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1. Introduction

It is widely agreed that a variety of high-frequency asset
returns are well described as linearly unpredictable, conditionally
heteroskedastic, and unconditionaily leptokurtic. (See for ex-
ample Diebold (1988), Dieboid and Nerlove (1988a), and Pagan
and Schwert (1989).) Documentation of linear unpredictability
may be traced at least to early work on efficient markets, such as
Cootner (1963) and Fama (1964); similarly, leptokurtosis has
been appreciated at least since Mandelbrot (1963). The early
writers were also aware of the apparent occurrence of volatility
clustering in asset returns, and the work of Engle (1982) on
ARCH processes provided a tool for its formal study. It is now
agreed that many time series of asset returns, while ap-
proximately uncorrelated, are not temporally independent;
dependence arises through persistence in the conditional variance
and perhaps in other conditional moments.

If the above characterization of asset price dynamics (linear
conditional mean with nonlinearities working through the condi-
tional variance) is correct, then the nomlinearities cannot be
exploited to generate improved point predictions relative to linear
models. It is not clear, however, that the ARCH effects are struc-
tural, i.e., that they are a characteristic of the true data-generating
process (DGP). Instead, ARCH may indicate misspecification,
serving as a proxy for neglected nonlinearities in the conditional
mean. For an illustration of the difficulties involved in separating
conditional-mean from conditional-variance dynamics, see Weiss
(1986), who discusses ARCH and bilinearity. A finding of sig-
nificant conditional-mean nonlinearity would be important for
both theoretical and empirical work: theoretically, substantial
challenge to our understanding of asset-price dynamics would be
posed, and empirically, a source of improved point prediction
relative to linear models would be provided.

Interestingly, recent empirical and theoretical results are con-
sistent with the conjecture that nonlinearities may be present in
asset-return conditional means. The empirical results may be
categorized into two groups: (1) those using ideas from the theory
of stochastic nonlinear time-series, and (2) those using ideas from
the theory of deterministic chaotic systems. In the nonlinear time
series area, a number of studies, including Domowitz and Hakkio
(1985), Hinich and Patterson (1985, 1987), Weiss (1986), Engle,
Lillien, and Robins (1987), Diebold and Pauly (1988), and others,
appear to detect statistically significant nonlinearity in condi-
tional means of various asset prices and other economic
aggregates. Recent work on regime switching, including Flood
and Garber (1983), Engel and Hamilton (1988) and Froot and
Obstfeld (1989) is also squarely in the nonlinear tradition.
Similar results have been obtained in the chaos literature, using
tests based on estimated Lyaponov exponents and correlation
dimensions, as developed in Brock, Dechert and Scheinkman
(1987), inter alia. Scheinkman and LeBaron (1989), for example,
find strong evidence of nonlinearity in common stock returns and

suggest that it could be exploited for improved point prediction.
Similarly, Gallant, Hsieh and Tauchen (1988) and Hsieh (1989)
report evidence of residual nonlinearity in exchange rates, after
controlling for conditional heteroskedasticity. These empirical
results are provocative, because they challenge us to take
seriously the possible existence of nonlinear conditional-mean
dynamics in asset prices.

In summary, there appears to be strong evidence, consistent
with rigorous economic theory, that important nonlinearities may
be operative in asset price determination. Upon further con-
sideration, however, it becomes clear that the literature is not in
satisfactory condition, due to a puzzle that immediately arises:
Why is it that statistically significant rejections of linearity in
asset returns routinely occur, while no nonlinear model has been
found that can significantly outperform even the simpiest linear
model in out-of-sample forecasting? Because a number of factors
may be operative, a number of explanations may be offered.
One, of course, is that the nonlinearities present may be in even-
ordered conditional moments, and therefore are not useful for
point prediction. Second, in-sample nonlinearities such as out-
liers and structural shifts may be present, and may cause various
linearity tests to reject, while nevertheless being of no use for out-
of-sample forecasting. Third, very slight conditional-mean
nonlinearities might be truly present and be detectable with large
datasets, while nevertheless yielding negligible ex ante forecast
improvement. In other words, significance of nonlinearity does
not necessarily imply its importance. Finally, even if conditional-
mean nonlinearities are present and are important, the
overwhelming variety of plausible candidate nonlinear models
makes determination of a good approximation to the DGP a dif-
ficult task. The seemingly large variety of parametric nonlinear:
models that have received attention lately (e.g., bilinear,
threshold, exponential autoregressive, etc.) is in fact a very small
subset of the class of plausible nonlinear DGP's.

In this paper, we contribute to a resolution of this puzzling
behavior of asset returns by estimating nonparametrically the
conditional-mean function of a sample of daily IBM stock
returns. By so doing, we avoid the parametric model-selection
problem, thereby expanding greatly the class of potential models.
In section 2, we discuss various aspects of nonparametric func-
tional estimation, and we highlight the locally weighted
regression (LWR) procedure, which we use extensively. Section
3 contains empirical results; in particular, both in-sample LWR
fits and out-of-sample LWR forecasts are compared to those aris-
ing from linear models. Section 4 concludes with a comparison
to existing results.

2. Nonparametric Prediction

Nonparametric techniques may be used for estimation of a
variety of densities and econometric functionals, including regres-
sion functions, first and higher-order derivatives of regression
functions, conditional-variance functions, hazard and survival
functions, etc. For surveys of various aspects of nonparametric
and semiparametric estimation, see Ullah (1988) and Robinson



(1988). We shall generally be concerned with nonparametric es-
timation of conditional expectation, or regression, functions,
E(ytx) = [yf(ytx)dy = [y(f(y x)f(x))dy.
which we use for nonparametric prediction. Because the meaning
is obvious from context, we use lower-case letters for both ran-
dom variables and their realizations, and we use "f" to denote all
probability density functions. This is achieved by (explicit or
implicit) substitution of nonparametric estimates of the underly-
ing joint and marginal densities into the above expression. In our
dynamic models, the stochastic conditioning vector x is com-
posed of lagged dependent variables,
Xl = [yt-l’ o yt_p}.

We shall work with the very gemeral nonlinear autoregressive
structure,
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The regression function estimates may be obtained by a variety of
interrelated nonparametric methods, including kernel, series, and
nearest-neighbor (NN) techniques, consistency results for which

t+1

have been obtained in time-series environments by Robinson-

(1983), Gallant and Nychka (1987), and Yakowitz (1987), respec-
tively, inter alia.

In this study we make use of a generalized NN technique,
known as locally-weighted regression (LWR). NN methods

*
proceed by estimating g(x), at an arbitrary point x = x in p-
dimensional Euclidean space, via a weight function,
T
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where wk-r(xl) = llk,r n'xl is one of the Kl' nearest neighbors of x ,
andwkT(xl)-Ootherwise. Tbcsublcript"'!"‘ofkr serves as a
reminder that the number of nearest neighbors used should
depend on sample size, as discussed subsequently. The LWR
estimator, as proposed by Cleveland (1979) and refined by
Cleveland and Devlin (1988) and Cleveland et al. (1988), is an
important generalization of the NN estimator. Like a NN es-

-
timator, LWR fits the surface at a point x as a function of the y
L]
values corresponding to the k,r nearest neighbors of x . Unlike

A *
NN, however, LWR does not take g(x ) as a simple average of

those y values; rather, Q(x.) is the fitted value from a regression
surface. This corresponds to a simple average only in the very
unlikely case that the constant term is the sole regressor with
explanatory power.

We now discuss the procedure in some detail. We compute
= A ®
the LWR estimate of the surface at a point x , g(x ), as follows.
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Form the neighborhood weight function,
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The value of the regression surface at x is then computed as
AR A % ® A
y =gx )=x "B,
where
A : ) 2
B=argmin[Z v (y, -x'B)]
t=1
The LWR procedure, exactly as described above, is used in
our subsequent empirical work. Obviously, it reflects a number
of judgmental decisions, such as use of Euclidean norm and
tricube neighborhood weighting, as well as locally linear (as op-
posed to higher-order, such as quadratic) fitting. The Euclidean
norm has obvious geometric appeal, as does the tricube weight
function, which produces a smooth, gradual decline in weight

with distance from x*. Locally linear fitting is also highly
reasonable (and computationally feasible) in the present context.
See Cleveland et al. (1988) for further discussion.

Of greater interest is the choice of &, which determines the
number of nearest neighbors used, and hence the degree of
smoothing. Consistency of NN estimators (and hence LWR) re-
quires that the number of nearest neighbors used go to infinity
with sample size, but at a slower rate, i.e.,

limk_=oo
T—"kT

lim =0.

T (kTrr)
This implicitly creates a "window" whose width becomes smaller
as sample size goes to infinity, but at a slower rate. In this way
the shrinking window nevertheless contains progressively more
neighbors, so that bias is reduced along with variance. Similar
issues arise in kernel and series estimation. In the kernel case,
the window width corresponds to bandwidth, which must shrink
with sample size but at a slower rate. Finally, in series estima-
tion, the window width corresponds (inversely) to the number of
included series terms; again, consistency requires that the trunca-
tion point increase with sample size, but at a slower rate.

It is interesting to note that earlier-discussed LWR rule of



EeT for selecting the number of nearest neighbors does not
satisfy the second regularity condition for consistency. In any
finite sample such as ours, however, this is of no consequence,

since there exists a selection rule such as Tp', a < 1, which does
satisfy the regularity condition and results in use of an identical
number of nearest neighbors.. For example, in 3 sample of size
800, the &oT rule with & = .5 selects approximately 400 nearest

neighbors, as does the T rule with a = 9. Moreover, in the em-
pirical work that follows, we explore a wide range of § values.

3. Empirical Analysis

The data are daily IBM stock returns, measured close-of-day,
as reported in the University of Chicago’s CRSP database, ex-
actly as used in White (1988). We have 1517 observations,
corresponding to the first business day of the second quarter of
1974 through the last business day of the first quarter of 1980.
We examine both in-sample "fit" and out-of-sample predictive
performance of the LWR nonparametric conditional mean es-
timator. Observations 8 through 1017 (74Q2-78Q1) are used for
in-sample analysis, while observations 1018 through 1517 (78Q2-
80Q1) are reserved for out-of-sample forecast comparison. Our
out-of-sample forecasts are completely ex ante, using LWR es-
timates formed recursively in real time, using only information
actually available.

The in-sample results appear in table 1. We perform a sen-
sitivity analysis with respect to &, exploring a wide range of
values from .10 through 10. Note that £ = 1 does not correspond
to a linear autoregression, because the observations are still
weighted. Rather, our algorithm is such that as § approaches in-
finity, the linear autoregression emerges. (In practice, § = 10
produces an approximately linear autoregression.) It is apparent
that, for all numbers of included lags, in-sample MSPE decreases
with & and is minimized at the smallest & value of .1. The MSPE
associated with the optimal & choice is always lower (by a very
wide margin) than the random walk (RW) MSPE. Similarly
mean absolute prediction error (MAPE) is also decreasing in §
and is minimized at § = .1. Like MSPE, the MAPE associated
with the optimal & choice is always smaller than the random walk
MAPE. It is interesting to note the general tendency for both
MSPE and MAPE to decrease and then level off as more lags
(p=3, p=5, p=7) are included. Although this need not happen
(different nearest neighbors are used, in general, for different p),
it is intuitively reasonable by analogy to the fact that inclusion of
additional regressors in an OLS regression must lower (or, at
worst, leave unchanged) the sum of squared residuals.

We now turn to the out-of-sample analysis. Again, we es-
timate nonparametric autoregressions of order 3, 5 and 7 using
the LWR procedure, with values of the smoothing parameter &
ranging from 0.1 through 10.0 for each p, corresponding to use of
roughly 125 nearest neighbors (with neighborhood weighting)
through "all" nearest neighbors (with no neighborhood
weighting). Forecast horizons explored are K = 1, 4, 8 and 12.
For each &, p, and K combination, out-of-sampie forecasts are
computed by recursively re-estimating the relevant conditional
mean in real time. This is continued until the sample is ex-
hausted, resulting in a sequence of 500 ex ante forecasts for each
pand K.

Out-of-sample results are contained in tables 2 (MSPE) and 3

(MAPE). A distinct pattern emerges: The random walk fares
much better, indicating that the in-sample loss reduction may be
the spurious result of overfitting. Out-of-sample loss reductions
using LWR (with the best-performing & value) generally don't
exist, and on the few occasions when they do, they are much
smaller than those of the in-sample analysis. Moreover, loss is
consistently minimized for large & values, which produce a linear
autoregressive fit. These qualitative conclusions hold regardless
of the choice of p and K. In truly ex ante forecasting, in which
even the § value must be chosen by the investigator (based upon
a combination of prior information and previous sample
information), the scope for improved prediction appears ex-
tremely limited.

4. Summary and Concluding Remarks

Using a powerful nonparametric prediction technique, we
find no evidence of nonlinearities exploitable for enhanced out-of-
sample prediction of daily IBM stock retuns. Our results
corroborate those of White (1988), who obtains identical results
using the same asset returns but a different prediction technique
(neural networks), Diebold and Nason (1989), who use different
asset returns (exchange rates) but the same prediction technique,
Prescott and Stengos (1988), who who use different asset returns
(gold) and a different prediction technique (kernel estimators),
and Meese and Rose (1989) who use the same technique in a
structural exchange rate environment. Taken together, these
results constitute fairly strong evidence against the existence of
asset price nonlinearities that are exploitable for improved point
prediction.

The research could of course be extended in a number of
directions. The analysis could be made completely ex ante by
choosing & in real time by cross validation, and multivariate
generalizations might be undertaken. Computational considera-
tions render some of these extensions infeasible at the present
time. More importantly, however, such extensions would appear
highly likely to reinforce, rather than alter, the basic tenor of our
conclusions. '
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TABLE 1

IN-SAMPLE RESULTS
MSPE MAPE
p=3 p=5 p=7 p=3 p=5 p=7
E=.1 1.57 .98 52 9.25 7.50 5.45
E=2 171 127 88 9.52 846 7.11

E=3 1.77 1.43 1.09 965 - 8.88 7.87
E=4 1.81 1.53 1.25 974  9.14 8.36
E=5 1.84 1.61 1.37 9.80 9.33 8.73
Em.6 1.86 1.67 1.48 9.85 9.48 9.02
E=7 1.88 1.73 1.58 9.89 9.61 9.27
E=8 1.89 1.79 1.69 9.93 9.73 9.50
E=9 1.91 1.85 1.79 9.98 9.87 9.73
E=1.0 1.97 1.96 196 1016 10.15 10.14
E=2.0 198 1.98 198 1019 1019 10.19
=30 1.9 1.98 1.98 1020 1020 1020
E=10.0 199 1.99 1.99 1021 10.21 10.21

Random
Walk  2.00 2.00 200 1017 10.17 10.17
TABLE 2
OUT-OF-SAMPLE RESULTS, MSPE
p=3 p=5 p=7

K=l K=4 K=8 K=12 K=l K=4 K=8 K=12 K=l K=4 K=8 Ka=l2
E=1 203 205 207 206 227 218 219 216 261 239 234 239
E=2 195 203 204 203 210 210 210 207 226 222 221 219
=3 195 202 202 200 204 206 206 204 214 215 215 211
E=4 194 200 200 199 200 203 203 201 207 210 212 206
E=5 194 199 199 198 198 201 202 200 202 207 209 2.04
E=6 193 198 198 197 197 2.00 200 199 199 205 2.06 2.02
E=7 193 197 198 196 196 198 200 198 198 204 2.04 2.00
E=8 192 196 197 19 195 197 1.9 197 196 202 201 199
E=9 192 196 197 195 195 197 198 197 195 201 200 198
E=1.0 1.90 195 196 195 192 195 197 196 191 197 197 197
E=20 188 195 196 195 1589 195 196 196 1.88 196 196 196
E=3.0 1.88 195 196 195 1.88 195 196 196 187 196 196 196

=100 187 194 196 195 187 195 196 197 187 196 196 196
Random

Walk 1.95

TABLE 3
OUT-OF-SAMPLE RESULTS, MAPE
p=3 p=5 p=7
K=l Km=4 K=§ K=12 Ksl K=4 K=8 K=12 K=l Km=d K=8§ K=l2

E=1 1010 1030 1020 1040 1120 1060 10.80 10.60 11.80 11.20 11.00 11.40
=2 1010 1020 10.10 10.30 10.80 1040 1050 10.40 11.10 10.70 10.70 10.80
=3 1010 10.10 1010 1020 10.60 1020 1040 10.30 10.80 10.50 10.50 10.50
=4 . 10.10 10.10 10.00 10.10 1040 1020 10.30 10.20 1060 10.40 10.40 10.30
=5 1000 1000 1000 10.10 1030 10.10 1020 10.10 1040 1030 1030 1020
=6 1000 1000 999 1000 1030 10.00 1020 10.10 10.30 1030 10.20 10.10
E=7 997 998 997 10.00 1020 10.00 10.10 10.00 10.20 1020 10.20 10.10
E=8 994 995 996 999 1010 996 10.10 1000 1020 10.10 10.10 10.10
E=9 991 993 995 995 1010 993 1000 999 10.10 10.10 10.00 10.00
E=10 976 988 990 992 982 989 995 997 980 992 997 998
E=20 969 986 989 993 971 986 995 997 969 989 996 998
E=3.0 966 9.8 989 993 967 985 995 998 965 9.87 996 998
£=100 962 9585 989 994 9.63 9584 995 998 962 986 996 998
Random .

Wak  9.83






