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a b s t r a c t

Despite the clear success of forecast combination inmany economic environments, several
important issues remain incompletely resolved. The issues relate to the selection of the
set of forecasts to combine, and whether some form of additional regularization (e.g.,
shrinkage) is desirable. Against this background, and also considering the frequently-found
good performance of simple-average combinations, we propose a LASSO-based procedure
that sets some combining weights to zero and shrinks the survivors toward equality
(‘‘partially-egalitarian LASSO"). Ex post analysis reveals that the optimal solution has a very
simple form: the vastmajority of forecasters should bediscarded, and the remainder should
be averaged.We therefore propose and explore direct subset-averaging procedures that are
motivated by the structure of partially-egalitarian LASSO and the lessons learned, which,
unlike LASSO, do not require the choice of a tuning parameter. Intriguingly, in an appli-
cation to the European Central Bank Survey of Professional Forecasters, our procedures
outperform simple average and median forecasts; indeed, they perform approximately as
well as the ex post best forecaster.
© 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Forecast combination has a long and successful history
in economics.1 However, various important issues still
have not been resolved completely, related to determining
the best set of forecasts to combine (‘‘selection", e.g., via
an information criterion), how to combine those selected
(e.g., via a linear weighted average), and whether some
form of regularization (e.g., via shrinkage) is desirable,
given that the historical forecast record is often small

∗ Corresponding author.
E-mail addresses: fdiebold@upenn.edu (F.X. Diebold),

mincshin@illinois.edu (M. Shin).
1 For overviews, see Diebold and Lopez (1996), Timmermann (2006),

and Elliott and Timmermann (2016).

relative to the number of candidate forecasters. Against
this background, and also considering the frequently-found
good performance of simple-average combinations, we
propose various LASSO-inspired procedures that address
all considerations.

We proceed as follows. Section 2 highlights aspects of
the ‘‘equal-weights puzzle", that is, the frequently-found
good performance of simple-average combinations which
motivates our concerns and proposals, and also describes
our ‘‘partially-egalitarian LASSO" procedures, which shrink
and select in desirable ways. Section 3 provides an ex
post empirical assessment of our procedure’s performance.
Section 4 proposes and explores direct ex ante combina-
tion procedures motivated by the structure of partially-
egalitarian LASSO and the lessons learned. Section 5 places
ourmethods in the context of the broader literature, which
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notably includes the studies by Capistrán and Timmer-
mann (2009), Elliott (2011), Conflitti, DeMol, andGiannone
(2015), and Samuels and Sekkel (2017), among many oth-
ers. Finally, Section 6 concludes.

2. Partially-egalitarian LASSO for forecast combination

This section considersmethods for selection and shrink-
age in regression-based forecast combination. The key new
method is ‘‘partially-egalitarian LASSO" (peLASSO), but we
build up to it gradually, arriving at it in Section 2.6.

2.1. Aspects of optimal forecast combination

Although it seems natural to average forecasts (i.e., to
use equal-weight combinations), simple averages are gen-
erally suboptimal. To see the theoretical sub-optimality of
equal combining weights, consider K competing unbiased
forecasts f 1t , . . . , f Kt of yt . We form a combined forecast as

Ct = β1f 1t + β2f 2t + · · · +

(
1 −

K−1∑
k=1

βi

)
f Kt .

The corresponding forecast errors, eCt and e1t , . . . , eKt , have
variances σ 2

C and σ 2
1 , . . . , σ 2

K , and satisfy the same equality,
from which it follows that the variance of the combined
forecast error is minimized using the weight vector

β∗
=
(
Σ−1i

) / (
i′Σ−1i

)
, (1)

where Σ is the variance–covariance matrix of the forecast
errors and i is a conformable column vector of ones (Bates
& Granger, 1969). In particular, equal weights — that is,
simple averages — are generally suboptimal.2

It is well known (Granger & Ramanathan, 1984) that
the population Bates-Granger optimal combining weights
in Eq. (1) may be obtained trivially from the population
regression (linear projection) yt → f 1t , . . . , f Kt , subject to
the constraint that the coefficients add to one.3 Thus, the
theoretical optimal linear forecast combination problem is
just a population linear regression (projection) problem,
and the estimation of finite-sample combining weights
involves just a simple linear regression.

Despite the theoretical sub-optimality of equal weights,
a large body of literature has found frequent good perfor-
mances of simple averages under quadratic loss. Indeed,
the forecast combination ‘‘equal weights puzzle", empha-
sized long ago by Clemen (1989) and Diebold (1989), refers

2 As an example, consider two forecastswith uncorrelated errors. Then
Eq. (1) reduces to

β∗
=

σ 2
2

σ 2
1 + σ 2

2
=

1
1 + φ2 ,

where β∗ is the weight placed on forecast 1 and φ = σ1/σ2 . Hence, the
simple average obtains if and only if φ = 1. This is entirely natural: we
want to give more weight to the forecast with lower-variance errors, so
we take a simple average only in the equal-variance case.
3 Moreover, one can allow for biased forecasts by including an inter-

cept, and there is no real need to impose the ‘‘sum-to-one" constraint.

to the frequently-found good performance of simple aver-
ages.4 By now, though, the equal weights puzzle has been
studied thoroughly and is understood better. For exam-
ple, Aruoba et al. (2012) work in population (i.e., without
estimation error) and show that: (1) even if simple av-
erages are not fully optimal, they are likely to be much
better than any individual forecast, and (2) even if simple
averages are not fully optimal, they are likely to be close
to the optimum. In addition, Smith andWallis (2009) show
that finite-sample combining-weight estimation error can
degrade empirical attempts at optimal combination seri-
ously, which further increases the relative attractiveness of
simple averages, since they do not involve estimation.

Thus far, the discussion strongly suggests that simple
averages (equal weights) are a natural shrinkage direction
for such combining regressions. With shrinkage, we do
not force simple averages; rather, we coax things in that
direction, blending data (likelihood) informationwith prior
information. This amounts to a Bayesian approachwith the
prior centered on simple averages.

An important issue remains, however. Particularlywhen
combining large numbers of forecasts, some forecasts may
be largely redundant, or not worth including in the com-
bination for a variety of other reasons. Thus, we may
potentially want to set some combining weights to zero
(‘‘select to zero") and shrink the remaining weights toward
equality (‘‘shrink toward equality"). As we will see, LASSO-
based methods almost do the trick, as they both select
and shrink; unfortunately, though, they select to zero and
shrink to zero. In the remainder of this section we begin
by discussing the standard LASSO, which we then modify
until we arrive at our ‘‘partially-egalitarian LASSO", which
selects to zero and shrinks to equality. Interestingly, each
of the estimators introduced en route proves useful in its
implementation.5

2.2. Penalized estimation for selection and shrinkage

Consider a penalized forecast combining regression,
with ‘‘parameter budget" c ,

β̂Penalized = arg min
β

T∑
t=1

(
yt −

K∑
i=1

βifit

)2

s.t.
K∑

i=1

|βi|
q
≤ c. (2)

Equivalently, in Lagrange-multiplier form we can write

β̂Penalized = arg min
β

⎛⎝ T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ

K∑
i=1

|βi|
q

⎞⎠ ,

4 Note that the theoretical suboptimality of simple averages, and
hence the equal weights puzzle, refers to combination under quadratic
loss. Under other loss functions, equal weights may in fact be optimal. For
example, Aruoba, Diebold, Nalewaik, Schorfheide, and Song (2012) show
that equal weights are optimal under minimax loss.
5 For a broad introduction to LASSO and related procedures, see Hastie,

Tibshirani, and Friedman (2009).
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where λ depends on c. Taking λ = 0 produces Bates-
Granger OLS combining:

β̂BG = arg min
β

T∑
t=1

(
yt −

K∑
i=1

βifit

)2

.

Many estimators that select and/or shrink, both of which
are important for our purposes, fit in the penalized estima-
tion framework.6

2.3. Shrinkage toward equality: egalitarian ridge

Smooth convex penalties in Eq. (2) produce pure shrink-
age. In particular, q = 2 produces ridge regression, which
shrinks the coefficients toward zero:

β̂Ridge = arg min
β

⎛⎝ T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ

K∑
i=1

βi
2

⎞⎠ .

Taking q = 2 and centering the constraint around 1/K
produces amodified ridge regression that shrinks the coef-
ficients toward equality (‘‘egalitarian ridge", or ‘‘eRidge"):

β̂eRidge = arg min
β

⎛⎝ T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ

K∑
i=1

(
βi −

1
K

)2
)

.

eRidge is related closely to the Bayesian shrinkage com-
biningweight estimation of Diebold and Pauly (1990), who
take an empirical Bayes approach using the g-prior of Zell-
ner (1986), but it is simpler to implement.

Note that, although eRidge will feature later in this
paper (which is why we introduce it), it is inadequate for
our ultimate purpose: it shrinks in the right direction but
does not select.

2.4. Selection to and shrinkage toward zero: LASSO

As we have noted, q = 2 produces pure shrinkage
(ridge). Conversely, q → 0 produces pure selection. The
intermediate case q = 1 produces shrinkage and selection,
and is known as a LASSO estimator:

β̂LASSO = arg min
β

⎛⎝ T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ

K∑
i=1

|βi|

⎞⎠ .

The seminal reference is the paper by Tibshirani (1996).
There are several variants of LASSO. Themost important

for our purposes is ‘‘adaptive LASSO" (Zou, 2006), which
weights the terms in the penalty to encourage small first-
round coefficient estimates to be set to zero,

β̂aLASSO = arg min
β

⎛⎝ T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ

K∑
i=1

wi|βi|

⎞⎠ ,

6 One could also add additional constraints. For example, with unbi-
ased forecasts it may be natural to impose βi ≥ 0, ∀i and

∑K
i=1 βi = 1, as

per Conflitti et al. (2015), but we will not pursue that here.

where wi = 1/|β̂i|
ν
, β̂i is OLS or ridge, and ν > 0. Others

include the ‘‘elastic net" (Zou & Hastie, 2005), which uses
a convex combination of the LASSO (q = 1) and ridge
penalties (q = 2), namely

∑K
i=1(α|βi| + (1 − α)β2

i ), and
‘‘adaptive elastic net", which blends the adaptive LASSO
and elastic net penalties as

∑K
i=1(αwi|βi| + (1 − α)β2

i ).
Under some assumptions, the adaptive versions (adap-

tive LASSO and adaptive elastic net) have the so-called
‘‘oracle property".7 The elastic net variants have goodprop-
erties in handling highly-correlated predictors. The adap-
tive elastic net has both. Unfortunately, though, all LASSO
variants, while improving on ridge insofar as they both
shrink and select, remain inadequate for our purposes: they
select in the right direction (to zero) but shrink in the
wrong direction (toward zero).

2.5. Selection to and shrinkage toward equality: egalitarian
LASSO

All of the standard LASSO variants in Section 2.4 select
and shrink combining weights toward zero, but that is not
what we want. Instead, as was discussed in Section 2.1,
both theory and experience point clearly to shrinkage to-
ward simple averages. We therefore change the LASSO
penalized estimation problem to

β̂eLASSO = arg min
β

⎛⎝ T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ

K∑
i=1

⏐⏐⏐βi −
1
K

⏐⏐⏐) .

That is, instead of shrinking the weights toward zero,
we shrink the deviations from equal weights toward zero.
Appendix A shows that eLASSO implementation is straight-
forward using standard software.

Note that although eLASSO shrinks in the right direc-
tion, it is still unappealing, for reasons opposite those of the
standard LASSO. Like the standard LASSO, eLASSO shrinks
and selects, but whereas LASSO shrinks in the wrong di-
rection, eLASSO selects in the wrong direction! However,
the reason why we introduced Ridge, eRidge, LASSO, and
eLASSO was because the procedure to which we now turn,
which both shrinks and selects in the right directions, is
closely related, and because each will feature importantly
in our subsequent empirical work.

2.6. Selection to zero and shrinkage toward equality:
partially-egalitarian LASSO

eLASSO does not tend to discard forecasters, because it
selects and shrinks toward equalweights, not zeroweights.
In particular, eLASSO implicitly presumes that all forecast-
ers ‘‘belong" in the set to be combined. However, one can
easily modify the eLASSO such that some forecasters are
potentially discarded, and then the survivors are selected

7 That is, roughly speaking, they asymptotically select the data-
generating process (DGP) almost surely if it is among the models consid-
ered, and otherwise select the best predictive approximation to the DGP.
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and shrunken toward equality. We call this the ‘‘partially-
egalitarian LASSO’’.

2.6.1. One-step conceptualization
The partially-egalitarian LASSO (peLASSO) solves a pe-

nalized estimation problem with two penalties,

β̂peLASSO = argmin
β

⎛⎝ T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ1

K∑
i=1

⏐⏐⏐βi

⏐⏐⏐
+ λ2

K∑
i=1

⏐⏐⏐βi −
1

p(β)

⏐⏐⏐) , (3)

where p(β) is the number of non-zero elements in β .
The first is the standard LASSO penalty, which selects and
shrinks to zero, whereas the second selects and shrinks to
equality. The optimization of this one-step objective proves
difficult, due to the discontinuity of the objective function
at βi = 0. We therefore reserve it for future work and
proceed instead with a two-step approach.

2.6.2. Two-step implementation
The obvious two-step analog of Eq. (3) above is:

Step 1 (Select to zero): Using standard methods, select k
forecasts from among the full set of K forecasts.

Step 2 (Shrink towards equality): Using standard meth-
ods, shrink the combiningweights on the k forecasts
that survive step 1 toward 1/k.

The obvious method for step 1 is the standard LASSO,
which requires only one estimation andmoreover can han-
dle situations with K > T , which are not uncommon in
forecast combination. In our subsequent empirical work,
for example, such situations are omnipresent, as our com-
bining regressions involve more forecasters than observa-
tions.

One obvious method for step 2 is eRidge, which is
trivial to implement via a standard ridge regression with
a transformed left-hand-side variable, as is discussed in
Appendix A. One could go even farther and use eLASSO
for step 2, in which case the complete procedure would
first select some weights to zero, then select some of the
surviving weights to 1/k and shrink the rest toward 1/k.

The empirical work in Sections 3 and 4 emphasizes
combining procedures that are motivated by the two-step
peLASSO.

3. Ex post optimal peLASSO tuning

This section begins our empirical work, providing a
comparative assessment of various forecast combination
methods using the European Central Bank’s well-known
quarterly Survey of Professional Forecasters.8 Of course,
the comparative performances of our methods, using a
particular dataset and a particular implementation (choice

8 See http://www.ecb.europa.eu/stats/prices/indic/forecast/html/
index.en.html.

of sample period, choice of tuning parameters, etc.), can-
not establish anything conclusively, but the comparison
illustrates our methods in a realistic and important envi-
ronment, and provides suggestive evidence regarding the
methods’ performances.

Weemphasize that this section examines out-of-sample
RMSEs for those procedures that require the selection of a
tuning parameter λ, based on the ex post optimal λ, i.e., the
λ that optimizes the out-of-sample RMSEs that we would
have obtained ifwehad beenusing it in real time,whichwe
can determine ex post.9 Hence, we endow the forecaster
with valuable information that is not available ex ante.
Section 4 subsequently shows how to address the tuning
issue ex ante, the key to which is first to understand the
nature of the ex post solution, to which we now turn.

3.1. Background

Again, we focus on the European Central Bank’s well-
known quarterly Survey of Professional Forecasters. We
consider quarterly 1-year-ahead forecasts of Euro-area real
GDP growth (year-on-year percentage change). However,
as was noted by Genre, Kenny, Meyler, and Timmermann
(2013), forecasts are solicited for one year ahead of the
latest available outcome. For example, the 2007Q1 survey
asked the respondents to forecast the GDP growth over
2006Q3–2007Q3. Hence, our ‘‘one-year-ahead" growth
forecasts are actually only six to eight months ahead.

Wehave anunbalancedpanel, because forecasters enter
and exit in real time, in addition to which those in the
panel at any time do not necessarily respond to the survey.
Hence, for ease of analysis, we select the 23 forecasters
who responded most frequently to the surveys (1999Q1–
2016Q2), and impute missing observations using a linear
filter as per Genre et al. (2013). We start with the 1999Q1
survey because the survey began then, andwe endwith the
2016Q2 survey to ensure that all of our growth realizations
data are of the final revised form, as we now explain.

Throughout, we calculate forecast errors using ‘‘realiza-
tions" from the 2018Q1 data vintage (pulled in 2018M5,
when the latest revision of this paper was begun, and con-
tainingwhat wewill consider to be final revised data for all
quarters through 2016Q4). The first release of 2016Q4 GDP
was in 2017M2, then it went through several revisions. The
statistical agency, Eurostat, makes all ‘‘standard" revisions
by 100 days after the end of the quarter (‘‘preliminary" 30
days after, ‘‘flash" 45 days after, ‘‘regular" 60 days after,
and ‘‘updated" 100 days after), but additional non-standard
revisions sometimes occur after more than 100 days, so
we wait approximately a year, using ‘‘realizations" from
the 2018Q1 vintage, to ensure that all realizations are ap-
proximately their ‘‘final-revised" values, which is desirable
because forecasters should be forecasting trueGDP growth,
the best estimate of which is the final-revised value, not a
preliminary release.

We perform the forecast evaluation as follows. Our sur-
veys run over the period 1999Q1–2016Q2, corresponding
to growth rate forecasts 1999Q3–2016Q4. We burn in our

9 Of course, λ could be a vector, as with peLASSO.

http://www.ecb.europa.eu/stats/prices/indic/forecast/html/index.en.html
http://www.ecb.europa.eu/stats/prices/indic/forecast/html/index.en.html
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estimation using the first five forecasts 1999Q3–2000Q3,
so our actual evaluation period is 2000Q4–2016Q4. We
roll through the evaluation sample, estimating combining
weights using a 5-year (20-quarter)windowandproducing
1-year-ahead out-of-sample forecasts. For periods 6–20,
we simply estimate the forecasts using all available data
from time 1, despite that fact that there are fewer than 20
observations.10 For periods t > 20, we use a full 20-period
estimation window.

We focus on combining methods that involve regular-
ization estimators, which is essential in our context as
K > T . Our main comparison involves combined forecasts
based on Ridge, LASSO, eRidge, eLASSO, and three versions
of peLASSO (the first step is always LASSO, and the second
step is simple average, eRidge, or eLASSO).11 Throughout,
we compare the formally-combined forecasts to simple
averages.

Each combining method except simple averages re-
quires the selection of a tuning parameter, λ, which
governs the regularization strength. We examine the com-
bined forecast accuracy for many λs, ranging from a very
light penalization (small λ; all forecasters included in the
combination) to a very heavy penalization (large λ; no
forecasters included in the combination). Specifically, we
compute forecasts on a grid of 200 λs. We start with
an equally-spaced grid on [−15, 15], which we then ex-
ponentiate, producing a grid on (0, 3269017], with the
grid’s coarseness increasing with λ. This grid turns out
to be adequate for all LASSO-based combinations that we
consider.

3.2. Ex post results

Table 1 presents out-of-sample combined forecast RM-
SEs. There are many relevant observations that could be
made. In no particular order:

1. Granger-Ramanathan OLS combination is infeasible
because K > T , so we cannot include it in the table.

2. No method performs better than the best individual
forecaster. (It can happen that a combined forecast
is better than any individual forecast, but it does not
happen here.)

3. All methods perform better than the worst individ-
ual forecaster.

4. The simple average improves significantly over the
worst individual, but is still noticeably worse than
the best individual.

5. All procedures that involve selection to zero select
a very small number of forecasters on average (ap-
proximately three).

6. Ridge and LASSO perform about aswell as the simple
average, despite the fact that they shrink toward
zero weights rather than equal weights.

10 Wedo this so as to avoid the need to discard the first 20 observations,
as degrees of freedom are scarce.
11 Unlike much of the LASSO literature, we do not standardize our
data. Standardization is desirable when the regressors are measured in
different units, but such is not the casewith forecast combination, so there
is no need.

Table 1
Forecast RMSEs based on ex post optimal λs.
Regularization group RMSE λ∗ # DM p-val

Ridge 1.51 2.66 23.00 −0.14 0.56
LASSO 1.52 0.38 2.71 −0.10 0.54

eRidge 1.50 max 23.00 −1.14 0.87
eLASSO 1.50 3.60 23.00 0.95 0.17

peLASSO (LASSO, Average) 1.40 0.21 2.95 1.06 0.15
peLASSO (LASSO, eRidge) 1.40 (0.21, max) 2.95 1.06 0.15
peLASSO (LASSO, eLASSO) 1.40 (0.21, 3.10) 2.95 1.07 0.15

Comparisons RMSE λ∗ # DM p-val

Best 1.40 N/A 1 0.61 0.27
90% 1.44 N/A 1 0.63 0.27
Median 1.53 N/A 1 −0.57 0.72
10% 1.68 N/A 1 −1.61 0.94
Worst 1.74 N/A 1 −1.55 0.94

Average 1.50 N/A 23 N/A N/A

Notes: λ∗ is the ex post optimal penalty parameter(s), # is the average
number of forecasters selected, and DM is the one-sided (Diebold &Mari-
ano, 1995) statistic against a simple average, with the p-value denoted by
p-val. We compute DM as per Harvey, Leybourne, and Newbold (1999).

7. eRidge and eLASSO perform exactly as well as the
simple average. This is because the optimal regu-
larization (toward the average) turns out to be very
strong, in which case both eRidge and eLASSO pro-
duce a simple average.

8. All peLASSO methods perform identically. The rea-
son for this is as follows. They regularize identically
in the first step, by construction (all use the stan-
dard LASSO in step 1). Then, in the second step, the
‘‘LASSO, Average" method averages by construction,
and the remaining methods effectively average as
well, because heavy step-2 regularization turns out
to be optimal.

9. The peLASSO methods reduce the out-of-sample
RMSE relative to the simple average by almost ten
percent.

10. The peLASSO methods have out-of-sample RMSEs
that are as good as that of the best forecaster. This
property is reminiscent of procedures that achieve
external regret minimization in the ‘‘combining ex-
pert advice" problem, as was discussed by Arora,
Hazon, and Kale (2012), for example.

The nature of the ex post optimal solution is contained
in results 5 and 8: first discard most forecasters (result 5),
then simply average the survivors (result 8). The impor-
tance of this ‘‘trim and average" solution cannot be over-
emphasized, and we will indeed emphasize and explore it
extensively in Section 4.

Appendix B shows that the results are robust to doing
the evaluation over only periods t > 20, so that we
always have an exact 20-period estimation window. Ap-
pendix C then shows that the results are also robust (and
in fact even better) when using aLASSO rather than LASSO
in the two-step peLASSO. The trim-and-average nature
of the ex post optimal peLASSO solution remains intact
throughout: first discardmost forecasters, then average the
survivors.
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Fig. 1. RMSE as a function ofλ for various forecast combinationmethods. Notes: The lower-right panel implements step 2using egalitarian LASSO regression
on the step-1 selected forecasters, so there is an additional penalty parameter. We show RMSE as a function of the step-2 penalty, with the step-1 penalty
being fixed at its optimal value.

3.3. On the importance of λ

The results in Table 1 depend on a knowledge of the
ex post optimal λ. We get a feel for the sensitivity to λ

by showing RMSE as function of λ in Fig. 1. The lighter
gray line in each graph is the RMSE for simple averaging.
Consider first the top row of Fig. 1, in which we show the
standard ridge and standard LASSO. They perform similarly
in terms of the optimized value based on the ex post best
λ; at that point they are basically indistinguishable both

from each other and from a simple average. However, in
the limit as the penalization increases, their performances
deteriorate as all forecasters are eventually excluded and
the ‘‘combined forecasts" therefore approach zero. Finally,
note that the simple average is never beaten, including at
the ex post optimum λs.

Next, consider the second row of Fig. 1, in which we
show eRidge and eLASSO. They too perform similarly in
terms of the optimized value based on the ex post best
λ; at that point they are basically indistinguishable both
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Fig. 2. Selected forecasters. Notes: The x-axis denotes time and the y-axis denotes the forecaster ranking, where a lower y-axis location refers to a forecaster
with a smaller overall RMSE. A ‘‘+" symbol at location (x, y) indicates that forecaster ywas selected at time x.

from each other and from a simple average. However, their
penalization limits are very different. In the limit as pe-
nalization increases, eRidge, eLASSO, and simple averaging
must be (and are) identical. As in the first row of Fig. 1,
however, the simple average is never beaten.

Now consider the third row of Fig. 1, in which we
show peLASSO, in each case with step 1 performed using
the standard LASSO. The left panel implements step 2 by
simply averaging the step-1 selected forecasters, so that
there is only one penalty parameter to choose. At the ex
post optimum penalty, this two-step egalitarian LASSO
outperforms other methods, including simple averaging of
all forecasters.

The right panel of the third row of Fig. 1 implements
step 2 by eLASSO regression on the forecasters selected in
step 1, so there is a second penalty parameter to be chosen.
Denote the ex post optimal pair by (λ∗

1, λ
∗

2).We showRMSE
as a function ofλ2, withλ1 being fixed atλ∗

1. It turns out that
once we select forecasters, it is ex post optimal to shrink
those selected strongly toward a simple average; that is,
heavy step-2 penalization (large λ2) is optimal.

The key result is that, unlike other methods (rows 1 and
2 of Fig. 1), peLASSOmethods (row 3 of Fig. 1) offer at least
the possibility of beating the simple average. The remainder
of this paper explores various strategies for attaining the ex
post theoretical peLASSOgains in ex ante peLASSOpractice.

3.4. On the set of selected forecasters

One might wonder about the nature and evolution of
the set of forecasters selected by our peLASSO procedures.
The selected forecasters are identical across the proce-
dures, period-by-period, because the first step is always the
same (LASSO). We show them in Fig. 2, as we roll through
the sample. The x-axis denotes time and the y-axis denotes
forecaster ranking, where a smaller y-axis location refers
to a forecaster with smaller overall RMSE. A ‘‘+" symbol at
location (x, y) indicates that forecaster y was selected at
time x.

A number of results emerge. First, the selected set is
usually small, with three or four forecasters (as also men-
tioned earlier in conjunction with Table 1), yet also usually

‘‘democratic’’ in the sense that it is composed of some ex
post top performers, some ex post average performers, and
some ex post poor performers. Related, the ex post best
forecaster (ID 1) is not always selected, and conversely, the
ex post worst forecasters (ID’s 22 and 23) are sometimes
selected, mostly toward the end of the sample following
the Great Recession.

Second, the selected set is not dominated by any one
forecaster, or a small set of forecasters. Different forecast-
ers move in and out of the selected set as we roll through
the sample.12 This may be due to different forecasters hav-
ing different skills, which are relevant at different times.
Some may be better in recessions and others in recoveries,
some may have more insights into macro-finance interac-
tions, etc.13

Finally, although the selected set is evolving, it is not at
all independent over time; that is, the forecasters are not
exchangeable. If a forecaster is in the selected set at time t ,
it is highly likely that she will be in the selected set at time
t +1. This is evident from the many ‘‘horizontal streaks" in
Fig. 2.

4. Sophisticated averaging inspired by the ex post opti-
mal peLASSO tuning

Here, motivated by the structure of the ex post (in-
feasible) peLASSO solution, we propose and explore pro-
cedures that implement that structure directly (discard
most forecasts and average the survivors), while elimi-
nating the need for penalty parameter selection. Our pro-
cedures implicitly perform sophisticated forward-looking
cross-validation that is tailored precisely to the forecasting
problem at hand, but again, with no need for the selection
of penalty parameters.

12 The forecasters selected most frequently are ID 6 (32 out of 65
quarters), ID 1 (27 quarters), and ID 22 (25 quarters). Five forecasters are
never selected: IDs 2, 4, 7, 14, and 19.
13 Note for example the long streaks of IDs 1, 6, and 22 immediately
following the Great Recession.
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Table 2
Individual-based average-best forecast combination.
Average-best N RMSE # DM p-val

N = 1 1.46 1 0.33 0.37
N = 2 1.42 2 0.77 0.22
N = 3 1.41 3 0.84 0.20
N = 4 1.41 4 0.95 0.17
N = 5 1.42 5 1.09 0.14
N = 6 1.43 6 1.11 0.14

Average-Best ≤ Nmax RMSE # DM p-val

Nmax = 1 1.46 1.00 0.33 0.37
Nmax = 2 1.44 1.45 0.55 0.29
Nmax = 3 1.44 1.63 0.54 0.30
Nmax = 4 1.44 1.74 0.57 0.29
Nmax = 5 1.44 1.83 0.57 0.29
Nmax = 6 1.44 1.86 0.57 0.29

Comparisons RMSE # DM p-val

Best 1.40 1 0.61 0.27
90% 1.44 1 0.63 0.27
Median 1.53 1 −0.57 0.72
10% 1.68 1 −1.61 0.94
Worst 1.74 1 −1.55 0.94

Average 1.50 23 N/A N/A

Notes: # is the average number of forecasters selected, DM is the one-
sided (Diebold & Mariano, 1995) statistic against a simple average, and p-
val is the associated p-value. We compute DM as per Harvey et al. (1999).

4.1. ‘‘Average best" combination

Motivated directly by the ex post peLASSO solution, we
select a small number N of ‘‘best" forecasts and average
them. There are two ways of doing the selection: from
an individual perspective and from a portfolio perspective.
We consider the two in turn.

4.1.1. Individual-based average-best combination
At each time, rolling forward, we determine the best

N individual forecasters over the past 20 quarters, then
average their 1-year-ahead forecasts. We refer to this as
‘‘individual-based average-best N" forecast combination.

Average-best combination requires the selection of N ,
and the results of course depend on N . As is shown in
Table 2, and as expected, there is an internal optimum
(minimum) RMSE for small values of N (3 or 4) for the
individual-based average-best. Moreover, the optimized
RMSE is highly competitive: much better than the ex post
worst forecaster, noticeably better than the simple average,
and indeed about as good as the ex post best forecaster.
However, the DM statistics, are only borderline significant
at best, presumably due to the very small forecast evalu-
ation sample size, as was also the case for the infeasible
peLASSO.

There is a slight ex post aspect of the good performance
of average-best N forecasts, because the optimal N is not
known ex ante. Instead of fixing N arbitrarily, we can
proceed as follows: examine the historical performance of
average-best N for N = 1, . . . ,Nmax at each time, then pick
the best, and use that N and those forecasters to produce
the forecast. We refer to this as ‘‘individual-based average-
best ≤ Nmax" forecast combination, and it also appears in
Table 2. The RMSEs tend to drop with N , quickly reaching
an asymptote around N = 3.

Table 3
LASSO-based average-best forecast combination.
Average-best N RMSE # DM p-val

N = 1 1.56 1 −1.59 0.94
N = 2 1.53 2 −0.55 0.71
N = 3 1.45 3 0.87 0.19
N = 4 1.45 4 0.92 0.18
N = 5 1.46 5 0.86 0.20
N = 6 1.47 6 0.89 0.19

Average-best ≤ Nmax RMSE # DM p-val

Nmax = 1 1.56 1 −1.59 0.94
Nmax = 2 1.50 1.82 0.14 0.45
Nmax = 3 1.47 2.35 0.55 0.29
Nmax = 4 1.47 2.51 0.54 0.29
Nmax = 5 1.47 2.57 0.57 0.29
Nmax = 6 1.47 2.57 0.57 0.29

Comparisons RMSE # DM p-val

Best 1.40 1 0.61 0.27
90% 1.44 1 0.63 0.27
Median 1.53 1 −0.57 0.72
10% 1.68 1 −1.61 0.94
Worst 1.74 1 −1.55 0.94

Average 1.50 23 N/A N/A

Notes: # is the average number of forecasters selected, DM is the one-
sided (Diebold & Mariano, 1995) statistic against a simple average, and p-
val is the associated p-value. We compute DM as per Harvey et al. (1999).

4.1.2. Portfolio (LASSO)-based average-best combination
We have already noted the ‘‘trim and average" form of

the expost optimal peLASSO solution.However, it is impor-
tant to note that its trimming is sophisticated, inasmuch
as peLASSO does not trim the worst forecasters from an
individual perspective. Rather, peLASSO trims the worst
forecasters from a portfolio perspective; that is, those fore-
casters with the least to contribute to the combined fore-
cast. The two concepts are very different, and so farwehave
considered only the individual perspective. The portfolio
perspective suggests a related but different portfolio-based
average-best N strategy: at each time, rolling forward, use
the LASSO to determine the best N forecasters over the
relevant window, then average their forecasts. We refer
to this as ‘‘LASSO-based average-best N" forecast combi-
nation. The results appear in Table 3, which also includes
results for LASSO-based average-best ≤ Nmax combina-
tions. Surprisingly, the LASSO-based average-best forecasts
perform no better than the individual-based average-best
forecasts; in fact, they are slightly worse.

4.2. ‘‘Best average" combination

In the ‘‘average best" approach above, we select some
number of best forecasters at each time, rolling forward,
and average their forecasts. Here, we move to a ‘‘best aver-
age" approach, instead selecting directly over averages. At
each time, rolling forward, we simply find the historically
best-performing average, and use it. Best-average is the
more direct approach.

A first strategy is ‘‘best N-average": at each time we
determine the best-performing N-forecast average over a
20-quarter window and use it. A second strategy is ‘‘best
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Table 4
Best-average forecast combination.
Best N-average RMSE # DM p-val

N = 1 1.46 1 0.33 0.37
N = 2 1.41 2 0.80 0.21
N = 3 1.42 3 0.78 0.22
N = 4 1.41 4 0.92 0.18
N = 5 1.42 5 1.11 0.13
N = 6 1.42 6 1.28 0.10

Best ≤ Nmax-average RMSE # DM p-val

Nmax = 1 1.46 1 0.33 0.37
Nmax = 2 1.44 1.52 0.61 0.27
Nmax = 3 1.44 1.72 0.60 0.27
Nmax = 4 1.44 1.80 0.60 0.28
Nmax = 5 1.44 1.83 0.61 0.27
Nmax = 6 1.44 1.83 0.61 0.27

Comparisons RMSE # DM p-val

Best 1.40 1 0.61 0.27
90% 1.44 1 0.63 0.27
Median 1.53 1 −0.57 0.72
10% 1.68 1 −1.61 0.94
Worst 1.74 1 −1.55 0.94

Average 1.50 23 N/A N/A

Notes: # is the average number of forecasters selected, DM is the one-
sided (Diebold & Mariano, 1995) statistic against a simple average, and p-
val is the associated p-value. We compute DM as per Harvey et al. (1999).

≤ Nmax-average": at each time we determine the best-
performing ≤ Nmax-forecast average by means of a 20-
quarter window and use it.

Best-average combining can involve significant compu-
tation, depending on K and N or Nmax. For example, with
23 forecasters, finding the best six-average requires the
computation of 23C6 (= 100,947) simple averages, which
must then be sorted to determine the minimum, each pe-
riod aswe roll through time. The per-period computational
burden of ≤ Nmax-forecast averaging is still larger, because
we now consider all subsets. For example, finding the best
≤ 6-average with 23 forecasters requires the computation
of 23C6 +23 C5 + · · · +23 C1 (= 145,498) simple averages,
which must then be sorted to determine the minimum.
Fortunately, the relevant K and Nmax are quite small in
typical economic forecast combinations. In our case, for
example, K = 23, and Nmax ≤ 6 appears more than
adequate.

Table 4 shows results for both the best N-average com-
binations (N = 1, . . . , 6) and the best ≤ Nmax-average
combinations (Nmax = 1, . . . , 6). For both variations, the
optima are achieved for small values of N or Nmax. One
might expect best-averagemethods to outperformaverage-
best, because best-average targets the object of interest di-
rectly. However, best-average does not outperform, though
it does not underperform either: it is at least as good as
anything else. The best-average≤ 6RMSE is almost as good
as that of the best individual, much better than that of the
median individual, and, importantly, better than that of the
simple average.

4.3. Window width estimation

The essence of the rolling best-average approach is sim-
ply to use the particular average that has performed best

Table 5
Forecast combination.
Best
(≤ 6,W )-average

RMSE #N #W DM p-val

W = 1 1.42 1.14 1 1.14 0.13
W = 2 1.36 1.54 2 1.50 0.07
W = 3 1.37 1.45 3 1.41 0.08
W = 4 1.40 1.29 4 1.10 0.14
W = 5 1.42 1.41 5 0.93 0.18
W = 6 1.42 1.43 6 0.81 0.21
W = 7 1.44 1.43 7 0.65 0.26
W = 8 1.46 1.54 8 0.41 0.34
W = 9 1.47 1.70 9 0.37 0.36
W = 10 1.46 1.70 10 0.43 0.33
W = 15 1.44 1.77 15 0.66 0.26
W = 20 1.44 1.78 20 0.61 0.27
W = 25 1.46 1.57 25 0.40 0.34
W = 30 1.48 1.62 30 0.19 0.42
W = 35 1.48 1.67 35 0.29 0.39
W = 40 1.48 1.74 40 0.22 0.41

Best
(≤ 6, ≤ 40)-average

1.38 1.38 2.02 1.24 0.11

Comparisons RMSE #N #W DM p-val

Best 1.40 1 N/A 0.61 0.27
90% 1.44 1 N/A 0.63 0.27
Median 1.53 1 N/A −0.57 0.72
10% 1.68 1 N/A −1.61 0.94
Worst 1.74 1 N/A −1.55 0.94

Average 1.50 23 N/A N/A N/A

Notes: #N is the average number of forecasters selected, #W is the
average windowwidth selected, DM is the one-sided (Diebold &Mariano,
1995) statistic against a simple average, and p-val is the associated p-
value. We compute DM as per Harvey et al. (1999).

in the ‘‘recent" past. However, there is of course no reason
why the appropriate notion of ‘‘recent" (that is, the appro-
priate choice W of the most recent W quarters for evalua-
tion) should be W = 20. Using a more complete notation,
let us denote our earlier bestN-average as the best (N, 20)-
average, to indicate both an N-forecast average and a 20-
period evaluationwindow. Generically, then, we can speak
of the best (N,W )-average or best (≤ Nmax,W )-average
combinations.

The first panel of Table 5 shows results for the best
(≤ Nmax,W )-average combinations, with Nmax = 6 and W
ranging from 1 to 40. The RMSE performance of the best
(≤ 6,W )-average approach is relatively insensitive to W ,
but is clearly optimized for very small values ofW , around
2 or 3. Interestingly, the average number of forecasters
selected around the optimal W is also very small (N ≈

2). Thus, the optimal procedure (best (≤ 6, 2)-average) is
very ‘‘localized": each period it basically averages the two
forecasts of the two forecasters who have performed the
best during the past two quarters. It has an RMSE that is
better than that of the ex post best forecaster, and much
better than that of the average forecaster, with a DM p-
value of 0.07.

We can also allow for a time-varying windowwidthW ;
that is, we can work with best (≤ Nmax, ≤ Wmax)-averages,
which are completely ex ante. They turn out to work very
well: the best (≤ 6, ≤ 40)-average (in the one-line middle
panel of Table 5) has an RMSE that is better than that of the
best forecaster, and much better than that of the average
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forecaster,with aDM p-value of 0.11. All told, allowing for a
time-varying windowwidth appears to be highly valuable.

5. Related literature

Now that we have introduced our approach, we can
relate it to certain aspects of the broader literature.

5.1. On selection

The structure of the peLASSO solution, which moti-
vates our direct average-best and best-average procedures,
clearly involves harsh ‘‘trimming", resulting in the elim-
ination of most forecasters. Trimming has been used in
forecast combination by many authors, such as Aiolfi and
Favero (2005), Aiolfi and Timmermann (2006), Bjørnland,
Gerdrup, Jore, Smith, and Thorsrud (2012), Genre et al.
(2013) and Stock and Watson (1999). However, as was
noted by Granger and Jeon (2004), the attractiveness of
trimming may be ‘‘more of a pragmatic folk-view than
anything based on a clear theory".

One can view our results as showing the clear emer-
gence of the ‘‘folk view" in a framework rigorously based
on a ‘‘clear theory". In particular, although in principle
the peLASSO solution need not involve trimming (i.e., it
is possible for the peLASSO solution to feature shrink-
age but not selection), we have shown that in practice
it does, and indeed that it involves heavy trimming. In-
terestingly, Samuels and Sekkel (2017) obtain the same
result using a very different approach based on the ‘‘model
confidence sets" of Hansen, Lunde, and Nason (2011). Note,
moreover, that both our trimming procedure (in peLASSO,
LASSO-based average-best, and best-average) and that of
Samuels and Sekkel (2017) are generally quite
sophisticated, inasmuch as they trim from a portfolio per-
spective rather than a stand-alone perspective. Most im-
pressively, Conflitti et al. (2015) impose sum-to-one and
non-negativity constraints, which lead to a sparse solution
(that is, some of the combination weights are exactly zero)
with combining weights shrunken – indeed forced – to
be within [0, 1], all of which is in close touch with the
concerns of forecast combination.14

5.2. On shrinkage

Several authors have considered Bayesian shrinkage of
combining weights. As is well known, under standard con-
ditions the Bayes rule under quadratic loss is

β1 = β0 + δ

(
β̂OLS − β0

)
,

where β1 is the posterior mean combining weight vector,
β0 is the prior mean vector, and δ ∈ [0, 1] is related
inversely to the prior precision. Other things being equal,
a small value of δ implies a high prior precision, and hence,
substantial shrinkage toward β0. The larger the value of
δ, the less shrinkage occurs. Different authors invoke dif-
ferent shrinkage directions (prior means) and different
ways of choosing δ. Relevant studies include those by Aiolfi

14 Their estimator can be shown to be a special case of LASSO.

and Timmermann (2006), Chan, Stock, andWatson (1999),
Diebold and Pauly (1990), Genre et al. (2013) and Stock and
Watson (2004).

In an interesting development, Capistrán and Timmer-
mann (2009) take a reverse approach. Whereas Bayesian
shrinkage adjusts least-squares combiningweights toward
a simple average, Capistrán and Timmermann (2009) start
with a simple average and adjust away from it via aMincer–
Zarnowitz regression, yt → c, f̄t .

5.3. Relatives of peLASSO

The reverse approach of Capistrán and Timmermann
(2009) has an interesting connection to the so-called ‘‘OS-
CAR LASSO" proposed by Bondell and Reich (2008), which
is also related closely to our methods.

First let us introduce OSCAR. It is defined by the penal-
ized regression:

β̂OSCAR = arg min
β

T∑
t=1

(
yt −

K∑
i=1

βixit

)2

s.t. (1 − γ )
K∑

i=1

|βi| + γ
∑
j<k

max
{
|βj|, |βk|

}
≤ c. (4)

The first part of the constraint involves the L1 norm; it
is just the standard LASSO constraint, producing selection
and shrinkage toward zero. The second part of the con-
straint involves the pairwise L∞ norm, which selects and
shrinks toward equal coefficients. Overall, then, OSCAR re-
gression encourages parsimony not only in standard LASSO
fashion, but also by encouraging a small number of unique
nonzero coefficients on surviving covariates.15

Now let us link to Capistrán and Timmermann (2009).
Suppose that the OSCAR solution is ‘‘all coefficients are the
same". This can occur because of the second part of the
OSCAR constraint. Then the combined forecast is

Ĉt = β̂

K∑
i

fi,t

= α̂

(
1
K

K∑
i=1

fi,t

)
,

which is the forecast we get by projecting the realized
outcome onto equal-weight forecasts, as per Capistrán and
Timmermann (2009). The OSCAR solution may also have
more than one unique coefficient. In particular, it may have
multiple groups, as for example with

Ĉt = β̂1

∑
i∈G1

fi,t + β̂2

∑
i∈G2

fi,t

= α̂1

⎛⎝ 1
N1

∑
i∈G1

fi,t

⎞⎠+ α̂2

⎛⎝ 1
N2

∑
i∈G2

fi,t

⎞⎠ ,

15 Note however that, although OSCAR shrinks toward ‘‘equal weights’’,
the equal weights need not correspond to simple averages (e.g., each of
three selected forecasters might get a weight of 1/2). This is potentially
very important in our context.
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where Gk = {i : β̂i = β̂k} andNk is the size of group Gk. The
approaches of Aiolfi and Timmermann (2006) and Genre
et al. (2013), which allow for grouping, are in the same
spirit, as are the ‘‘homogeneity pursuit" procedure of Ke,
Fan, and Wu (2015) and the ‘‘HORSES" procedure of Jang,
Lim, Lazar, Loh, and Yu (2015).

5.4. Relatives of average-best and best-average

The work of Burgi and Sinclair (2017) is related to our
average-best approach, as it essentially amounts to a re-
finement of our ‘‘individual" average-best. They proceed
as follows: (1) for each forecaster, calculate a variable that
takes a value of one in a given period if that forecaster has a
lower squared error in that period than the simple average
and zero otherwise16; (2) if a forecaster beats the simple
average more often than a given percentage threshold p,
include that forecaster in the selected subset for the next
forecasting period; and finally (3) average over the selected
forecasters.

However, the work that is related most closely to ours
is the seminal (and, to the best of our knowledge, relatively
unknown) work of Elliott (2011), who examines the gains
from optimal combination relative to simple averaging,
provides conditions under which the two are equivalent,
and explores aspects of what he calls ‘‘best subset aver-
aging". Effectively, we provide a foundation for Elliott’s
subset-averaging procedures, which initially appear ad hoc
in theory, even if highly effective in practice. That is, we
show that Elliott’s procedures are not ad hoc in theory.

6. Concluding remarks

Against a background of frequently-found superiority
of simple-average forecast combinations, we have pro-
posed ‘‘partially egalitarian LASSO" (peLASSO) procedures
that discard some forecasts and then select and shrink —
without forcing — the remaining forecasts toward equal
weights. We found that the peLASSO solution involves dis-
carding most forecasters and simply averaging the
survivors. We have therefore proposed alternative direct
combinationprocedures,most notably ‘‘best average" com-
binations, and showed that they seem highly competi-
tive for out-of-sample forecasting. In particular, they often
dominate simple averages in forecasting Eurozone GDP
growth.

A key insight is that the structure and success of our
averaging procedures are entirely motivated by and con-
sistent with the lessons learned from peLASSO. Among
other things, we learn from peLASSO that (1) the selection
penalty should be quite harsh, as only a few forecasts need
be combined; (2) the forecasts selected for combination
should be regularized via shrinkage; (3) the shrinkage di-
rection should be toward a simple average, not toward zero
or anything else; and (4) the shrinkage should be extreme,
so that the selected forecasts should simply be averaged.

16 The time-average of this variable is the historical percentage share of
times that the forecaster has beaten the average.

All of this is embedded in our best ≤ (Nmax,Wmax)-average
procedure, for small values of Nmax andWmax.
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Appendix A. Egalitarian LASSO and egalitarian ridge im-
plementation

The egalitarian LASSO can be implemented via a
straightforward adaptation of standard LASSO software,
such as the R package glmnet, written by J. Friedman, T.
Hastie, N. Simon, and R. Tibshirani and found at https://
cran.r-project.org/web/packages/glmnet/index.html. Sim-
ply note that

T∑
t=1

(
yt −

K∑
i=1

βifit

)2

+ λ

K∑
i=1

⏐⏐⏐βi −
1
K

⏐⏐⏐
=

T∑
t=1

(
yt − f̄t + f̄t −

K∑
i=1

βifit

)2

+ λ

K∑
i=1

⏐⏐⏐βi −
1
K

⏐⏐⏐
=

T∑
t=1

(
(yt − f̄t ) +

K∑
i=1

(
1
K

− βi

)
fit

)2

+ λ

K∑
i=1

⏐⏐⏐βi −
1
K

⏐⏐⏐
=

T∑
t=1

(
(yt − f̄t ) −

K∑
i=1

δifit

)2

+ λ

K∑
i=1

|δi|,

where

δi = βi −
1
K

and f̄t =
1
K

K∑
i=1

fit .

Hence, we obtain the egalitarian LASSO regression

yt →EgalLASSO f1t , . . . , fKt ,

by simply running the standard LASSO regression

(yt − f̄t ) →LASSO f1t , . . . , fKt . (A.1)

Similarly, the egalitarian ridge can be implemented triv-
ially by (yt − f̄t ) →Ridge f1t , . . . , fkt , in precise parallel with
egalitarian LASSO implementation.

https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
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Appendix B. Equal-length, 20-quarter evaluation win-
dows

Here, we start from t = 21 rather than t = 6 when
evaluating forecasts, and hence, the estimation samples are
always of length 20. The results, reported in Table B.1, are
identical qualitatively to those reported in the main text,
for which the estimation sample sizes grow to t = 21, after
which they are always of length 20.
Table B.1
Forecast RMSEs based on ex post optimal λs, evaluation starts at t = 21.
Regularization group RMSE λ∗ # DM p-val

Ridge 1.60 2.29 23.00 0.65 0.26
LASSO 1.61 0.38 2.78 0.22 0.42

eRidge 1.58 1.97 23.00 0.96 0.17
eLASSO 1.60 0.51 23.00 0.82 0.21

peLASSO (LASSO, Average) 1.51 0.21 3.12 1.14 0.13
peLASSO (LASSO, eRidge) 1.50 (0.21, 3.10) 3.12 1.06 0.15
peLASSO (LASSO, eLASSO) 1.50 (0.21, 0.51) 3.12 1.03 0.16

Comparisons RMSE λ∗ # DM p-val

Best 1.49 N/A 1 0.76 0.23
90% 1.54 N/A 1 0.93 0.18
Median 1.65 N/A 1 −0.38 0.65
10% 1.82 N/A 1 −1.37 0.91
Worst 1.90 N/A 1 −1.46 0.92

Average 1.64 N/A 23 N/A N/A

Notes: λ∗ is the ex post optimal penalty parameter(s), # is the average
number of forecasters selected, and DM is the one-sided (Diebold &
Mariano, 1995) statistic against a simple average, with p-value denoted
p-val. We compute DM as per Harvey et al. (1999).

Appendix C. Adaptive partially-egalitarian LASSO

We change the LASSO penalty from λ
∑K

k=1 |βk| to λ∑K
k=1

1
|β̂|

1/3 |βk|, where β̂ is a preliminary consistent esti-
mator, which we set to the Ridge regression estimate. The
use of aLASSO improves the ex post performance of two-
step LASSO procedures, as can be seen from Table C.1.
Table C.1
RMSEs based on ex post optimal λs, using the adaptive lasso.
Regularization group RMSE λ∗ # DM p-val

Ridge 1.51 2.66 23.00 −0.02 0.51
LASSO 1.46 0.80 2.09 0.22 0.41

eRidge 1.49 1.97 23.00 0.15 0.44
eLASSO 1.50 max 23.00 0.55 0.29

peLASSO(aLASSO, Average) 1.33 1.08 1.69 0.95 0.17
peLASSO (aLASSO, eRidge) 1.33 (1.08, max) 1.69 0.95 0.17
peLASSO (aLASSO, eLASSO) 1.33 (1.08, max) 1.69 0.95 0.17

Comparisons RMSE λ∗ # DM p-val

Best 1.40 N/A 1 0.61 0.27
90% 1.44 N/A 1 0.63 0.27
Median 1.53 N/A 1 −0.57 0.72
10% 1.68 N/A 1 −1.61 0.94
Worst 1.74 N/A 1 −1.55 0.94

Average 1.50 N/A 23 N/A N/A

Notes: λ∗ is the ex post optimal penalty parameter(s), # is the average
number of forecasters selected, and DM is the one-sided (Diebold &
Mariano, 1995) statistic against a simple average, with p-value denoted
p-val. We compute DM as per Harvey et al. (1999).
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