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CHAPTER 15

A Note on Bayesian Forecast
Combination Procedures

Francis X. Diebold

Summary

The properties of Bayesian composite forecasts are studied. It is argued, and illustrated
with an example, that the asymptotic performance of such composite forecasts depends
on the validity of a maintained assumption, namely, that one of the models among those
whose forecasts are combined is the true data-generating process. The implications of this
phenomenon are explored.

15.1 Introduction

Scientific knowledge obtained from research in one area often proves useful in others. Such
has been the case with the Bayesian theory of econometric model selection, as developed
by Geisel (1970, 1974) and Zellner (1971, 1972, 1979, 1984), which has generated insights
useful not only for model selection but also for prediction. In particular, it is now known
that under certain conditions the posterior probabilities associated with various forecasting
models may be used as weiglits in forming a linear composite forecast, and that the
resulting composite forecast is optimal, in the sense of minimizing posterior expected loss.

In this chapter, I focus on one of those “certain conditions”—in particular, the as-
sumption that one of the models among those whose forecasts are combined is the true
data-generating process (DGP)—and I explore the effects of its failure on the performance
of Bayesian composite forecasts. [ argue that, if the assumption is satisfied. such Bayesian
composite forecasts will have certain desirable asymptotic properties relative to their clas-
sical counterparts, but that the result is reversed if the assumption is not satisfied.
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In Section 15.2, I give an explicit derivation of the Bayesian composite forecast, and
I show that (under certain conditions) it minimizes posterior expected loss. I explore the
linkage between the maintained assumption of truth of one of the models and the resulting
good performance of the Bayesian composite forecast. In Section 15.3, I illustrate the
argument with a simple example involving the combination of forecasts from two linear
regression models. In Section 15.4, I conclude with a summary and directions for future
research.

15.2 Bayesian Model Selection and Forecast Combination

The Bayesian solution to the model selection problem (under symmetric loss) is well
known: It is optimal to choose the model with highest posterior probability. Zellner (1972,
1984), Zellner et al. (1989), and others have suggested that the posterior probabilities may
be used fruitfully not only for model selection, but also for forecast combination. Forming
a composite forecast with weights equal to the posterior probabilities seems reasonable,
and the case for doing so is easily formalized.

Consider two models. My and 145, with associated posterior probabilities p; and po,
respectively, where p; +p, = 1. [The generalization to the case of more than two competing
models is immediate.] Then posterior expected loss is given by

E(y —3)* = pi[E(y - 5} M) + p2 E(y = §)2 0], (15.1)

where j is any point forecast. Let 7; (72) be the mean of the predictive probability density
function for My (M,). Then we can write

E((y — )% M) E{l(y = 50) = (3 = 31} (15.2)
= E{{(y=-5)*+ (0 =0 =2y = 5§ - )]}

[}

= El(y- 5+ (5 -5)°
= Ci+(g-9:)% i=1,2,
where C; = E[(y — #:)*|M.]. But then
E(y-§)? = plCi+ (7= 51)%+p2ACa + (5 = )] (15.3)

C+pi(i = i) +pai = 72)%

where C = p;Cy + p2C;. The first-order condition for minimization of (15.3) with respect
to gy is

207 =2t + p2i2) =0 (15.4)
or

Y =pii+ P2 (15:3)
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On what does this standard Bayesian result depend? Most important is the assumption
that the posterior probabilities associated with the models being combined sum to 1. This
is equivalent to the assumption (often made explicitly) that one of the models is true.
To see this, note that py + p» = 1 is equivalent to P+ p2 = P(My N M) = 1, because
P(My N Mz) = 0 so long as My # M,. But Pr+ p2 — P(My N M) = 1is equivalent to
P(M;, U M,) = 1. The motivation for the assumption seems to be the idea that it should
be possible to write down an exhaustive listing of candidate models. one of which must
(by construction) be the true DGP. In practice, of course, the forecasts of only a small
number of models are combined; enunciation of an exhaustive set of candidate models for
the true DGP is always infeasible and probably impossible. In short, it seems difficult to
take seriously the assumption that the true DGP is among the candidate models whose
forecasts are being combined.

To better understand the effects of the assumption, let us first suppose that it is true.
Without loss of generality, assume that 1/, is true. Then. if the Bayesian model selection
procedure is consistent, p; will approach 1 as sample size (T') gets large. The implication of
consistency of the Bayesian model selection procedure for Bayesian forecast combination,
of course, is that progressively more weight is placed on Af; as T gets large; in the limit.
M, receives unit weight and M, receives zero weight. In other words. the Bayesian model
selection and Bayesian forecast combination procedures coincide asymptotically. This
result is natural and desirable, if the true DGP is among the models whose forecasts are
combined.

But what happens when the true DGP is not among those whose forecasts are com-
bined, as is likely to be the case in practice? Is there any harm in maintaining the
assumption of truth of one of the models. in order to make the Bavesian analysis opera-
tional? Recent work on estimation and testing in misspecified models [e.g., White (1982),
Gourieroux et al. (1984), Vuong (1989)] furnishes a useful perspective on this question.
We now know that, under general conditions, an estimator of the parameter of a mis-
specified model will converge to a pseudo-true value, that is. to a parameter configuration
closest (within the misspecified class) to the true DGP. Furthermore, the metric defining
“closeness” is induced by the estimation procedure. '

Now, if the true DGP is not among the models entertained, it is of course impossible
for any model selection procedure—Bayesian or otherwise—to be consistent for the true
model. But, as the discussion above indicates, we might expect the model selected by
the Bayesian procedure to be consistent for something, namely, the model closest to the
true DGP. Without loss of generality, assume that M is closer. Then it is reasonable
to expect that p; will converge to 1, as was the case when M, was true. For model
selection, such a property is very useful—it is often desired to determine which among
a set of models provides the best approximation to the true DGP. The implications for
forecast combination, however, appear less desirable. Consistency of the Bayesian model
selection procedure for the closest model implies that Bayesian composite forecasts will
asymptotically place unit weight on A, and zero weight on M,. But M, and M, are
both false models; the fact that A, is closer to the true DGP does not mean that the
information contained in M; cannot be usefully combined with that in M, to produce
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a superior composite forecast. (Contrast this with the case where M, is in fact the true
DGP.) This insight, of course, is the entire motivation for forecast combination (see Clemen
(1990)].

In summary, then, it would appear that Bayesian composite forecasts will perform well
in large samples, placing all weight on the forecast of the true model, if the true model
is among those whose forecasts are combined. Otherwise, it would appear that Bayesian
composite forecasts will perform poorly in large samples, placing all weight on the forecast
of one false model, and thereby discarding the potentially valuable information contained
in other false models. In the next section, the truth of these conjectures in the context of
simple linear regression is illustrated.

15.3 Combination of Forecasts from Regression Models

Consider a simple comparison of two regression models, as in Zellner (1971, pp. 306-312),

A’I/[li Y =;Y1gﬁ1+uu, b= ].,...,T (155)

M, Y = _Ygt,lj’_! + Hat, V= byeia T (157)
one of which is the true model, where X; and X, are nonstochastic matrices of maximum
and equal column rank, 4, and 3> contain no common elements, and the disturbances
of the true model are i.i.d. Gaussian with zero mean and constant variance. Then. in a
Bayesian analysis with diffuse priors over parameters and models, the posterior odds for
M, versus M, are given by

N 52 T

where s; is the square root of the usual unbiased estimator of of,.i = 1,2. [The result
also holds for informative-prior Bayesian analyses if T is large and certain other regularity
conditions are satisfied.]

Consider now the implications of the earlier-derived Bayesian forecast combination
procedure. Rearranging (15.8) yields

81 ¥
p2=|=—| m (15.9)
52

or, because p; + p» = 1 by assumption,

T
n+ [fl] p=1. (15.10)
S2
Thus,
sT
D1 T = T - (1511)
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Therefore, py depends only on the ratio s;/s,, which is emphasized by writing

1 5
D= T (15.12)
1+ 2]
2
Note that
0 if Ty > gy
lim D= 1/2 if aqy = 0gq (1513)
- 1 i oy <a;.

Now compare the weight arising from the Bayesian forecast combination procedure
(15.5) with the weight arising from the classical variance-covariance forecast combination
procedure. [By classical variance-covariance combining weight I mean the weight that
minimizes combined prediction error variance, as developed by Bates and Granger (1969)
and discussed in Granger and Newbold (1987).] As is well known, the classical forecast
combination is

Yy=¢"h+(1-9¢")f2, (15.14)

where f; and f, are forecasts (possibly but not necessarily the means of predictive prob-
ability density functions),

. 1—s12/83 o
= . 5 1515
# 1+ 83/s2 - 2sy,/52 ( )

and si2 is the usual estimator of the covariance of the forecast errors associated with M,
and M. If 512 = 0, the classical weight is
- 1 i
(2]

While the Bayesian and classical combining weiglts are very similar. several interesting’
differences are apparent. For example, the Bayesian weights are required to be convex,
while the classical weights need not be. The convexity restriction is not necessarily ben-
eficial. A forecast with a negative weight can play the same useful role in producing a
combined forecast as an asset sold short plays in producing the return on a portfolio. Con-
vexity of the Bayesian weights follows immediately from the definition of probability and
the assumption that one of the two models is true. In addition, the Bayesian weights do
not exploit covariance information, while the classical weights (in general) do. Presumably
this again reflects the assumption that one, and only one, of the models is true.

These differences are of minor importance, however, compared with those associated
with the nature of dependence on sample size. Both the classical and Bayesian weights
change implicitly with sample size, as tle underlying estimators of the relevant variances
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(and, in the classical case, covariances) converge to their pseudo-true values. The Bayesian
weight changes explicitly with sample size, however, as is made clear by the appearance
of T in (15.12).

To understand the significance of the role played by sample size in the construction of
the Bayesian combining weight, it will again prove useful to segment the discussion into
two parts, according to the truth of the assumption that one of the two models is the true
DGP. Suppose first that the assumption is true, and with no loss in generality assume
that M is true; then by (15.12) and (15.13) the Bayesian weight placed on M, converges
to unity, while that placed on M, converges to zero. (The truth of M, implies that it has
a smaller disturbance variance.) As argued earlier, it is desirable that this should happen,
and it is made possible by virtue of the validity of the assumption that one of the two
models is true. The desirability follows from the fact that the true model encompasses
all rivals. [For a discussion of encompassing in its relation to forecast combination see
Diebold (1990).]

Suppose now that neither M, nor M; is the true DGP. Suppose also, without loss
of generality, that M is closer than M, to the true DGP, in the sense that plim(sy) <
plim(s,). As before, the Bavesian weight placed on M, converges to umnity, while that
placed on M; converges to Zero. Such convergerce is no longer desirable, however, because
asymptotically all weight is placed on a false model, M. The essential insight of forecast
combination, of course, is that loss may be reduced by pooling the information contained
in false models, all of which represent different approximations to reality.

¥

15.4 Concluding Remarks

I have conjectured that the asymptotic performance of Bayesian composite forecasts is
intimately linked to the truth of a maintained assumption, namely, that the true DGP
is among the models whose forecasts are combined. The conjecture was verified in the
context of a particular linear regression example. The argument points to the desirability
of exploring Bayesian approaches to forecast combination that do not assume the truch
of one of the underlving models. Is such a problem well-posed? If so, how would such an
analysis proceed? [The difficulty is related to the fact that the calculations for posterior
expected loss, (15.1)-(15.3), are apparently not meaningful unless one of the models is
assumed true.] What relationship would the resulting combining weights have to the
Bayesian and classical weights discussed in this chapter?

It is worth noting that, regardless of the answers to the questions posed above, Bayesian
insights will likely contribute in other ways to the advancement of forecasting methodology
and forecast combination methodology. Shrinkage techniques, for example, have been used
advantageously by Zellner and Hong (1987) and Zellner et al. (1988, 1989) to forecast
international growth rates and turning points, and by Diebold and Pauly (1990) to shrink

classical composite forecasts toward a prior location, such as the sample mean.

Finally, I am happy to report on concurrent and independent work by Zellner (1989)
who has recently initiated development of Bayesian methods for combining forecasts from
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sets of models whose posterior probabilities do not sum to unity. I hope that my paper
will stimulate additional work along similar lines.
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