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Introduction

This presentation looks best in full-screen mode.

If you aren’t sure how to do that, you can probably find a command named
something like “Full Screen” or “Presentation” in the “View” menu.
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Introduction

Mathematicians are endlessly concerned with proofs.

The purpose of these slides is to provide an introduction to the idea that,
even within mathematics, there are qualitatively different kinds of proofs.
And perhaps to hint at why the branch of mathematics known as Proof
Theory has something to say about these different kinds of proofs.

It’s helpful to introduce a toy problem, a simple example that still
illustrates the main idea.

In this case the “toy” part is taken a bit literally.
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Introduction

The example is long, but interesting in its own right.

It’ll take a while, but
we’ll return to proofs and Proof Theory in the end.
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Explaining Chomp Definition of the Game

Chomp is a game played on a bar of chocolate

that has been divided into a
grid and had the square in the top left poisoned!

The game is played between two players, who we’ll call Alice and Bob.
Alice and Bob take turns choosing a square to remove, together with the
rectangle of squares below or to the right. Whichever player is forced to
take the poisoned square loses. The bar of chocolate can be divided into
many grids of many different sizes, so there are many possible games of
Chomp.
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Explaining Chomp An Example

Here’s an example game, starting with a 3x3 board.

Recap:

A

Alice’s play
B

Bob’s play

A

Alice’s play

B

Bob’s play

Alice’s turn to play

Alice has to move, so she’s forced to take the poison piece. Bob wins this
time!

6 / 39



Explaining Chomp An Example

Here’s an example game, starting with a 3x3 board.

Recap:

A

Alice’s play
B

Bob’s play

A

Alice’s play

B

Bob’s play

A

Alice’s play

Alice has to move, so she’s forced to take the poison piece. Bob wins this
time!

6 / 39



Explaining Chomp An Example

Here’s an example game, starting with a 3x3 board.
Recap:

A

Alice’s play

B
Bob’s play

A

Alice’s play

B

Bob’s play

Bob’s turn to play

Alice has to move, so she’s forced to take the poison piece. Bob wins this
time!

6 / 39



Explaining Chomp An Example

Here’s an example game, starting with a 3x3 board.
Recap:

A

Alice’s play

B
Bob’s play

A

Alice’s play

B

Bob’s play

B

Bob’s play

Alice has to move, so she’s forced to take the poison piece. Bob wins this
time!

6 / 39



Explaining Chomp An Example

Here’s an example game, starting with a 3x3 board.
Recap:

A

Alice’s play
B

Bob’s play

A

Alice’s play

B

Bob’s play

Alice’s turn to play

Alice has to move, so she’s forced to take the poison piece. Bob wins this
time!

6 / 39



Explaining Chomp An Example

Here’s an example game, starting with a 3x3 board.
Recap:

A

Alice’s play
B

Bob’s play

A

Alice’s play

B

Bob’s play

A

Alice’s play

Alice has to move, so she’s forced to take the poison piece. Bob wins this
time!

6 / 39



Explaining Chomp An Example

Here’s an example game, starting with a 3x3 board.
Recap:

A

Alice’s play
B

Bob’s play

A

Alice’s play

B

Bob’s play

Bob’s turn to play

Alice has to move, so she’s forced to take the poison piece. Bob wins this
time!

6 / 39



Explaining Chomp An Example

Here’s an example game, starting with a 3x3 board.
Recap:

A

Alice’s play
B

Bob’s play

A

Alice’s play

B

Bob’s play

B

Bob’s play

Alice has to move, so she’s forced to take the poison piece. Bob wins this
time!

6 / 39



Explaining Chomp An Example

Here’s an example game, starting with a 3x3 board.
Recap:

A

Alice’s play
B

Bob’s play

A

Alice’s play

B

Bob’s play

Alice’s turn to play

Alice has to move, so she’s forced to take the poison piece. Bob wins this
time!

6 / 39



Explaining Chomp An Example

Here’s an example game, starting with a 3x3 board.
Recap:

A

Alice’s play
B

Bob’s play

A

Alice’s play

B

Bob’s play

A

Alice’s play

Alice has to move, so she’s forced to take the poison piece. Bob wins this
time!

6 / 39



Winning Strategies For the Nx1 Board

In some games, one player has a winning strategy. That means that
there’s a technique for playing which always works, no matter what the
other player does.

For example, when N is any integer larger than 1, when Chomp is played
on a Nx1 board, the player who goes first always wins.

Alice just takes everything other than the poison, forcing Bob to lose on
his very first move.
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there’s a technique for playing which always works, no matter what the
other player does.

For example, when N is any integer larger than 1, when Chomp is played
on a Nx1 board, the player who goes first always wins.

Bob’s turn to play

Alice just takes everything other than the poison, forcing Bob to lose on
his very first move.
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Winning Strategies For the 2x2 Board

Usually, however, Bob will get a chance to respond to Alice by making his
own moves.

In order to have a winning strategy, Alice has to be prepared
for every eventuality. For instance, on a 2x2 board, Alice still has a
winning strategy.

A
Alice’s play

B

Bob’s play

B

Bob’s play

A
Alice’s play

Bob’s turn to play

B
Bob’s play

A

Alice’s play

Bob’s turn to play
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Alice’s first move will be to nibble the lower right corner.
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If Alice is lucky, Bob will eat the poison immediately, handing her the
game. . .
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If Alice is lucky, Bob will eat the poison immediately, handing her the
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Instead, Bob might play like this. In which case Alice retaliates like this,
and Bob is forced to eat the poison.
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But Bob isn’t out of options! Remember that Alice has to be able to
defeat anything Bob does.
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But Bob isn’t out of options! Remember that Alice has to be able to
defeat anything Bob does. What if, instead, Bob plays like this? Then
Alice responds like this, and once again Bob has to take the poison.
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Winning Strategies For the 2x2 Board

Usually, however, Bob will get a chance to respond to Alice by making his
own moves. In order to have a winning strategy, Alice has to be prepared
for every eventuality. For instance, on a 2x2 board, Alice still has a
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No matter what Bob does, Alice has a response. So Alice has a winning
strategy: a rule for playing that guarantees her victory against any
opponent.

8 / 39



Winning Strategies Infeasible

In order to demonstrate that the player who went first had a winning
strategy on a 2x2 board, we exhaustively listed all ways the game could
play.

An extremely literal person might insist that this is the only way to discuss
a winning strategy: that a proper winning strategy must consist of a
complete list of all possible moves and the correct response to them.

That’s fine for a very small game, but when we think about bigger boards,
that’s going to become unwieldy very quickly.

As mathematicians, we’re prepared to accept less than that. We’ll accept
a proof that someone has a winning strategy—that is, a rigorous argument
that the person can always win—in place of a giant book of moves.
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Winning Strategies For the Square Board

Let’s show that the player who goes first has a winning strategy in every
game of Chomp on a square board bigger than 1x1.

Bob’s turn to play

Alice ensures that both legs get used up at the same time, with Bob stuck
taking the poisoned piece in the middle.

10 / 39



Winning Strategies For the Square Board

Let’s show that the player who goes first has a winning strategy in every
game of Chomp on a square board bigger than 1x1.

Alice’s turn to play

Bob’s turn to play

Alice ensures that both legs get used up at the same time, with Bob stuck
taking the poisoned piece in the middle.

10 / 39



Winning Strategies For the Square Board

Let’s show that the player who goes first has a winning strategy in every
game of Chomp on a square board bigger than 1x1.

Alice’s play

A

Bob’s turn to play

The first thing to do is to grab the space just below and right of the
poison.

Alice ensures that both legs get used up at the same time,
with Bob stuck taking the poisoned piece in the middle.

10 / 39



Winning Strategies For the Square Board

Let’s show that the player who goes first has a winning strategy in every
game of Chomp on a square board bigger than 1x1.

Bob’s turn to play

Bob’s turn to play

The first thing to do is to grab the space just below and right of the
poison. Bob is left with two long skinny legs to play in.
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B

Bob’s turn to play

The only way to affect both legs is to take the poison, so Bob has to pick
one leg to play it. No matter what he does in one leg. . .

Alice ensures
that both legs get used up at the same time, with Bob stuck taking the
poisoned piece in the middle.
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Let’s show that the player who goes first has a winning strategy in every
game of Chomp on a square board bigger than 1x1.

Alice’s play
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Winning Strategies For the Square Board

So Alice has a winning strategy on every square board.

We didn’t actually list all the possible moves, but we did something better:
we gave a description of Alice’s strategy, and (briefly) explained why it
always works.
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Winning Strategies 1x1

Does Bob ever get to win?

Well, Bob wins on the 1x1 board:

Alice’s turn to play

But that doesn’t exactly count.
Other than that, the answer is no: there is no size board other that 1x1
where the second player has a winning strategy.
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The Absence of a Winning Strategy Statement

Theorem
There is no size board other that 1x1 where the second player has a
winning strategy.

To prove this, we’ll use a proof by contradiction.

We’ll pretend that the second player does have a winning strategy, and
show that it doesn’t work.

So suppose Bob announces that he has uncovered a masterful technique
that allows him to win all games on, say, a 7x4 board, when he goes
second.

(The same method will work with any other size board—except for the
1x1.)
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The Absence of a Winning Strategy Proof

Alice’s turn to play

Alice agrees to play against Bob’s marvelous strategy.
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Alice’s first move is to nibble the lower right corner in one game. She tells
Bob to go ahead and make his move in the first game, because she’s still
thinking about the second game. Bob has his master strategy to use, so
he ignores the second game and makes his “perfect response” to Alice’s
move in the first game.
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Alice thinks that move looks pretty good, so she makes the same move in
the second game. Now she waits for Bob’s response in the second game.
And once she gets it,She copies it back to the first game.
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Bob wins

A

Alice wins

B

Alice just keeps copying Bob’s moves from one game to the other. Alice
has tricked Bob into playing against his own strategy. So even though Bob
is sure to win in one game. . . he’s sure to lose in the other!
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The Absence of a Winning Strategy Proof

Alice just keeps copying Bob’s moves from one game to the other. Alice
has tricked Bob into playing against his own strategy. So even though Bob
is sure to win in one game. . . he’s sure to lose in the other!
So Bob’s “winning strategy” doesn’t always win after all.
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The Absence of a Winning Strategy Wrap-up

This shows that that the second player can’t have a winning strategy in
any game other than the 1x1.

A winning strategy should be able to win
every single game, and we can guarantee that the first player will win one
out of a pair of games.

Does that mean that the first player always has a winning strategy? The
only other possibility is that neither player has a winning strategy. Is it
possible that on some boards neither player has a winning strategy?

No!
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The Absence of a Winning Strategy Wrap-up

Theorem
Every game of Chomp is determined: either the first player has a winning
strategy, or the second player has a winning strategy.

The proof of this theorem involves a small detour, so I’ll leave it out.(For
completeness, it’s included in an appendix at the end of the slides.)
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The Absence of a Winning Strategy Recap

So we now know that:

• In every game of Chomp, either the first player or the second player
has a winning strategy, and

• Except for the 1x1 board, the second player does not have a winning
strategy.

So the first player must always have a winning strategy!

What is it?

We proved that there is a winning strategy, but we didn’t find out what it
was!
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Effective and Non-Effective Proofs History

We’ve seen two different proofs that Alice has winning strategies for
various games of Chomp.

For square boards, we actually explained what Alice’s strategy was. This is
called an effective proof.

For arbitrary boards, we proved that Alice has a winning strategy, but we
have no idea what it is. This is a non-effective proof.

If all we care about is whether or not we should spend our time trying to
find a winning strategy for Bob, the difference may not matter. But if
we’re about to go play in the National Chomp Championships, knowing
there is a winning strategy doesn’t do us much good if we don’t know
what that strategy is.
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Effective and Non-Effective Proofs History

Non-effective proofs first appeared in mathematics towards the end of the
1800’s.

When they first appeared, non-effective proofs were controversial. Some
mathematicians argued that non-effective proofs weren’t proofs at all.
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Effective and Non-Effective Proofs History

Today, almost all mathematicians accept non-effective proofs as
mathematically valid.

But even if a non-effective proof convices us that something is true,
sometimes we’d like an effective proof anyway.

Like in the case of Chomp:knowing that there exists some winning strategy
in principle doesn’t give us any clue how to win the game if we actually
play it.
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The field of mathematics known as Proof Theory investigates what we can
expect to say about the nature of mathematical proof itself.

Some typical proof theoretic questions we might ask, in light of the
examples we have just seen:

• Are there theorems which don’t have any effective proof?

• Alternatively, is there a systematic way to turn every non-effective
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exactly what it means to be a proof, and what it means for a proof to be
effective. This is a problem that involves both mathematics—to make the
definition precise, and to use it to prove interesting things—and
philosophy, to determine whether the formal notions we come up with
actually encompass the informal ideas we started with.
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Some typical proof theoretic questions we might ask, in light of the
examples we have just seen:

• Are there theorems which don’t have any effective proof?

• Alternatively, is there a systematic way to turn every non-effective
proof into an effective one?

For instance, it turns out that we could mean several different things by an
“effective” proof, and the answers to the questions above depend on which
one we mean.
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Effective and Non-Effective Proofs Notions of effectiveness

Let’s consider three possible ways to try to pin down what makes an
effective proof that Alice has a winning strategy different from a
non-effective one.

An effective proof should always give Alice a method to
determine, at each step, what her next move should be. The problem is
that we have to decide what counts as a method.

Possibility 1: A “method” is just a computer program: there should be
some way to instruct a computer so that Alice can type in the size of the
board and what Bob’s move is, and the computer will output a winning
response for her. This has been the standard interpretation of what a
“method” means in mathematics since about the 1930’s. (Rather before
mathematicians—or anyone—had computers to try this out on.)

Let’s call this the computability interpretation of effectiveness.
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Effective and Non-Effective Proofs Notions of effectiveness

Working with the computability interpretation of effectiveness is at the
heart of the area of mathematics known as proof theory, and the source of
its interaction with the area known, naturally, as computability theory.

For example:

• There are theorems which have no proofs which are computably
effective, but

• There are kinds of theorems which always have computably effective
proofs, and

• For those kinds of theorems, there is a systematic way of turning
non-effective proofs into effective ones, known as proof mining.

Sadly, there’s a catch.
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Effective and Non-Effective Proofs Notions of effectiveness

Our non-effective proof that Alice has a winning strategy gives an example.

The theorem that Alice has a winning strategy for Chomp is the kind of
theorem which always has an effective proof.

Proof mining assures us that the proof gives Alice the following winning
strategy:

• List all possible games of Chomp on the given size board.

• The game Chomp is finite, so there are only finitely many possible
games, and it is possible to simply write down every possibility.

• These moves can be arranged in a “tree”, listing all Alice’s moves,
then for each of her moves, all of Bob’s possible responses, and so on.
From this tree, it is possible to read off a winning strategy.
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Effective and Non-Effective Proofs Notions of effectiveness

That fits the definition of what a computer can do, but it’s not very
satisfying in this case—the strategy it gives us is “play out all possible
future games and pick a move which guarantees victory in all of them”.
Maybe we should change what counts as a method for purposes of being
an effective proof.

Possibility 2: A method for Alice to determine her next move should be an
insightful strategy which makes use of an actual understanding of the
game.

Let’s call this the insightful interpretation of effectiveness.
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Effective and Non-Effective Proofs Notions of effectiveness

Certainly an insightful strategy is what we’d really like to have.

But that’s not really a definition, since now we have to decide what counts
as insightful, which just pushes the problem off one more step. Despite
plenty of effort, we don’t know any way to formalize what counts as an
insightful proof, and it’s not clear that we ever will.

Without a formal definition, we can be happy when we have insightful
strategies, but we can’t hope to prove abstract theorems about all possible
insightful proofs.
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Effective and Non-Effective Proofs Notions of effectiveness

One more attempt at formalizing “effective”:

Possibility 3: Alice’s method should be given by an efficient computer
program.

Let’s call this the efficiency interpretation of effectiveness.
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Effective and Non-Effective Proofs Notions of effectiveness

Once again, we’ve just pushed the problem off onto characterizing
efficiency.

Fortunately, there is a precise notion of what it means for a computer
program to be efficient (actually, there are lots of such notions). Once we
fill in which kind of efficiency we mean, we have a notion of effectiveness.
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Effective and Non-Effective Proofs Notions of effectiveness

The study of what it means for a computer program to be efficient is the
branch of computer science known as computational complexity. The
common interest in effective proofs leads to an overlap between this area
of computer science and proof theory.

Unfortunately, the efficiency interpretation of effectiveness doesn’t have
the same nice properties as the computability interpretation:

• There are theorems which have no efficiently effective proofs, and

• There is no way to reliably tell what they are, and

• Even if we think a theorem should have an efficiently effective proof,
there’s no reliable way to find it.
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Effective and Non-Effective Proofs Notions of effectiveness

All three notions of effectiveness are being actively studied.

• The computability interpretation is mostly studied by mathematicians,

• The insightful interpretation is mostly studied by philosophers,

• And the efficient interpretation is mostly studied by computer
scientists.

The borders among these three areas are soft, though, and all three
interpretations have been studied in all three fields.

As a mathematician, I mostly investigate the computability interpretation
of effectiveness.
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Conclusion My Work

My own work is in the area of proof mining.

Typically, I work on projects like the following:

• test
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• Taking a non-effective proof for which a computably effective proof
should exist, and determining what the computably effective proof is

(in a situation where either we don’t care that the result is
inefficient—for instance, because it’s a theoretical result where there
are no efficiency concerns—or where I suspect that the result will
happen to be efficient, even though in general it doesn’t have to be),
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• Identifying new kinds of theorems and proofs which are guaranteed to
have computably effective proofs, and new ways of finding them,
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Conclusion My Work

My own work is in the area of proof mining.

Typically, I work on projects like the following:

• test

• Actually, my favorite thing to do is the previous two together: find a
theorem which I think should have a computably effective proof, but
where the existing techniques don’t work, and simultaneously figure
out a general method for extracting a computably effective proof
while applying it to the particular example,
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Conclusion My Work

My own work is in the area of proof mining.

Typically, I work on projects like the following:

• test

• Alternatively, sometimes I examine very complicated effective proofs,
and look for non-effective proofs which are easier to understand.

This
can happen because effective proofs might require lots of calculations,
while in a non-effective proof we can sometimes replace very big
numbers with “infinity” or very small numbers with 0 (in a
mathematically rigorous way) to give a simpler non-effective proof.In
addition, sometimes it turns out that the non-effective proof can be
generalized to new results more easily than the original proof.
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Conclusion Further Reading

The study of games like Chomp is part of the branch of mathematics
known as combinatorial game theory.

Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy.
Winning ways for your mathematical plays. Second. Natick, MA: A
K Peters Ltd., 2001, pp. xx+276. isbn: 1-56881-130-6.

Richard J. Nowakowski, ed. Games of no chance. Vol. 29.
Mathematical Sciences Research Institute Publications. Papers from
the Combinatorial Games Workshop held in Berkeley, CA, July
11–21, 1994. Cambridge: Cambridge University Press, 1996,
pp. xii+537. isbn: 0-521-57411-0.
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Appendix Statement

Theorem
Every game of Chomp is determined: either the first player has a winning
strategy, or the second player has a winning strategy.

Unfortunately, this is a bit hard to prove, so we’ll use a standard math
trick: faced with a problem too hard to solve, make it harder.
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Appendix Statement

The game of Jagged Chomp is just like the game of Chomp, except the
board doesn’t have to be rectangular.

So Jagged Chomp can be played on
boards

Like this and this and this.
Because the board can be rectangular, it just doesn’t have to be.
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Appendix Proof

Theorem
Every game of Jagged Chomp is determined: either the first player has a
winning strategy, or the second player has a winning strategy.

becomes

Bob’s turn to play

or

Bob’s turn to play

or another option
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Again, we’ll prove this by contradiction. Suppose not, so there are
undetermined games of Jagged Chomp. Every game of Jagged Chomp has
a board size: the number of squares on the board.

There’s only one game whose board has only 1 square: the 1x1 game. The
1x1 game is certainly determined: the second player always wins, just by
waiting for the first player to make a move and immediately lose.
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Every game of Jagged Chomp is determined: either the first player has a
winning strategy, or the second player has a winning strategy.

There must be some smallest size which is big enough for a board to be
undetermined. Consider some undetermined board of minimal size. So all
boards with fewer squares are determined.
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Remember that we started with the smallest undetermined board. All the
smaller boards are determined. That means on each of these smaller
boards, there is either a winning strategy for the first player or a winning
strategy for the second player.
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If the second player has a winning strategy on one of these smaller boards,
Alice has a winning strategy. She first makes the choice that leads to a
board where the second player has a winning strategy, and then once
there, uses that strategy to win.
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Every game of Jagged Chomp is determined: either the first player has a
winning strategy, or the second player has a winning strategy.

If the second player never has a winning strategy on these smaller boards,
the first player must have a winning strategy on all the smaller boards.
Then Bob does have a winning strategy on the original board: wait for
Alice to pick a board, then use the winning strategy for the board Alice
picks.
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Appendix Proof

Theorem
Every game of Jagged Chomp is determined: either the first player has a
winning strategy, or the second player has a winning strategy.

This is a contradiction: we started with a board that wasn’t supposed to
have a winning strategy, and showed that it had one anyway.
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Every game of Jagged Chomp is determined: either the first player has a
winning strategy, or the second player has a winning strategy.

This is a contradiction: we started with a board that wasn’t supposed to
have a winning strategy, and showed that it had one anyway. So every
game of Jagged Chomp, and in particular every game of Chomp, is
determined.
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