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a b s t r a c t

We propose a reduced-form benchmark predictive model (BPM) for fixed-target forecasting of Arctic
sea ice extent, and we provide a case study of its real-time performance for target date September
2020. We visually detail the evolution of the statistically-optimal point, interval, and density forecasts
as time passes, new information arrives, and the end of September approaches. Comparison to the
BPM may prove useful for evaluating and selecting among various more sophisticated dynamical sea
ice models, which are widely used to quantify the likely future evolution of Arctic conditions and their
two-way interaction with economic activity.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The Arctic is warming much faster than the rest of the planet,
nd it has emerged as a crucial focal point of climate change
tudy. The path and pattern of Arctic sea ice diminution is of
articular interest, and sea ice forecasting has received significant
ttention. From a real-time online perspective, there are two key
orecast types: fixed-horizon (e.g., each month we might forecast
ne month ahead, month after month, ongoing) and fixed-target
e.g., each month we forecast a fixed future target month, month
fter month, ending when we arrive at the target month). In this
aper we consider the fixed-target scenario, which has generated
ubstantial interest in highlighting Arctic sea ice diminution both
ithin years (as September 30 is approached, say) and across
ears (comparing the sequence of Septembers, say).1
For example, each summer since 2008 the Sea Ice Prediction

etwork (SIPN) has sponsored the Sea Ice Outlook (SIO) competi-
ion for fixed-target prediction of September average daily Arctic
ea ice extent.2 September extent forecasts are produced by many

∗ Corresponding author.
E-mail address: fdiebold@sas.upenn.edu (F.X. Diebold).

1 A third forecast type arises from an offline perspective — the so-called
xtrapolation forecast, with a fixed origin and an expanding range of horizons,
s with a forecast for every month from now until the end of the century.
2 See https://www.arcus.org/sipn for SIPN, and see https://www.arcus.org/

ipn/sea-ice-outlook for SIO.
ttps://doi.org/10.1016/j.econlet.2022.110478
165-1765/© 2022 Elsevier B.V. All rights reserved.
research groups mid-month in June, July, and August, and evalu-
ated once September ends and the outcome is known. Insightful
post-season SIO assessments have been produced annually (the
most recent is Meier et al. (2021)), and similarly-insightful multi-
year retrospective SIO assessments have been produced occasion-
ally (Stroeve et al., 2014; Hamilton and Stroeve, 2016; Hamilton,
2020). Those assessments focus primarily on the forecasting skill
of the SIO point-forecast ensembles.

In this paper we take an approach different from the SIO
analyses, drilling very far down, focusing not on a point-forecast
ensemble but rather on the point, interval, and density forecast
paths for a single and very simple model (which we call the
Benchmark Predictive Model, or BPM) in a single season (2020).
The broad insights gained – associated in particular with the
evolution of forecast uncertainty from a simple yet sophisticated
reduced-form sea ice forecasting model as time progresses and
the target date is approached – are of wide use. Indeed the BPM
approach and results feature prominently in the ‘‘glide chart’’
climate model evaluation and comparison framework developed
in Diebold et al. (2022), in which the BPM is used as the ‘‘naive’’
reference model in climate model skill scores.

We proceed as follows. In Section 2 we introduce the target-
date forecasting framework and the BPM. In Section 3 we provide
the 2020 case study. We consider forecasts made on the SIO dates,
as well as a generalized set of forecasts made daily from June
through September, and we pay particular attention to forecast

https://doi.org/10.1016/j.econlet.2022.110478
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2022.110478&domain=pdf
mailto:fdiebold@sas.upenn.edu
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https://www.arcus.org/sipn/sea-ice-outlook
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ncertainty as the target date is approached. We conclude in
ection 4.

. A benchmark predictive model for Arctic sea ice extent

We consider target-date forecasting for September average
aily sea ice extent, SIE9, conditioning on the expanding historical
ample as we move from June through the end of September.
e forecast using a simple reduced-form model, which we call

he ‘‘benchmark predictive model’’ (BPM), regressing September
xtent on four covariates:

IE9 → c, Time, SIELastMonth, SIEThisMonthSoFar , SIEToday, (1)

here SIEp denotes average daily extent during period p (hence,
or example, SIE9 denotes September extent), ‘‘→’’ denotes ‘‘is
egressed on’’, and the rest of the notation is obvious.

Approximately following SIO, we make SIE9 forecasts on four
ays: 6/10, 7/10, 8/10 and 9/10.3 Immediately, the 6/10 regres-
ion used to produce the June forecast is

IE9 → c, Time, SIE5, SIE6/1_6/10, SIE6/10,

he 7/10 regression used to produce the July forecast is

IE9 → c, Time, SIE6, SIE7/1_7/10, SIE7/10,

he 8/10 regression used to produce the August forecast is

IE9 → c, Time, SIE7, SIE8/1_8/10, SIE8/10,

nd the 9/10 regression used to produce the September forecast
s

IE9 → c, Time, SIE8, SIE9/1_9/10, SIE9/10.

Perhaps surprisingly given their simplicity, the BPM forecasts
re quite sophisticated in certain respects of relevance for fore-
asting Arctic sea ice:

1. They capture low-frequency trend dynamics, via condition-
ing on Time.

2. They capture medium-frequency inertial (autoregressive)
dynamics around trend, via conditioning on SIELastMonth.

3. They capture high-frequency dynamics by augmenting the
conditioning on historical monthly information (via
SIELastMonth) with potentially-invaluable recent daily infor-
mation, via SIEThisMonthSoFar,t and SIEToday,t .

4. They readily enable probabilistic quantification of forecast
uncertainty, which lets us move easily from point forecasts
to interval and density forecasts.

5. They are based on a BPM estimated using direct rather than
iterated projections.4 Direct projections are theoretically
superior under model misspecification (which is always the
relevant case), because they directly minimize the relevant
multi-step predictive loss.5

6. They are easily made day-by-day, using model parameter
estimates optimized day-by-day to the remaining predic-
tive horizon, thanks to the BPM’s simplicity. We exploit this
fact below to make and examine not only the monthly SIO
forecasts, but also 120 daily forecasts from June through
September.

3 We include a 9/10 forecast even though the 2020 SIO did not. The 9/10
orecast is of interest because September average extent is not known with
ertainty until the last day of September, well after 9/10. Indeed subsequent
nstallments of the SIO will solicit 9/10 forecasts.
4 One makes a multi-period ‘‘iterated’’ forecast with a one-period-ahead
stimated model, iterated forward for the desired number of periods. In
ontrast, one makes a multi-period ‘‘direct’’ forecast with a horizon-specific
ulti-period-ahead estimated model.
5 See Ing (2003), Theorem 4 and Corollary 3.
2

The BPM combination of trivial simplicity and subtle sophis-
tication makes it an appropriate benchmark for skill score com-
parisons, as in Diebold et al. (2022). On the one hand, one would
hope that a best-practice scientific model (e.g., a sophisticated
structural climate model) should outperform the simple BPM, but
on the other hand, it may not be easy!

3. Forecasting 2020 September Arctic sea ice extent

3.1. Estimation

The left-hand-side variable of the BPM is September extent.
September 2020 extent data were obviously unavailable on June
10, July 10, August 10, or September 10. Hence all estimation
samples are 1979–2019, for a total of 41 annual observations.6

Estimation results appear in the top and middle panels of
Table 1. Several points are worth noting. First, the negative linear
trend becomes progressively less important as September ap-
proaches, whereas the positive autoregressive effect SIELastMonth
becomes progressively more important as September approaches.
This is completely natural. The conditioning on May extent in
the June 10 forecast, for example, is of little value for forecast-
ing September extent, so the trend plays an important role. In
contrast, moving to the end of the summer, the conditioning on
August extent in the September 10 forecast is of great value for
forecasting September extent, so the trend plays almost no role.

Second, SIEThisMonthSoFar has a negative effect and SIEToday has a
ositive effect. Hence the estimates, and the forecasts that we
onstruct from them, are influenced not just by SIEToday, but also
y SIEToday relative to SIEThisMonthSoFar .
Finally, adjusted R-squared (R̄2) naturally increases toward

.0 as September approaches, because the value of the condi-
ioning information (SIELastMonth, SIEThisMonthSoFar , SIEToday) increases
s September approaches. In parallel, the standard error of the
egression (σ̂ ) naturally decreases toward 0 as September ap-
roaches, again because the value of the conditioning information
ncreases as September approaches.

.2. Forecasting

To use an estimated forecasting model to make a point fore-
ast, we simply insert the relevant right-hand-side variables, all
f which are known at the time the forecast is made. For example,
o form the July 10 forecast we evaluate the fitted July model at
ime=42, SIELastMonth=SIE6/2020, SIEThisMonthSoFar=SIE7/1/2020_7/10/2020,
IEToday=SIE7/10/2020.7 This point forecast is an estimate of the
ean of SIE7/2020 conditional on Time=42, SIELastMonth=SIE6/2020,
IEThisMonthSoFar=SIE7/1/2020_7/10/2020, and SIEToday=SIE7/10/2020. Hen-
e we denote the point forecast by µ̂ in Table 1.
Now consider interval forecasts (predictive intervals). Let us

tay with the same July example. To make an interval forecast
e need an estimate of the standard deviation of SIE7/2020 con-
itional on the same covariates: Time=42, SIELastMonth=SIE6/2020,
IEThisMonthSoFar= SIE7/1/2020_7/10/2020, and SIEToday=SIE7/10/2020. The
tandard error of the regression, denoted σ̂ in Table 1, is pre-
isely such an estimate.8 An interval forecast (ignoring parameter

6 Our daily extent measure is the National Snow and Ice Data Center
NSIDC) Sea Ice Index, Version 3 (https://doi.org/10.7265/N5K072F8), which uses
he NASA team algorithm to convert microwave brightness readings into ice
overage (Fetterer et al., 2017). Until August 1986, data are reported only every
ther day, and we fill missing days with the average of the two adjacent days.
7 There is typically a 1-day data availability lag, so we would actually insert
IELastMonth= SIE6/2020 , SIEThisMonthSoFar= SIE7/1/2020_7/9/2020 , SIEToday= SIE7/9/2020 .
8 Note that σ̂ measures true forecast uncertainty, which is a very different

oncept from the cross-section dispersion in the ensemble of forecasts, d̂. We
ant σ̂ , and in general σ̂ ̸=d̂.

https://doi.org/10.7265/N5K072F8
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Table 1
September 2020 Arctic sea ice extent: Regression results and forecasts.

June 10 July 10 Aug 10 Sept 10

c −2.75 −2.87 −1.83 −0.77
Time −0.04 −0.02 −0.003 0.003
SIELastMonth −0.13 0.18 0.25 0.39
SIEThisMonthSoFar −1.94 −0.61 −0.45 −0.28
SIEToday 2.93 1.38 1.26 0.97

σ̂ 0.462 0.403 0.267 0.100
R̄2 0.83 0.87 0.94 0.99

µ̂ (Sept. point forecast) 4.32 3.84 4.34 3.93

µ̂ ± 2σ̂ (Sept. interval forecast) [3.40, 5.25] [3.03, 4.65] [3.80, 4.87] [3.73, 4.13]

Sept realization: 3.92

Notes: The left-hand-side variable in each of the four regression models is September extent (monthly
average of daily values). The estimation samples have 41 annual observations, 1979–2019. Our daily extent
measure is the National Snow and Ice Data Center (NSIDC) Sea Ice Index, Version 3 (https://doi.org/10.7265/
N5K072F8). Until August 1986, data are reported only every other day, and we fill missing days observations
with the average of the two adjacent days. Forecasts are made on the 10th of each month, on June 10 using
the estimated June model, on July 10 using the estimated July model, and so on through September 10
using the estimated September model. The point forecast is µ̂, and the interval forecast is µ̂± 2σ̂ . See text
for details.
i

Fig. 1. Arctic sea ice extent: four predictive densities for September 2020.
Notes: We show four predictive densities for September 2020 Arctic sea ice
extent (monthly average of daily values). Forecasts are made on the 10th of
the month. The vertical black line is the realized September value. See text for
details.

estimation uncertainty) is then µ̂±2σ̂ . If the regression distur-
ances are approximately Gaussian, then the µ̂±2σ̂ interval is an
pproximate 95% predictive interval.9
Finally, again ignoring parameter estimation uncertainty, con-

ider density forecasts (predictive densities). If the regression
isturbances are approximately Gaussian, then the full predictive
ensity is approximately N(µ̂, σ̂ 2).10

.2.1. Four month-by-month predictive densities
In Fig. 1 we show the four monthly predictive densities (June,

uly, August, and September) corresponding to our generalized
IO exercise that includes a September 10 forecast. The den-
ity locations (their means, the µ̂’s in Table 1) naturally evolve

9 One could use simulation-based bootstrap procedures to accommodate
arameter estimation uncertainty and/or non-Gaussian disturbances in forming
nterval forecasts, but we do not pursue that here.
10 As with the interval forecast case, bootstrap procedures could be
sed to accommodate parameter estimation uncertainty and/or non-Gaussian
isturbances.
3

throughout the summer as the conditioning information evolves,
but they eventually get closer to the end-of-September value. The
density mean is above the realization in June, below in July, above
again in August, and then almost spot-on in September.

Not unrelated, and importantly, the forecast uncertainty as
captured by the predictive density dispersion (σ̂ in Table 1) de-
creases monotonically moving through the summer: from Table 1
it is 0.46, 0.40, 0.27, 0.10 for June, July, August, and September,
respectively.

3.2.2. 120 Day-by-day predictive densities
There is nothing sacrosanct about the set of once-per-month

SIO forecast dates examined thus far. Given the simplicity of our
forecasting model and its estimation, we can examine many other
dates. We simply generalize the BPM from

SIE9 → c, Time, SIELastMonth, SIEThisMonthSoFar , SIEToday (2)

to

SIE9 → c, Time, SIELastMonth, SIELast30Days, SIEToday, (3)

and the framework is otherwise unchanged.
In Fig. 2, we show predictive densities for the 120 days leading

to the end of September, produced using 120 different estimated
models. In the top panel we plot the entire sequence [−120, 0],
and in the bottom panel we plot only [−120, −20] to enhance
visualization detail. Throughout, the horizontal axis represents
the number of days until the end of September, and the green line
is the evolving point forecast (the mean of the predictive density).
One can readily see the densities wandering left and right as new
information arrives, but nevertheless eventually rising sharply
and clustering tightly around the realized value as the end of
September nears.

In Fig. 3 we reduce the predictive densities to predictive inter-
vals. As the target date approaches, the interval forecast midpoint
(the point forecast, µ̂) evolves as the conditioning information
evolves, converging to the eventually-realized September value.
Simultaneously the interval forecast width (4σ̂ ) also evolves as
nformation accumulates, converging to zero by the target date.11

11 Of course the densities of Fig. 2 and the intervals of Fig. 3 are isomorphic
in a Gaussian environment — if one knows the density, then one knows the
interval, and conversely, so that nothing new is learned by reduction of densities
to intervals. Nevertheless the sequence of intervals may be visually revealing in
certain ways that the sequence of densities is not, more clearly emphasizing both
the point forecast trajectory and its associated uncertainty, and hence serving as

https://doi.org/10.7265/N5K072F8
https://doi.org/10.7265/N5K072F8
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Fig. 2. Arctic sea ice extent: day-by-day predictive densities for September 2020.
Notes: We show the sequence of 120 day-by-day predictive densities for September 2020 average daily Arctic sea ice extent as September 30 is approached. The
horizontal axis represents the number of days until the end of September, and the green line is the point forecast (the mean of the predictive density). Top: we
show the entire [−120, 0] sequence. Bottom: we zoom in on [−120, −20], to enhance visualization detail.
4. Concluding remarks

We earlier asserted that our benchmark predictive model
(BPM) is quite sophisticated in certain respects. As it turned out,
its performance in the 2020 Sea Ice Outlook competition was in
the middle of the pack, a thoroughly respectable performance
for a simple BPM. And the point, of course, is not that the BPM
should dominate its competitors, but rather that it should serve as
a simple benchmark against which allegedly more sophisticated
competitors can be compared.

a complement rather than a substitute for the sequence of densities. Moreover,
and importantly, the environment may not be Gaussian, in which case the ±2σ̂
ntervals are still a useful and transparent quantification of forecast uncertainty,
ven if they lose their interpretation at 95% confidence intervals.
4

Following that path, one may use the BPM as the reference
model in ‘‘skill score glide charts’’ for climate model evalua-
tion and comparison, tracking relative forecasting performance
of competitors vs BPM as time evolves and the target date is
approached. Such competitor vs BPM skill score glide charts are
proposed and explored in work in progress (Diebold et al., 2022).

Skill score competitors may include more sophisticated redu-
ced-form models, including, for example, models that:

1. incorporate nonlinearity, whether parametrically (e.g.,
Diebold and Rudebusch (2022)), or nonparametrically as
in a variety of statistical machine learning methods (e.g.,
Hastie et al. (2009));

2. incorporate and forecast the entire daily sea ice extent
history (note that we do not model the entire daily history
— we model the monthly history augmented with certain
aspects of the very recent daily history);
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Fig. 3. Arctic sea ice extent: day-by-day predictive intervals for September 2020.
Notes: We show the sequence of day-by-day prediction intervals for September
2020 average daily Arctic sea ice extent as September 30 is approached. The
horizontal axis represents the number of days until the end of September, the
green line is the point forecast (the midpoint of the prediction interval), and
the shaded area is the ±2 standard error band. The horizontal black line is the
realized September value.

3. drop the normality assumption for calculating predictive
densities, instead using simulation-based bootstrap proce-
dures to approximate them nonparametrically by sampling
with replacement from regression residuals (Efron, 1979);

4. broaden the information set from univariate to multivari-
ate, conditioning as well on natural covariates like sea ice
thickness, surface air temperature, and radiative forcings,
as for example in Goulet Coulombe and Göbel (2021).

Alternatively, and of great interest, competitors may include
large-scale structural dynamical climate models. That is, given
a particular dynamical climate model, one could compare its
‘‘model-based theoretical Fig. 3’’ to the ‘‘data-based BPM Fig. 3’’
via skill score glide charts.

In any event, comparison to the BPM may prove useful for
evaluating and selecting among various more sophisticated sea
ice models – whether reduced-form or structural – which are
widely used to quantify the likely future evolution of Arctic
conditions and their two-way interaction with economic activity.
5

Replication files

(data, R code, matlab code, etc.): Available in the ancillary
materials repository at https://arxiv.org/abs/2101.10359.
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