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1) Introduction

The problem of testing for serial
correlation arises constantly in time-series
econometrics., Sometimes, as with forward
premia Iin efficient markets studies, the time
series to be tested for serial correlation is
directly observed. Sometimes, as with
residuals from an estimated model, the
observed serles is only an estimate of the
true, but unknown, series to be tested for
serial correlation. Either way, the presence
of heteroskedasticity violates the assumptions
upon which tests for serial correlation are
builc,

This observation 1is particularly cruecial 1in
light of the recent realization that
conditional heteroskedasticity may be commonly
present in the time-series context. (See, for
example, Engle (1982b) and Weiss (1984),.
There are two approaches to the dilemma.
First, one may attempt to develop tests for
gerfal correlation that are robust to
heteroskedasticty of unknown form. This 1s
the approach taken by Domowitz and Hakkio
(1985) who combine Godfrey's (1978) Lagrange
sultiplier test for serial correlation with
White's (1980) heteroskedasticity-consistent
covariance matrix estimator. The advantage of
such an approach is 1its generality; the cost
{s reduced power in situations when the form
of the heteroskedasticity 1is known or can be
well approximated.

The second approach 18 to parameterize, or
approximate, the form of the
heteroskedasticity, and develop serial
correlation tests specifically taking it into
account. This of course has costs and
benefits opposite those of the Domowitz-Hakkio
approach. To the extent that the
heteroskedasticity approximation 1is accurate,
the test will perform well, and vice versa.

The model of autoregressive conditional
heteroskedasticty (ARCH) due to Engle (1982b)
has been found to provide a parsimonious and
descriptively accurate approximation in many
contexts (inflation: Engle (1982c); foreign
exchange markets: Domowitz and Hakkio (1985),
Diebold and Pauly (1986), Diebold and Nerlove
(1985, 1986); stock market: diebold, lee and
Im (1986), Diebold (1986); term structure of
interest rates: Engle, Lillien and Robbins
(1985)). In this paper we consider the
properties of two important and heavily used
time-series model specification tools, the
sample autocorrelation function and the Box—
Plerce (1970) and Ljung-Box (1978)
"portmanteu” statistics, 1in the presence of
ARCH., The theory of the Bartlett standard
errorg 1s first developed, and then the
portmanteu tests are treated. We build upon
the results of Milhoj (1985) to show why the
presence of ARCH renders the usual Bartlett
standard error bands overly conservative,
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relative to the nominal 5% test size, and we
develop an ARCH-corrected standard error
estimate. This leads directly to ARCH-
corrected confidence intervals under the null
of uncorrelated white noise. We then treat
the Box-Pierce and Box-Ljung serial
correlation test statistics and show that they

do not have the |usual x2 limiting null

distribution. An appropriate normalization is

found which does have a limiting
2

X~ distribution, however. The results are
illustrated with a numerical example.

2) Correcting the Bartlett Standard Errors

Consider a zero-mean time series (xt}zal.

It can be shown (Andersom (1942), Bartlett
(1946)) that, under the null of Gaussian white
noise, the sample autocorrelation at lag v

p(7) = L2
¥(0)

where Y(t) = 1/T L X, X _.is

normally distributed with mean 0 and variance:
T-=

asymptotically

var (p(7)) =
T (T + 2)
or, as a further approximation, 1/T. This
result leads to the so-called Bartlett 95%
confidence interval under the null:

p(t) = 0.0 & —1429-.
YT
Under ARCH,however, the sample
autocorrelations are normal with mean 0 and
variance:

Y ,(%)
(/T (1 + xa )
[s)
where Y 2(T) is the autocovariance at
X

lag © for the squared process {x§}$=l

and ca is the squared unconditional variance
of the x process. (See Milhoj (1985).)
Because: y z(t)

z A >0 for all t

a
it 1is clear that Bartlett's standard error is
“too small” 1in the presence of ARCH. \Note,
however, that:
Y,

Um (/1) (1 +—Sp0—) = 1/1
- o
since ¥y 2(1:) -»> 0 as t-> @, by stationarity
X

and ergodicity of {x*} . Because Y 2(1') and
X
02 are easily consistently estimated, we can
construct a consistent estimate of the
variance of the sample autocorrelations as:

i
]
]
!




-~

Y ,(®)
S(9 = (/1) (1 + —S—)
g
which leads to the corrected confidence
interval:

(™ = 0.0 £ 1.96 (s(7))!/2

To implement the results ovér, say, the first
K autocorrelations, we first obtain:

g z xtxt-r
p (1) = -_—— T =] ...K
X 2

Lx

(a4

o = (32 = (1t 3 x0)?
D)

% 2 52 2
YKZ(T) =1/T L (xt - d) (xt

and then construct the bands via the above
formula.

To illustrate, 500 observations were
generated on the process:

X, =€, € | €1 N0, o)
‘{:“o*“l ft-1 °

The first 20 autocorrelations of x were
calculated, along with the Bartlett 1.96
standard error bands and the ARCH-corrected
Bartlett 1.96 standard error bands. One
thousand replications were performed for each
of ten points in the parameter space: @ =
0.0, .1, .2, O <5, .6, .7, .8, .9.
Without loss of generality, we can
set ab =1 - al (Pantula (1985)), which

unconditional variance at 1.0.
of al = 0.0 of course corresponds to

independent white noise. The realizations
were generated via the cannonical form:

)1/2

maintains the
The case

2
“t Nc(o'”(“o M fe-1
where we set EO =0 . The same one-thousand

sets of 500 innovations {Nt(O,l)}:E? were used

to pgenerate the ARCH realization at each
explored point of the sample space; thig
provides powerful variance reduction, The

proportions of rejections (in 1000 repetitions
over "20 autocorrelations) relative to the
uncorrected Bartlett 95% confidence interval
are given in Table 1 asg P, while rejection
frequencies relative to the corrected
intervals appear as P..

The results speak for themselves.
When @ = 0, of course, the nominal size (5%)

approximately equals the actual size (4.62).

This 1s also true if the ARCH correction ig
(needlessly) applied. As a rises, ‘however,
§0 too does the empiricaﬁ slize of the
uncorrected confidence interval, so that, for
example, when a, = +9, the probability of a
type I error is more than twice the nominal
probability of 5%, The  ARCH-corrected

do a beautiful

intervals, on the other hand,
job of maintaining nominal size.
"significance” of

The problem of spurious
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sample autocorrelations due to ARCH becomes
Progressively less serious for progressively
higher-ordered autocorrelations, due to the
earlier mentioned Ffact that the “correction
factor” tends to unity as t + =, Thig {s of
little value 1in practice, however, because it
1s precisely the low-order autocorrelations
which are typically calculated. The
calculation of twenty sample autocorrelations
in the simulations reported above was done
with the eventual calculation of Box-Pierce
statistics in mind; had fewer  sample
autocorrelations been calculated, the average
deviation from nominal test size would have
been substantially larger,

Consider, for example, the ARCH(1) case
described above. The reader may verify that:

Y .01 24"
X 1

oﬁ 1-3 ai

8o that the standard error is:

2 a’
. 1
——-I_ 1+ 12]/2.
¥ T 1-3 @
The corrected and uncorrected confidence

intervals are shown in Figure | for a, = ,5,

Clearly, most of the divergence occurs at the
low-order autocorrelations. The deviation
from nominal test siza 1s different at each
autocorrelation lag, becoming progressively
smaller as the lag order gets larger. Thus,
to repeat for emphasis, the entries in the
first row of Table | are very conservative, in
the sense that it is not uncommon practice to

examine only the first 5 or 10
dautocorrelations, which would lead to much
higher rejection proportions. This is

strongly illustrated in the first row of Table
2, which reports rejection proportions baged
on only the first 5 sample autocorrelations.

It 1s of 1interest to note that the
probabilities of type I error may be
calculated analytically, as follows. In a

Bartlett world,
- a
P (D) ~N (0,2 =N (Co,c,(T) ) .

In reality, however, .
- a 1 2 T
(™ ~N (0, £ (— ) = n (0,¢,(T,m)
1-3 al

Thus, the probability that o (t) exceeds 1,96
Bartlett standard errors of zero 1s:

P (lo (0 | > 1.96 /()

zo v’cl(T) =
=P I_(Iax(t) [/, > 1.96 -C—-T_T_j
2] o
=P (|z| > 1.96
VCZ(T,r)

where Z 18 a N(0,1) random variable. Since:
[CL(T) / CZ(T.T)] <1, for all T, T1,




it follows that P(*) > .05, If a, = .5 and T
= 500, for example, the probabiliéies of type
I error are as given in Table 3.
3) On the Existence of Exi

Strictly  speaking, the above results

require existence of the fourth raw moment of

X, uA. This 1s because:
¥ z(r) =ay 2(T—l) + ...+ apy 2(-r—p)
X .4 X
with
4 4
Y 2(D) = EKt -0
X
= - cl‘
My .

Thus, 1f ¥, does not exist (i.e., is infinite)

then neither does vy 2(1). Milhoj (1985) shows
X

that a necessary and sufficient condition for

existence of By, for a pth-order ARCH process

is given by: 1

3a (I-9) a< 1
where a' = (a ,,..,x) and ¥ 1is defined by
1 P (pxp)
Tij = ai+j+ ai—j where we set

=0 for k < 0 and k > p,
In actual applications, of course, it 1is
not known whether the condition is satisfied,

and the analyst should proceed under the
assumption that it 1is. Even 1f the true
moment of interest has infinite value, the

best sample approximation for the purposes of
correcting the Bartlett standard errors will
still be obtained by following the procedure
outlined above.

As an example, consider
case. Then the
for M, boils down to:

again the ARCH(1)
existence condition

@ < 1//3 = .577,

earlier-tabulated example,

Thus, 1in the the
cases of a = .6, = .8, and .9 all
correspond éo p,= = yet the ARCH correction

continues to wori perfectly.

Figure 1

2—SIGMA INTERVALS, CORRECTED AND UNCORRECTED
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4) The Box-Plerce and Ljung-Box Statistics

The Box-Pierce (1970) serial correlation
rest statistic (to lag k) is given by:
K "2
BP(K) =T L P (t).
=l X ”
Due to its direct dependence P » it 1is also
affected by ARCH and must be modified 1if
nominal size is to be maintained. Since under
the null of independent white noise we know
that:

= d
p(T) 5 N(0,1/T), T= 1, 2y B awiny
we have

- d
/T op(t) > N(O,1).

Thus,
2 d 2
Tp(f)*IL

and therefore by asymptotic independence of
the sample autocorrelations:

. "2 wd 2
TLp () > X>» which is the Box-Pierce
=1 K

result.
Under ARCH, however,
(7)
2
d x
o (1) »n(o,1/T (1 ¥ _T—-)].
g
Thus,
y (1)
x Yy = d
Tt/ (L +—1" P (t) » N(0,1),
4 X
g
> )
Y T
2
x "2 d 2
r/ Q1 + ——r p (%) > X
4 x 1
o]
and
4
a 2 a 2
Tt (—1° X+
=1 4 K
g +y (7
x

Because the bracketed term {g less than oOT
equal to one for all 7T, each term in the sum

involved in the uncorrected Box-Plerce
statistic 1is "roor large,” leading to larger
than nominal size.

The empirical sizes of the standard and
corrected Box—-Plerce gratistics are shown
below in Table 1 (K = 20) and Table 2 (K =
5). Again, the results speak for themselves;
the ARCH-corrected statistics perform
admirably. It 1s {nteresting to note that the

very large deviations from nominal size (L.e.,

much latger than the average deviation of the
first 20 sample autocorrelations reported
earlier) of the uncorrected Box-Plerce
statistics in the presence of ARCH are due to
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the "cumulation” of errors. This 1s true
regardless of the value of K. 0f course, as
argued earlier, the problem 1is made worse as K
decreases; this {g easlly seen by comparing
the third rows of Tables 1 and 2.

gimilarly, the Ljung-Box (1978) statistic,

K -1 2
LB(K) = T (T+2) L (r-t) o (1),
=1 x

which 1is asymptotically equivalent to the Box-
pierce statistic but designed to have better
small-sample properties, may be easily
corrected for ARCH.

5) Conclusions

In summary, we have ghown that the presence
of ARCH invalldates the asymptotic
distributions of the sample autocorrelations
and the Box-Plerce  and Box-Ljung  test
statistics for serial correlation, when
computed in the usual fashion. It was shown,
both analytically and numerically, that the
presence of ARCH renders empirical size much
larger than nominal size, leading to
spu:iously "significant" sample
autocorrelations and portmanteu diagnostics.
Appropriate correction factors were developed
and shown toO produce highly satisfactory
results, with nominal and empirical sizes
being approximately equal.

We have also shown that the error in the
Box-Plerce and Box-Ljung statistics,
calculated through lag K, is progressively
more severe for progressively gmaller K. This
provides yet another reason, in addition to
those given in Box and Plerce (p. 1513) to be
wary of test statistics based on small K.

The analysis in the text focused on the

case of observed time serles. As 1is well
known (Durbin (1970)), the results do not
generalize directly to the case of testing for
gerial correlation in the residuals of

estimated models, because the residual
autocorrelations are approximately
representable as a singular linear

transformation of the true disturbance
autocorrelations. Box and Pierce (1970) have,
however, shown that the dimension of the
singularity {s equal to d, the degrees of
freedom lost in estimating d model
parameters. The results remain valid, then,
when the gtatistics are tested agalnst 8

xz distribution.

Kf nally, it should be pointed out that the
presence of ARCH makes the Bartlett standard
errors and the portmanteu tests  more
conservative; thus, a failure to reject the
null of no gerial correlation using the
uncorrected gtatistics may be trusted. 1f the
null 1is rejected, however, and conditional
heteroskedasticity is suspected, the
corrections should be employed.




Table 1
Empirical Size Results, Box-Pierce Tests .
And Bartlett Standard Errors, Based on First 20 Autocorrelations

a= 0 .l o2 .3 b 5 .6 o7 .8 9
P 047 .048 .051 .057 .058 .059 074 .084 .096 .106
Pc .048 .048 .048 .051 046 .046 049 048 047 044
BP .053 .052 .063 074 .095 127 .215 .280 .378 429

BPc .052 .052 .054 .054 .044 .042 .051 .060 .063 .055

*
Based on 1000 repetitions

Table 2
Empirical Size Results, Box-Pierce Test %
And Bartlett Standard Errors, Based on First 5 Autocorrelations

= 0 .l .2 .3 4 .5 .6 o7 .8 9
P 047 .062 .065 .076 .085 .113 147 .178 .246 .285
Pc 049 054 .051 .048 .046 .050 .046 .042 .049 047
BP 049 .066 074 112 .151 .213 .299 .366 .523 .610

BPc .048 .047 .048 .040 041 .048 047 .040 .052 047

* Based on 1000 repetitions

Table 3
Analytic Probabilities of Type-I Error, uncorrected Bartlett Standard Errors
T=1 T =13 T=35 T=10
P (Type I error) .378 164 .100 .051
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