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On the day of its release, the preliminary estimate of the Department of
Commerce composite index of leading indicators (CLI) is widely
reported in the popular and financial press. Although declines in the
composite leading index are often regarded as a potential signal of the
onset of a recession, evaluations of the ability of the CLI to predict turn-
ing points have been limited in most previous studies by the use of final,
revised CLI data. However, the composite leading index is extensively
revised after each preliminary estimate; not only are revisions made as
more complete historical data become available for the components, but
ex post, the statistical weights are updated and components are added
or eliminated to improve leading performance. Forecasts constructed
with an ex post, recomputed CLI may differ from real-time forecasts
based on the contemporaneous, original construction CLI. In this chap-
ter, we perform a completely ex ante, or real-time, evaluation of the abil-
ity of the CLI to predict turning points by using the original preliminary
estimates and revisions as they became available in real time.

In section 14.1, we describe revisions in the CLI and our procedure
for generating ex ante turning point probability forecasts from the CLI.
The methodology is the Bayesian procedure described in Diebold and
Rudebusch (1989a), adapted to a newly constructed ex ante dataset.
This new dataset, which has over 70,000 elements, contains every pre-
liminary, provisionally revised, and final estimate of the CLI since the
inception of the index in 1968. This allows us to reproduce the precise
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information content in the CLI available to forecasters at any point in
time. Our implementation also incorporates results on the nature of
duration dependence in U.S. expansions and contractions. While these
results, which are examined in an appendix, are of independent interest
to students of the business cycle, they also provide requisite inputs for
the turning .point probability forecasts.

In section 14.2, we evaluate the ex ante forecasts in terms of Brier’s
(1950) quadratic probability score (QPS), the probability-forecast analog

-ofmean squared error. We also examine an informative factorization of
vthejoint.density of forecasts and realizations. The performance of the
‘ex‘ante'Bayesian probability forecast is compared with that of a range
of alternatives, including a naive “no change” forecast, the optimal con-
stant probability forecast, and the well-known rule of three consecutive
declines.

In section 14.3, to facilitate interpretation of the results, we describe
the stochastic properties of the preliminary CLI release and subsequent
revisions, both within the across definitional regimes. Particular atten-
tion is paid to the information content of the preliminary estimate rel-
ative to the final revised value. A characterization of the statistical prop-
erties of the revisions is given relative to the polar cases of efficient
forecast error and classical measurement error.

14.1  Ex ante CLI probability forecasts

While the information content of preliminary estimates is a considera-
tion in any real-time forecasting situation, it is especially important
when evaluating the performance of the composite index of leading
indicators. The CLI is extensively revised from its preliminary estimate
to its final form, undergoing both statistical and definitional revisions.
Toward the end of each month, the Bureau of Economic Analysis (BEA)
produces a preliminary estimate of the previous month’s composite
leading index on the basis of incomplete and preliminary source data,
and it may also revise the index for any or all of the preceding eleven
months. Thus, each initial estimate is subject to up to eleven revisions
within the first year. These statistical revisions in the CLI occur because
of statistical revisions in the component indicators (due to larger and/or
more representative samples as time passes, etc.) and also because of
late-arriving data that are included, for example, in the first revision but
not in the preliminary estimate.

However, the currently available CLI data are not only of a revised
statistical form, but the components have also been reweighted and rese-
lected ex post to improve the performance of the index over the sample.
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These definitional revisions in the composite leading index have several
different forms:

1. Compositional changes due to changes in data availability, data
timing, or cyclical lead performance

2. Changes in weights assigned to component indicators due to
statistical updating as more data become available

3. Definitional changes in component indicators, which may be
due to changes in component definitions or coverage, and so on.

A substantial number, about one every two years, of these definitional
revisions have occurred since the first presentation of the index of lead-
ing indicators in the November 1968 Business Conditions Digest (BCD).
Compositional changes in the CLI occurred in August 1969, April 1975,
February 1979, January 1982, January 1983, and January 1987. For
example, a major revision occurred in January of 1983 when the BEA
updated statistical factors, incorporated historical revisions in the com-
ponent data, and replaced two of the components (crude materials price
inflation and the change in liquid assets) with series that were broadly
similar but produced a more consistent ex post leading performance.
Given these extensive revisions, it is of interest to recreate a real-time
forecasting environment for predictive evaluation. For forecasting cycli-
cal turning points, a leading index is only as good as the rule used to
interpret its movements and map these movements into turning point
predictions.' The classic example of a turning point filter associated with
the CLI is the “three consecutive declines” rule for signaling a downturn
(e.g., Vaccara and Zarnowitz, 1977), but many other methods have been
proposed (e.g., Hymans, 1973; Wecker, 1979; Zarnowitz and Moore,
1982). More recently, a class of sequential-analytic event-oriented lead-
ing indicator prediction rules has gained popularity. The approach orig-
inates in Neftci’s (1982) ingenious application of Shiryayev’s (1978)
results on optimal detection of changes in the probability generating
process. Neftci uses this technique in a business cycle context to forecast
turning points, that is, the dates of transition between *“expansion” and
‘““contraction” regimes. This approach, which we denote as the sequen-
tial probability recursion (SPR), has been refined recently by Diebold
and Rudebusch (1989a) and Hamilton (1989). Evaluation of real-time
turning point forecasts produced via the SPR methodology, as well as
various other simpler methodologies, is the subject of this chapter.

' For an ex ante analysis that considers the standard problem of forecasting the level of
an economic series, such as aggregate output, see Diebold and Rudebusch (1989b).
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Assume that the behavior of the economy differs during expansions
and contractions. Given this nonlinearity, it is advantageous to forecast
both the expected future value of an economic variable and the form of
its future probability structure as delineated by turning points (see
Neftci, 1982; Diebold and Rudebusch, 1989a). To formalize this fore-
casting procedure, let Y, be a coincident time-series that moves with gen-
eral economic activity and switches probability distribution at turning
points, and let X, be a leading time-series with turning points (i.e.,
changes in distribution) that occur before the turning points in the coin-
cident series. Let Z be an integer-valued random variable that represents
the time index date of the first period after the turning point in X,. For
example, in the prediction of a downturn:

X, ~ F{(X) l=t<< Z (1)
X~FX) Z=<t

where F' and FY are the respective upturn and downturn distributions.
Time-sequential observations on the leading indicator are received, so
at time ¢, there are (¢ + 1) observations denoted X, = (X, x;, ..., X)).
At time ¢, we calculate a probability for the event Z < ¢, that is, that by
time { a turning point in X has occurred.
The probability of Z = ¢ after observing the data X, at time ¢ can be
decomposed by Bayes’s formula:
o PXZ=0Z=1
et = 2
PZ=1|X) %) (2)
Define I, = P(Z =< t | X,) as the posterior probability of a turning point
given the data available. Then, as shown in Diebold and Rudebusch
(1989a), a very convenient recursive formula for the posterior probabil-
ity of a downturn is available:

— [Hl——l + P;‘(l _ Hz—l)lf:d(xr)
{1, + Tl — M- )IfA) + (1 — I )fHEXN1 — TD)

where T'Y = P(Z = | z = ), the probability of a peak in period t given
that one has not already occurred, and /* and /¢ are the probability den-
sities of the latest (¢th) observation if it came from, respectively, an
upswing or downswing regime (in .X}). (To use this formula in the pre-
diction of troughs, exchange /* with /¢ and use the transition probability
T, the probability of a trough in 7 given a continuing contraction.) With
this formula, the probability II, can be calculated sequentially by using
the previous probability II,_,, the “prior” (independent of X,) turning
point probability that Z = ¢ (i.e., T} or I'f), and the likelihoods of the

II, (3)
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most recent observation x, based on the distribution of X, in upswings
and downswings. Given II,, a probability forecast about the value of Z,
the forecaster maps this into the occurrence of a turning point in Y,. In
practice, the probability of a turning point in X, is related to the proba-
bility of an imminent turning point in Y, over a fixed horizon decided
upon by the investigator.

To apply the above sequential probability recursion, we must first
estimate the densities /¢ and /%, as well as the turning point transition
probabilities T} and T, and we must specify an initial condition II,. The
specification of these elements has been explored to some degree in Die-
bold and Rudebusch (1989a), and we adopt their final specification with
one crucial modification: we consider an ex ante forecasting exercise
with rolling creation of the CLI upswing and downswing densities based
only on observations that would have been available in historical time.

The sequential probability formula requires the probability densities
of the leading series conditional on an expansion regime and conditional
on a contraction regime. The leading series is assumed to have two sto-
chastic generating structures, expansion and contraction, and this divi-
sion of the leading series into regimes depends upon the underlying clas-
sification of economic activity. We have followed the Business
Conditions Digest (see chart A in various issues) in denoting peaks and
troughs of the CLI that correspond to the NBER business cycle. The
procedure used to construct /¥ and /¢ involved fitting a normal density
function to previous observations in each regime. In particular, if X, =
(X0, X1, ..., X,) is the vector of sequential observations on the leading
indicator observed up to time 7, let X* be the vector of those observations
from the upswing regime and X be those observations from the down-
swing regime. Then /7 is a normal density with mean and variance equal
to the sample mean and variance of X, and /¢ is a normal density with
mean and variance equal to the sample mean and variance of the ele-
ments of X¢. The composite leading index was first reported in the BCD
in 1968 and was reported ex post back to 1948. Our scoring sample runs
from December 1968 to December 1986, and for each month a new set
of densities is computed based on previous data back to 1948. A twelve-
month data lag is also built in, so that the last twelve observations are
not used in constructing the densities. This is to allow a real-time fore-
caster sufficient time to recognize regime changes and classify
observations.

* For general references to the use of preliminary data in forecasting, see Howrey (1978).
Three exceptions to the use of final, revised data in CLI evaluation are Stekler and
Schepsman (1973) and Zarnowitz and Moore (1982), who find that the use of prelimi-
nary data increases false signals, and Hymans (1973), who finds little difference.
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Figure 14.1. Ex ante CLI recession probabilities.
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Figure 14.2. Ex post CLI recession probabilities.

o]
1983 1984 1985 1986

11

a
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1



Turning point prediction with the composite leading index 237

The appendix provides evidence that, for the postwar period, the
probability of a peak or a trough does not change significantly as the
current regime progresses [also see the more sophisticated analysis in
Diebold and Rudebusch (1990)]. For example, a long expansion is no
more likely to end than a short one. Thus, we limit ourselves to time-
invariant specifications of the transition conditional probabilities, that
is, T = T"and I'¥ = I

The final element in the recursive probability formula is last period’s
posterior probability of a turning point. There are two corrections made
to this probability in practice. First, at the start of a new regime, a start-
up probability of zero is used as the previous period’s probability. Also,
as is clear from the formula, if the posterior probability reaches one at
any point, it will force all remaining probability forecasts to be one in
the regime. Thus, we put an upper bound of 0.95 on the previous pos-
terior probability as it enters the recursive probability formula.

Examples of turning point probability forecasts based on ex ante and
ex post CLI data are given in Figures 14.1 and 14.2. (The forecasts
shown use constant prior transition probabilities that are optimal in an
average accuracy sense, to be defined rigorously in the next section, at a
forecast horizon of seven months for expansions and three months for
contractions.) The ex post probability forecasts perform quite well.
Using an arbitrary critical probability of 0.9 [as advocated in Neftci
(1982)] to signal turning points, the ex post forecasts would have sig-
naled in advance three of the four peaks (missing the very sudden 1981
peak) and two of the four troughs with no false alarms. Using the real-
time data, only one of the peaks is predicted and two of the troughs,
again with no false alarms. While these results are indicative, they
depend upon the critical probability value (.9) chosen. In the next sec-
tion, we consider a more rigorous evaluation procedure that makes use
of the information contained in the entire range of probability forecasts.

14.2  Evaluation of the probability forecasts

Accuracy refers to the closeness, on average, of predicted probabilities
and observed relative frequencies. Consider a time-series of T probabil-
ity forecasts {IL,},_,, where II, is the time-¢ probability forecast of a turn-
ing point over horizon H. Let {R},-, be the corresponding time-series of
realizations; R, equals one if a turning point occurs within the horizon
(i.e., between times ¢ and ¢ + H) and equals zero otherwise. The qua-
dratic probability score (Brier, 1950) is given by:

QPS = I/T > 2II, — R) 4)

=1
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The QPS ranges from 0 to 2, with a score of 0 corresponding to perfect
accuracy. The QPS is the unique strictly proper scoring rule that is a
function of the divergence between predictions and realizations;
extended discussion and motivation, as well as consideration of alter-
native loss functions and evaluation measures, may be found in Diebold
and Rudebusch (1989a).

The quadratic probability scores for a variety of probability forecast-
ing methods are presented in Table 14.1. The forecasts are scored sep-
arately in the prediction of peaks and troughs, and scoring horizons
range from one to thirteen months. Three different applications of the
SPR are scored. Two are produced with the final, revised CLI data as of
January 1987: SPR* uses upswing and downswing CLI densities formed
with the complete sample of data, while SPR? rolls through the final data
sample and creates densities only with data temporally prior to the fore-
cast. The third SPR. forecast, SPR", is truly ex ante and is formed with
precisely the information set that would have been available to a real-
time forecaster. At each horizon, we present the QPS of these SPR
forecasts optimized with respect to the constant transition proba-
bilities. Thus, the forecasts are completely ex ante, conditional upon
I and I,

Other non-leading-indicator turning point probability forecasts are
also scored. The forecasting methods include a no-change, NAIVE fore-
cast, which amounts to a constant zero probability forecast, I, = 0, of
a downturn or upturn. This is the probability forecast analog of a ran-
dom walk (in this case, QPS = 2R). More generally, one can search in
the zero-one interval for the number that is the most accurate as a prob-
ability prediction of turning points. Such optimal, CONSTANT prob-
ability forecasts are of the form II, = «" during expansions and II, = «*
during contractions, where the constants are chosen to minimize QPS.
In the fifth row of Table 14.1, for example, at a forecast horizon of five
months, a 12 percent probability forecast of a downturn (K" = .12,
given in parentheses below the score) is the most accurate constant prob-
ability forecast. Finally, two variants on the “three consecutive declines”
theme for the prediction of downturns were evaluated for expansions.
A recession signaling rule of three consecutive declines (3CD) was
applied that translates three declines in the CLI into successive proba-
bility forecasts of 1.0, .8, .6, .4, .2, and 0.0 (unless, of course, three more
consecutive declines occur, at which time the probability forecast
returns to 1.0). This was applied to both the final data (3CD’) and the
real-time data (3CD¢). We attach no particular importance to this “rule-
of-three,” but rather take it to be indicative of various rules of thumb
that have appeared in the literature. No similar rule of thumb for the
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Table 14.1. QPS as a function of horizon for various forecasting
methods
Forecast horizon (in months)
Method 1 3 5 7 9 11 13
Prediction of peaks
SPR* .05 .09 12 .14 22 .29 .36
(™) (.00001)  (.003)  (007) (02) (03) (04) (11
SPR? 05 .08 12 .14 21 .29 .36
(™) (.00001)  (.002) (.006) (.02) (.03) (04) (10
SPR® .04 ol .19 25 31 37 42
(T'*) (.00002)  (.0005) (.003) (.01) (.03) (04) (.05
NAIVE .05 15 25 35 45 .56 .66
CONSTANT .05 14 22 .29 35 40 44
(&%) (.02) (.07) (.12) (.18)  (.23) (.28) (.33)
3CD? 14 A3 .08 11 21 32 41
3CD 11 A7 .24 .29 .39 47 A5
Prediction of troughs
SPR*® 10 .30 .45 .49 .56
(T (.005) (.05 (.18) (.29) (42)
SPR® 10 .30 .46 48 .52
(T (.005) (.05) (.21) (.33) (5D
SPR* .10 35 .60 1 b=
(T'% (.0001) (.001) (.005) (.34) (.61)
NAIVE .16 49 .82 1.10 135
CONSTANT oD 37 48 .50 44
(x9) (.08) (.25) (41)  (.55)  (.67)

The scoring sample is Dec. 1968-Dec. 1986. For each CONSTANT and SPR
score, the associated constant prior transition probability is given beneath in
parentheses. Superscripts on the forecasting methodologies refer to: (a) Based on
the final revised CLI data as of January 1987, with SPR densities formed from
final revised data. (b) Based on the final revised CLI data as of January 1987,
with rolling SPR densities. (c) Based on ex ante real-time CLI data, with rollirg

SPR densities.
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prediction of troughs appears in the literature; we therefore construct
and score this forecast only for expansions. The linear decay that we
adopt prevents abrupt dropoffs of IT, from 1.0 to 0.0 and improves the
performance of the “raw” rule of three at most horizons.

The results in Table 14.1 indicate that there is clearly information in
the final revised CLI data for the prediction of both peaks and troughs.
Both the simple 3CD rule-of-thumb and the more rigorous SPR. sub-
stantially outperform, in an average accuracy sense, the naive and con-
stant probability forecasts at a variety of horizons. The use of rolling
densities formed from the ex post data in the construction of SPR fore-
casts (SPR?) does not change this result.

The situation shifts dramatically, however, when the CLI data con-
temporaneous to the forecast are used in forming forecasts (SPR* and
3CDf). With preliminary data, the simple rule-of-thumb 3CD* never
outperforms the constant probability forecast. The SPR* does improve
upon the constant probability forecast, though the enhancement at most
horizons is not as great as for the ex post forecast SPR”. Furthermore,
during downswings, SPR¢ performance is worse than CONSTANT at
the longer forecasting horizons.

The deterioration of the SPR forecasts from ex post to ex ante can be
decomposed into (a) that due to different ex ante and ex post densities
f*and f“ characterizing upswings and downswings, and (b) that due to
different preliminary and revised CLI values. Comparing the SPR?
SPR?, and SPR° rows of Table 14.1, we conclude that use of ex ante CLI
data, as opposed to real-time density estimates, is responsible for most
of the forecast divergence.

14.3  Characterization of revisions in the CLI

It was noted earlier that differences in ex ante and ex post turning point
forecasting performance can be traced to one or both of the following:
use of real-time CLI data and use of real-time estimated densities in the
SPR. We saw that the first of these, not the second, was responsible for
most of the difference; as such, we now study the properties of both
intra- and inter-definitional revisions in the CLL

We first consider the nature of revisions across definitional and com-
positional changes. The size of revisions to the CLI provides an indica-
tion of the information content of the preliminary estimates. Over the
entire sample from December 1968 to January 1987, the standard devi-
ation of the revision from the preliminary estimate of the CLI percent-
age change to the final estimate as given in January 1987 is .86 percent-



Turning point prediction with the composite leading index 241

age points. Thus, for example, if the preliminary increase is 1.0 percent,
one can only be 80 percent confident that the final estimate will be
greater than —.10 and less than 2.10 percent (assuming normality).
Within the most recent subsample of January 1983 to February 1986
(this allows for a final, eleventh revision through January of 1987),
where definitional revisions are not a factor, the standard deviation from
the preliminary estimate to eleventh revision is .49, and the correspond-
ing 80 percent confidence interval is .63 percent.

We now examine statistical revisions within two recent definitional
regimes, in particular, the periods February 1979 to December 1981 and
January 1983 to January 1987. These represent timely and compara-
tively long regimes, and they provide an interesting contrast in terms of
aggregate economic activity. For each date in each sample, we have
twelve estimates available, which we denote Y1, Y2, ..., Y12, where
Y is the preliminary number and Y12 is the final revised number. We
therefore have eleven non-overlapping revisions for each calendar date,
defined by Y2Y1 = Y2 — Y1,...,YI2YIl = Y12 — YI1.

It may be useful to classify the stochastic properties of revisions rel-
ative to the polar cases of classical measurement error and efficient fore-
cast error, as in Mankiw, Runkle, and Shapiro (1984) and Mankiw and
Shapiro (1986). The intuition behind the dichotomy is simple: If a pro-
visional estimate differs from the revised value by only measurement
error, then the revision is uncorrelated with the revised value but cor-
related with the provisional information set. On the other hand, if a pro-
visional estimate represents an efficient forecast (i.e., rational, or mini-
mum mean squared error conditional on available information), then
the revision is correlated with the revised value but uncorrelated with
the provisional information set. By determining where the CLI revisions
lie within this spectrum, we can gain insight into the potential for
achieving improvement in the preliminary numbers. If the intra-defi-
nitional-regime revisions behave as efficient forecast errors, then they
are optimal estimates of the final, revised numbers. To the extent that
the final numbers produce the better forecasts, then, efficient forecast
error revisions are desirable,

We consider first the January 1983-January 1987 sample. Descrip-
tive statistics, for varying degrees of revision collapse, are shown in
Table 14.2. Note that the standard deviations of Y1, ..., Y12 are all in
the neighborhood of .86 percent, whereas the standard deviations of the
revisions begin around .5 (for the earliest revisions) and eventually
decrease to around .1 (for the last revisions). Thus, the standard devia-
tion of the revisions (particularly the early revisions) is quite large rela-
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Table 14.2. Revisions in the composite leading index,

1983-7

Variable N Mean SD T ratio
Y1 49 0.52 0.86 4.26
Y2 48 0.60 0.92 4.48
Y3 47 0.55 0.83 4.57
Y4 46 0.54 0.85 4,34
Y5 45 0.54 0.85 4.27
Y6 44 0.55 0.86 4.23
Y7 43 0.57 0.88 4.26
Y8 42 0.57 0.88 4.16
Y9 41 0.60 0.87 4.41
Y10 40 0.60 0.89 4.28
Y1l 39 0.58 0.88 4.12
Y12 38 0.56 0.88 3.92
Y3Y1 47 0.03 0.45 0.49
Y5Y3 45 0.00 0.16 0.00
Y7Y5 43 0.01 0.16 0.29
YOY7 41 0.01 0.09 0.70
Y12Y9 38 —0.03 0.13 —1.46
Y5Y1 45 0.04 0.48 0.53
YOY5 41 0.02 0.18 0.86
YI2Y9 38 —0.03 0.13 —1.46
YoY! 44 0.04 0.47 0.58
Y12Y6 38 —0.01 0.16 —0.21
Y12Y1 38 0.07 0.49 0.82

Note: YmY n denotes the revision from the nth estimate to the mth
estimate of the percent change in the CLI.

tive to the standard deviation of the percent-change CLI estimates. This
implies that all of the CLI growth rate estimates, and particularly that
of Y1, have large associated confidence intervals. The ¢-tests detect no
bias in any of the revisions.

If revisions are efficient forecast errors, then the variances of Y1
through Y12 should be monotonically increasing, because an efficient
forecast is necessarily smoother than the series being forecast. Con-
versely, if revisions are measurement errors, then the variances of Y1,
..., Y12 should be decreasing. The data do not distinguish these two
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Table 14.3. Revisions and revised values: correlations and
P-values, 1983-7

YI Y5 Y9 ¥12
Y5YI —0.23 0.33 0.28 0.28
0.12 0.03 0.08 0.09
Y9Y5 0.00 —0.11 0.09 0.07
0.98 0.48 0.56 0.69
Y12Y9 —0.06 —0.09 —0:15 —0.01
0.72 0.60 0.35 0.97

Note: YmY n denotes the revision from the nth estimate to the mth
estimate of the percent change in the CLL

cases, as the estimated standard deviationsof Y'1,..., Y12 display little
variation.

Correlations between levels and three broad revisions are given in
Table 14.3. Under the null of efficient forecast errors, the above-diago-
nal entries should be significant, while the below-diagonal entries should
be insignificant. The table appears roughly consistent with the rational
forecast error scenario; in particular, the entries of the first above-diag-
onal row of the table are significant at the 10 percent level and large in
absolute value; for a more detailed analysis, see Diebold and Rudebusch
(1988). The other above-diagonal entries are insignificant, perhaps
because revisions after the fourth estimate contain little information,
and the correlations cannot be estimated with precision.

The results for the earlier sample (1979-81) are quite different. There
is a dropoff in variance as we move from Y1 to Y2 (Table 14.4) that is
not consistent with forecast efficiency, and the correlations reported in
Table 14.5 indicate a measurement error component, as evidenced by
the lack of significant above-diagonal correlations as well as a highly sig-
nificant below-diagonal correlation.

We interpret these results as indicating that the definitional change
implemented in January 1983 significantly enhanced the statistical
properties of the CLI revisions. One obvious source of measurement
error in the preliminary estimate is that it is based on incomplete data,
for not all component indicators are included in the preliminary (and
sometimes even the second and third) releases. To the extent that better
forecasts for the missing component indicators can be found, an element
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Table 14.4. Revisions in the composite leading index, 1979~

81

Variable N Mean SD T ratio
Yl 35 —-.32 1.77 —1.07
Yo, 34 —.24 1.55 — .88
Y3 33 —.26 157 —.96
Y4 32 =23 1.56 —.84
Y5 31 —.15 1.57 =53
Y6 30 =1 1.60 —.58
Y 29 —.20 1.62 —.68
Y8 28 —.20 1.61 —.64
Y9 27 —.14 1.64 —.44
Y10 26 —.14 1.61 —.45
Y11 25 —.16 1.61 —.48
Y12 24 —-.21 1.64 —.63
Y3Y1 33 .08 .59 .79
Y5Y3 31 .01 24 15
Y7Y5 29 —.07 A3 —2.68
YoY7 27 —.01 14 —.41
Y12Y9 24 01 21 19
Y5Y1 31 .07 57 73
YO9Y5 27 —.08 .19 =203
YI2Y9 24 .01 21 .19
YoY1 30 .04 57 42
Y12Y6 24 —.03 27 —.61
Y12Y1 24 —.02 74 —.14

Note: YmYn denotes the revision from the sth estimate to the mth
estimate of the percent change in the CLL

of measurement error is immediately introduced into the revisions. In
the 1979-81 sample, two components, net business formation and the
change in inventories, were not available for any of the preliminary
numbers, and inventory change was also omitted from twenty-six of
thirty-five first revisions and from one second revision. For the more
recent sample from 1983-7, only the preliminary numbers suffer from
omitted components.’

* After the most recent compositional redefinition of the CLI (see Hertzberg and Beck-

man, 1989), only components that will be available for the preliminary estimate were
included in the newly reconstructed CLI.
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Table 14.5. Revisions and revised values: correlations and
P-values, 1979-81

Y1 Y5 Y9 Y12
Y5YI —0.54 —0.25 —0.25 —0.23
0.00 0.17 0.20 0.28
YOYS5 —0.12 =013 —0.01 —0.03
0.55 0.53 0.97 0.88
Y12Y9 —0.39 —0.37 —0.37 —0.26
0.06 0.08 0.07 0.22

Note: Y mY n denotes the revision from the nth estimate to the mith
estimate of the percent change in the CLI.

14.4. Summary and conclusions

We have used a Bayesian algorithm to produce ex ante probability fore-
casts of peaks and troughs from the CLI. Most notably, the forecasts
were constructed using the original preliminary data and revisions as
they became available in real time. The forecasts were evaluated, and
compared with ex post forecasts and forecasts generated by alternative
methods, using proper probability forecast scoring rules. Finally, in
order to better understand the differences between ex ante and ex post
forecast performance, we characterized the properties of CLI revisions.
Our main findings include the following:

1. A deterioration in turning point forecasting performance occurs
when ex ante data are used, regardless of the forecasting method
adopted. In the prediction of peaks, the real-time SPR maintains a small
margin of superiority over its competitors. The deterioration in ex ante
SPR forecast performance is relatively more severe for the prediction of
troughs, leading to mixed results for comparative predictive ability,
depending on the forecast horizon. The real-time SPR appears to main-
tain slight superiority at short horizons, but fares slightly worse than less
sophisticated methods at longer horizons. This may be due simply to
the short lengths of most contractions, so that good forecasting at long
horizons is trivially simple (but not useful) merely by setting II to a large
enough value.

2. Deterioration in SPR forecast performance is due mostly to the
move to ex ante data, as opposed to the use of rolling probability den-
sities in the SPR. Examination reveals that the size and volatility of CLI
revisions, both within and across definitional regimes, are high relative
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to the magnitude of the revised percentage change in the CLI. Moreover,
the CLI revisions appear to contain a measurement error component,
which may be partially explained by the missing indicators in the pre-
liminary CLI estimate. The measurement error component does not
appear to be too severe in practice, however, and may be becoming less
pronounced over time, due to beneficial definitional revisions.

3. There is no indication that turning point probabilities increase with
the age of an expansion or contraction, in the period since World War
II. Overall, postwar expansions and contractions show only weak, if any,
duration dependence. This means that the transition probabilities used
in the SPR, I'¥ and T, may be taken as approximately constant.

Appendix: Duration dependence in U.S. business cycles

Key elements of the SPR procedure for forecasting peaks and troughs
are the probabilities of a turning point conditional only upon the expan-
sion or contraction length-to-date. These probabilities, denoted by T'™
during upswings and I'Y during downswings, are the prior probabilities
for the Bayesian recursion, Figure 14A.1 shows two examples of the pos-
sible relationship between the probability that an ongoing expansion will
reach a peak and the age of that expansion.” The linear upward sloping
hazard function (solid line, ),), which corresponds to a process with pos-
itive duration dependence, indicates that as an expansion progresses, the
probability of a peak increases. The horizontal hazard (dashed line, A,),
on the other hand, for which the transition probability is constant, cor-
responds to an absence of duration dependence. The resulting distribu-
tions of lengths of expansions and contractions are illustrated in Figure
14A.2. The duration distribution associated with the constant hazard is
exponential. In discrete time, the distribution is geometric, with the
probability of a regime of duration 7 given by:

Plduration =7)=(1 —py'p (O<p<]1) (A1)

where the probability p of a turning point is a constant. This is shown
as the monotonically declining dashed line in Figure 14A.2. The dura-
tion distribution corresponding to the increasing hazard, on the other
hand, is non-geometric; its explicit shape will depend on the explicit
nature of the hazard. In general, however, its probability mass will be
more concentrated than that of the geometric, an implication of the

* This same duration analysis applies to the probability of a trough and the age of the
preceding contraction. However, the slope and position of the lines will differ across
expansions and contractions to reflect different average regime lengths.
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turning point probability rising with duration length.’ Consider, for
example, the case of p, = 7/100; then the resulting density is

P(duration = 7) = (1 — p,)"'p, (A2)

which was used to generate the solid curve in Figure 14A.2. The hazard
probability begins at .01 and rises by steps of .01 per period, leading to
regime durations clustered around an intrinsic period.

We examine directly whether a histogram of historical duration
lengths conforms to a geometric distribution, as it must under the non-
periodic null hypothesis of constant turning point probabilities. Similar
tests have been applied by McCulloch (1975), Savin (1977), and de
Leeuw (1987). These studies are limited by the choice of a particular set
of assumptions used in the construction of the histograms for the tests,
which may account for the somewhat conflicting results obtained. We
provide a sensitivity analysis exploring the whole range of possible
assumptions.

We proceed as follows. For any given vector of expansion or contrac-
tion durations x, the data are first transformed by a minimum duration
factor £, as x* = x — (t, — 1), which shifts the origin to reflect the length
of the shortest possible regime. Minimum allowable expansion and con-
traction durations arise from definitional aspects of the NBER reference
cycle dating procedure. Moore and Zarnowitz (1986), for example, indi-
cate that expansions and contractions of less than six months would be
very unlikely to qualify. (Note that under the geometric null, the uncon-
ditional distribution of 7 is the same as the distribution of ~ conditional
on 7 taking on a value greater than or equal to #.) Given the number of
histogram bins K to be used, the bin width W is defined by (x*, —
Xmin)/ K, where x¥,, and x%, are the largest and smallest elements of the
observed duration sequence x*. The element, x* is grouped in bin » if
(Xmin + (n — DW) =< x¥ < (x%, + nW). The histogram bin heights are
computed by dividing the number of bin members by N - W, that is,
the duration sample size multiplied by the bin width.

We also compute exact finite sample confidence intervals under the
geometric null. The maximum likelihood estimate of the hazard param-
eter of the best-fitting geometric distribution is A = 1/%*, where ¥ =
Z), x¥N is the sample mean. A sample of N pseudorandom deviates
is drawn from this geometric distribution, and the histogram with cell
boundaries identical to the original is computed. (Generated deviates
falling below x%, or above x¥, are classified as members of bin 1 or bin

* This insight provides a link between the concepts of duration dependence and period-
icity. See Diebold and Rudebusch (1990) for detailed discussion.
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K, respectively.) This procedure is replicated 5,000 times. This allows
construction of confidence intervals around individual bin heights. The
goodness-of-fit test statistic also can be calculated as

5= Z [(O; — EY/E] (A3)

where O; is the observed number of elements of bin / and E, is the
expected number of elements of bin i under the geometric null (the aver-
age across simulations). Using the 5,000 simulated samples as observa-
tions allows construction of the exact distribution of the test statistic,
which for our small sample sizes typically deviates from its asymptotic
x* distribution.

The lengths of expansions and contractions (in months) are derived
from the business cycle turning dates as designated by the National
Bureau of Economic Research. The entire sample of thirty-one expan-
sions and thirty contractions, every business cycle since 1854, is given
in Table 14A.1. Nine different subsamples are considered, including
pre- and post-World War II expansions and contractions, as well as
peacetime expansions. We generally favor the entire expansion and con-
traction samples since, as pointed out by Romer (1986), the evidence of
structural shift between the pre- and postwar economies is not com-
pletely convincing. The choice of a proper sample depends upon which
cycles are considered part of the intrinsic structure of the economy and
which are attributed to special non-cyclical events (e.g., wars). We also
consider the sensitivity of our results to the number of histogram cells
(K), two through five. Statistical theory provides some guide in the con-
struction of a histogram as to the correct number of cells to be distin-
guished. Terrell and Scott (1985) show that the minimum number of
cells required for an optimal histogram is®

K* = (2N)") (A4)

where the special brackets indicate rounding up to the nearest integer.’
Histograms formed with this optimal minimum cell number have been
shown to perform very well in practice. Finally, we consider a variety of

8 The optimality is in terms of minimum deviation [in the Kullback-Liebler (1951) sense]
of the estimated histogram cell heights from the true, but unknown, values of the prob-
ability distribution.

" The choice of cell number is important; too coarse a partition yields an uninformative
distribution estimate, while too fine a partition yields a very jagged (and hence equally
uninformative) estimate.
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Table 14.A1. NBER business cycle reference dates and durations

Trough Peak Contraction Expansion
December 1854 June 1857 NA 30
December 1858 October 1860 18 22
June 1861 April 1865 8 46
December 1867 June 1869 32 18
December 1870 October 1873 18 34
March 1879 March 1882 65 36
May 1885 March 1887 38 22
April 1888 July 1890 13 27
May 1891 January 1893 10 20
June 1894 December 1895 17 18
June 1897 June 1899 18 24
December 1900 September 1902 18 21
August 1904 May 1907 23 33
June 1908 January 1910 13 19
January 1912 January 1913 24 12
December 1914 August 1918 23 44
March 1919 January 1920 7 10
July 1921 May 1923 18 22
July 1924 October 1926 14 27
November 1927 August 1929 13 21
March 1933 May 1937 43 50
June 1938 February 1945 13 80
October 1945 November 1948 8 37
October 1949 July 1953 11 45
May 1954 August 1957 10 39
April 1958 April 1960 8 24
February 1961 December 1969 10 106
November 1970 November 1973 11 36
March 1975 January 1980 16 58
July 1980 July 1981 6 12
November 1982 ? 16 724

“The 72-month duration of the expansion beginning in November of 1982 is
intended as a conservative estimate, implying that it ended in November 1988.

Note: Wartime expansions are underlined.
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Figure 14.A3. Pre-World War II, peacetime expansions (E6).

minimum duration values. For each subsample, £, values up to the
shortest expansion or contraction duration in that subsample are con-
sidered; in this way, we ensure that all values of x* remain positive.

Probability-values (p-values) for the goodness-of-fit test statistic based
on nonparametric distribution estimates are shown in Table 14A.3, and
selected corresponding histograms are shown in Figures 14A.3, 14A 4,
and 14A.5. The p-values represent the likelihood of obtaining the value
of the test statistic actually obtained, under the geometric null of no
duration dependence; large p-values therefore imply that the transition
probabilities T'* and T should be invariant to the age of the ongoing
regime. The range of samples investigated, denoted E! through E6 and
C1 through C3 for expansions and contractions, respectively, is identi-
fied in Table 14A.2.

In Table 14A.3 our choice for a single preferred p-value for each sam-
ple is underlined, though our conclusions based on these preferred prob-
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Figure 14.A4. Expansions, complete sample (E1).

abilities will always be tempered by their sensitivity to the number of
histogram cells (K) used to characterize the distribution and the mini-
mum duration values (%).® A reasonable choice for , is the actual short-
est observed duration, which is six months for contractions, the length
of the 1980 contraction, and ten months for expansions. Qur preferred
cell number is the Terrell-Scott optimal bin number. Setting K = K*
for our samples implies that observations should be grouped into four
cells for all samples except the postwar ones, where three cells should be
used.

Of the underlined p-values for the nine samples investigated in Table
14A.3, only one indicates significant duration dependence at the 5 per-
cent level. This is sample E6, the set of all prewar, peacetime expansions.
However, for the sample of all prewar expansions, duration dependence

¥ Previous researchers, such as McCulloch, Savin, or de Leeuw, have essentially focused
on only a few of the entries in Table 14A.3, without an examination of the sensitivity of
the results to their assumptions.
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Figure 14.A5. Post-World War II contractions (C2).

Table 14.A2. Business cycle subsamples investigated, with
associated size

Sample Sampile size
Expansions

El. Entire sample 31
E2. Entire sample, excluding wars 26
E3. Post-World War II 9
E4. Post-World War II, excluding wars 7
ES5. Pre-World War I1 21
E6. Pre-World War II, excluding wars 19
Contractions

C1. Entire sample 30
C2. Pre-World War II 21
C3. Post-World War II 9
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Table 14.A3. Goodness-of-fit tests, expansion, and contraction samples
(probability values under the geometric null)

Sample
Ly El E2 E3 E4 E5 E6 Cl C2 C3

4 47 A7 47 Al 82 .80 AT 49 i)
5 47 N = 47 .70 .82 .80 16 K| 76
6 47 .14 46 J0 82 79 a7 Sl a5
7
8
9

.62 3 47 .70 .82 .80 NA NA 7
61 21 46 A5 .82 .80 NA NA NA
62 21 A2 70 .82 .80 NA NA NA
10 .80 21 il .69 .64 79 NA NA NA
11 NA NA a2 .69 NA NA NA NA NA
12 NA NA 7 .69 NA NA NA NA NA

78 40 .60 .25 14 .03 48 .04 .63
78 A48 .60 .25 17 .06 .59 .06 .65
.85 49 64 25 26 .07 63 20 .64

85 58 66 33 27 09 NA NA .74
91 62 66 33 35 14 NA NA NA
91 65 65 38 46 14 NA NA NA
9 .75 I3 37 50 21 NA NA NA

4

5

6

7

8

9
10
11 NA NA 72 37 NA NA NA NA NA
12 NA NA J4 41 NA NA NA NA NA
4 55 15 05 23 .01 .00 .82 .60 .98
5 61 18 05 25 .01 .00 .84 .19 98
6 .68 22 .08 28 .02 .01 a7 91 .96
7
8
9

72 27 09 30 03 01 NA NA 96
75 32 .10 33 05 02 NA NA NA
79 38 1 35 09 .03 NA NA NA

10 .85 .44 .13 40 .3 .04 NA NA NA

11 NA NA .3 4 NA NA NA NA NA

2 NA NA .4 45 NA NA NA NA NA

4 45 59 34 .09 .00 .00 95 .01 93
5 Sl .67 .39 10 .00 .00 .97 .04 92
6 .58 72 43 i3 .00 .00 97 A1 .92
7 .64 19 A5 15 .00 .00 NA NA 87
8 .69 .85 Sl 18 .01 .00 NA NA NA
9 T4 .90 55 18 .02 .01 NA NA NA
10 .80 95 5921 .04 .02 NA NA NA
11 NA NA 67 23 NA NA NA NA NA
12 NA NA .70 260 NA NA NA NA NA

LUt uuog B BEESEDR DBEREWWL WWWW WWW RN |

Note: The definition of samples and sample key is given in Table 14.A2. Our
preferred (K, f{,) combination for each sample is underlined. NA = not
applicable.
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is also significant at the 5 percent level when a slightly smaller 7, value
is used or when observations are placed into five cells. The nonpara-
metric duration distribution estimate for sample E6 is shown in Figure
14A.3 (where K = 4 and ¢, = 10). For each histogram cell, the high and
low points of the 95 percent confidence interval for that individual cell
height under the geometric null are indicated by asterisks (*). The dis-
tribution of prewar, peacetime expansions shows a clear peak, repre-
senting a clustering of durations, unlike a steadily declining geometric
distribution. In contrast, for the sample of all expansions, shown in Fig-
ure 14A.4, the cell heights are not significantly different from their val-
ues under the geometric null, as suggested by the associated p-value of
.81; a similar distributional shape is found for the sample of all contrac-
tions (not shown). The p-value for postwar contractions is rather small,
especially for slightly smaller 7, values, although the null is not rejected
at conventional significance levels. The nonparametric distribution esti-
mate for this sample (with K = 3, £, = 6), given in Figure 14A.5 shows
a small, insignificant peak, though our ability to discriminate between
alternatives is limited by the small sample.

The sample period that is relevant for our forecasting evaluation is
the postwar period, and there is little evidence of duration dependence
in postwar expansions and contractions.” Obviously, our failure to reject
the geometric null hypothesis does not imply its acceptance; neverthe-
less, if duration dependence is present, it would appear to be a very weak
phenomenon.

® This result does not necessarily imply, however, that business fluctuations amount to

“Monte Carlo cycles,” as claimed by McCulloch. In particular, entire business cycles
(peak-to-peak or trough-to-trough) may display strong duration dependence even
though expansions and contractions do not. See Diebold and Rudebusch (1990) and
Zarnowitz (1987).
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