subvectors that consist of the

first, third and fifth elements of h, h� and bhR;T, respectively. Also let r ¼ @
@�h
¼

@
@h1
; @
@h3
; @
@h5

 �>
. Under Assumptions 1–10,

ffiffiffiffi
R
p b#R;T � #� þ

R

T

� �2
j2

2
h�

 !
!d N 0;

k2

k2
1

ðE �4s

h i
� 1Þ½ €B #�ð Þ��1

 !
; (16)

where ki ¼
Ð 1
�1 ki uð Þdu if u0 2 0;1ð Þ, ki ¼

Ð 1
�c ki uð Þdu if u0 ¼ 0, ki ¼

Ð c
�1 ki uð Þdu if u0 ¼ 1,

j2 ¼
Ð 1
�1 u2k uð Þdu if u0 2 0; 1ð Þ, j2 ¼

Ð 1
�c u2k uð Þdu if u0 ¼ 0, j2 ¼

Ð c
�1 u2k uð Þdu if u0 ¼ 1, c

is the constant defined just after Equation (8), and €B #�ð Þ ¼ E½r€hs u0; #
�ð Þ

r€hs u0; #
�ð Þ>=€h

2

s u0; #
�ð Þ�.

Since €B #� u0ð Þ
� �

is defined based on a stationary GARCH(1,1) model structure, it

depends on three parameters, that include h1, h3, h5. The derivation of the asymptotic prop-

erties of parameters h2, h4, h6 would need an analog of the term €B #� u0ð Þ
� �

that depends on

all six parameters in h. In other words, we need to approximate a nonstationary

GARCH(1,1) model with smooth time-varying parameters by a non-stationary

GARCH(1,1) model with the local linear representations in parameters. This would further

require more sophisticated properties on the dependence structure in time-varying

GARCH(1,1) models.

Lastly, we provide a consistent estimator of the asymptotic covariance matrix in

Theorem 2:

Theorem 3 Given the estimator bhR;T, we can construct the fitted conditional variance as

b~hs u0;bhR;T

 �
¼ b�x s� 1

T
;u0

� �
þ b�a s� 1

T
;u0

� �
y2

s�1 þ b�b s� 1

T
;u0

� �b~hs�1 u0;bhR;T

 �
; (17)

where b�xðs�1
T ;u0Þ ¼ cx0 þ cx1ðs�1

T � u0Þ; b�aðs�1
T ;u0Þ ¼ ba0 þ ba1ðs�1

T � u0Þ; b�bðs�1
T ;u0Þ ¼bb0 þ bb1ðs�1

T � u0Þ: Denote r ¼ @
@�h
¼ ð @@h1

; @
@h3
; @
@h5
Þ> and let V ¼ k2

k2
1

ðE �4s
� �
� 1Þ½ €B #�ð Þ��1,

where

€B #�ð Þ ¼ E
r€hs u0; #

�ð Þr€hs u0; #
�ð Þ>

€h
2

s u0; #�ð Þ

2
4

3
5: (18)

Then, the following estimator
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bV ¼ k2

k2
1

� 1
R

XT

s¼2

k
s� t0

R

� �
y2

sb~hs u0;bhR;T

 �
0
@

1
A

2

� 1

2
64

3
75 (19)

� 1

R

XT

s¼2

k
s� t0

R

� �rb~hs u0;bhR;T

 �
rb~hs u0;bhR;T

 �>
b~h2

s u0;bhR;T

 �
2
664

3
775
�1

is a consistent estimator of V.

Remarks: Although we show our estimator is consistent for a0, a1, b0, b1, x0, x1 in

Theorem 1, we show it is asymptotically normally distributed only for a0, b0 and x0 in

Theorem 2. This is due to the approach we take given the complexity involved in the

GARCH(1,1) model with time-varying parameters. The parameters a0, b0, and x0 are

useful for understanding the time-varying nature of the GARCH parameters and for out-of-

sample forecasting at short horizons (horizons fixed relative to the sample size). The deriva-

tives, a1, b1, and x1, may be useful for out-of-sample forecasting at long horizons (those

that are proportional to the sample size), however. We leave it for future research to investi-

gate asymptotic properties of our estimator of the derivatives.

In recent articles, Chen and Hong (2016) use local constant estimators of time-varying

parameter GARCH models, and Kristensen and Lee (2019) develop local polynomial esti-

mators for a class of dynamic models with time-varying parameters and use local constant

estimator when considering a GARCH(1,1) model. The advantage of local linear estimators

over local constant estimators is that the former estimator has smaller bias and suffers less

from the boundary problem. This is important because out-of-sample forecasting is based

on the parameter value at the end of the sample (u0 ¼ 1).

The local polynomial estimator in Rohan and Ramanathan (2013) and Rohan (2013)

for time-varying GARCH(p, q) models appears more general than the results we present for

a LL estimator, however, one has to recognize that it is built on the weak representation of

a strong GARCH. To see this, taking a GARCH(1,1) with constant parameters, the equa-

tion for the variance can be rearranged as an ARMA(1,1) for the squared return:

y2
t ¼ xþ aþ bð Þy2

t�1 � bvt�1 þ vt

where vt 	 y2
t � r2

t is a m.d.s. From Francq and Zakoı̈an (1998) and Francq and Zakoı̈an

(2000), we know that nonlinear least squares would be a consistent estimator of x; a; bð Þ. A

more simple, however, still consistent estimator can be obtained using the method proposed

in Hannan and Rissanen (1982). In a first step, we approximate the ARMA(1,1) by a long

auto-regression. In a second step, we replace vt�1 by residuals from the long auto-

regression and perform another regression. This approach is extended to time-varying

parameters and local polynomial estimators by replacing the two regressions by local poly-

nomial regressions. Two important drawbacks of this approach are loss of efficiency com-

ing from using the weak representation (the conditional variance of vt is r4
t , however, we

do not do GLS) and weak identification of the ARMA representation. In practice for

GARCH models, a is small and aþ b is close to one. It follows that for the ARMA repre-

sentation the AR and MA operators are very similar so the ARMA(1,1) is close to being an
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ARMA(0,0). Our method is based on the likelihood; it does not suffer from these issues,

however, theoretical results are more difficult to derive.

It would be interesting to extend our results to other forms of the GARCH model, like

the GARCH-GJR of Glosten et al. (1993) and the EGARCH of Nelson (1991) or likeli-

hoods build on distributions other than Gaussian. It would require redoing most of the lem-

mas since they use the specific form of the basic GARCH with Gaussian innovations. We

leave this for future work.

3 Simulations

In this section, we present results from Monte Carlo simulations to illustrate the behavior

of our methods. First, we investigate the performance of two bandwidth selection proce-

dures. The first consists in selecting R according to a pseudo out-of-sample criterion com-

monly used in the forecasting literature. At time t, for a given bandwidth R, we estimate the

parameters of the time-varying GARCH model using observations y1; . . . ; ytð Þ. Since the

focus is on out-of-sample performance we set u0 ¼ 1. We denote this estimate by bhR;t. With

it, at time t, we compute the j-step ahead forecast of the variance,3 bhtþj;R, for different val-

ues of j. In this simulation environment, it is possible to compare the forecast bhtþj;R with

the true value htþj and we evaluate the mean-squared forecast error:

FE 0ð Þ Rð Þ ¼ 1

T �maxR
XT�j

t¼maxR
htþj � bhtþj;R

 �2

; (20)

where T is the sample size. This criterion is evaluated for different values of R in a set R.

For a given horizon j, the optimal bandwidth bR 0ð Þ
would be the one that minimizes

FE 0ð Þ Rð Þ. A feasible alternative of this criterion when using real data and htþj is latent is to

use the squared return y2
tþj as a proxy for htþj. See for example, Andersen and Bollerselv

(1998) and Patton (2011) among many articles. It leads to the criterion

FE 1ð Þ Rð Þ ¼ 1

T �maxR
XT�j

t¼maxR
y2

tþj � bhtþj;R

 �2

(21)

and associated bandwidth bR 1ð Þ
. The second bandwidth selection procedure is to use cross-

validation (CV), as proposed in Kristensen and Lee (2019) for example.

In the simulations below, we take R ¼ 300; 400; . . . ; 2000f g, sample size T¼3000 and

we use either the Epanechnikov kernel or a uniform kernel. The parameters are re-

estimated as we move forward through time. The number of replications is limited to 100

because they require a large number of numerical optimizations. We consider six different

DGPs. The values taken by the parameters are plotted in Figure 1. In DGP 1, the persistence

parameters a and b are constant and only x changes over time following a sinus function.

In DGP 2, all the parameters are increasing over time leading to more persistence and

higher level of volatility. DGP 3 has constant parameters. In DGP 4, there is a discrete

change in the value of the parameters. This DGP violates our assumption of smoothly

3 Because the LL approximation of the parameters is not random, the computation of multi-step

ahead forecasts is the same as when parameters are constant. We proceed recursively using the

law of iterated expectations since the variance at time tþ 1 is know at time t.
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changing parameters over time. DGP 5 has increasing persistence of the volatility, however,

x is such that the overall level of volatility x= 1� a� bð Þ is constant. In DGP 6, all three

parameters follow a sinus function over time and they go through at least one full cycle.

Note that if �a t � 1=T;u0ð Þ þ �b t � 1=T; u0ð Þ is increasing with t, then it is possible to go

far enough in the future where the persistence will exceed one and as a result the multi-step

ahead forecasts will start diverging with the forecasting horizon. Our practical experience
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Figure 1 Values of the parameters for the different DGPs.
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is that this is not really an issue, in part because the slopes a1 and b1 are typically not too large

and in part because relevant forecasting horizons do not extend so far out as a fraction of the

sample size. Ensuring �a t � 1=T;u0ð Þ þ �b t � 1=T; u0ð Þ < 1 for a specific range of values of t

exceeding T can be imposed as a restriction when estimating the parameters if one so desired.

3.1 Bandwidth Selection

Results from these simulations for the bandwidth selection can be found in Table 1. We re-

port the average value of the optimal bandwidth, using the true variance (columns 1

through 6) or the squared return as a proxy (columns 7 through 12). The last two columns

are for the bandwidth selected by CV. For each criterion, we report the average of the opti-

mal bandwidth for the LL estimator with either the Epanechnikov kernel or a uniform ker-

nel, with or without bias-correction (BC). We also report the average of the optimal

bandwidth for the locally constant estimator (KL) of Kristensen and Lee (2019) with the

Epanechnikov kernel. We also include a model with constant parameters estimated using

the most recent R observations (CSTR), with an implied uniform kernel.

Discussing first the results for the forecasting criteria, we can see that on average for the

LL estimator the selected bandwidth is fairly large with values generally between 1200 and

1900. Across DGPs and forecast horizons, the average of the optimal bandwidth for the con-

stant parameter GARCH is always smaller than for the LL estimator. This result is not sur-

prising since we can see the LL estimator as reducing the amount of misspecification, thus

allowing the model to “correctly” fit a longer time span. It is also perhaps not so surprising

to have such large bandwidths considering that the DGPs, we considered have a high level of

persistence for the variance and estimation of a GARCH model is data intensive since we are

trying to capture the persistence of a latent process. The optimal bandwidths for the locally

KL are slightly larger than for the constant parameters estimator when using the forecasting

criteria. Overall, the optimal bandwidths increase with the forecasting horizons.

When using CV, the optimal bandwidths for the locally KL are much smaller than for

the forecasting criteria across all DGPs. For the LL estimator, the optimal bandwidth varies

a lot across the six DGPs. The more the parameters change over time, the smaller the opti-

mal bandwidth. We go from the max of 2000 for DGP 1 through 3 to less than 500 for

DGPs 5 and 6.

We next discuss the value of the forecasting criteria for the optimal bandwidths. In

Tables 2 and 3, we present the value of the criteria when using the true variance or the

squared return, respectively. Discussing the results in Table 2 first, a few patterns emerge.

Bias correction does not help forecasting. To do bias correction we need to use the estimate

of the slopes. As we will see later in this section, bias correction does improve the local esti-

mation of the parameters, however, it hurts forecasting. For the LL estimator, we get better

forecasts with the uniform kernel than with the Epanechnikov kernel whether or not we do

bias correction (which depends on the kernel). Not surprisingly since it is not designed to

minimize the forecasting criterion, cross validation leads to larger values of
�bR 0ð Þ

. At shorter

horizons, the locally KL (with the Epanechnikov kernel) gives smaller values of
�bR 0ð Þ

than

the local linear estimator; however, the gap is pretty much closed when the forecasting hori-

zon is increased to 30 periods ahead. For some of the DGPs if we use the uniform kernel the

LL estimator can slightly out-perform the locally KL. Except for DGP 1 where the persist-

ence parameters a and b are constant, in terms of forecasting nothing beats the constant
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parameters model estimated on a window (CSTR) with the largest performance gaps at

shorter horizons.

To summarize the above results, from the point of view of forecasting, it is best to keep

it simple and deal with parameters instability by using a uniform kernel, constant parame-

ters and less than the full sample to estimate the model. At short horizons, constant parame-

ters do better than locally constant, which does better than local linear. It is an example of

the Keep it Sophisticatedly Simple principle of Diebold (2006). Further examples include

forecasting exchange rates by a random walk being very hard to beat (see Rossi, 2013) or

sample averages doing better than individual forecasts (see Aruoba et al. (2013) and

Diebold and Shin (2019)). On the other hand, our simulations indicate that at longer

Table 1 Bandwidth selection results for simulations from the different DGP in Figure 1

�bRð0Þ �bRð1Þ

DGP LLE LLEþBC LLU LLUþBC CSTR KL LLE LLEþBC LLU LLUþBC CSTR KL LLCV KLCV

Forecasts 1 period ahead

1 1703 1791 1459 1504 546 690 1269 1223 1200 1458 642 721 2000 432

2 1758 1884 1671 1713 1020 1385 1311 1373 1275 1791 986 1167 1970 416

3 1918 1969 1758 1865 1704 1858 1465 1337 1369 1763 1001 1265 1974 366

4 1318 1191 1481 1147 566 747 1202 954 946 1471 1136 1253 1000 523

5 1772 1933 1677 1840 968 1302 1320 1234 1177 1738 1131 1337 316 408

6 792 826 638 698 721 605 1118 982 1017 863 976 1118 465 334

Forecasts 5 periods ahead

1 1638 1671 1380 1410 485 579 1470 1596 1305 1344 518 617 2000 432

2 1787 1948 1604 1841 1028 1463 1439 1885 1359 1793 958 1350 1970 416

3 1918 1982 1799 1890 1645 1853 1697 1932 1535 1791 1279 1451 1974 366

4 1316 1409 1350 1252 714 1043 1202 1271 1036 1511 993 1108 1000 523

5 1771 1974 1652 1866 1059 1481 1406 1798 1277 1737 1102 1397 316 408

6 1321 1044 1140 855 1223 1271 1166 1193 1206 1014 926 1040 465 334

Forecasts 20 periods ahead

1 1619 1342 1381 1357 433 503 1481 1366 1280 1331 452 542 2000 432

2 1714 1212 1628 1835 699 1346 1585 1130 1504 1823 870 1286 1970 416

3 1939 1797 1785 1875 1605 1837 1844 1788 1683 1802 1336 1617 1974 366

4 1282 1070 1132 1461 685 1050 1247 1096 1075 1564 798 1146 1000 523

5 1744 1388 1599 1803 1161 1598 1603 1375 1466 1751 1163 1503 316 408

6 1498 1552 1413 941 1060 1267 1328 1500 1334 948 818 1032 465 334

Forecasts 30 periods ahead

1 1608 1638 1355 1374 427 484 1514 1581 1297 1308 445 507 2000 432

2 1755 1928 1611 1862 695 1253 1676 1922 1562 1860 790 1326 1970 416

3 1937 1965 1819 1882 1599 1814 1794 1935 1643 1809 1245 1488 1974 366

4 1320 1419 1088 1542 648 1050 1347 1438 1107 1597 749 1093 1000 523

5 1753 1904 1633 1811 1292 1659 1708 1865 1565 1786 1218 1581 316 408

6 1486 1127 1471 923 1025 1236 1419 1167 1419 964 755 1125 465 334

LL refers to the local-linear estimator and KL refers to the locally constant estimator. CSTR refers to the con-

stant parameters estimator using the most recent R observations. The other subscripts represent the choice of

kernel (E for Epanechnikov, U for uniform), the bias-correction of the LL estimator (BC), and the bandwidth

selection done by CV.
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horizons the more complicated LL estimator can dominate because it can track future evo-

lution of the parameters.

The same patterns can be observed in Table 3. We know from Andersen and Bollerselv

(1998) that the squared return is a very noisy proxy for the variance. As a result, the values of

FE 1ð Þ are much larger than the corresponding values of FE 0ð Þ. Overall, we see the same ranking.4

Although the bandwidths obtained with FE 1ð Þ are similar, if not slightly smaller, to the ones

Table 2 Value of the pseudo out-of-sample criteria FEð0Þ for the different DGPs, estimators,

bandwidth selections and forecast horizons

DGP LLE LLEþBC LLU LLUþBC LLCV CSTR CSTinc KLCV KL

Forecasts 1 period ahead

1 0.0245 0.0552 0.0228 0.0518 0.0452 0.0243 0.0452 0.0313 0.0239

2 0.2932 0.5430 0.2695 0.4304 0.4001 0.1500 0.2815 0.3442 0.2092

3 0.0402 0.0867 0.0347 0.0726 0.0722 0.0171 0.0158 0.0513 0.0199

4 0.4552 1.1770 0.3981 0.9539 0.8527 0.3680 0.9478 0.8317 0.4359

5 0.0191 0.0383 0.0173 0.0316 0.0284 0.0092 0.0201 0.0223 0.0101

6 0.0989 0.2440 0.0986 0.2361 0.1258 0.0842 0.1101 0.1229 0.0961

Forecasts 5 periods ahead

1 0.1410 0.1527 0.1404 0.1509 0.1506 0.1411 0.1537 0.1433 0.1410

2 2.5414 2.6390 2.5340 2.5791 2.5714 2.4922 2.5097 2.5539 2.5148

3 0.2252 0.2421 0.2231 0.2350 0.2398 0.2192 0.2193 0.2278 0.2197

4 6.2281 6.5046 6.2197 6.4054 6.3173 6.1843 6.2635 6.2985 6.2129

5 0.1495 0.1577 0.1490 0.1537 0.1525 0.1461 0.1482 0.1502 0.1468

6 0.4761 0.5445 0.4754 0.5342 0.4930 0.4720 0.4773 0.4898 0.4760

Forecasts 20 periods ahead

1 0.1760 0.2047 0.1753 0.1871 0.1927 0.1769 0.2050 0.1798 0.1761

2 4.5899 5.5014 4.5750 4.6374 4.6679 4.4315 4.4732 4.6013 4.5126

3 0.2863 0.3400 0.2817 0.2925 0.3157 0.2771 0.2772 0.2877 0.2775

4 12.099 12.682 12.236 12.774 12.466 11.995 12.106 12.375 12.165

5 0.2606 0.3141 0.2607 0.2691 0.2698 0.2518 0.2531 0.2626 0.2534

6 0.8078 0.9323 0.8062 0.8820 0.8621 0.7987 0.8113 0.8365 0.8076

Forecasts 30 periods ahead

1 0.1761 0.1897 0.1755 0.1877 0.2045 0.1776 0.2117 0.1803 0.1764

2 4.9841 5.2564 4.9612 5.0159 5.1663 4.7583 4.8151 4.9783 4.8634

3 0.2887 0.3024 0.2832 0.2929 0.3335 0.2788 0.2790 0.2892 0.2792

4 13.454 13.483 13.716 14.512 14.198 13.371 13.512 13.895 13.493

5 0.2815 0.2957 0.2814 0.2910 0.3011 0.2689 0.2705 0.2834 0.2710

6 0.9004 1.0093 0.8987 0.9930 0.9924 0.8891 0.9063 0.9308 0.9013

LL represents the local-linear estimator, KL represents the locally constant estimator, and CST represents the

constant parameters estimator. The subscripts represent the Epanechnikov kernel (E), the uniform kernel (U),

the bias-correction of the LL estimator (BC). The bandwidths chosen are the optimal values from Table 1.

CSTR and CSTinc are the constant parameters estimators using, respectively, the most recent R observations or

an increasing window. Entries in bold correspond to the model that gives the lowest value of the criterion for a

given DGP and forecast horizon.

4 The magnitude of FE 0ð Þ and FE 1ð Þ varies greatly across DGPs because the variance of the simulated

returns varies a lot across DGPs.
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from FE 0ð Þ, our conclusion from these simulations is that we would rather not use the squared

return as a proxy. Following Liu et al. (2015), in our empirical application we will use five-

minutes realized variance as a proxy to form a loss function.

3.2 Parameter Estimation

We now focus our attention on the estimation of the time-varying parameters. For the opti-

mal bandwidths in Table 1 with forecasting horizon equal to one day or for CV,5 we

Table 3 Value of the pseudo out-of-sample criteria FEð1Þ for the different DGPs, estimators,

bandwidth selections, and forecast horizons

DGP LLE LLEþBC LLU LLUþBC LLCV CSTR CSTinc KLCV KL

Forecasts 1 period ahead

1 0.5430 0.5462 0.5427 0.5456 0.5450 0.5428 0.5450 0.5438 0.5429

2 7.5001 7.5291 7.4967 7.5145 7.5112 7.4851 7.5039 7.5109 7.4896

3 0.8615 0.8659 0.8609 0.8644 0.8644 0.8603 0.8614 0.8629 0.8606

4 20.081 20.130 20.153 20.197 20.195 20.134 20.211 20.198 20.110

5 0.4613 0.4633 0.4612 0.4627 0.4621 0.4602 0.4610 0.4621 0.4606

6 1.7356 1.7545 1.7357 1.7538 1.7442 1.7354 1.7409 1.7442 1.7350

Forecasts 5 periods ahead

1 0.5576 0.5607 0.5573 0.5600 0.5608 0.5575 0.5614 0.5587 0.5576

2 7.9935 8.0352 7.9884 8.0030 8.0156 7.9637 7.9763 8.0040 7.9831

3 0.8878 0.8916 0.8869 0.8895 0.8924 0.8858 0.8862 0.8888 0.8861

4 21.328 21.337 21.402 21.494 21.487 21.356 21.378 21.461 21.355

5 0.4844 0.4870 0.4842 0.4857 0.4864 0.4823 0.4830 0.4852 0.4831

6 1.8454 1.8632 1.8450 1.8610 1.8551 1.8428 1.8477 1.8530 1.8450

Forecasts 20 periods ahead

1 0.5632 0.5672 0.5628 0.5662 0.5702 0.5632 0.5729 0.5646 0.5632

2 8.7038 8.8371 8.6940 8.7363 8.7593 8.6122 8.6409 8.7136 8.6625

3 0.9056 0.9106 0.9039 0.9073 0.9163 0.9021 0.9025 0.9061 0.9025

4 23.193 23.169 23.344 23.694 23.524 23.199 23.277 23.448 23.175

5 0.5206 0.5260 0.5208 0.5262 0.5270 0.5164 0.5178 0.5224 0.5176

6 2.0324 2.0675 2.0319 2.0626 2.0594 2.0275 2.0362 2.0466 2.0331

Forecasts 30 periods ahead

1 0.5596 0.5638 0.5592 0.5629 0.5697 0.5601 0.5723 0.5613 0.5598

2 8.9653 9.1134 8.9531 8.9677 9.0739 8.8223 8.8625 8.9649 8.8931

3 0.9063 0.9108 0.9044 0.9074 0.9224 0.9029 0.9034 0.9068 0.9033

4 23.709 23.580 24.014 24.460 24.302 23.757 23.857 24.123 23.765

5 0.5316 0.5379 0.5314 0.5360 0.5427 0.5236 0.5247 0.5327 0.5252

6 2.1969 2.2417 2.1958 2.2351 2.2424 2.1903 2.2021 2.2122 2.1983

LL represents the local-linear estimator, KL represents the locally constant estimator, CST represents the con-

stant parameters estimator. The subscripts represent the Epanechnikov kernel (E), the uniform kernel (U), and

the bias-correction of the LL estimator (BC). The bandwidths chosen are the optimal values from Table 1.

CSTR and CSTinc are the constant parameters estimators using, respectively, the most recent R observations or

an increasing window. Entries in bold correspond to the model that gives the lowest value of the criterion for a

given DGP and forecast horizon.

5 We do not re-optimize the bandwidth selection for the values of u0 <1 because it would require

too much computation.
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compare the estimation of the parameters h u0ð Þ for a grid u0 2 0:5; 0:51;0:52; . . . ;1½ �. We

present results for DGP 6, the DGP with the most parameter instability. Results for the

other DGPs are available upon request. We look at bias and root mean square error

(RMSE) across 1000 Monte Carlo replications, using the same sample size T¼ 3000.

We start by assessing the relative performance of the bias correction for the LL estima-

tor. In Figures 2 and 3, we plot the absolute bias and RMSE across the value of u0 for b u0ð Þ
and x u0ð Þ, respectively.6 We compare the impact of doing bias correction when using the

Epanechnikov or the uniform kernel, bandwidth optimized for the forecasting criterion

FE 0ð Þ or from CV. We can see that doing the bias correction always reduces the bias and

RMSE, albeit the improvement can be very small. Moving forward, we will only consider

the bias corrected LL estimator.

After confirming that BC improves the LL estimator in Figure 4, we assess the method

for choosing the bandwidth and the choice of the kernel. To do so we look at the absolute
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Figure 2 Impact of doing bias correction: absolute bias and RMSE for the estimation of bðu0Þ in DGP 6

with different versions of the LL estimators. The subscripts E and U mean that the estimator is using

the Epanechnikov or uniform kernel, respectively. The bandwidths used are the ones that minimize

the one-step ahead forecast criterion in Table 1 unless there is a subscript CV where in this case we

use the CV bandwidth. The subscript BC represents the bias correction version of the LL estimator.

6 We get similar results for a u0ð Þ.
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bias and RMSE for the estimation of b u0ð Þ and x u0ð Þ over the same range for u0. Around

the middle part of the sample (lower values of u0), the uniform kernel does the best both in

terms of bias and RMSE. However, as we move toward the end of the sample, the part that

is likely to be of most interest to practitioners, the LL estimator using the Epanechnikov

kernel performs the best when selecting the bandwidth through CV.

Finally, we then compare the performance of the best implementation of the LL estima-

tor with the locally KL and the constant parameters model. Looking at Figure 5, while the

model with constant parameters (CSTR) gave the best out-of-sample forecasts according to

the criteria FE 0ð Þ and FE 1ð Þ, it performs the worst with regards to bias and RMSE. Notably,

toward the end of the interval there is a large bias, especially for the estimation of x u0ð Þ.
The locally KL using FE 0ð Þ to select a bandwidth (KL) is almost as bad as CSTR. Using CV

to select the bandwidth greatly reduces the bias of the locally KL by selecting a smaller

bandwidth (334 instead of 605). However, all these estimators are generally dominated by

the LL estimator. For most of the interval for u0, it has a smaller bias and RMSE.
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Figure 3 Impact of doing bias correction: absolute bias and RMSE for the estimation of xðu0Þ in DGP 6

with different versions of the LL estimator. The subscripts E and U mean that the estimator is using

the Epanechnikov or uniform kernel, respectively. The bandwidths used are the ones that minimize

the one-step ahead forecast criterion in Table 1 unless there is a subscript CV where in this case we

use the CV bandwidth. The subscript BC represents the bias correction version of the LL estimator.
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With the LL estimator we can estimate the slopes (a 1ð Þ; b 1ð Þ;x 1ð Þ) something that none of

the other estimators can do. In Figure 6, we report the mean, 10 and 90% confidence bands

for our LL estimation of the slopes for DGP 2. Results for the other DGPs are available

upon request. We again see that the LL estimator is accurately tracking the true value of the

slopes and as we go towards the end of the sample (u0 ¼ 1) the confidence bands are widen-

ing as one would expect.

4 Empirical Application

We apply our LL estimator to daily returns on different stocks indices. The dataset we use

is the realized library of the Oxford-Man Institute of Quantitative Finance. Of the series

that have at least 4000 daily observations, we use the following 10 series: Amsterdam

Exchange Index (AEX), Dow Jones Industrial Average (DJI), CAC40 (FCHI), FTSE 100

(FTSE), S&P/TSX composite index (GSPTSE), Nasdaq 100 (IXIC), Nikkei 225 (N225),

S&P 500 index (SPX), Swiss stock market index (SSMI), and Euro Stoxx 50 (STOXX).
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Figure 4 Absolute bias and RMSE for the estimation of bðu0Þ and xðu0Þ in DGP 6 with different versions

of the LL estimator: impact of the bandwidth and kernel. The subscripts E and U mean that the estima-

tor is using the Epanechnikov or uniform kernel, respectively. The bandwidth used is the optimal value

from Table 1 for the one-step ahead criterion FE ð0Þ unless the subscript includes CV in which case we

use the CV bandwidth.
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Descriptive statistics for the series can be found in Table 4. All series start in January 2000

except FTSE (January 2001), GSPTSE (May 2002), and N225 (February 2000). All the ser-

ies end on May 30, 2019. We compute the daily returns as the first difference of the log-

price, times 100. We observe typical values for these statistics. The average daily return is

very close to zero. The minimum and maximum daily returns for each series are fairly large.

All the series are left skewed and leptokurtic. A plot of the daily return on AEX in Figure 7

illustrates the time-varying variance of these series.

This library also includes daily measures of volatility computed with high-frequency

returns for each index. As is commonly done when forecasting the daily variance and high-

frequency returns are available, we will compute forecast errors using realized variance

computed with five-minutes returns (RV5) as a proxy for the unobserved variance.

Descriptive statistics for the RV5 series of each index are in Table 4. Other high-frequency

measures are included in the library; however, following Liu et al. (2015), we use RV5
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Figure 5 Absolute bias and RMSE for the estimation of bðu0Þ and xðu0Þ in DGP 6 for different estima-

tors. CSTR is the constant parameters model using bandwidth R. KLCV and KL are the locally KLs with

the Epanechnikov kernel and bandwidth selected, respectively, by CV or the one-step ahead criterion

FEð0Þ. LLEþCVþBC is the bias-corrected LL estimator using the Epanechnikov kernel and the CV

bandwidth.
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(scaled by 1002 and not annualized so as to match our return series). It leads to the follow-

ing criterion, focusing on one-step ahead forecasts:

FE 2ð Þ Rð Þ ¼ 1

T �maxR
XT

t¼maxR
RV5tþ1 � bhtþ1;R

 �2

: (22)

The bandwidth can be selected by minimizing FE 1ð Þ or FE 2ð Þ. Results for FE 2ð Þ and for

CV will be presented below. We consider the following set R ¼ 300; . . . ; 3000f g setting

u0 ¼ 1 since we are interested in out of sample forecasting. For the LL and locally KLs, we

will focus on the Epanechnikov kernel and the models are re-estimated as we move forward

through time. As a point of comparison, we also compute the optimal bandwidth for a

GARCH model with constant parameters.

The results for the selection of the bandwidth are summarized in Table 5. Overall, the

optimal bandwidths for the LL estimator across the 10 indices are larger than the values we

found in the simulations for the different DGPs we considered in Section 3. We also find

that for all series CV selects the largest bandwidths allowed. For the locally KL, as in the

simulations the optimal bandwidths are smaller than for the LL estimator, sometimes by a
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Figure 6 LL estimates of the slopes for DGP 2 using the Epanechnikov kernel and selecting the band-

width with CV.
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lot. For example, for STOXX and FE 2ð Þ the optimal bandwidths are 2900 and 1100, re-

spectively, for the LL and locally KLs. It can be seen again as a sign that the local linear esti-

mator reduces the level of misspecification of the model and allows it to fit a longer time

span. For the model with constant parameters, the bandwidths are even smaller than for

the locally KL. For the values of the criterion FE 2ð Þ, which is based on one-step ahead

Table 4 Descriptive statistics for daily returns and RV5.

Daily returns RV5

Index T Mean Min Max Variance Skewness Kurtosis Mean Variance

AEX 4948 �0.005 �9.12 9.57 1.90 �0.18 9.48 1.15 3.93

DJI 4866 0.016 �8.61 10.53 1.26 �0.12 10.97 1.09 6.88

FCHI 4947 �0.003 �8.52 10.44 1.97 �0.10 7.96 1.33 5.06

FTSE 4893 0.001 �8.93 9.48 1.30 �0.17 9.47 1.17 7.45

GSPTSE 4273 0.017 �9.47 7.58 1.01 �0.69 12.19 0.87 25.84

IXIC 4865 0.012 �10.22 13.28 2.46 �0.05 9.01 1.22 4.91

N225 4723 0.001 �12.11 13.24 2.24 �0.43 9.33 1.04 2.79

SPX 4871 0.013 �9.69 10.64 1.42 �0.21 11.17 1.07 5.92

SSMI 4863 0.006 �9.07 10.79 1.35 �0.21 10.54 0.83 2.46

STOXX 4947 �0.008 �8.77 10.55 2.03 �0.09 7.90 1.57 9.83

2002 2004 2006 2008 2010 2012 2014 2016 2018
-10

-5

0

5

10

15

Figure 7 Daily return for AEX.
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forecasts, the results are as in the simulation exercise. This criterion is favoring simpler

models, with the constant parameters estimator ahead of the locally KL, which itself is

ahead of the LL estimator.

In Table 6, we extend the results for one-step ahead forecasts of Table 5 to 5 and 30

periods ahead, as well as a broader set of models and estimators. We now also include a

constant parameters GARCH estimated with an increasing window (CSTinc), the regime

switching GARCH(1,1) model of Haas et al. (2004) with two regimes (RS) and the

IGARCH(1,1) model (INT). Overall, the results are similar to the simulation results in

Table 2. At short horizons (one and five days), the simpler model CSTR has the smallest

value for the criterion, except for DJI and FTSE for five days ahead. At longer horizons

(30 days), the results are mixed with LLBC and KL having the smallest value of FE 2ð Þ for, re-

spectively, three and four of the indices.

Next, for the selected bandwidth we look at estimates for different values of u0 for the

bias-corrected LL and locally KLs. As a point of comparison, we also include estimates of a

GARCH model with constant parameters estimated on the whole sample. As an illustra-

tion, Table 7 reports estimates and standard errors for AEX. The estimates are clearly

changing as we move through the sample. Focusing on persistence (a u0ð Þ þ b u0ð Þ) of the

GARCH process, the estimates obtained with the LL estimator do not decrease as much as

with the locally KL (0.9883 at u0 ¼ 0:5 to 0.9656 at u0 ¼ 1 versus 0.9921 at u0 ¼ 0:5 to

0.9184 at u0 ¼ 1). Figure 8 plot the LL estimates of �a u0ð Þ; �b u0ð Þ; �x u0ð Þ and �a u0ð Þ þ �b u0ð Þ
for AEX for a finer grid of values than in the table. The straight line in these figures is the

estimate obtained from a GARCH with constant parameters estimated on the whole sam-

ple. For each sub-figure, the marks correspond to the estimates at the different values of u0

at which we do the estimation. From each mark, we extend the linear approximations

�a t � 1=T; u0ð Þ; �b t � 1=T; u0ð Þ, and �x t � 1=T;u0ð Þ over the 100 days preceding the time

point corresponding to the given value of u0 so as to convey information about the esti-

mates of a 1ð Þ u0ð Þ; b 1ð Þ u0ð Þ and x 1ð Þ u0ð Þ. The sequence of linear approximations is pretty

well aligned, pointing toward the location of the previous or next mark (the exception being

the estimation of x u0ð Þ in the middle part). Focusing on the lower right panel of Figure 8, we

Table 5 Bandwidth selection and value of the criteria for the different indices.

bRð2Þ bRCV FEð2Þð bRð2ÞÞ FEð2Þð bRCVÞ

Index LL KL CSTR LL KL LL KL CSTR LL KL

AEX 2500 1600 300 3000 700 0.963 0.955 0.896 0.973 1.007

DJI 2000 700 300 3000 1800 2.211 2.197 2.171 2.231 2.238

FCHI 2800 1100 500 3000 700 1.356 1.353 1.273 1.360 1.415

FTSE 1800 1000 1200 3000 400 2.180 2.181 2.179 2.204 2.209

GSPTSE 1900 800 700 3000 400 0.908 0.911 0.903 0.924 0.928

IXIC 1300 700 500 3000 1900 0.682 0.659 0.638 0.761 0.741

N225 2200 1200 1000 3000 700 3.606 3.582 3.373 3.713 3.779

SPX 1200 700 500 3000 1800 1.028 1.009 0.994 1.052 1.053

SSMI 2300 1600 800 3000 700 1.733 1.650 1.601 1.804 1.969

STOXX 2900 1100 300 3000 700 2.711 2.713 2.606 2.711 2.753

The bandwidth bRð2Þ is obtained by minimizing the criterion FEð2Þ. The bandwidth bRCV is obtained by CV.
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see that the LL estimate of a u0ð Þ þ b u0ð Þ is always below the constant GARCH estimate, while

this is not the case for the individual parameters. As previously noted in Hillebrand (2005), for

GARCH models, we know that if the parameters are changing over time, estimators of aþ b

that do not take changes into account will converge to one. It is also interesting to note that the

Table 6 Value of the FEð2Þ criterion for out-of-sample forecasts with the ten indices and different

models.

Index CSTinc CSTR LLBC KL RS INT

Forecasts 1 period ahead

AEX 1.009 0.896 0.963 0.955 1.102 0.956

DJI 2.327 2.171 2.211 2.197 2.631 2.370

FCHI 1.391 1.273 1.356 1.353 1.624 1.317

FTSE 2.208 2.179 2.180 2.181 2.260 2.205

GSPTSE 0.934 0.903 0.908 0.911 0.985 0.939

IXIC 0.892 0.638 0.682 0.659 1.058 0.821

N225 3.575 3.373 3.606 3.582 4.878 3.546

SPX 1.117 0.994 1.028 1.009 1.422 1.139

SSMI 1.716 1.601 1.733 1.650 3.157 1.567

STOXX 2.776 2.606 2.711 2.713 3.786 2.722

Forecasts 5 periods ahead

AEX 1.177 0.966 1.088 1.083 1.225 1.101

DJI 2.592 2.565 2.570 2.541 2.839 2.579

FCHI 1.572 1.356 1.502 1.502 1.779 1.481

FTSE 2.347 2.304 2.292 2.288 2.372 2.329

GSPTSE 1.000 0.971 0.981 0.985 1.033 0.995

IXIC 1.126 0.831 0.886 0.850 1.215 0.990

N225 3.966 3.694 3.934 3.936 5.197 4.004

SPX 1.335 1.244 1.323 1.271 1.577 1.306

SSMI 1.838 1.665 1.826 1.706 3.236 1.706

STOXX 3.028 2.720 2.915 2.926 3.976 2.948

Forecasts 30 periods ahead

AEX 1.483 1.018 1.224 1.268 1.429 1.359

DJI 2.720 2.639 2.658 2.610 2.971 2.760

FCHI 1.988 1.535 1.840 1.844 2.118 1.902

FTSE 2.572 2.449 2.392 2.400 2.565 2.557

GSPTSE 1.054 1.002 0.988 1.012 1.087 1.057

IXIC 1.496 0.981 0.975 0.974 1.365 1.203

N225 4.431 4.095 4.087 4.227 5.779 4.900

SPX 1.494 1.358 1.428 1.354 1.692 1.472

SSMI 1.978 1.637 1.764 1.631 3.476 1.965

STOXX 3.451 2.902 3.268 3.255 4.468 3.413

The numbers in bold correspond to the model that gives the lowest value of the criterion for a given index and

forecast horizon. CSTinc and CSTR are the constant parameters GARCH model estimated with an increasing

window or a fixed window, respectively. LLBC is the bias-corrected LL estimator using the Epanechnikov ker-

nel. KL is the locally constant estimator with Epanechnikov kernel. RS is the regime switching GARCH(1,1)

model of Haas et al. (2004) with two regimes and the IGARCH(1,1) model is INT. The value of the different

bandwidths are from Table 5.
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estimates of a u0ð Þ þ b u0ð Þ steadily decrease as we move away from the financial crisis of

2007–2008, meaning that volatility has become less persistent.

Finally, another way to investigate the impact of allowing parameters to change over

time is by computing risk measures. Namely, we compute one-day ahead VaR and ES. For

a given coverage rate p, VaR, and ES are formally defined as

Pr yt < �VaRtþ1jF tð Þ ¼ p

EStþ1 ¼ �E ytjyt < �VaRt;F t½ �;

where F t represents the information set at time t. The convention is to introduce minus

signs so losses are presented as positive numbers. We compute VaR and ES in the following

way: using returns from time 1 to t,

• Estimate the set of models and estimators7 to get bht for each.

Table 7 Parameter estimates for AEX for different values of u0.

u0 1.0 0.9 0.8 0.7 0.6 0.5

Constant parameters

A 0.1063 0.1063 0.1063 0.1063 0.1063 0.1063

(0.0026) (0.0026) (0.0026) (0.0026) (0.0026) (0.0026)

B 0.8833 0.8833 0.8833 0.8833 0.8833 0.8833

(0.0026) (0.0026) (0.0026) (0.0026) (0.0026) (0.0026)

X 0.0192 0.0192 0.0192 0.0192 0.0192 0.0192

(0.0029) (0.0029) (0.0029) (0.0029) (0.0029) (0.0029)

LL parameters

aðu0Þ 0.1390 0.1184 0.1121 0.1084 0.1053 0.1042

(0.0157) (0.0252) (0.0186) (0.0162) (0.0167) (0.0157)

bðu0Þ 0.8266 0.8552 0.8687 0.8756 0.8812 0.8841

(0.0185) (0.0234) (0.0178) (0.0163) (0.0156) (0.0147)

xðu0Þ 0.0298 0.0272 0.0244 0.0225 0.0212 0.0204

(0.0035) (0.0051) (0.0052) (0.0049) (0.0048) (0.0046)

að1Þðu0Þ 0.1214 0.0437 0.0347 0.0421 0.0109 0.0015

bð1Þðu0Þ �0.1571 �0.0710 �0.0546 �0.0586 �0.0249 �0.0136

xð1Þðu0Þ �0.0083 �0.0116 �0.0054 0.0114 0.0047 0.0035

Locally constant parameters

aðu0Þ 0.1518 0.1239 0.1253 0.0917 0.0759 0.1079

(0.0568) (0.0317) (0.0284) (0.0211) (0.0158) (0.0219)

bðu0Þ 0.7666 0.8521 0.8547 0.8822 0.9057 0.8842

(0.0718) (0.0275) (0.0230) (0.0172) (0.0107) (0.0153)

xðu0Þ 0.0537 0.0246 0.0282 0.0289 0.0240 0.0291

(0.0254) (0.0112) (0.0131) (0.0114) (0.0098) (0.0145)

The standard errors are between parentheses. The LL and locally constant estimators are using the

Epanechnikov kernel and the bandwidth is selected by CV at u0 ¼ 1.

7 We implement the GARCH model with constant parameters with an increasing window (CSTinc) or

a bandwidth (CSTR), the LL (LLBCþCV) and locally constant (KLCV) estimators with the Epanechnikov

kernel, the regime switching GARCH(1, 1) model of Haas et al. (2004) with two regimes (RS) and the

IGARCH(1, 1) model (INT).
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• With bht, compute the predicted variance bhtþ1 and the standardized residuals b�s ¼

ys=

ffiffiffiffiffibhs

q
for s ¼ 1; . . . ; t.

• Compute VaR and ES as

VaRp
tþ1 ¼ �

ffiffiffiffiffiffiffiffiffibhtþ1

q
percentile b�sf gs¼1;...;t; 100p

� �
; (23)

ES
p
tþ1 ¼ �

ffiffiffiffiffiffiffiffiffibhtþ1

q Pt
s¼1

b�sI b�s < �VaRp
s

� �
Pt
s¼1

I b�s < �VaRp
s

� � ; (24)

where I denotes the indicator function equal to one if the condition is true, zero if false. We

iterate these steps from time t until time T – 1.
VaR and ES are computed ex-ante. Ex-post we observe the actual return yt and we compute

the hit sequence, Itþ1 ¼ 1 if ytþ1 < �VaRp
tþ1, otherwise Itþ1 ¼ 0. We describe It ¼ 1 as a

violation. From the sequence of returns, VaR and ES we can backtest the hypothesis that

the risk measures are correctly computed. We consider the following popular backtests:

• the Markov test of Christoffersen (1998) based on the hit sequence;
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Figure 8 Estimates of �aðu0Þ; �bðu0Þ; �xðu0Þ, and �aðu0Þ þ �bðu0Þ for different values of u0. The asset is AEX.

The straight lines correspond to the estimates of a GARCH with constant parameters applied to the

whole sample.
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• the Weibull test of Christoffersen and Pelletier (2004) based on the durations between

hits;

• the CAViaR test of Engle and Manganelli (2004) implemented with lagged hit and VaR

as regressors; and

• the ES backtest of Christoffersen (2003) implemented with either the VaR (CVaR) or the

sample variance of the daily returns over the last 20 days (Cvol) as a regressor.

For all these tests, we test the “conditional coverage” hypothesis. Namely, we jointly

test that hits happen at the rate prescribed by the coverage rate of the risk measure and that

hits or magnitude of the violations cannot be predicted. A detailed presentation of the im-

plementation of all these tests and the computation of the p-value by Monte Carlo simula-

tions can be found in the online Appendix. We implement the backtests over the last 1500

observations for each series and set the coverage rate at p ¼ 5%.

The results of the backtesting exercise for indices AEX, DJI, and SPX are presented in

Table 8. We report the value of the different backtests and the associated (Monte Carlo) p-

value.8 With a 5% coverage rate, the expected number of violations is 75. Some combina-

tions of index and estimator are very close to that number (e.g., AEX with LLBCþCV or

KLCV), some are above (CSTR with SPX or AEX), and some are below (SPX with RS).

As for the outcome of the different backtests, the results are mixed. For AEX, none of

the models and estimators are rejected by the ES backtests, however, all are rejected by

some of the VaR backtests except the simplest model (CST). For DJI and SPX our proposed

LL estimator is not rejected by any of the VaR backtests, something that cannot be said for

any of the other methods. There is no method that is not rejected by some of the ES or VaR

backtests for some of the indices. A more flexible method like our LL estimator might im-

prove the accuracy of the computation of risk measures, however, the underlying

GARCH(1,1) model is probably inadequate for these series.

5 Concluding Remarks

Given empirical evidence that the GARCH parameters are not stable over time, we consider

GARCH models with time-varying parameters in this paper. In our approach, we model the

parameters as smooth functions of time and estimate them with a LL estimator. We show that

our estimator is consistent and is asymptotically normally distributed given a point of time. To

select the bandwidth of the kernel used by our estimator, we propose minimizing a pseudo out-

of-sample squared forecast error criterion. We illustrate the usefulness of our approach in

Monte Carlo simulation experiments and empirical application to risk management.

It would be interesting to extend our pointwise results to joint uniform results, which

would allow us to test a shape restriction on the GARCH parameters (e.g., whether or not

the parameters are constant over time). We leave it for future research.

Supplementary Data

Supplementary data are available at Journal of Financial Econometrics online.

8 For the seven other indices, we get no p-value <10% for FTSE, GSPTSE, N225, and SSMI. For FCHI

and STOXX, a few of the p-values for the VaR backtests are <10% while most of the ES backtest of

IXIC are rejected at the 10% significance level.
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Appendix A: Proofs of Theorems 1, 2, and 3

The lemmas and their proofs are in the online Appendix.

Proof of Theorem 1. Part (a): By Lemma 2, we know ~LR;T u0; hð Þ!p E €LR;T u0; #ð Þ
h i

uniformly

in h. Next, we will show that E €LR;T u0; #ð Þ
h i

is well defined and E €LR;T u0; #ð Þ
h i

has an

Table 8 Backtesting results for VaR and ES

Index Model Nb. hits CV aR Cvol Markov Weibull CAViaR

AEX CSTinc 61 1.288 1.375 4.278 3.637 5.271

(0.595) (0.547) (0.126) (0.245) (0.242)

CSTR 84 1.399 1.380 8.202 3.316 14.390

(0.576) (0.546) (0.024) (0.280) (0.045)

LLBCþCV 73 1.610 1.833 12.021 4.579 11.339

(0.546) (0.475) (0.004) (0.163) (0.063)

KLCV 74 0.789 0.698 8.912 2.474 11.558

(0.720) (0.741) (0.019) (0.395) (0.060)

RS 63 0.759 1.517 6.117 3.727 8.282

(0.597) (0.527) (0.073) (0.235) (0.115)

INT 74 0.928 1.298 4.600 0.991 10.576

(0.684) (0.566) (0.112) (0.695) (0.073)

DJI CSTinc 63 3.387 7.895 6.239 5.321 6.268

(0.313) (0.113) (0.072) (0.117) (0.198)

CSTR 74 8.008 9.430 0.594 0.057 2.288

(0.122) (0.088) (0.727) (0.980) (0.536)

LLBCþCV 68 7.769 13.708 2.164 1.916 2.186

(0.127) (0.047) (0.347) (0.494) (0.556)

KLCV 79 10.232 8.352 7.288 7.093 10.594

(0.089) (0.104) (0.044) (0.054) (0.072)

RS 63 17.291 16.529 4.509 4.935 4.853

(0.122) (0.029) (0.115) (0.137) (0.264)

INT 68 6.818 9.115 3.541 2.445 4.771

(0.152) (0.092) (0.177) (0.399) (0.268)

SPX CSTinc 55 8.496 9.171 10.380 8.135 15.476

(0.113) (0.092) (0.010) (0.034) (0.042)

CSTR 81 11.819 18.189 2.016 1.940 1.509

(0.070) (0.023) (0.373) (0.490) (0.701)

LLBCþCV 65 7.983 12.523 1.796 2.014 2.250

(0.123) (0.057) (0.409) (0.475) (0.542)

KLCV 81 14.179 11.723 3.321 3.591 11.672

(0.052) (0.063) (0.200) (0.249) (0.060)

RS 59 11.175 10.107 7.039 5.961 11.752

(0.116) (0.080) (0.058) (0.089) (0.059)

INT 64 10.891 9.724 3.877 3.480 13.509

(0.083) (0.084) (0.154) (0.260) (0.048)

The numbers between parentheses are the p-values for the hypothesis that the risk measure is correctly com-

puted. Results with a p-value below 10% are in bold.
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identifiably unique maximizer at #�. Since limT!1 E €LR;T u0; #ð Þ
h i

� E €l t0 ;T u0; #ð Þ
h i� �

¼ 0,

where €l t0 ;T u0; #ð Þ ¼ � 1
2

€y2
t0

u0ð Þ
€ht0

u0 ;#ð Þ þ ln €ht0
u0; #ð Þ

� �
; then on the one hand we have

E �€l t0 ;T u0; #ð Þ
 ��h i

� E ln €ht0
u0; #ð Þ

 ��h i
� E ln x u0ð Þ

� ��� �
< 1; (A1)

where f– represents the negative part of f, that is, f� ¼ max �f ; 0ð Þ. On the other hand,

E �€l t0 ;T u0; #ð Þ
h i

¼ E �2t0

h i
þ E ln €ht0

u0; #ð Þ
h i

� 1þ ln E €ht0
u0; #ð Þ

h i
< 1; (A2)

by Jensen’s inequality. Hence, E €LR;T u0; #ð Þ
h i

is well defined on �R. For h 2 H, we have

E �€lt0 ;T u0; #ð Þ
h i

� E �€lt0;T u0; #
�ð Þ

h i
¼ 1

2
E

€ht0
u0; #

�ð Þ
€ht0

u0; #ð Þ

" #
E �2t0

h i
þ E ln

€ht0
u0; #ð Þ

€ht0
u0; #�ð Þ

 !" #
� 1

( )
:

(A3)

Because function f xð Þ ¼ x� 1� ln x for x> 0 is minimized when x¼ 1 and f 1ð Þ ¼ 0,

thus ln x � x� 1 for x> 0. Hence, E €l t0 ;T u0; #ð Þ
h i

� E €l t0 ;T u0; #
�ð Þ

h i
� 0 with equality

holds when
€ht0

u0 ;#
�ð Þ

€ht0
u0 ;#ð Þ

¼ 1 almost surely, and if and only if # ¼ #�. By Assumption 3, we haveb#R;T!
p
#�.

Part (b): Let �hR;T ¼ b#R;T ; h
 �>

. Plugging the result in Lemma 12 into the gradient vector

of ~LR;T u0; hð Þ with respect to h, evaluating the expression at h ¼ h�R;T , and multiplying it by

T=Rð Þ2, we obtain

1

2R

XT

s¼2

k
s� t0

R

� �
�2s � 1
 �T2r~hs u0; h�R;T

 �

R2 ~hs u0; h�R;T
 �

þ 1

2R

XT

s¼2

k
s� t0

R

� � �2s T2 h
s

T

� �
� ~hs u0; h�R;T

 �� �
r~hs u0; h�R;T

 �

R2 ~hs u0; h�R;T
 �2

¼ 1

2R

XT

s¼2

k
s� t0

R

� �
�2s � 1
 �T2r~hs u0; h�R;T

 �

R2 ~hs u0; h�R;T
 �

þ 1

2R

XT

s¼2

k
s� t0

R

� � �2s T2r~hs u0;�hR;T

 �
r~hs u0;�hR;T

 �>

R2 ~hs u0;�hR;T

 �2
b#R;T � #
 �

þ 1

2R

XT

s¼2

k
s� t0

R

� � �2s T2r~hs u0;�hR;T

 �
r~hs u0;�hR;T

 �>

R2 ~hs u0;�hR;T

 �2
h� � hð Þ þ opð1Þ;

(A4)

where the rates in the last terms follows from Lemma 3, T=Rð ÞrT ¼ o 1ð Þ and

T=Rð Þj s� t0ð Þ=Tj2 ¼ o 1ð Þ. It follows from Lemma 14(ii) and the assumption that R=T
2
3 !

1 that the first term is Op T=R
3
2

 �
¼ op 1ð Þ. Because of b#R;T � # ¼ O rTð Þ; TrT=R ¼ o 1ð Þ

and Lemma 3, the second term is also op 1ð Þ. It follows from Lemma 9(iv) and the argu-

ments used in the Proof of Lemma 18 that the last terms converges in probability to
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k1

2
E
r€hs u0; #

�ð Þr€hs u0; #
�ð Þ>

€hs u0; #�ð Þ2

" #
h� � hð Þ: (A5)

Combining these results, the left hand side converges in probability to (A5). Because the

matrix is positive definite, the first order condition is zero if and only if h ¼ h�. �

Proof of Theorem 2. The gradient vector of the log of the quasi-density function is

r~l t;T u0; hð Þ ¼ �1

2

r~ht u0; hð Þ
~ht u0; hð Þ

þ y2
tr~ht u0; hð Þ

2 ~h
2

t u0; hð Þ
; (A6)

and the Hessian matrix is

r2~l t;T u0; hð Þ ¼ y2
t

~ht u0; hð Þ
� 1

 !
r2 ~ht u0; hð Þ
2~ht u0; hð Þ

þ 1� 2y2
t

~ht u0; hð Þ

 !
r~ht u0; hð Þr~ht u0; hð Þ>

2 ~h
2

t u0; hð Þ
: (A7)

Applying the mean value theorem to the first order conditions with respect to #,

r ~LR;T u0; b#R;T ;bhR;T

 �
¼ 0; (A8)

we have

r ~LR;T u0; #
�;bhR;T

 �
þr2 ~LR;T u0; ~#R;T ;bhR;T

 � b#R;T � #�
 �

¼ 0; (A9)

where ~#R;T lies between b#R;T and #�. Thus, we can write

b#R;T � #� ¼ �

r2 ~LR;T u0; ~#R;T ;bhR;T

 ���1

r ~LR;T u0; #
�;bhR;T

 �
: (A10)

It follows from Lemma 16 and the consistency of b#R;T that

r2 ~LR;T u0; ~#R;T ;bhR;T

 �
!p �k1

2
€B #�ð Þ: (A11)

Two expansions (C.1) and (C.2) show that the difference between hs and
~hs s� 1ð Þ=T; u0

� �
only comes from the difference between h �ð Þ ¼ x �ð Þ; a �ð Þ; b �ð Þ

� �>
and

�h �; �ð Þ ¼ �x �; �ð Þ; �a �; �ð Þ; �b �; �ð Þ
 �>

and the difference between ht0�R and ~ht0�R. This means

that the difference between rls;T and r~ls;T from the difference between h �ð Þ and �h �; �ð Þ and

the difference between ht0�R and ~ht0�R.

Given the initial condition ht0�R h �ð Þ
� �

, define the Gateaux derivative of ls h �ð Þ
� �

at h �ð Þ
� �

in the direction of d uð Þ ¼ 13
1 for t0 � Rð Þ=T � u � t0 þ Rð Þ=T by:

rdls

h �ð Þ
�
¼ lim

c!0

ls

h �ð Þ þ cd �ð Þ

�
� ls h �ð Þ

� �
c

¼ �1

2
1� y2

s

hs h �ð Þ
� �

 !
lim
c!0

hs


h �ð Þ þ cd �ð Þ

�
� hs h �ð Þ

� �
c

¼ �1

2
ð1� �2s Þ

rdhs h �ð Þ
� �

hs hð Þ
:

(A12)

Because �s is iid with zero mean and unit variance, and because E j rdhs h �ð Þð Þ
hs h �ð Þð Þ

����
" #

< 1 by

Lemma 3,
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E rdls

h �ð Þ
�	 

¼ 0: (A13)

Thus, the bias term can be written as

1

R

XT

s¼2

k
s� t0

R

� �
E

r~ls;T u0; �h

�� ��
¼ 1

R

XT

s¼2

k
s� t0

R

� �
E

r~ls;T u0; �h

�� ��
� E rdls h

s� 1

T

� �� �� �	 

:

Note that the Gateaux derivatives of ls h �ð Þ
� �

and hs h �ð Þ
� �

are identical to the derivatives

of ~ls u0; �h s� 1ð Þ=T
� �� �

and ~hs u0; �h s� 1ð Þ=T
� �� �

, respectively, with �h �ð Þ and
~hs u0; �h s� 1ð Þ=T

� �� �
replaced by h �ð Þ and hs h �ð Þ

� �
, respectively.

Thus, it follows from the above equation that

1

R

XT

s¼2

k
s� t0

R

� �
E

r~ls;T u0; �h

�� ��

¼ 1

R

XT

s¼2

k
s� t0

R

� �
E r2~ls;T u0;�h

� s� 1

T

� �� �	 

�h
� � h�

s� 1

T

� �� �
þ o 1ð Þ

¼ � 1

4R

XT

s¼2

s

T
� u0

� �2

k
s� t0

R

� �
€B #�ð Þh� þOp

R

T

� �3
 !

(A14)

where �h s� 1ð Þ=T
� �

is a point between �h
�

s� 1ð Þ=T
� �

and h� s� 1ð Þ=T
� �

. (A14) holds be-

cause the derivatives of E r2~ls;T u0; hð Þ
h i

are bounded uniformly on H by Lemma 6.

Thus, the desired result follows from Equations (A10)–(A14) and Lemmas 17. �

Proof of Theorem 3. We can write

1

R

XT

s¼2

k
s� t0

T

� �
y2

sb~hs u0;bhR;T

 �
0
@

1
A

2

¼ 1

R

XT

s¼2

k
s� t0

T

� �
€ys u0ð Þ2

b€hs u0; b#R;T

 �
0
@

1
A

2

þ R1;R;T : (A15)

Using arguments similar to the one in the Proof of Lemma 18, we can show that the first

term converges to k1E �4s
� �

in probability. Repeating arguments analogous to the Proof of

Lemma 7, the second term can be shown to converge in probability to zero.

Next, we write

1

R

XT

s¼2

k
s� t0

T

� �rb~hs u0;bhR;T

 �
rb~hs u0;bhR;T

 �>
b~h2

s u0;bhR;T

 �

¼ 1

R

XT

s¼2

k
s� t0

T

� �rb€hs u0; b#R;T

 �
rb€hs u0; b#R;T

 �>
b€h2

s u0; b#R;T

 � þ R2;R;T ; (A16)

where the first term converges in probability to €B #�ð Þ by using the similar argument in

Lemma 18. The remainder term R2;R;T converges to zero in probability by using similar

arguments as Lemmas 9(ii) and 16. Since €B #�ð Þ is positive definite, therefore we have
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1

R

XT

s¼2

k
s� t0

T

� �rb~hs u0;bhR;T

 �
rb~hs u0;bhR;T

 �>
b~h2

s u0;bhR;T
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2
664

3
775
�1

!p 1

k1
½ €B #�ð Þ��1: (A17)

This completes the proof. �
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