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A B S T R A C T

We use ‘‘glide charts’’ (plots of sequences of root mean squared forecast errors as the target date is approached)
to evaluate and compare fixed-target forecasts of Arctic sea ice. We first use them to evaluate the simple feature-
engineered linear regression (FELR) forecasts of Diebold and Göbel (2022), and to compare FELR forecasts
to naive pure-trend benchmark forecasts. Then we introduce a much more sophisticated feature-engineered
machine learning (FEML) model, and we use glide charts to evaluate FEML forecasts and compare them to a
FELR benchmark. Our substantive results include the frequent appearance of predictability thresholds, which
differ across months, meaning that accuracy initially fails to improve as the target date is approached but then
increases progressively once a threshold lead time is crossed. Also, we find that FEML can improve appreciably
over FELR when forecasting ‘‘turning point’’ months in the annual cycle at horizons of one to three months
ahead.
1. Introduction

Arctic sea ice is melting very quickly as the planet warms (see
Fig. 1, and e.g., Diebold and Rudebusch (2022) and the many references
therein), which brings both major economic opportunities and major
risks. Opportunities/benefits include new accessibility for extracting
deposits of natural gas, petroleum, and other natural resources, as
well as the emergence of trans-Arctic shipping lanes, which will en-
hance international trade by reducing both transportation costs and
piracy-riddled chokepoints on other routes. Risks/costs include in-
creased emissions and environmental damage due to discharges, spills,
and soot deposits (Bekkers et al., 2016; Petrick et al., 2017). Finally
and more broadly, melting sea ice will have important geopolitical
consequences for Arctic sea-lane control (Ebinger and Zambetakis,
2009).

For all of the above reasons, the temporal path and pattern of
Arctic sea ice diminution are of particular interest, and Arctic sea ice
forecasting has received significant attention (Shalina et al., 2020).
From a real-time online perspective, there are two key approaches. The
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2 For example, each summer since 2008 the Sea Ice Prediction Network (SIPN) has sponsored the Sea Ice Outlook (SIO) competition for predicting September

average daily Arctic sea ice extent. See https://www.arcus.org/sipn for SIPN, and see https://www.arcus.org/sipn/sea-ice-outlook for SIO. September extent
forecasts are produced by many research groups mid-month in June, July, and August, and evaluated once September ends and the outcome is known. Insightful
post-season SIO assessments have been produced annually (the most recent is (Bhatt et al., 2022)), and similarly-insightful multi-year retrospective SIO assessments
have been produced occasionally (Stroeve et al., 2014; Hamilton and Stroeve, 2016; Hamilton, 2020).

first is fixed-horizon forecasting, where, for example, each month we
forecast one month ahead, month after month, ongoing, as in Diebold
and Rudebusch (2022). The second is fixed-target forecasting, where
each month we forecast a fixed future target date, month after month,
ending when we arrive at the target date, as in Diebold and Göbel
(2022). In this paper we consider the fixed-target scenario, which has
generated substantial interest in highlighting Arctic sea ice diminution
both within years (as September 30 is approached, say) and across years
(comparing the sequence of Septembers, say).2

Forecast accuracy naturally increases as information accumulates
and the target date is approached. A key question is how to quantify
that accuracy, and how quickly, and with what pattern, it improves
as the target date is approached. In this paper we use glide charts
(plots of sequences of root mean squared forecast errors as the target
date is approached) to address those questions in the contexts of two
models for Arctic sea ice forecasting, the feature-engineered linear
regression (FELR) model of Diebold and Göbel (2022), and a new
and potentially-superior feature-engineered machine learning (FEML)
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Fig. 1. Observed September Arctic Sea Ice Extent. Notes: We show the evolution of the monthly average of Arctic Sea Ice Extent during September between 1979 and 2021.
model developed in this paper, building on the tree-based ‘‘macro
random forest’’ of Goulet Coulombe (2020a).

We proceed as follows. In Section 2 we review the FELR model,
display and discuss its glide charts for each month of the year, and
compare them to those of a naive (pure trend) benchmark. In Section 3
we introduce the FEML model, display and discuss its glide charts for
each month of the year, and compare them to those of a different and
more sophisticated benchmark, FELR. Hence FELR appears throughout,
but in different roles. It appears first in Section 2 as a candidate model
to be compared to a naive benchmark, and then in Section 3 as a
more sophisticated benchmark against which a potentially even more
sophisticated candidate model is compared. We conclude in Section 4.

2. Glide charts for Feature-Engineered Linear Regression (FELR)

Here we review the FELR model of Diebold and Göbel (2022) and
display its glide charts for Arctic sea ice forecasting. In particular,
we treat FELR as a simple but hopefully-sophisticated model – in the
tradition of the ‘‘KISS Principle’’ of forecasting: ‘‘Keep it sophisticat-
edly simple’’ (Zellner, 1992) – and assess its fixed-target forecasting
performance relative to a naive benchmark forecast, a simple linear
trend. We do so in part to illustrate the construction and interpreta-
tion of glide charts, and in part because we are interested in FELR
and the improvements it may deliver relative to more naive models.
Later, in Section 3, we turn the tables and use FELR as the bench-
mark when assessing a more sophisticated non-parametric nonlinear
feature-engineered machine learning model.

2.1. Feature-Engineered Linear Regression

To understand FELR, one must understand the real-time fixed-
target forecasting exercise in which it is embedded. In our subsequent
empirical work, we will consider fixed-target forecasting for a selected
target month (the monthly average of daily observations), conditioning
on the expanding daily historical sample as the end of the target
month is approached, performing 120 daily estimations and making
120 corresponding fixed-target forecasts, starting 120 days before the
last day of the target month and continuing to the last day of the target
month.3 Many variations and extensions (e.g., forecasting a particular
target day rather than a target monthly average) can be implemented.
Although our framework is applicable to fixed-target forecasting of
any variable, our subsequent empirical work will focus on Arctic sea

3 We focus on the monthly aggregate rather than raw daily readings,
because the monthly aggregate is the object of interest in many climate studies
(see Goulet Coulombe and Göbel (2021) and references therein), and also
in the SIO annual forecasting competition (Bhatt et al., 2022). Furthermore,
raw daily readings are likely to include undesirable high-frequency noise from
satellite measurements and post-processing (Diebold et al., 2021).
2

ice extent (𝑆𝐼𝐸) and we have specialized the notation below to this
particular exercise. Given the importance of seasonality not only in
intercepts, but also in trends and dynamics (Diebold and Rudebusch,
2022), we run regressions for each month separately.

Fully general notation gets tedious, so we take a specific example.
Consider fixed-target forecasting for September average daily sea ice
extent, 𝑆𝐼𝐸9, conditioning on the expanding historical sample as we
move from June through the end of September. In FELR, September
extent is regressed on an intercept, a linear trend term, and three
additional covariates:

𝑆𝐼𝐸9 → 𝑐, 𝑇 𝑖𝑚𝑒, 𝑆𝐼𝐸𝐿𝑎𝑠𝑡𝑀𝑜𝑛𝑡ℎ, 𝑆𝐼𝐸𝐿𝑎𝑠𝑡30𝐷𝑎𝑦𝑠, 𝑆𝐼𝐸𝑇 𝑜𝑑𝑎𝑦, (1)

where 𝑆𝐼𝐸9 denotes September average daily extent, ‘‘→’’ denotes ‘‘is
regressed on’’, and the rest of the notation is obvious.4

As a concrete illustration, and approximately following the SIO
forecasting competition (Bhatt et al., 2022), consider the 𝑆𝐼𝐸9 fore-
casts on four days: 6/10, 7/10, 8/10 and 9/10. Immediately, the 6/10
regression used to produce the June forecast of September is

𝑆𝐼𝐸9 → 𝑐, 𝑇 𝑖𝑚𝑒, 𝑆𝐼𝐸5, 𝑆𝐼𝐸5∕12_6∕10, 𝑆𝐼𝐸6∕10,

the 7/10 regression used to produce the July forecast of September is

𝑆𝐼𝐸9 → 𝑐, 𝑇 𝑖𝑚𝑒, 𝑆𝐼𝐸6, 𝑆𝐼𝐸6∕11_7∕10, 𝑆𝐼𝐸7∕10,

the 8/10 regression used to produce the August forecast of September
is

𝑆𝐼𝐸9 → 𝑐, 𝑇 𝑖𝑚𝑒, 𝑆𝐼𝐸7, 𝑆𝐼𝐸7∕12_8∕10, 𝑆𝐼𝐸8∕10,

and the 9/10 regression used to produce the September forecast of
September is

𝑆𝐼𝐸9 → 𝑐, 𝑇 𝑖𝑚𝑒, 𝑆𝐼𝐸8, 𝑆𝐼𝐸8∕12_9∕10, 𝑆𝐼𝐸9∕10.

Of course the four days above were chosen just as an illustration,
conforming approximately with SIO forecast dates. In reality we can
produce a forecast on any of the days before the last day of September.

Perhaps surprisingly given their simplicity, the FELR forecasts are
quite sophisticated in certain respects of relevance for sea ice forecast-
ing. First, they capture low-frequency linear trend dynamics via condi-
tioning on 𝑇 𝑖𝑚𝑒. Second, they capture medium-frequency inertial (au-
toregressive) dynamics around trend by conditioning on 𝑆𝐼𝐸𝐿𝑎𝑠𝑡𝑀𝑜𝑛𝑡ℎ.
Finally, they capture high-frequency dynamics by augmenting the con-
ditioning on historical monthly information (via 𝑆𝐼𝐸𝐿𝑎𝑠𝑡𝑀𝑜𝑛𝑡ℎ) with
potentially-invaluable recent daily information, via 𝑆𝐼𝐸𝐿𝑎𝑠𝑡30𝐷𝑎𝑦𝑠 and
𝑆𝐼𝐸𝑇 𝑜𝑑𝑎𝑦.

Empirical results validate such modeling choices, as FELR is a more-
than-adequate benchmark, surpassing the SIO median (the median of

4 Diebold and Göbel (2022) use the term ‘‘benchmark predictive model’’
(BPM) rather than FELR.
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all submitted forecasts) for September and the three horizons for which
the latter is available. This can be seen in the September subplot of
Fig. 4. While the linear trend is widely used as a generic reference point,
the SIO median, very much like the mean of the Survey of Professional
Forecasters in macroeconomics, is a tenacious contender against which
to benchmark new approaches (Andersson et al., 2021). The crucial
practical advantage of FELR over the SIO median is obviously that we
can generate its forecasts for more than three arbitrarily-fixed dates
and a single target month, producing direct (rather than iterated) FELR
forecasts day-by-day, using model parameter estimates optimized to the
remaining predictive horizon, thanks to the trivial simplicity and speed
of FELR estimation by linear least-squares regression.5 We exploit this
fact below to make and examine 120 daily fixed-target Arctic sea ice
forecasts from June through September.

2.2. Glide charts

We measure forecast performance, and its evolution as the target
date is approached, with RMSFE glide charts (RGCs). An RGC is simply
a plot of the sequence of root mean squared forecast errors (RMSFEs)
from the ordered sequence of 120 regressions with the condition-
ing information expanding as the target date is approached, where
𝑅𝑀𝑆𝐹𝐸 =

√

𝑒′𝑒
𝑇 , for regression residual vector 𝑒 and sample size 𝑇 .6

We use 𝑆𝐼𝐸 observational data from 1979 to 2020 from the Na-
tional Snow and Ice Data Center (NSIDC), which uses the NASA team
algorithm to convert microwave brightness readings into ice cover-
age (Fetterer et al., 2017a).7 We start with a 4-month lead (120 days).
Once the 120 FELR regressions are run, we construct RGCs. RGCs
naturally differ across months, so we examine the shapes for each
month separately.

In Fig. 2 we show the twelve monthly FELR RGCs, together with
the twelve monthly benchmark linear trend RGCs for comparison. First
consider the linear trend RGCs, which are flat, for all months and
horizons. This is expected, because they capture only extremely low-
frequency dynamics and hence take almost no account of evolving
conditions as the target date is approached.

Now consider the FELR RGCs, which are very different. Very early
on, near date 𝑇 − 120, they are little different from those of the
linear trend benchmark, but accuracy eventually improves (so the RGCs
drop), achieving perfection by the target date 𝑇 (so the RGCs are 0).
Moreover, the precise glide chart paths differ across months.

Most months show FELR predictability thresholds, meaning that
accuracy initially fails to improve as the target date is approached, but
then increases progressively once a predictability threshold lead time is
crossed. For example, the peak-summer (July) sea ice forecast shows no
increase in accuracy until roughly 𝑇 −60, after which accuracy rapidly
improves. This corroborates the results of Day et al. (2014), who find
a spring ‘‘predictability barrier’’ for summer pan-Arctic SIE predictions,
but contrasts with those of Bushuk et al. (2019).

Interestingly, the predictability thresholds are earliest for the low-
ice months of August, September (when Arctic sea ice achieves its
minimum), and October. The August threshold is around 𝑇 − 90, the
eptember threshold is evidently around 𝑇 − 120, and the October

threshold is even earlier – literally off the chart!

5 One makes a multi-period ‘‘direct’’ forecast with a horizon-specific
ulti-period-ahead estimated model. In contrast, one makes a multi-period

‘iterated’’ forecast with a one-period-ahead estimated model, iterated forward
or the desired number of periods. Direct projections are theoretically superior
nder model misspecification (which is always the relevant case), because they
irectly minimize the relevant multi-step predictive loss, as per (Ing, 2003),
heorem 4 and Corollary 3.

6 We are of course not the first to work with glide charts or similar
onstructs (whatever the name) for sea ice forecasts, whether in absolute terms
r relative to a benchmark. Key recent references include (Chevallier et al.,
013), Day et al. (2014), Hawkins et al. (2016), and Bushuk et al. (2019).

7 See Appendix A for details.
3

3. Glide charts for feature-engineered machine learning (FEML)

Although FELR clearly captures salient features in 𝑆𝐼𝐸𝑚 at various
forecasting horizons, it remains a linear model. Simultaneously, there
are ample plausible sources of nonlinear 𝑆𝐼𝐸𝑚 dynamics, including
tipping points and feedback loops (Maslanik et al., 2007). With the
shape of those nonlinearities being unknown, we turn to flexible nonlin-
ear machine learning (ML) approaches to estimate them. A significant
roadblock to that enterprise, however, is that completely nonparamet-
ric ML methods simply will not work on a sample of size 𝑇≈40. We
confront this situation by using a feature-engineered machine learning
(FEML) approach, which, as the name suggests, retains the feature
engineering that made FELR a successful benchmark, but with substan-
tial generalization. In particular, the ML model we consider is Macro
Random Forest (Goulet Coulombe, 2020a), which builds nonlineari-
ties around FELR rather than modeling everything nonparametrically.
Hence FEML continues to capture linear signals precisely as with FELR,
but it can also capture additional nonlinear signals, while continuing to
economize on degrees of freedom.

To make such points more clear, we first review the basics of
Macro Random Forest (MRF) and then describe the various FEML
specifications that will be used in our subsequent forecasting exercise.

3.1. Feature-engineered machine learning

Here we introduce a flexible tree-based class of nonparametric
nonlinear feature-engineered models for fixed-target sea ice forecasting.

3.1.1. Macro random forest
Goulet Coulombe (2020a) proposes a new form of random forest

(RF, Breiman 2001) better suited for time series, especially macroeco-
nomic data where the available series are typically of short length. The
model is

𝑦𝑡 = 𝑋𝑡𝛽𝑡 + 𝜖𝑡
𝛽𝑡 =  (𝑆𝑡)

where 𝑆𝑡 are the state variables governing time variation and  a
forest. 𝑆𝑡 can be a large data set, beyond what is included in FELR. 𝑋
determines the linear model that we want to be time-varying. By design,
it is preferable that 𝑋 ⊂ 𝑆 be parsimonious and a priori important
compared to the larger 𝑆. For instance, one can use lags of 𝑦𝑡 for 𝑋𝑡
when an appreciable degree of persistence is suspected. In this paper,
𝑋𝑡 will be the features of FELR.

While an advantage of the method is its potential for interpretation
via the generalized time-varying parameters 𝛽𝑡, of greater interest here
are its predictive advantages in an environment with scarce data and
a strong linear signal. Indeed, it is easy to see that, if  ends up
hardly nonlinear – or seen differently, mostly time-invariant – FEML
collapses to FELR. In contrast, a plain RF that learns nothing, collapses
to the unconditional mean. Thus, FEML constructs the conditional mean
economically by starting with FELR and incorporating nonlinearities (as
much as one can afford with 𝑇 ≈ 40) around it. In contrast, a plain RF
would struggle to capture linear autoregressive signals effectively using
hard-thresholding functions (the trees) and would be left with little or
no degrees of freedom for ‘‘real’’ nonlinearities. For much more on this
point, see Goulet Coulombe (2020a).

The estimation is carried out through a greedy algorithm, which, in
its most basic form, is to run

min
𝑗∈ − , 𝑐∈R

[

min
𝛽1

∑

𝑡∈𝑙1(𝑗,𝑐)

(

𝑦𝑡 −𝑋𝑡𝛽1
)2 + min

𝛽2

∑

𝑡∈𝑙2(𝑗,𝑐)

(

𝑦𝑡 −𝑋𝑡𝛽2
)2

]

. (2)

recursively to construct trees. In words, at each potential tree split,
we obtain the optimal variable 𝑆𝑗 (i.e., the best 𝑗 out of the random
subset of predictors indexes  −) with which to split our sample, and
𝑐, i.e. the value at which we should split 𝑗. The resulting outputs 𝑗∗
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Fig. 2. Glide charts: Feature-engineered linear regression.
Notes: We show RMSFE from linear trend models and feature-engineered linear regression models:
𝑆𝐼𝐸𝑚 → 𝑐, 𝑇 𝑖𝑚𝑒 (𝑏𝑙𝑎𝑐𝑘)
𝑆𝐼𝐸𝑚 → 𝑐, 𝑇 𝑖𝑚𝑒, 𝑆𝐼𝐸𝐿𝑎𝑠𝑡𝑀𝑜𝑛𝑡ℎ , 𝑆𝐼𝐸𝐿𝑎𝑠𝑡30𝐷𝑎𝑦𝑠 , 𝑆𝐼𝐸𝑇 𝑜𝑑𝑎𝑦 (𝑜𝑟𝑐ℎ𝑖𝑑),
with the estimation sample expanding over 120 days. The horizontal axes show the number of days until the end of the target month 𝑚. In some instances 𝑆𝐼𝐸𝐿𝑎𝑠𝑡𝑀𝑜𝑛𝑡ℎ = 𝑆𝐼𝐸𝐿𝑎𝑠𝑡30𝐷𝑎𝑦𝑠,
so that some models would suffer from perfect multicollinearity. In these cases, we drop 𝑆𝐼𝐸𝐿𝑎𝑠𝑡30𝐷𝑎𝑦𝑠. See text for details.
and 𝑐∗ are used to split 𝑙 (the parent ‘‘leaf’’) into two children leaves,
𝑙1 and 𝑙2. Splitting things in halves, and those halves in other small
halves eventually leads to obtaining leaves of size 1 (or a small number)
yielding 𝛽𝑡, a coefficient at each point in time.

As in RF, the core sources of regularization in MRF are (1) av-
eraging over a diversified ensemble of trees generated by Bagging,
and (2) random eligibility of predictors for splits  − ⊂  .8 Nonethe-
less, 𝛽𝑡’s (and corresponding predictions) may benefit from additional
regularization—this is particularly true of short time series where
the potency of Bagging is more limited. Time smoothness is made
operational by taking the ‘‘rolling-window view’’ of time-varying pa-
rameters. That is, the tree solves many weighted least squares prob-
lems including close-by observations. To keep computational demand
low, (Goulet Coulombe, 2020a) suggests to use a kernel 𝑤(𝑡; 𝜁 ) designed
as a symmetric 5-step Olympic podium. Informally, the kernel puts a
weight of 1 on observation 𝑡, a weight of 𝜁 < 1 on observations 𝑡 − 1
and 𝑡 + 1 and a weight of 𝜁2 on observations 𝑡 − 2 and 𝑡 + 2. Finally, a
small Ridge penalty is added for matrices to invert nicely even in very
small leaves, which will be inevitably prevalent in our application. With

8 This, and the fact that 𝛽𝑡 comes from very small leaves obtained from
running (2) recursively, is precisely why we get a different 𝛽 for each 𝑡.
4

𝑡

those additions, (2) turns into the more sophisticated

min
𝑗∈ − , 𝑐∈R

[

min
𝛽1

∑

𝑡∈𝑙𝑅𝑊1 (𝑗,𝑐)

𝑤(𝑡; 𝜁 )
(

𝑦𝑡 −𝑋𝑡𝛽1
)2 + 𝜆‖𝛽1‖2

+min
𝛽2

∑

𝑡∈𝑙𝑅𝑊2 (𝑗,𝑐)

𝑤(𝑡; 𝜁 )
(

𝑦𝑡 −𝑋𝑡𝛽2
)2 + 𝜆‖𝛽2‖2

]

,

(3)

where 𝑙∗1(𝑗, 𝑐) and 𝑙∗2(𝑗, 𝑐) denote the expanded leaves incorporating the
aforementioned neighboring observations in time space.

To put things in perspective, a standard RF is a restricted version
of MRF where 𝑋𝑡 = 𝜄, 𝜆 = 0, 𝜁 = 0 and the block size for Bagging
is 1. Said differently, the sole regressor is an intercept, there is no
within-leaf shrinkage, and Bagging is carried out as-if we were working
with a cross-section. As discussed earlier, by design, MRF will have an
edge over RF whenever linear signals included in 𝑋𝑡 are strong and
the number of training observations (or signal-to-noise ratio) is low.
Clearly, all those boxes are checked in this paper’s application.

3.1.2. Two specifications
We consider two MRF specifications corresponding to different

configurations of 𝑆𝑡 and 𝑋𝑡. First, the FEML model has a linear part
𝑋 comprising the very same features of the FELR model, i.e., an
𝑡
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intercept (𝑐), a linear time trend (𝑇 𝑖𝑚𝑒), SIE of the previous month
(𝑆𝐼𝐸𝐿𝑎𝑠𝑡𝑀𝑜𝑛𝑡ℎ), the average SIE over the last 30 days (𝑆𝐼𝐸𝐿𝑎𝑠𝑡30𝐷𝑎𝑦𝑠),
and today’s measurement of the Arctic’s sea ice extent (𝑆𝐼𝐸𝑇 𝑜𝑑𝑎𝑦). State
variables 𝑆𝑡 feature a larger set of potentially informative climate vari-
ables, akin to Goulet Coulombe and Göbel (2021)’s VARCTIC, designed
to proxy the current state of the Arctic. In particular, we include (1) all
features entering 𝑋𝑡, (2) daily SIE measurements of the previous 14
days, (3) daily Sea Ice Thickness (SIT) measurements of the latest 14
days available, (4) the average SIT over the latest 30 days of available
measurements, (5) lags of monthly measurements of SIE, SIT, CO2 and
Air Temperature (AT), and (6) the first five principal components of the
feature set described in (1)-(5), which may help in summarizing the key
variation in the relatively large 𝑆𝑡.9,10 Details on the provenance of the
various data series appear in Appendix A.

Second, the ‘‘Pocket FEML’’ model has the full 𝑆𝑡 of FEML but 𝑋𝑡
is a subset of FELR’s regressors, namely 𝑐, 𝑇 𝑖𝑚𝑒, and 𝑆𝐼𝐸𝑇 𝑜𝑑𝑎𝑦. The
motivation for a restricted FELR as a linear part is that the size of
𝑋𝑡 ultimately reduces the potential depth of trees in the forest for
very small datasets. This is due to the fact that the algorithm needs to
run small ridge regressions in each leaf, and the larger that regression
gets, the larger the minimal leaf size must be to accommodate that
operation. In short, it limits the expressivity of the trees by restrict-
ing their depth. Thus, the potential benefits of a more condensed 𝑋𝑡
is to discard partially redundant information, avoid near-singularity
problems in small terminal nodes, and ultimately leave more room
for nonlinearities in  . The cost is that, obviously, with respect to
the MRF specification, we lose the linear signals from the less noisy
𝑆𝐼𝐸𝐿𝑎𝑠𝑡𝑀𝑜𝑛𝑡ℎ and 𝑆𝐼𝐸𝐿𝑎𝑠𝑡30𝐷𝑎𝑦𝑠 (although they are included in 𝑆𝑡).

hile the necessity of those is uncertain prior to 30-day-ahead fore-
asts, they are mechanically essential for short-run forecasts. This will
e clearly visible in the empirical results. Obviously, this is known ex
nte and a forecaster can simply switch to FELR or FEML past that
hreshold.

Regarding tuning parameters, we set values that are a priori more
dequate in an environment with very little data. The sampling rate
or features in 𝑆𝑡 is 1

3 , which is standard. The subsampling rate of
ata rows is 9

10 which is rather high and limits the potential for tree-
iversification coming from that source. The upside is that it allows for
lightly deeper trees to be grown, which is much needed when faced
ith a small 𝑇 . 𝜁 is set to 0.25 which reflects the view that we expect

ittle persistence in the underlying 𝛽𝑡’s at the yearly frequency. 𝜆 is 1
(higher than what is used in typical macroeconomic specifications), and
brings helpful regularization when both the data subsampling rate is
high and 𝜁 is low. The prior mean for the ridge shrinkage is switched
from 0 to values of OLS coefficients, which reflects the view, like in the
choice of a higher 𝜆 and the specific 𝑋𝑡’s, that if there is an improved
model to be found, it should not be excessively far from FELR. Our
main out-of-sample results are robust to non-trivial deviations in both
𝜆 and 𝜁 .

9 Daily SIT measurements are published at the end of the following month,
.e. on April 25th the time series covers data only through the end of February.
he data for March is not released until May 1st. We use data that is publicly

available at the time of forecast. Consequently, depending on the exact day at
which one is making a prediction, the SIT enters 𝑆𝑡 with a lag of one to two
months.

10 The number of lags differs by variable, but all have a common starting
point. For example, when making a prediction on January 20th of year 𝑡, the

onthly lags for SIE, SIT, CO2 and AT start with a measurement for January
f year 𝑡 − 1, and end with the latest month on which complete information
s available. Thus, for SIE this boils down to 12 monthly lags from January
f 𝑡 − 1 until December of 𝑡 − 1. For SIT, we only have information until and
ncluding the whole month of November 𝑡 − 1. Finally, for CO2, the monthly

lags run from January 𝑡−1 through October 𝑡−1, and AT enters with monthly
estimates for January 𝑡 − 1 through September 𝑡 − 1.
5

3.2. Glide charts

Here we display glide charts for our two FEML versions (FEML,
Pocket FEML) and compare them to glide charts for our two FELR
versions (FELR, Pocket FELR).11 We also distinguish between in-sample
and out-of-sample versions.

3.2.1. An in-sample analysis
In Fig. 3 we show day-by-day in-sample RMSFEs of selected FELR

and FEML models for each month. Calculation of RMSFE requires
training set residuals. While those are perfectly fine to use for lin-
ear regressions, they are not for random forest-based models. It is
customary that successful (as per test set performance) RFs vastly
overfit the training data, nearly eliminating the presence of residu-
als (Goulet Coulombe, 2020b) – i.e., a form of ‘‘benign overfitting’’.
Consequently, it is typical to rely on the so-called out-of-bag error
to internally evaluate the goodness-of-fit from such models (Breiman,
2001). We do so using block subsampling as in Goulet Coulombe
(2020a) which is more adequate in the context of time series data. Here,
we set the block size to two years.

Mechanically, we observe that among the FELRs, the model with
the smallest degrees of freedom (FELR, with 5 parameters) is the
lower envelope. It is noted that the differences between FELR and
Pocket FELR are often small, except for the longer horizons of spring
and summer months. This indicates that the cost of forgoing certain
regressors in Pocket FEML’s linear part may not be too wise a choice
in the forthcoming out-of-sample evaluation. In this in-sample evalu-
ation, FEML RMSFEs are higher than those of FELRs in almost every
instance. However, it is worth remembering that RMSFEs are computed
differently (by necessity) and that FEMLs’ calculations account for
degrees of freedom while FELRs’ do not. To provide an apples-to-apples
comparison of the competing FE approaches, we switch to a uniform
recursive out-of-sample evaluation metric.

3.2.2. A pseudo-out-of-sample analysis of the last decade
Glide charts need not necessarily be used in conjunction with

RMSFE based on in-sample residuals or variants of them. In fact, any
loss can be used. In Fig. 4, we remain within the realm of squared
errors, but those are computed from a recursive expanding-window
pseudo-out-of-sample experiment. This sort of exercise is standard in
the modern macroeconomic forecasting literature comparing econo-
metric and machine learning models (Goulet Coulombe et al., 2022).
The choice of the 2012–2021 window for the ‘‘test’’ set is inspired
by Andersson et al. (2021).12 Given data limitations, it is a fair balance
between avoiding training models on too small of a sample size and
calculating RMSFE based on too few out-of-sample errors. Models are
re-estimated every year to leverage the gradually incoming new data
points.

There are benefits and costs to this alternative evaluation setup.
The obvious cost is that the test set RMSFE is the average of 10 errors
rather than 40 (as considered in the previous section for the in-sample
analysis), which inevitably increases the variance of the evaluation
metric. The benefits are threefold. First, it is not unthinkable that the
magnitude of the last 10 years’ forecasting errors is more informative
about the near future than that of those in the 1980s and 1990s. Second,
semi-flexible trend models (like FELR) will have a built-in advantage
for in-sample evaluation over what prevails when one uses such models
to really forecast next year’s SIE. The reason for this is that in-sample

11 In addition, to disentangle whether Pocket FEML’s performance differen-
tial comes from nonlinearities versus a sparser inherent linear equation, we
also include Pocket FELR in our set of benchmarks.

12 They conduct an evaluation of SIE predictability for their convolution
neural network trained directly on satellite imagery data. The benchmarks they

consider are a climate model and a linear time-trend model.
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Fig. 3. Glide charts: FELR and FEML.
Notes: We show in-sample RMSFE glide charts for several FELR and FEML models. The estimation period is 1979–2020. The horizontal axes show the number of days until the
end of the target month. In some instances 𝑆𝐼𝐸𝐿𝑎𝑠𝑡𝑀𝑜𝑛𝑡ℎ = 𝑆𝐼𝐸𝐿𝑎𝑠𝑡30𝐷𝑎𝑦𝑠, so some models would suffer from perfect multicollinearity. In such cases, we drop 𝑆𝐼𝐸𝐿𝑎𝑠𝑡30𝐷𝑎𝑦𝑠. See text
for details.
evaluation uses a residual at time 𝑡 from a model that is trained on
both 𝑡 − 1 and 𝑡 + 1. Information from 𝑡 + 1 is extremely useful when
estimating the parameters of a time trend, but such information about
𝑡 + 1 is not available when one is truly forecasting 𝑡 from 𝑡 − 1. The
recursive evaluation addresses this potential bias by mimicking directly
the reality of forecasting every year using a model estimated only on
available data at that particular point in time. Lastly, an advantage of
recursive estimation in our setting is that OLS-based and RF-based mod-
els are now evaluated using an identical metric and differences between
performances cannot be attributed to various choices on how to account
for degrees of freedom (like setting up the out-of-bag metric).
6

In this out-of-sample evaluation, a couple of observations are worth
mentioning. First, FELR and its pocket counterpart stand out as solid
benchmarks, by routinely yielding the smallest RMSFE, which is es-
pecially clear for longer horizons of early summer months. Given the
small estimation sample limitations, it is not entirely surprising that
FEML’s reductions in RMSFE are limited in size. There are, however,
notable and important exceptions. The first is Pocket FEML’s perfor-
mance from 90 to 45 days ahead for September. Needless to say, if
there are any 𝑆𝐼𝐸 forecasts of superior interest, it is exactly those
lead-times prior to the end of September (hence period of the annual
SIO forecasting competition). Improvements of this particular FEML
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Fig. 4. Out-of-Sample glide charts: FELR and FEML average Over 2012–2021.
Notes: We show out-of-sample RMSFE glide charts. We make forecasts each day through the end of the target month in each year from 2012–2021. We then plot the
square root of the 10-year average of each day’s squared forecast error. The horizontal axes show the number of days until the end of the target month. In some instances
𝑆𝐼𝐸𝐿𝑎𝑠𝑡𝑀𝑜𝑛𝑡ℎ = 𝑆𝐼𝐸𝐿𝑎𝑠𝑡30𝐷𝑎𝑦𝑠, so some models would suffer from perfect multicollinearity. In such cases, we drop 𝑆𝐼𝐸𝐿𝑎𝑠𝑡30𝐷𝑎𝑦𝑠. See text for details.
over FELRs are over 0.1 × 106 km2 for the whole period. For October,
the dominance of nonlinear models, albeit quantitatively smaller, is
present for almost all horizons up to 15 days ahead. Finally, FEMLs
(with FEML leading among them) also outperform FELRs for the vast
majority of horizons for March—sometimes offering reduction up to
50% in RMSFE.

In Fig. 5, we report the fraction of days for which any FEML in Fig. 4
offers the lowest RMSFEs. This helps summarizing and synthesizing
the abundant information in glide charts. It is clear that October,
March, and to a lesser extent, January, are all months where gains
(albeit small for certain horizons) are generalized over the whole 120
days. Their respective shares of optimal forecasts are above 90%, 80%,
7

and 70% respectively. In contrast, September reductions in RMSFE are
substantial in size but are localized within a specific forecasting range.
Accordingly, the fraction of days in which any FEML outperforms FELR
for September is around 50%. Many months exhibit fractions in such
a range, but unlike September, they are typically due to FEML and
FELR forecasts being roughly similar. Overall, the early summer months
June and July are better predicted using FELRs, and this is mostly
attributable to long-range forecasts made in the first months of the
melting phase. As can be seen in the bottom quadrants of Fig. 5, the
opposite can be said for mid-range horizons where FEMLs are very
frequently the best option for many months (excluding June, July and
August).
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Fig. 5. Fraction of days in which any FEML outperforms any other FELR or FEML Years 2012–2021.
Notes: We show the fraction of days for which each FEML model showed the lowest root-mean-squared forecast errors of out-of-sample predictions between 2012–2021. That is,
in each year from 2012–2021 we calculate the squared point-forecast error made on each day through the end of the target month. We calculate the square-root of the 10-year
average squared forecast error for each day (see Fig. 4). We then plot the fraction of days, for which each FEML model achieved the lowest 10-year RMSFE. The set of all models
includes ‘‘FELR’’, ‘‘Pocket FELR’’, ‘‘FEML’’, and ‘‘Pocket FEML’’. The horizontal axes show the number of days until the end of the target month 𝑚. See text for details. Notice that
in some instances 𝑆𝐼𝐸𝐿𝑎𝑠𝑡𝑀𝑜𝑛𝑡ℎ = 𝑆𝐼𝐸𝐿𝑎𝑠𝑡30𝐷𝑎𝑦𝑠 and some models would suffer from perfect multicollinearity. In these cases, 𝑆𝐼𝐸𝐿𝑎𝑠𝑡30𝐷𝑎𝑦𝑠 is dropped. This causes the red and green
line to sometimes coincide.
The fact that FEMLs offer clear gains for September, October, as well
as March forecasts, and much less so for other months suggests that
nonlinearities (and an expanded data set) are particularly beneficial
for detecting turning points in the annual SIE cycle, that is, when
SIE stops expanding or stops retracting. A working hypothesis is that
nonlinearities and additional information helps in avoiding either too
low or too large 𝑆𝐼𝐸 predictions around the trough based on slowly
evolving physical limits of the seasonal component. In the case of
September and October, this could be due to FEML’s moderate down-
ward pressures on the prediction from very low readings of 𝑆𝐼𝐸𝑇 𝑜𝑑𝑎𝑦
and 𝑆𝐼𝐸𝐿𝑎𝑠𝑡𝑀𝑜𝑛𝑡ℎ during early Arctic summer to account for the fact
that as ice melts, perhaps more than previous summers, the weight-
ing of multi-year thicker and older ice increases, ultimately slowing
the melting process in late summer (Maslanik et al., 2007). Another
potential source of nonlinearity, now in favor of accelerated melting
beyond what a linear dynamic relationship suggests, is the presence
of feedback loops, like the ice-albedo effect, which can manifest even
within short time spans (Goulet Coulombe and Göbel, 2021).

Lastly, it can be informative to look at the raw series and corre-
sponding forecasts themselves for the key month of September. Fig. 6
shows three horizons where disagreement between linear and nonlinear
models can be substantial (June 14th, July 25th, August 13th). We
see FELR ≻ Pocket-FEML in June is due to the latter being overly
pessimistic in the first half of the out-of-sample period. Disagreement
inevitably shrinks in July as the target date approaches. Nonetheless,
Pocket FEML clearly gets the upper hand in the early 2010s by better
capturing the large deviations from trend starting in 2012 (the lowest
SIE on record). Finally, forecasts converge to near-identical values by
mid-August.
8

3.2.3. Which model(s) to use and when
As mentioned earlier, Pocket models are mechanically handicapped

for horizons less than 30 days by excluding the slowly accumulating
September data. Fortunately, the glide chart’s vocation is to recom-
mend a model to use, and that recommendation may depend on the
horizons of interest. In the case of September, the outcome is clear:
one should use FELR or Pocket FELR up to 90 days ahead, then switch
to Pocket FEML for the next 60 days, and then revert back to FELR
for the remaining 30 (short-run) horizons. Glide charts prove to be a
particularly useful analytical tool in this exercise given that the optimal
model choice for various months is clearly horizon-dependent.

In unreported results, we considered FEML (𝑆𝑡 = 𝑋𝑡), a MRF with
the linear part 𝑋𝑡 still being FELR, but with the set of ‘‘forest’’ variables
𝑆𝑡 being restricted to only include the elements in 𝑋𝑡. Naturally, this
helps in gauging how much of FEML gains/losses are attributable
to the use of a larger information set vs plain nonlinearities. In the
overwhelming majority of cases, FEML supplants or performs equally
well as FEML (𝑆𝑡 = 𝑋𝑡). This suggests that focused nonlinearities and
an expanded data set can provide the largest gains over FELR. Thus, in
line with (Goulet Coulombe, 2020a)’s observations in macroeconomic
forecasting applications, a larger 𝑆𝑡 is almost always preferable to a
restricted one. Moreover, as noted in Goulet Coulombe (2020b), a
larger 𝑆𝑡 spurs diversification of the underlying trees which helps to
keep overfitting in check. Given the short length of our time series,
potential for tree diversification is more easily obtained from feature
randomization than from bagging.

In sum, FEMLs can provide timely forecasting improvements over
FELRs for important months in the SIE annual cycle. Given the data
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Fig. 6. Annual out-of-sample forecasts on different days.
Notes: We show out-of-sample forecasts for September 𝑆𝐼𝐸 for the years 2012–2021. The black line is the realized 𝑆𝐼𝐸. The scale of the Y-axis is in 106 km2.
limitation, these are not extremely large and are not observed for
every horizon, even in successful months. In such a context, glide
charts are particularly useful to provide guidance on which feature-
engineered model to use and when. Our results unequivocally indicate
that FELRs and FEMLs are more adequate benchmarks for out-of-sample
predictive accuracy than the oversimplistic linear trend model — which
is nonetheless widely used for such purposes (Andersson et al., 2021).

4. Concluding remarks and directions for future research

We have used glide charts – plots of sequences of root mean squared
forecast errors as the target date is approached – to evaluate and
compare fixed-target forecasts of Arctic sea ice. We first used them
to evaluate the feature-engineered linear regression (FELR) forecasts
of Diebold and Göbel (2022), and to compare them to naive pure-trend
benchmark forecasts. Then we introduced a much more sophisticated
feature-engineered machine learning (FEML) model, and we used glide
charts to evaluate its forecasts and compare them to a FELR benchmark.
Our substantive results include the frequent appearance of predictabil-
ity thresholds, which differ across months, meaning that accuracy
initially fails to improve as the target date is approached but then
increases progressively once a threshold lead time is crossed. We also
compared FELR and FEML, finding that FEML can improve on FEML
for turning point months in the annual SIE cycle, namely September,
October, and March. Those gains are particularly evident for forecasts
made 90 to 30 days before the target date.
9

In addition, we have built a website that expands on the analysis
of this paper, providing weekly updates of forecasts for target date
September 2022.13 The forecasts are based on FELR models, FEML mod-
els, and the VARCTIC model of Goulet Coulombe and Göbel (2021). The
user can explore the 2022 forecasts and those of previous years through
a series of interactive plots. Among other things, the site features a
glide chart of the key models as well as a continuously-updated rolling
history of 2022 point forecasts and associated prediction intervals. This
provides publicly available real-time SIE predictions from four compet-
itive statistical/machine learning models. It therefore complements the
Sea Ice Outlook, which is of much larger scope in terms of included
models, but which publishes the results of the survey only on a monthly
basis and with a lag of two to three weeks.

Several directions for future research are apparent, all of which are
related to this paper’s use of glide charts for comparing different fixed-
target SIE forecasting models, and the related idea that a ‘‘better’’ model
should have a ‘‘better’’ glide chart. First, although in this paper we fo-
cused exclusively on comparing glide charts of statistical/econometric
sea ice forecasting models, one could also (a) include glide charts
of structural global climate models (GCMs) (e.g., ‘‘How well does a
particular GCM’s glide chart match the FEML glide chart?’’), or (b) use
glide charts to help calibrate/estimate GCMs (e.g., ‘‘For a particular
GCM, what parameter configuration minimizes the divergence between
the GCM glide chart and the FEML glide chart?’’).

13 See https://chairemacro.esg.uqam.ca/arctic-sea-ice-forecasting/?lang=en.
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Second, one could consider glide-chart loss functions, or accuracy
measures, other than the ubiquitous quadratic loss underlying RMSFE.
In particular, one may want to entertain asymmetric loss functions.
Consider, for example, a firm contemplating in June whether to attempt
a September trans-Arctic shipment, using September fixed-target sea
ice forecasts to guide the decision, and consider positive vs. negative
forecast errors:

1. Positive errors (realized September ice greater than forecast): the
overly-optimistic forecasts may produce a decision to undertake
shipping, which may be regretted as the shipping will be more
risky and costly than expected, or even impossible.

2. Negative errors (realized September ice less than forecast): the
overly-pessimistic forecasts may produce a decision not to un-
dertake shipping, which may be regretted as business is lost
unnecessarily.

Both positive and negative errors are of course costly, but there is no
reason why the loss associated with a given positive error should nec-
essarily match that of a negative error of the same absolute magnitude.
Asymmetric loss functions capture such effects.

Appendix A. Data

Daily SIE data are from Sea Ice Index, Version 3 (Fetterer et al.,
2017b) provided by the National Snow and Ice Data Center (NSIDC).14

ntil August 1986, data are reported only every other day. For model
stimation we fill missing 𝑆𝐼𝐸𝑇 𝑜𝑑𝑎𝑦,𝑡 observations with the average of

the two adjacent days, 𝑆𝐼𝐸𝑌 𝑒𝑠𝑡𝑒𝑟𝑑𝑎𝑦,𝑡 and 𝑆𝐼𝐸𝑇 𝑜𝑚𝑜𝑟𝑟𝑜𝑤,𝑡.
Daily SIT data are from PIOMAS provided by the Polar Science

Center.15 Data for month 𝑚 are not known until the end of month 𝑚+1.
Hence, on any day prior to the end of month 𝑚+1, information on SIT
s only available through the end of month 𝑚−1. This results in a one-
o two-month lag.

Daily AT data are based on Rohde and Hausfather (2020).16 The
onthly measurements are reported as anomalies relative to the Jan-
ary 1951–December 1980 average.

Monthly CO2 concentration data are from Mauna Loa, provided by
he NOAA Global Monitoring Laboratory.17 The data for month 𝑚 are
ade available during the first days of month 𝑚 + 1.

ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.eneco.2023.106833.

eferences

ndersson, T.R., Hosking, J.S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C.,
Law, S., Jones, D.C., Wilkinson, J., Phillips, T., et al., 2021. Seasonal Arctic sea
ice forecasting with probabilistic deep learning. Nature Commun. 12 (1), 1–12.

ekkers, E., Francois, J.F., Rojas-Romagosa, H., 2016. Melting ice caps and the
economic impact of opening the northern sea route. Econom. J. 128, 1095–1127.

14 See https://doi.org/10.7265/N5K072F8.
15 See http://psc.apl.uw.edu/wordpress/wp-content/uploads/schweiger/ice_
olume/PIOMAS.thick.daily.1979.2022.Current.v2.1.dat.gz.
16 See http://berkeleyearth.lbl.gov/auto/Global/Land_and_Ocean_complete.

xt.
17 See the ‘‘deseasonalized’’ column in https://gml.noaa.gov/webdata/ccgg/
10

rends/co2/co2_mm_mlo.csv.
Bhatt, U.S., Meier, W., Blanchard-Wrigglesworth, E., Massonnet, F., Goessling, H.,
V., Ludwig, Bieniek, P., Eicken, H., Fisher, M., Hamilton, L.C., Little, J., Over-
land, J.E., Serreze, M., Steele, M., Stroeve, J., Walsh, J., Wang, M., Wiggins, H.V.,
2022. In: Turner-Bogren, B., Wiggins, H.V. (Eds.), Sea Ice Outlook: 2022 Post
Season Report. URL https://www.arcus.org/sipn/sea-ice-outlook/2022/postseason.

Breiman, Leo, 2001. Random forests. Mach. Learn. 45 (1), 5–32.
Bushuk, M., Msadek, R., Winton, M., Vecchi, G., Yang, X., Rosati, A., Gudgel, R., 2019.

Regional Arctic sea–Ice prediction: Potential versus operational seasonal forecast
skill. Clim. Dynam. 52 (5), 2721–2743.

Chevallier, M., Salas y Mélia, D., Voldoire, A., Déqué, M., Garric, G., 2013. Seasonal
forecasts of the pan-Arctic sea ice extent using a GCM-based seasonal prediction
system. J. Clim. 26 (16), 6092–6104.

Day, J.J., Tietsche, S., Hawkins, E., 2014. Pan-Arctic and regional sea ice predictability:
Initialization month dependence. J. Clim. 27 (12), 4371–4390.

Diebold, F.X., Göbel, M., 2022. A benchmark model for fixed-target Arctic sea ice
forecasting. Econom. Lett. 215, 110478.

Diebold, F.X., Göbel, M., Goulet Coulombe, P., Rudebusch, G.D., Zhang, B., 2021.
Optimal combination of Arctic sea ice extent measures: A dynamic factor modeling
approach. Int. J. Forecast. 37 (4), 1509–1519.

Diebold, F.X., Rudebusch, G.D., 2022. Probability assessments of an ice-free Arctic:
Comparing statistical and climate model projections. J. Econometrics 231, 520–534.

Ebinger, C.K., Zambetakis, E., 2009. The geopolitics of Arctic melt. Int. Aff. 85 (6),
1215–1232.

Fetterer, F., Knowles, K., Meier, W., Savoie, M., Windnagel, A.K., 2017a. Sea ice index.
NSIDC: National Snow and Ice Data Center, Boulder, Colorado, USA, Version 3.
https://doi.org/10.7265/N5K072F8. Dataset ID G02135, updated daily.

Fetterer, F., Knowles, K., Meier, W.N., Savoie, M., Windnagel, A.K., 2017b. Sea ice
index, Version 3. https://doi.org/10.7265/N5K072F8.

Goulet Coulombe, P., 2020a. The macroeconomy as a random forest. Available at SSRN
3633110.

Goulet Coulombe, P., 2020b. To bag is to prune. arXiv e-prints arXiv–2008.
Goulet Coulombe, P., Göbel, M., 2021. Arctic amplification of anthropogenic forcing:

A vector autoregressive analysis. J. Clim. 34, 5523–5541.
Goulet Coulombe, P., Leroux, M., Stevanovic, D., Surprenant, S., 2022. How is machine

learning useful for macroeconomic forecasting? J. Appl. Econometrics 37 (5),
920–964.

Hamilton, L., 2020. 1000 Predictions: What’s new and what’s old in a retrospective anal-
ysis of the sea ice outlook, 2008–2020. In: Presentation at American Geophysical
Union Annual Meeting.

Hamilton, L.C., Stroeve, J., 2016. 400 Predictions: the SEARCH sea ice outlook
2008–2015. Polar Geogr. 39 (4), 274–287.

Hawkins, E., Tietsche, S., Day, J.J., Melia, N., Haines, K., Keeley, S., 2016. Aspects of
designing and evaluating seasonal-to-interannual Arctic sea-ice prediction systems.
Q. J. R. Meteorol. Soc. 142 (695), 672–683.

Ing, C.-K., 2003. Multistep prediction in autoregressive processes. Econom. Theory 19
(2), 254–279.

Maslanik, J.A., Fowler, C., Stroeve, J., Drobot, S., Zwally, J., Yi, D., Emery, W., 2007.
A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice
loss. Geophys. Res. Lett. 34 (24).

Petrick, S., Riemann-Campe, K., Hoog, S., Growitsch, C., Schwind, H., Gerdes, R.,
Rehdanz, K., 2017. Climate change, future Arctic sea ice, and the competitiveness
of European Arctic offshore oil and gas production on world markets. Ambio 46
(3), 410–422.

Rohde, R.A., Hausfather, Z., 2020. The Berkeley earth land/ocean temperature record.
Earth Syst. Sci. Data 12, 3469–3479.

Shalina, E.V., Johannessen, O.M., Sandven, S., 2020. Changes in Arctic sea ice cover
in the twentieth and twenty-first centuries. In: Johannessen, O.M., Bohylev, L.P.,
Shalina, E.V., Sandven, S. (Eds.), Sea Ice in the Arctic: Past Present and Future.
Springer Nature, pp. 93–166.

Stroeve, J., Hamilton, L.C., Bitz, C.M., Blanchard-Wrigglesworth, E., 2014. Predicting
september sea ice: Ensemble skill of the SEARCH sea ice outlook 2008–2013.
Geophys. Res. Lett. 41 (7), 2411–2418.

Zellner, A., 1992. Statistics, science and public policy. J. Amer. Statist. Assoc. 87, 1–6.

https://doi.org/10.1016/j.eneco.2023.106833
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb1
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb1
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb1
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb1
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb1
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb2
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb2
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb2
https://doi.org/10.7265/N5K072F8
http://psc.apl.uw.edu/wordpress/wp-content/uploads/schweiger/ice_volume/PIOMAS.thick.daily.1979.2022.Current.v2.1.dat.gz
http://psc.apl.uw.edu/wordpress/wp-content/uploads/schweiger/ice_volume/PIOMAS.thick.daily.1979.2022.Current.v2.1.dat.gz
http://berkeleyearth.lbl.gov/auto/Global/Land_and_Ocean_complete.txt
http://berkeleyearth.lbl.gov/auto/Global/Land_and_Ocean_complete.txt
https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_mm_mlo.csv
https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_mm_mlo.csv
https://www.arcus.org/sipn/sea-ice-outlook/2022/postseason
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb4
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb5
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb5
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb5
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb5
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb5
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb6
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb6
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb6
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb6
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb6
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb7
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb7
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb7
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb8
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb8
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb8
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb9
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb9
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb9
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb9
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb9
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb10
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb10
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb10
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb11
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb11
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb11
https://doi.org/10.7265/N5K072F8
https://doi.org/10.7265/N5K072F8
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb14
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb14
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb14
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb15
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb16
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb16
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb16
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb17
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb17
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb17
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb17
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb17
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb18
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb18
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb18
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb18
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb18
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb19
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb19
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb19
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb20
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb20
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb20
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb20
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb20
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb21
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb21
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb21
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb22
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb22
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb22
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb22
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb22
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb23
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb23
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb23
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb23
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb23
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb23
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb23
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb24
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb24
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb24
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb25
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb25
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb25
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb25
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb25
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb25
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb25
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb26
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb26
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb26
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb26
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb26
http://refhub.elsevier.com/S0140-9883(23)00331-6/sb27

	Assessing and comparing fixed-target forecasts of Arctic sea ice: Glide charts for feature-engineered linear regression and machine learning models
	Introduction
	Glide charts for Feature-Engineered Linear Regression (FELR)
	Feature-Engineered Linear Regression
	Glide Charts

	Glide Charts for Feature-Engineered Machine Learning (FEML)
	Feature-Engineered Machine Learning
	Macro Random Forest
	Two Specifications

	Glide Charts
	An In-Sample Analysis
	A Pseudo-Out-of-Sample Analysis of the Last Decade
	Which Model(s) to Use and When


	Concluding Remarks and Directions for Future Research
	Appendix A. Data
	Appendix B. Supplementary data
	References


