;‘i{z:;io?all Iz‘pectations,;andom Walks, and Monetary Models of the Exchange Rate," Proceedings of the American
atistical Association, Business and Economic Statistics Section, 1986, 101-106. Washi : i
Statistical Association, 1987. S, DO Amesizan

RATIONAL EXPECTATIONS, RANDOM WALKS, AND MONETARY MODELS OF THE EXCHANGE RATE

Francis X. Diebold, Board of Governors of the Federal Reserve System

1) Introduction

The descriptive accuracy and predictive stock, real income, and nominal interest rate,
guperiority of simple random-walk spot and “F" denotes "forelgn” and and "L" denotes
exchange rate models have received substantial “local.” § is the log spot rate in units of
attention in the literature, as in Meese and local currency per foreign currency unit. The
Rogoff (1983a, 1983b), and Backus (1984) among structural assumptions behind this reduced
many others. Diebold and Nerlove (1985, 1986) form, including purchasing power parity and
use time series methods, including formal unit identical local and foreign money demand
root tests, to study the temporal structure of parameters, are well known and quite strong.
geven major weekly dollar spot rates during The Frenkel-Bilson monetary model is,
the post 1973 float, and find strong support nevertheless, the most commonly estimated
for the presence of ome unit root in each exchange rate model and provides a convenient
geries. For most rates, some slight serial vehicle for tractable analysis.
correlation remains after the application of a Elimination of 1; via the uncovered
first difference, but in all cases, the {nterest parity condition:
identified model 1s very close to a random
walk. (2) i =ES = 19

In light of these results, an interesting t E; Bl :
question is whether, and under  what (apart from second-order terms) vyields the
conditions, lower—frequency structural reduced form:
exchange rate models will generate random walk b )
behavior. In this paper, a flexible-price (3) St “T35 Etst+l * 5 [mt- ayt).
monetary model 1is studied under rational
expectations. The restrictions under which Solving for the forward solution (Whiteman
random walk behavior arises are characterized (1983), inter alia), we have:
and shown to be testable. The results are © .
then modified to characterize the conditions (4) St =-T—%—g £ ((1 +b) /D) J Eczt+j
leading to more general ~nonstationary, as j=0
opposed to simple random walk, behavior. where the driving variable 7z is defined by
Finally, the restrictions imposed by the joint
monetary-model/random walk hypothesis are (5) Z =m - ay
tested empirically for the DM/$ rate, in two t t £
ways. The first involves the application of Under the assumption that Z follows an AR(L)
formal tests for a unit root in the driving process:
process, conditional on plausible values for
the income elasticity of money demand. The (6) zt =p Zt—] v,
second 1involves testing for co-integration .
between driving variables, which avolds we know that Et Zt+j = o Zt .
conditioning on structural parameter values.

Thus (4) reduces to:
2) Random Walk Behavior in A Monetary Model (7 St = T—:TﬁT—:_EY Zt .

under Rational Expectations

The quasi-reduced form of the standard Clearly, if Z, follows a random walk
flexible=-price monetary model (Frenkel (1976), (i.e. p=1), then St =7 and is therefore a
Bilson (1979)), is given by: random walk as well. It is not Lrue, however,
() S =m_ -ay_ % bi. that interest inelastic money demand schedules

¢ c s ¢ (i.e. b = 0) imply a random walk for e.
where (Compare Backus (1984).) In cthat situation,
L we have S§_ = Z, as before, but Z is not a

n = log GE-] EEEEEE_EElE (unless p = 1), which means that
mF § cannot follow a random walk. Thus, p = 1 1is

both necessary and sufficient for random walk

L exchange rates in the simple rational

y = log (i—f} expectations monetary model with AR(1) driving
y process. The restriction 1is not immediately

testable, however, because the parameter “a”

is unknown, making 7 unobservable. We will

1= (1L— 1F) return to this in the empirical analysis of

gection 4, but we first pause CO consider
driving processes more general than (6).

and m, y, and i respectively denote money
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3) Random Walk Behavior with

Autoregressive Driving Process

a General

Suppose now that Z follows the general pth

order autoregression:

(8) L) Zt ® e

where

(9) @(L)=(1—¢1L—...‘¢pr),'p<°°.
Then, by the well known Wiener-Kolmogorov

formula (Nerlove, et al. (1979), inter alia)
we obtain: :

(10) E. Z = y(L) Z

where ERH £

3 N -1 ]

L) = £ vy, L =&L [® (L) /L], ,
1=0 1 "

L is viewed as a complex variable with modulus
less than unity, and the [ ]+ operator
eliminates all negative powers of L. Thus,

(D
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£ {1+ /)7
=0

=1
caw e U,z

(12)
s, = (1 /(1 + 1))

By the law of iterated projections (Sargent
(1979)), E_ 2 will be a linear combination
| the & for all

of only tfie p - most rtecent Z values (for a
j), so that the sum in (12), if convergent,
will also be a linear combination of the p

most recent Z values. We can therefore write:
(13)

st=(1/(:+b)) {C02t+c

1 "e-1

+c Z t-p-1} .

P il
This makes clear the
follows a random walk

({.e. & =1, By = ae W ), 8, cannot
follow a random walk. IJFurtherrnore, if 2z
follows a stationary autoregressive process,
then S will as well, and 1if Z follows an

fact that wunless 2




{ntegrated autoregressive process then so too
will S. Thus, even in the case of a general
AR(p) driving process, the interest elasticity
of money demand contains no information which
impinges on the random walk hypothesis.
Further generalization to the case of ARMA and
ARIMA processes is immediate.

4) Testing the Random Walk Restrictions

The log DM/$ rate is plotted over 197311 -
19851V in Figure 1, as are m and y. The
movements in the log spot rate are well known
and need no further description. The sample
path of S 1is typical of a random walk
realization, and the sample autocorrelations
in Table 1, which decay very slowly, support
the random walk hypothesis as well.
Similarly, the sample partial autocorrelations
in Table 1 indicate a random walk via the

absence of trend assumed under the

alternative), the Tu test (non-zero  mean

allowed under the alternative) and the T_ test
(trend allowed under the alternative as
described 1in Dickey, Bell and Miller (1986)
and tabulated 1in Dickey (1976). Given the
relatively small sample (51 observations),
power considerations are of key importance,
particularly in 1light of the fact that
realistic alternatives are close to the
null. Because of this, the uniformly most
powerful test of Bhargava (1986) was also
used, but it too failed to reject the null.
A wide range of diagnostics verified that the
distributional and temporal properties of A S
are indicative of uncorrelated Gaussian noise;
for reference, the sample autocorrelations and
partial autocorrelations of A S are given in
Table 2.

The results on temporal dependence for m

large, significant value at lag one, and and y are similar, in terms of the presence of
insignificant, small values thereafter. one unit root in each, with no serial
Formal tests for a unit root in the correlation present in first differenced

autoregressive lag-operator polynomial of an form. Again, sample autocorrelations and
AR(1) representation of S, given in Table 3, partial autocorrelations for both levels and
fail to reject the null at any level. These first differences are contained in Tables 1

and 2, while the unit root test results are

tests 1include the T test (zero mean and

Table 1
Autocorrelations (with Bartlett Standard Errors)
and Partial Autocorrelations

Autocorre-— z Z Z
lations S y m .1 .3 .6
1 <920 14) .92(.14) L91(.14) L91(.14) L91(.14) .90(.14)
2 .83(.23) «83(.23) «82(.23) .81(.23) .81(.23) +79( +23)
3 .74(.28) .74(.28) .72(.28) W71(.28) .71(.28) .69(.28)
4 .64(.32) .62(.32) .62(.31) .62(.31) .60(.31) .58(.31)
5 .54(.34) 51(.34) .53(.34) .52(.34) .50(.33) W47(.33)
6 L42(.36) L41(.35) W43(.35) .42(.35) .40(.35) L36(.34)
7 .32(.37) .31(.36) .34(.36) .33(.36) .31(.36) «27{35)
8 +22(:37) #230.37) L24(.37) +230:37) .20(.36) L16(.35)
9 .12(.38) 16(.37) .18(.37) 16(.37) J14(.36) .09(.35)
10 .03(.38) .10(.37) .12(.38) «11(.37) .09(.37) .05(.36)
Partial
Autocorre- Z A Z
lations S y m W1 <3 .6
1 .92 .92 91 +91 .91 .90
2 -.13 -.07 =.11 ~s1l =.11 —sll
3 -.01 -.07 -.06 -.05 -.04 -.01
4 -.16 -.24 -.04 -.04 -.07 -.10
5 -.04 .02 -.05 -.07 -.08 -.10
6 -.16 -.02 -.07 -.07 -.06 -.05
7 .07 -.05 -.04 -.03 -.01 -.01
8 -.17 .03 =12 -»l3 -.15 =ul}
9 -.01 .01 .13 .14 .15 W16
10 -.14 .00 -.04 -.02 -.03 -.03
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Table 2
Sample Autocorrelations (with Bartlett Standard Errors)
and Partial Autocorrelations

Autocorre- Az AZ AZ
lations AS Ay Am .1 .3 .6
1 .06(.14) 01(.14) L.01(.14) .00(.14) -.01(.14) -.01(.14)
2 -.09(.14) -.08(.14) .09(.14) L08(.14) L08(.14) .05(.14)
3 Ld1(.14) .09(.14) 12(.14) 12(.14) 12(.14) L12(.14)
4 -.01(.14) 04(.14) .26(.14) .26(.168) .25(.14) 26(.14)
5 .08(.15) = 18{u15) -.04(.15) -.05(.15) ~-.05(.15) -.08(.15)
6 -.08(.15) -.13(.15) L04(.15) 04(.15) .02(.15) .01(.15)
7 07 .15) -.00(.15) +23(.15) .23(.15) .21(.19) .19(.15)
8 -.03(.15) -.11(.15) -.21(.16) -.22(.16) -.22(.16) -.22(.16)
9 =11 (+15) -.03(.15) L4C0.17) 12(.17) .08(.16) .01(.16)
10 .08(.15) .05(.15) L09(.17) L100.17) A3C.17) L17(.16)
Partial
Autocorre- AZ AZ v
lations A Ay Am o | .3 N
1 .06 .01 .01 .00 -.01 -.01
2 -.09 -.08 .09 .08 .08 .05
3 .12 .09 12 .13 =12 w12
4 -.03 .03 .26 .26 .25 .25
5 11 -.17 -.06 =-.06 =-.06 -.08
6 -.12 -.13 -.02 -.02 -.04 -.03
7 s12 -.04 .19 .19 .18 .15
8 -.11 -.10 -.30 -.30 -.29 -.28
9 -.04 .00 W17 15 .09 .03
10 .03 02 7 .08 .10 .15 «19
Table 3
Unit Root Tests
Variable T T ;
N T
S -.21 . -1.38 -1.46
y .03 - .86 =-1.41
m .93 - .73 =2.24
Z =05 =97 -1.40
Z, -.14 -1.08 -1.39
Z,5 -.23 -1.19 -1.38
Z, -.34 -1.30 -1.38
Zs -.46 -1.41 -1.38
Z.g . -.61 -1.51 -1.38
Z3 -.81 =1.61 -1.39
Z.g -1.13 -1.70 -1.40

* Significant at the 10% level
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given in Table 3.

As stressed by Engle and Granger (1985),
however, random walk behavior in m and y does
not guarantee similar behavior in Z = m = ay,
due to possible co-integration. Define Zy= M
- ay, for a = .1, .2, . This covers
the entire plausible range of "a,” the income
elasticity of money demand. The unit root
tests and other diagnostics of Tables 1, 2,
and 3 strongly indicate random-walk behavior
of 25, conditional on the various "a" values.

A test of random walk behavior in Z, which
{s not conditional on particular “a” values,
may be obtained implicitly via a test for co-
integration of m and y. Under the null of no
co-integration, there does not exist an "a”
guch that Z, = @ < ay 1s stationary. Under
the alternative of cointegration, on the other
hand, there exists an "a" such that Z, is
gstationary, even though both m and y contain a
unit root. A simple test, proposed by Engle
and GCranger (1985) and closely related to the
work of Bhargava (1986), 1is obtained by
running the "equilibrium” regression m ay
4+ g and ctesting the residuals for non-—

. 7388 -
7174 4
0074 4
8777 4
sast 4
8384 -
8187 4
880 4
8784 4
. 8887 4
. B400 4

stationarity via the Durbin-Watson statistic,
which tends to zero under the null of no co-
integration (i.e. in the case of nonstationary
residuals). Under the null, the respective
1%, 5%, and 10% critical values have been
tabulated by Engle and Granger as .508, .372,
and .312. The value of the Durbin-Watson test
statistic obtained is .132, so we fail to
reject at any level. Thus, m and y are not
co-integrated, and Z displays nonstationary
random-ralk behavior regardless of the value
of "a.”

5) Concluding Remarks

We have shown that the flexible-price
monetary model passes one very basic test of
adequacy: it generates realizations with
stochastic properties similar to those of
actual exchange rates. Unfortunately,
however, the random walks produced by the
model are related to the actual observed
series only in the roughest qualicative
essentials. Specifically, the Z series
qualitatively captures the pre-1979 dollar

FIGURE 2
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depreciation, as well as the rapid post-1979
dollar appreciation. The fit, in terms of
levels of the generated realizations, 1is best
for small “a" values, which 1is reasonable in
light of what we know about the instantaneous

income elasticity of money demand. For
example, 1if we condition on a = .l and allow
for an intercept to pick up omitted, but
constant, effects, then the parameterization

which minimizes the residual sum of squares is
given by:

S, = .3285 + Z.

The actual and predicted series are graphed in
Figure 2, in which it is readily apparent that
the fluctuations of model-generated exchange
rates, while qualitatively accurate, are
quantitatively of substantially smaller
amplitude. In addition, the model-based
realizations exhibit 1less short-term (i.e.
high frequency) variation. These anomalies
may be due to overshooting, speculative
bubbles, “news"” effects, and/or model
misspecification.
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