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Introduction

This presentation looks best in full-screen mode.

If you aren’t sure how to do that, you can probably find a command named
something like “Full Screen” or “Presentation” in the “View” menu.
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Introduction

Tame hypergraph regularity is a recent area exploring the intersection of
some ideas from graph theory with model theory.

This is a new, fairly technical area, but you don’t need all the details to
understand the main ideas.

The goal of these slides is to explain the motivation and current state of
knowledge in the area (in early 2023).

“Tame hypergraph regularity” was inspired by the discovery of “tame
graph regularity”, so I should explain that first.

4 / 92



Introduction

Tame hypergraph regularity is a recent area exploring the intersection of
some ideas from graph theory with model theory.

This is a new, fairly technical area, but you don’t need all the details to
understand the main ideas.

The goal of these slides is to explain the motivation and current state of
knowledge in the area (in early 2023).

“Tame hypergraph regularity” was inspired by the discovery of “tame
graph regularity”, so I should explain that first.

4 / 92



Introduction

Tame hypergraph regularity is a recent area exploring the intersection of
some ideas from graph theory with model theory.

This is a new, fairly technical area, but you don’t need all the details to
understand the main ideas.

The goal of these slides is to explain the motivation and current state of
knowledge in the area (in early 2023).

“Tame hypergraph regularity” was inspired by the discovery of “tame
graph regularity”, so I should explain that first.

4 / 92



Tame Graph Regularity: The idea

Tame Graph Regularity: The idea

5 / 92



Tame Graph Regularity: The idea

I’m going to describe a gambling game. We’ll start with two large finite
sets, X and Y—they might both be “the set of natural numbers less than
a million”, for instance.

(Usually X and Y will be the same set, but it’s
convenient to include the option for them to be different.)

Later the house will pick two numbers, x from X and y from Y , and we
need to decide which pairs are “good”. Some representative examples we
might choose are:

• A pair is good if their sum is even.

• A pair is good if x is smaller than y .

• In advance, we flip a coin for each pair, and make a big table of the
results as a reference. A pair is good if the coin we flipped for that
pair came up heads.
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Tame Graph Regularity: The idea

Once we’ve picked our sets X and Y and our good pairs, we’re ready to
play.

First, the house picks random numbers x from X and y from Y and
keeps them secret. Then we get to ask a small number of questions about
x and y . And finally, we guess whether whether x and y are a good pair.
We’re hoping to know the answer, or at least—since this is ostensibly a
gambling game—get it right most of the time.

It’s important that the the number of questions is much smaller than the
sizes of X and Y , since if we had enough to pin down x and y exactly, the
game wouldn’t be very interesting.
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Tame Graph Regularity: The idea

Here’s the crucial rule: the way we ask questions is that you ask questions
about x , and meanwhile I ask questions about y , and then once we’re
both done asking questions, we get to compare the answers we got and
decide whether we think it’s a good pair.

Neither of us can ask questions
about both at once—if we could, we’d just ask if they’re a good pair. And
I can’t decide what questions to ask about y based on the answers to your
questions about x , or vice-versa. We do get to confer in advance about
our strategy, though.

The question we’re interested in is:

Which choices of the good pairs let us do well at this game? That
is, when can we, with a small number of questions, figure out if a
pair is good most of the time?
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Tame Graph Regularity: The idea

Let’s think through how this works in some examples.

Suppose that x , y is a good pair exactly when x + y is even. Then we
have a great strategy: you ask if x is even and I ask if y is even.

The answers to those questions are enough for us to figure out if x , y is a
good pair. If x and y are both even or both odd, it’s a good pair. If one is
even and one is not, it’s not a good pair.

So in this case, we each ask one question and then together we know the
answer with complete certainty.

9 / 92



Tame Graph Regularity: The idea

Let’s think through how this works in some examples.

Suppose that x , y is a good pair exactly when x + y is even.

Then we
have a great strategy: you ask if x is even and I ask if y is even.

The answers to those questions are enough for us to figure out if x , y is a
good pair. If x and y are both even or both odd, it’s a good pair. If one is
even and one is not, it’s not a good pair.

So in this case, we each ask one question and then together we know the
answer with complete certainty.

9 / 92



Tame Graph Regularity: The idea

Let’s think through how this works in some examples.

Suppose that x , y is a good pair exactly when x + y is even. Then we
have a great strategy: you ask if x is even and I ask if y is even.

The answers to those questions are enough for us to figure out if x , y is a
good pair. If x and y are both even or both odd, it’s a good pair. If one is
even and one is not, it’s not a good pair.

So in this case, we each ask one question and then together we know the
answer with complete certainty.

9 / 92



Tame Graph Regularity: The idea

Let’s think through how this works in some examples.

Suppose that x , y is a good pair exactly when x + y is even. Then we
have a great strategy: you ask if x is even and I ask if y is even.

The answers to those questions are enough for us to figure out if x , y is a
good pair. If x and y are both even or both odd, it’s a good pair. If one is
even and one is not, it’s not a good pair.

So in this case, we each ask one question and then together we know the
answer with complete certainty.

9 / 92



Tame Graph Regularity: The idea

Let’s think through how this works in some examples.

Suppose that x , y is a good pair exactly when x + y is even. Then we
have a great strategy: you ask if x is even and I ask if y is even.

The answers to those questions are enough for us to figure out if x , y is a
good pair. If x and y are both even or both odd, it’s a good pair. If one is
even and one is not, it’s not a good pair.

So in this case, we each ask one question and then together we know the
answer with complete certainty.

9 / 92



Tame Graph Regularity: The idea

Here’s a graphical representation of what’s going on.

The sides represent
the sets X and Y and the darkened boxes are the good pairs.

You ask whether x is even. We’ll reorganize the X axis based on the
answer: we draw a red line through the middle and place the even columns
on the left, and the odd columns on the right.

Meanwhile, I ask whether y is even, and again we reorganize the grid
based on the answer: we put the even y ’s on top and the odd ones on the
bottom and separate them with a red line, because we know which side of
the red line we’re on. The fact that we can win this game is reflected in
the fact that (after rearranging the rows and columns to reflect our
questions), the red lines divide the possible pairs into rectangles each of
which is either all black (all good pairs) or all white (no good pairs).
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Tame Graph Regularity: The idea

How about if the rule is that x , y is a good pair exactly when x < y?

We still have a strategy, though it’s not quite as good. Say we each get to
ask two questions. First you ask if x is in the top half or the bottom half.
Then you ask if it’s in the top quarter or bottom quarter of whichever half
it’s in. I ask the same questions about y .

If we learn, say, that x is in the bottom quarter while y is in the second
smallest quarter, we know that x < y , so it’s a good pair. Similarly, if we
learn that y is in the bottom half and x is in the top half, we know that
y < x , so it’s not a good pair.

If we’re unlucky, though, x and y belong to the same quarter, and then
we’re not sure if the pair is good. But that only happens a quarter of the
time. So in this case, most of the time we know the answer after asking a
few questions.
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Tame Graph Regularity: The idea

Here’s the picture for x < y .

The answers to your two questions divide the X axis into four quarters.
(As it happens, the columns are already in the right positions this time.)
The answers to the my two questions divide the Y axis into four quarters.

The red lines, which separate the axes based on the information you have
after asking your questions, divide most of the picture into rectangles
which are either all black or all white. But there are still the areas along
the diagonal which are mixed.

X

Y
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Tame Graph Regularity: The idea

What if the good pairs were themselves chosen randomly: we just have a
big table of good pairs generated by flipping coins?

Then there’s not much we can do: probably (as long as the coin flips that
generated the table didn’t do something very unlikely) asking a few
questions won’t help.

About half the pairs are good, and after asking a bunch of questions, we’ll
still probably think there’s about a fifty percent chance that we’re dealing
with a good pair.
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Tame Graph Regularity: The idea

The random table might look something like this.

We could ask questions
that try to pin down rectangular clusters, but those clusters are all small:
one answer to a question helps a lot, but most of the time, we’ll get the
unhelpful answer.

But if we ask questions that meaningfully divide up the region, we’re left
with recangles that are still a jumbled mix of good and bad pairs.
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Tame Graph Regularity: The idea

The discovery that leads to the idea of “tame graph regularity” is that
these three examples represent three different “paradigms” for how this
game can play out.

The two theorems that got the area started show these paradigms
correspond to model theoretic dividing lines. Dividing lines are properties
that separate structures which are, in some way, “simple”, from ones
which are somehow “complicated”.

The dividing lines here were already well known when these theorems were
proven—indeed, arguably the two most important ones. So what we
learned from the discovery of tame graph regularity is that this game gives
us an new way of looking at these existing dividing lines.

Let’s talk about precisely how we define these “paradigms” and what the
theorems characterizing them say.
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Tame Graph Regularity: Approximable rules

The simpler dividing line to explain is the one separating the “x < y” from
the example where we generated our table randomly.

First, we should introduce some of the standard terminology, and pin down
our setting a little more carefully.

We’ve been talking vaguely about having sets X and Y and a set of good
pairs. The technical term for this is a graph. More precisely, this is a
bipartite graph—the distinct sets X and Y are the “two parts”. But since
these are the only kinds of graphs we’ll talk about, I’ll just call them
graphs. We’ll assume the sets X and Y are finite.

Instead of talking about “good pairs”, we’ll use the standard terminology
and call them edges. So formally, a graph is three things, (X ,Y ,E ) where
X and Y are sets and E ⊆ X × Y is the set of edges.
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Tame Graph Regularity: Approximable rules

You might have noticed that our examples weren’t exactly about individual
graphs—they were more like families of similar graphs.

Instead of thinking
about the specific graph where X and Y are the numbers up to a million
and the edges are when x < y , we could say “for any n, we have a graph
where X and Y are the numbers up to n and the edges are when x < y”.

Definition
A rule is a set of graphs.

This isn’t standard terminology, but it’s convenient for us. (The standard
term is a hereditary class of graphs.)

Some examples of rules are:
• Reven: X and Y are the set of numbers up to n for some n, and the

edges are where x + y is even,

• R<: X and Y are the set of numbers up to n for some n, and the
edges are where x < y ,
• Rrand: For each n, we will generate a random graph where X and Y

are both the set of numbers up to n, and we determine which pairs
are edges by flipping a separate coin for each pair.
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Tame Graph Regularity: Approximable rules

Here’s the property that will distinguish examples like x < y from the
randomly generated rule:

Definition
A rule R is approximable if for every ε > 0, there is a number N so that
for any graph (X ,Y ,E ) in R, if x ∈ X and y ∈ Y are chosen randomly
and we ask N questions about x and y separately, the probability that we
correctly guess whether the pair is an edge is at least 1− ε.

If we think of this as a gambling game, we pay $1 to play the game and
the house has set a payout of $1+ε if we get the answer right. Then we
decide how many questions we need to ask to achieve that accuracy. Then
the house chooses a graph from R to play against (and tells us what the
graph is)—in particular, it could be one where X and Y are much, much,
much bigger than the number of questions we get.

R is approximable exactly when this game is worth playing anyway: no
matter how stingy the payout is, and no matter how hard the house tries
to pick a rule from R that makes our life difficult, we can pick a number
N which is big enough so that we’ll make money on average.
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Tame Graph Regularity: Approximable rules

The name “approximable” isn’t standard. The notion has appeared in
various papers under various names, most of which are kind of ad hoc, and
no widely accepted name has emerged, so “approximable” will do for us.
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Tame Graph Regularity: Approximable rules

R<—the set of graphs where X and Y are sets of numbers less than n for
some n and there’s an edge when x < y—is approximable.

Say ε is 0.1, so we need to win more than 90% of the time to make a
profit. Three questions each is enough.

The house picks some very big n to be the size of X and Y . With three
questions about X , we know which eighth of X the randomly chosen x
belongs to. With three questions about Y , we know which eighth y
belongs to.

7/8 of the time, x and y belong to different octiles, and we know for sure
if the pair is an edge. The remaining 1/8 of the time, we have to risk a
50/50 guess. But in total, we get the right answer 15/16 of the
time—about 93%, which is good enough to make money on average even
if we only win $1.10 for every correct guess.

Y

X
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Tame Graph Regularity: Approximable rules

On the other hand, Rrand, where each graph is created by flipping coins to
make a random graph, is not approximable.

Indeed, with probability 1, Rrand has the property that we can’t even get
the right answer a tiny bit more than half the time, no matter how many
questions we decide to ask.

So approximability is a property that distinguishes rules “like x < y” from
“like a random graph”.
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Tame Graph Regularity: Approximable rules

It turns out that approximability is characterized by “omitted subgraphs”.

To explain what an omitted subgraph is, it’s easiest to start with an
example. The rule x < y omits the subgraph .

That is, if we pick two rows and two columns in

X

Y

the subgrid we get never looks like (even if we reorder the rows and
columns to try to make them match).
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Tame Graph Regularity: Approximable rules

Of course, any finite graph omits subgraphs if they’re big enough—say,
bigger than the graph itself.

So we care about when our graphs omit small
subgraphs.

Definition
A rule R has finite VC dimension if there is some n so that every graph in
R omits some n × n subgraph.

The name “VC dimension” is the standard one. (VC stands for
“Vapnik–Chernovenkis”, the people who first discovered it.) It’s a useful
notion that’s been rediscovered several times in several fields.
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Tame Graph Regularity: Approximable rules

The first theorem that could be called a tame graph regularity result is:

Theorem (Lovász-Szegedy)

R has finite VC dimension exactly when R is approximable.

This is the prototype for what a tame graph (or hypergraph) regularity
theorem should look like: we have an equivalence between a property
about what kinds of subgraphs appear in R on the one hand and a
property about how well you can win our game with graphs from R on the
other.

Finite VC dimension is such a well-studied notion, and many other
equivalences are known, so approximability is one more way that finite VC
dimension distinguishes simple sets of graphs from complicated ones.
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Tame Graph Regularity: Approximable rules

A small confession: I’m glossing over a technicality here.

To actually get the equivalence, we have to clarify that the house is
allowed to pick the probability distribution on X and Y (and tell us at the
same time the house tells us which graph (X ,Y ,E ) has been picked)

I’ll continue to ignore this detail below.
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Tame Graph Regularity: Unary error

Next, let’s see how Reven is even nicer than R<.

We could change the rules so that we’re required to get the answer exactly
right, not merely get it right most of the time. With Reven, we’d still win
under those rules.

But that turns out to me too much to ask: it’s a very specialized property
that happens only for very simple rules.

To really illustrate the interesting property that makes Reven nicer than
R<, it will be helpful to have a new example that’s going to be nice in the
same way as Reven, but better illustrates what sort of behavior is allowed.
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Tame Graph Regularity: Unary error

In our new example, Rdigit, X and Y will be the set of numbers up to n
where n is some power of 2.

When we pick x and y , we’ll write them in
binary, padding the left side with 0’s so they have the same number of
digits. We’ll have an edge between x and y if the first (i.e. leftmost,
highest place value) 0 occurs in the same place for both of them.

We’ll get an idea how this works much faster if we look at a picture. The
big box of edges in the lower left corner is all the pairs where both x and y
begin with a 0. The second, slightly smaller box of edges above it is the
pairs where both x and y begin with 10. And so on.

Y

X
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Tame Graph Regularity: Unary error

We can certainly approximate this. Suppose we each get two questions.

You could first ask “is at least one of the first two digits of x a 0”, and I
ask the same about y . When the answer was yes to one of these
questions, we then ask whether the first digit was a 0. When the answer
was no to the one of the initial questions, we instead ask whether the third
digit was a 0.

Most of the time, we know whether x , y is a good pair, and a small
fraction of the time—when all four of our questions got answered
“no”—we don’t. Or we could notice that is omitted and invoke the
theorem characterizing approximability.

Y

X

30 / 92



Tame Graph Regularity: Unary error

We can certainly approximate this. Suppose we each get two questions.
You could first ask “is at least one of the first two digits of x a 0”, and I
ask the same about y .

When the answer was yes to one of these
questions, we then ask whether the first digit was a 0. When the answer
was no to the one of the initial questions, we instead ask whether the third
digit was a 0.

Most of the time, we know whether x , y is a good pair, and a small
fraction of the time—when all four of our questions got answered
“no”—we don’t. Or we could notice that is omitted and invoke the
theorem characterizing approximability.

Y

X

30 / 92



Tame Graph Regularity: Unary error

We can certainly approximate this. Suppose we each get two questions.
You could first ask “is at least one of the first two digits of x a 0”, and I
ask the same about y . When the answer was yes to one of these
questions, we then ask whether the first digit was a 0.

When the answer
was no to the one of the initial questions, we instead ask whether the third
digit was a 0.

Most of the time, we know whether x , y is a good pair, and a small
fraction of the time—when all four of our questions got answered
“no”—we don’t. Or we could notice that is omitted and invoke the
theorem characterizing approximability.

Y

X

30 / 92



Tame Graph Regularity: Unary error

We can certainly approximate this. Suppose we each get two questions.
You could first ask “is at least one of the first two digits of x a 0”, and I
ask the same about y . When the answer was yes to one of these
questions, we then ask whether the first digit was a 0. When the answer
was no to the one of the initial questions, we instead ask whether the third
digit was a 0.

Most of the time, we know whether x , y is a good pair, and a small
fraction of the time—when all four of our questions got answered
“no”—we don’t. Or we could notice that is omitted and invoke the
theorem characterizing approximability.

Y

X

30 / 92



Tame Graph Regularity: Unary error

We can certainly approximate this. Suppose we each get two questions.
You could first ask “is at least one of the first two digits of x a 0”, and I
ask the same about y . When the answer was yes to one of these
questions, we then ask whether the first digit was a 0. When the answer
was no to the one of the initial questions, we instead ask whether the third
digit was a 0.

Most of the time, we know whether x , y is a good pair, and a small
fraction of the time—when all four of our questions got answered
“no”—we don’t.

Or we could notice that is omitted and invoke the
theorem characterizing approximability.

Y

X

30 / 92



Tame Graph Regularity: Unary error

We can certainly approximate this. Suppose we each get two questions.
You could first ask “is at least one of the first two digits of x a 0”, and I
ask the same about y . When the answer was yes to one of these
questions, we then ask whether the first digit was a 0. When the answer
was no to the one of the initial questions, we instead ask whether the third
digit was a 0.

Most of the time, we know whether x , y is a good pair, and a small
fraction of the time—when all four of our questions got answered
“no”—we don’t. Or we could notice that is omitted and invoke the
theorem characterizing approximability.

Y

X

30 / 92



Tame Graph Regularity: Unary error

Like with R<, a small fraction of the time we’ll get this wrong.

But we
can tell before we compare answers whether that’s in danger of happening.

The only times we get the answer wrong are when we end up in the upper
right corner. So if you give up every time your answers tell you we’re in
the far right segment, and I give up every time my answers tell me we’re in
the topmost segment, then we only give up a small fraction of the time,
and whenever we haven’t given up, we can be confident we have the right
answer.
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X
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Tame Graph Regularity: Unary error

Our modified game works like this: like before, the house has set a small
value ε, and we say what number N of questions we need to ask based on
that. The house picks x and y randomly secretly, and you ask a small
number of questions about x while I ask a small number of questions
about y .

The new rule is that, before we communicate, we each have the
option of giving up. We’re each only allowed to give up ε of the time. Any
time neither of us gives up, we need to actually correctly guess whether
the pair is an edge.

We say R admits unary error if we can win this harder game. The word
“unary” here refers to the fact that we have to decide whether to give up
individually, based on one person’s information.
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option of giving up. We’re each only allowed to give up ε of the time. Any
time neither of us gives up, we need to actually correctly guess whether
the pair is an edge.

We say R admits unary error if we can win this harder game. The word
“unary” here refers to the fact that we have to decide whether to give up
individually, based on one person’s information.
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Tame Graph Regularity: Unary error

In our example, we both notice that we’re in danger of being in the upper
right corner.

In general, though, the definition allows either of us to give up unilaterally
(as long as we don’t do it often).

Another confession: in the full definition, we don’t actually have to get it
exactly perfect even when we don’t give up, we just have to be pretty
confident we know what the answer is. This only comes up in more
complicated examples, so we’ll continue glossing over this detail.
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Tame Graph Regularity: Unary error

We can identify which rules admit unary error by looking at omitted
subgraphs.

To be approximable, a graph must omit some small subgraph. To admit
unary error, it turns out it has to omit a particular small subgraph.

Definition
The half-graph of size k is the k × k graph whose edges are where x < y .
A graph is k-stable if it omits the half-graph of size k . R is stable if there
is some k so that every graph in R is k-stable.

As we already noticed, Rdigit is 2-stable: it omits the half-graph of size 2,
.
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Tame Graph Regularity: Unary error

One tame graph regularity theorem was a curiosity; two was a pattern.
The second theorem about tame graph regularity was:

Theorem (Malliaris–Shelah)

R is stable exactly when R admits unary error.

So R< is not just any example of something that’s approximable but
doesn’t admit unary error, it’s in some sense the only example: anything
which doesn’t admit unary error will have something that looks like R<

inside it.

Stability is not merely a dividing line in model theory, it is the prototypical
dividing line: much of modern model theory was originally developed by
studying the ways stable graphs are well-behaved. Again, there were
already many equivalent definitions of stability, so this was one more way
to characterize a property we already know was important. (In this
context, there’s no short way to explain why the name “stable” makes
sense, but there is another equivalent characterization which explains the
name.)
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An Aside: What is regularity?

Somehow we’ve been able to discuss the two results that motivate tame
graph regularity without actually saying what regularity is.

“Regularity” is a reference to Szemerédi’s Regularity Lemma. Roughly
speaking, in the context of the game we’ve been describing, it just says:
“eventually you should stop asking questions and guess”.
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An Aside: What is regularity?

Szemerédi’s Regularity Lemma is what we can say about any graph, not
just approximable ones. What could we hope to do with a graph where we
definitely can’t win this gambling game?

Here’s what we can hope to do:
we’ll ask our questions, and then at the end, we’ll just say how likely we
think it is that the pair is an edge.

For instance, on a graph from R<, initially all we can say is that half the
pairs are edges. After asking a few questions, we’re probably in a situation
where we can say either all or none of the pairs are edges, and there’s a
small chance the pair on the diagonal and we still only know that there’s a
fifty percent chance it’s an edge.

Y

X

38 / 92



An Aside: What is regularity?
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An Aside: What is regularity?

On the other hand with a graph from Rrand, initially we think half the
pairs are edges,

and after asking a bunch of questions, we still probably
don’t know anything more than that there’s a fifty percent chance the pair
is an edge.

There’s a term for what happened with Rrand: a graph is quasirandom if
asking a few questions doesn’t change the chance that we’re looking at an
edge. We started out thinking there was probability p that the pair is an
edge, and after asking a few questions, we still (probably) think the chance
is pretty close to p that the pair is an edge.

When we generate a graph by flipping coins, the result is quasirandom.
Technically the graph with all edges and the graph with no edges are
quasirandom, too: if you’re initially certain there’s an edge, nothing you
learn by asking a few questions will change that certainty.
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An Aside: What is regularity?

So Szemerédi’s Regularity Lemma says that if we ask enough questions
about any graph—not necessarily an approximable one—we probably end
up in a quasirandom rectangle (at which point we might as well stop
asking questions).

Szemerédi’s Regularity Lemma became an important tool in parts of graph
theory, but it had some limitations: the number of questions you need to

ask is huge (a tower of exponents, 22. .
.2

, that gets taller as you ask for
that “probably end up” to get closer to probability 1), and you only know
that you’re probably in a quasirandom rectangle.

Tame graph regularity was motivated by showing that for “tame
graphs”—graphs which fell on the nice side of a dividing line—these
limitations went away, and that for “wild graphs”—graphs on the complex
side of a dividing line—these limitations were unavoidable.
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Tame Hypergraph Regularity: A new game
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Tame Hypergraph Regularity: A new game

The step that gets us to talking about hypergraphs is a simple one: what
if, instead of having sets X and Y and talking about whether a pair x , y is
an edge,

we have sets X , Y , and Z , and we talk about whether a triple
x , y , z is an edge?

We don’t know as much about what the dividing lines are for sets of
triples. So the goal in tame hypergraph regularity is to find them: we’ll
figure out what the right analogs of things like approximability and
admiting unary error are, and then use those to help identify the dividing
lines.
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Tame Hypergraph Regularity: A new game

Here are some examples of rules for triples. In all cases, X , Y , and Z are
the set of integers up to n.

• R3
min: x , y , z is an edge when min{x , y} < z .

• R3
sum: x , y , z is an edge when x + y + z < n. (This is actually pretty

analogous to our x < y example—if you flip the y axis, x < y is a lot
like x + y < n.)

• R3
rand : We flip a coin for each triple and record the result in a big

table.

• R3
rand pair We flip a coin for each pair and record the result in a big

table. x , y , z is an edge if an odd number of the pairs (x , y), (x , z),
and (y , z) came up heads.
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Tame Hypergraph Regularity: A new game

The last example, R3
rand pair , where we flip coins for pairs, illustrates the

way the setting with triples is more complicated.

If we recruit a friend and we each ask about one variable—you ask about
x , I ask about y , our friend asks about z—this example won’t be
approximable.

But it would still be a meaningful game if we were each allowed to ask
questions about one of the pairs: you could ask about x and y together, I
could ask about x and z together, and our friend could ask about y and z
together. It’s still meaningful because none of us can ask about all three
at once, so no one can just ask “is the triple an edge?”
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Tame Hypergraph Regularity: A new game

So there are (at least) two different versions of our game, a unary version
where we ask questions about one value at a time,

and a binary version
where we get to ask questions about two values at a time.

Within each of those versions, we have further variations based on what
kind of error they admit: that is, whether we can identify the tricky cases
where we aren’t sure about the answer with less information than we need
to actually determine the answer.
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Tame Hypergraph Regularity: A new game

Here’s a summary of what’s been discovered:

• There are two notions of “approximable”, one for each version of the
game, and we understand them pretty well.

• There are notions of “admitting unary error” and “admitting binary
error”. One we sort-of understand, but it’s more complicated that we
expected, and the other we really don’t understand yet.

• There’s a totally new notion that mixes admitting error coming from
unary questions with asking binary questions.
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Tame Hypergraph Regularity: A new game

The picture so far looks like this:
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Tame Hypergraph Regularity: A new game

Before we investigate those, let’s get our terminology right.

Definition
A 3-graph consists of three sets, X , Y , and Z , and a set E of triples. We
call E the edges of the 3-graph.

Technically this might be called a “tripartite 3-graph”. Sometimes these
are also called hypergraphs or 3-regular hypergraphs. What we’re calling
edges might be called hyperedges or 3-edges.

Definition
A rule for triples is a set of 3-graphs.

We’ll always name rules for triples with a superscript, like R3, so we don’t
confuse them with rules for pairs.
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Tame Hypergraph Regularity: Approximable rules

We’ll start with the notions of approximability.

The simplest notion to talk about is being approximable in the unary
version of the game, where questions can only be about a single
value—about x , or about y , or about z , but not about more than one at a
time.

Definition
A rule for triples, R, is unary approximable if for every ε > 0, there is a
number N so that for any 3-graph (X ,Y ,Z ,E ) in R, if x ∈ X , y ∈ Y ,
z ∈ Z are chosen randomly and we ask N questions about each of x , y ,
and z separately, we can guess whether the triple is an edge and get it
right at least 1− ε of the time.
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Tame Hypergraph Regularity: Approximable rules

Definition
A rule for triples R is unary approximable if for every ε > 0, there is a
number N so that for any 3-graph (X ,Y ,Z ,E ) in R and any weights on
X , Y , Z , if x ∈ X , y ∈ Y , z ∈ Z are chosen randomly according to the
weights and we ask N questions about each of x , y , and z separately, we
can guess whether the triple is an edge and get it right at least 1− ε of
the time.

That is, a rule is unary approximable if, when you, me, and a friend team
up and we each ask questions about one value, we’re usually able to guess
if the triple is an edge by combining the information we learned.
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Tame Hypergraph Regularity: Approximable rules

Consider the rule R3
sum where x , y , z is an edge when x + y + z < n.

This is unary approximable: by asking a few questions, we can each pin
the value we’re asking about down to inside an interval of size n/8. For
instance, if you learn that x < n/8, I learn that n/8 ≤ y < n/4, and our
friend learns that n/4 ≤ z < 3n/8, we can conclude that x + y + z is
definitely less than n. If you learn that 3n/8 ≤ x < n/2, I learn that
n/2 ≤ y < 5n/8, and our friend learns that 5n/8 ≤ z < 3n/4, we can
conclude that x + y + z is definitely bigger than n.

A small fraction of the time, we’ll be unsure: maybe you and I learn that
n/4 ≤ x , y < 3n/8 while our friend learns that 3n/8 ≤ z < n/2. Then all
we know is that x + y + z is between 7n/8 and 5n/4, so we know whether
x + y + z < n.

But the times we’re unsure are a small fraction, so R3
sum is unary

approximable.
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Tame Hypergraph Regularity: Approximable rules

Consider the rule R3
min where x , y , z is an edge when min{x , y} < z .

This rule is also unary approximable, for basically the same reason: each
player pins their value to a small interval, and most of the time that’s
enough to be certain of the comparison.
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Tame Hypergraph Regularity: Approximable rules

None of the rules where we make random tables of pairs or triples are
going to be unary approximable.

If our rule is R3
rand , so we flip a coin for each triple to making a random

table, nothing we pin down about x , y , or z separately is enough to help.

If our rule is R3
rand pair , so we flip a coin for each pair and decide a triple is

an edge when an odd number of the pairs got heads, it’s still not unary
approximable: for instance, nothing we ask about x and y helps much for
figuring out if our coin came up heads for the pair x , y .
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Tame Hypergraph Regularity: Approximable rules

Here’s another example, R3
fun. We’ll let X and Y be the numbers up to n,

but Z will be the set of functions from X to Y , and x , y , z is an edge
when z(x) < y .

This is also not unary approximable. It’s a bit harder to see why, but a
good start is trying to come up with questions our friend could be asking
about z , and noticing that unless z happens to be a really nice function,
you can’t learn much about z(x) by asking about x and about z separately.
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Tame Hypergraph Regularity: Approximable rules

Just like we saw for graphs, whether a rule for triples is unary
approximable is going to be related to whether it has finite VC dimension.

What does it mean for a set of triples to have finite VC dimension? We
need to turn our set of triples into a set of pairs. It turns out there are two
natural ways to do this. We’ll need the other later, but the one we need
now comes from looking at “slices”.

Definition
When E is a set of triples, for any u ∈ X ∪ Y ∪ Z , the slice corresponding
to u, Eu, is the set of pairs (v ,w) so that (u, v ,w) ∈ E .

That is, we fix any one of the values, and ask which pairs give us an edge
when taken together with our fixed value. I’m using the letters u, v ,w to
emphasize that this is symmetric: we can fix an X value and look at pairs
from Y × Z , or fix a Y value and look at pairs from X × Z , or fix a Z
value and look at pairs from Y × Z .
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Tame Hypergraph Regularity: Approximable rules

Definition
When R3 is a rule for triples, R3 has finite slicewise VC dimension if there
is an n so that, for every (X ,Y ,Z ,E ) in R3 and every u ∈ X ∪ Y ∪ Z , Eu

omits some n × n subgraph.

Another way to say this is that a rule for triples gives us a rule for
pairs—take every slice from every 3-graph in R3. Saying R3 has finite
slicewise VC dimension us exactly saying that this rule consisting of all the
slices has finite VC dimension.
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Tame Hypergraph Regularity: Approximable rules

For example, the slices of R3
sum, where x , y , z is an edge when

x + y + z < n, all look similar:

the slices are all the pairs v ,w where
v + w < k for some k .

This is basically an example we’ve already seen: it omits . Because in
order to get this subgraph, we would need two rows (say, v and v ′) and
two columns (say, w and w ′) so that v + w < k , v + w ′ ≥ k, v ′ + w ≥ k,
v ′ + w ′ < k . But this is impossible: v + w < k and v + w ′ ≥ k means
that w < w ′. Dually, v ′ + w ≥ k while v ′ + w ′ < k means that w ′ < w .
These can’t both be true.

58 / 92



Tame Hypergraph Regularity: Approximable rules

For example, the slices of R3
sum, where x , y , z is an edge when

x + y + z < n, all look similar: the slices are all the pairs v ,w where
v + w < k for some k .

This is basically an example we’ve already seen: it omits . Because in
order to get this subgraph, we would need two rows (say, v and v ′) and
two columns (say, w and w ′) so that v + w < k , v + w ′ ≥ k, v ′ + w ≥ k,
v ′ + w ′ < k . But this is impossible: v + w < k and v + w ′ ≥ k means
that w < w ′. Dually, v ′ + w ≥ k while v ′ + w ′ < k means that w ′ < w .
These can’t both be true.

58 / 92



Tame Hypergraph Regularity: Approximable rules

For example, the slices of R3
sum, where x , y , z is an edge when

x + y + z < n, all look similar: the slices are all the pairs v ,w where
v + w < k for some k .

This is basically an example we’ve already seen: it omits .

Because in
order to get this subgraph, we would need two rows (say, v and v ′) and
two columns (say, w and w ′) so that v + w < k , v + w ′ ≥ k, v ′ + w ≥ k,
v ′ + w ′ < k . But this is impossible: v + w < k and v + w ′ ≥ k means
that w < w ′. Dually, v ′ + w ≥ k while v ′ + w ′ < k means that w ′ < w .
These can’t both be true.

58 / 92



Tame Hypergraph Regularity: Approximable rules

For example, the slices of R3
sum, where x , y , z is an edge when

x + y + z < n, all look similar: the slices are all the pairs v ,w where
v + w < k for some k .

This is basically an example we’ve already seen: it omits . Because in
order to get this subgraph, we would need two rows (say, v and v ′) and
two columns (say, w and w ′) so that v + w < k , v + w ′ ≥ k, v ′ + w ≥ k,
v ′ + w ′ < k .

But this is impossible: v + w < k and v + w ′ ≥ k means
that w < w ′. Dually, v ′ + w ≥ k while v ′ + w ′ < k means that w ′ < w .
These can’t both be true.

58 / 92



Tame Hypergraph Regularity: Approximable rules

For example, the slices of R3
sum, where x , y , z is an edge when

x + y + z < n, all look similar: the slices are all the pairs v ,w where
v + w < k for some k .

This is basically an example we’ve already seen: it omits . Because in
order to get this subgraph, we would need two rows (say, v and v ′) and
two columns (say, w and w ′) so that v + w < k , v + w ′ ≥ k, v ′ + w ≥ k,
v ′ + w ′ < k . But this is impossible: v + w < k and v + w ′ ≥ k means
that w < w ′.

Dually, v ′ + w ≥ k while v ′ + w ′ < k means that w ′ < w .
These can’t both be true.

58 / 92



Tame Hypergraph Regularity: Approximable rules

For example, the slices of R3
sum, where x , y , z is an edge when

x + y + z < n, all look similar: the slices are all the pairs v ,w where
v + w < k for some k .

This is basically an example we’ve already seen: it omits . Because in
order to get this subgraph, we would need two rows (say, v and v ′) and
two columns (say, w and w ′) so that v + w < k , v + w ′ ≥ k, v ′ + w ≥ k,
v ′ + w ′ < k . But this is impossible: v + w < k and v + w ′ ≥ k means
that w < w ′. Dually, v ′ + w ≥ k while v ′ + w ′ < k means that w ′ < w .
These can’t both be true.

58 / 92



Tame Hypergraph Regularity: Approximable rules

On the other hand, the example R3
fun, where Z is the functions from X to

Y and the edges are where z(x) < y , does not have finite slicewise VC
dimension.

Let’s show that there’s a slice which contains every n × n graph. Let X
and Y be the numbers less than n + 1 and pick any value of y other than
1. Pick your favorite n × n graph.

We’ll let the n values in X , 1 through n, be our columns. Then for each
row of our graph, choose a z which gives exactly that row: to make the
j-th row, choose zj so that zj(i) = 1 when (i , j) is an edge and zj(i) = y
when (i , j) is not an edge.

Then 1, . . . , n and z1, . . . , zn are a copy of the graph we wanted. Since we
can do that for any graph, Ey contains every n × n graph.
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Tame Hypergraph Regularity: Approximable rules

As those examples suggest, slicewise VC dimension is the notion we need
to characterize unary approximations.

Theorem
A rule for triples is unary approximable if and only if it has finite slicewise
VC dimension.
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Tame Hypergraph Regularity: Approximable rules

What about the other version of the game, where we get to ask questions
about two values at once?

Definition
A rule for triples, R, is binary approximable if for every ε > 0, there is a
number N so that for any 3-graph (X ,Y ,Z ,E ) in R, if x ∈ X , y ∈ Y ,
z ∈ Z are chosen randomly and we ask N questions about each of the
pairs (x , y), (x , z), and (y , z) separately, we can guess whether the triple is
an edge and get it right at least 1− ε of the time.
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Tame Hypergraph Regularity: Approximable rules

It’s easier for us to win the binary game than the unary game,

because
when you get to ask questions about the pair (x , y), you could choose to
only ask about x , and similarly for the other two players. The binary game
just gives us more options, and therefore more rules will be binary
approximable.
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Tame Hypergraph Regularity: Approximable rules

For instance, recall R3
rand pair , the rule where we make a random table by

flipping a coin for each pair, and x , y , z is an edge when an odd number of
the pairs got heads.

That isn’t unary approximable, but it’s easy to give a binary
approximation, since we can each just outright ask whether the coin
flipped for our pair came up heads.
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Tame Hypergraph Regularity: Approximable rules

Similarly, with the rule R3
fun, where Z is the functions from X to Y and

x , y , z is an edge when z(x) < y ,

I’ll use my questions to ask about the
value of z(x) in order to pin it down to a small interval.

One of the other players asks questions about y to pin y down to a small
interval as well. Then we compare our answers and most of the time the
intervals don’t overlap, so we know for sure whether z(x) < y .
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Tame Hypergraph Regularity: Approximable rules

When the rule is R3
rand , where we flip a coin for each triple, though, asking

questions about pairs doesn’t help.

This rule isn’t binary approximable: no matter how many questions about
pairs we ask, it doesn’t help us figure out if the coin came up heads for the
particular triple we’re dealing with.
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Tame Hypergraph Regularity: Approximable rules

Finite VC dimension asked about omitting graphs.

Stated like that, we
might guess how to generalize to 3-graphs:

Definition
A rule for triples R has finite VC2 dimension if there is some n so that
every 3-graph in R omits some n × n × n sub-3-graph.
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Tame Hypergraph Regularity: Approximable rules

Consider the rule R3
rand pair where we flip a coin for each pair, and x , y , z

is an edge if an odd number of the coins for pairs came up heads.

This has finite VC2 dimension: it omits any 2× 2× 2 3-graph in which
exactly 7 out of the 8 possible edges are present.

For suppose we had a copy of this 3-graph—values x , x ′, y , y ′, and z , z ′ so
that all combinations other than x ′, y ′, z ′ are edges. Let us write cx ,y for
the number which is 1 if the coin for x , y came up heads, and 0 if it came
up tails, and similarly for the other pairs.

So cx ,y + cx ,z + cy ,z must be odd while cx ′,y ′ + cx ′,z ′ + cy ′,z ′ must be even.
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Tame Hypergraph Regularity: Approximable rules

If we add up the seven combinations we know are odd, we get

(cx ,y + cx ,z + cy ,z) + (cx ′,y + cx ′,z + cy ,z) + (cx ,y ′ + cx ,z + cy ′,z)

+(cx ,y + cx ,z ′ + cy ,z ′) + (cx ′,y ′ + cx ′,z + cy ′,z) + (cx ,y ′ + cx ,z ′ + cy ′,z ′)

+(cx ′,y + cx ′,z ′ + cy ,z ′)

which is a sum of 7 odd numbers, so also odd.

Whenever a number appears twice, let’s cancel it out—either they’re both
0, or they’re both odd, so either way they don’t affect whether the sum is
even or odd. We’re left with:

cx ′,y ′ + cx ′,z ′ + cy ′,z ′

which must also be odd. But this exactly tells us that an odd number of
the pairs (x ′, y ′), (x ′, z ′), and (y ′, z ′) must have come up heads: if 7 of
the 8 edges are present, the eighth must be as well.
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Tame Hypergraph Regularity: Approximable rules

Finite VC2 dimension gives the right notion for binary approximations.

Theorem (Chernikov-Towsner)

A rule for triples is binary approximable if and only if it has finite VC2

dimension.

This wasn’t the first result about tame hypergraph regularity, but it was
the first result that came from the perspective here: we had conjectured
that something should be equivalent to binary approximable, guessed that
it would be finite VC2 dimension, and then looked for the proof.
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Tame Hypergraph Regularity: Admitting unary error

We can just combine our definitions to guess what admitting unary error
should be:

We will say that R3 admits unary error if, for any ε > 0, there is an N so
that after we have each asked N questions about one of the variables, we
are each allowed to give up ε of the time, and any time none of us gives
up, we are able to get the right answer by combining our information.

Once again, the exact definition gives us slightly more leeway to get the
answer wrong, but we’ll ignore this extra complication.
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Tame Hypergraph Regularity: Admitting unary error

Based on what happened for just approximability, there’s a clear first guess
for what dividing line to look for.

Definition
When R3 is a rule for triples, R3 is slicewise stable if there is a k so that,
for every (X ,Y ,Z ,E ) in R3 and every u ∈ X ∪ Y ∪ Z , Eu is k-stable.

One implication works, using basically the same arguments that worked for
pairs.

Theorem
If R3 admits unary error then R3 is slicewise stable.
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Tame Hypergraph Regularity: Admitting unary error

The other direction was open for a little while, and I finally found a
counterexample.

Consider the following rule for triples, R3
trinary . X , Y , and Z will be

sequences of length n of digits {0, 1, 2}. In order for x , y , z to be an edge,
they need to not be all three the same sequence, and at the first digit
where they’re not all the same, they need to have all three different values.
So 01000, 01100, 01200 is an edge, while 01000, 01100, 02200 is not.

The slices Eu are all stable—roughly speaking, what happens to a triple
u, v ,w is determined by the first coordinate at which v or w differs from
u, which is too restrictive to be unstable.
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Tame Hypergraph Regularity: Admitting unary error

X , Y , and Z will be sequences of length n of digits {0, 1, 2}. In order for
x , y , z to be an edge, they need to not be all three the same sequence, and
at the first digit where they’re not all the same, they need to take have all
three different values.

But this example doesn’t admit unary error.

The idea is that the natural
questions for us to ask are about the initial digits of our value: does it
start with a 0, is the second digit a 1, and so on. But those questions will
always leave boxes where x , y , z all share the same initial digits, and no
one looking at just one of x , y , or z on its own can tell if that’s going to
happen.

It’s more work, of course, to show that there aren’t some cleverer
questions which do better.
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Tame Hypergraph Regularity: Admitting unary error

So slicewise stability isn’t enough. But I mentioned earlier that there’s a
second way to lift properties of graphs to 3-graphs.

Another way to get graphs from 3-graphs is to view triples as being pairs
where one element happens to itself be a pair: instead of triples from
X × Y × Z , we have pairs from X and Y × Z , or from Y and X × Z , or
from Z and X × Y .

Definition
A rule for triples, R3, is partitionwise stable if there is a k so that, for
every (X ,Y ,Z ,E ) in R3, all three graphs (X ,Y × Z ,E ), (Y ,X × Z ,E ),
and (Z ,X × Y ,E ) are k-stable.

Partitionwise stability is a stronger property: any partitionwise stable rule
is slicewise stable, but the example above was slicewise stable without
being partitionwise stable.
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Tame Hypergraph Regularity: Admitting unary error

Theorem
R3 is partitionwise stable exactly when R3 admits unary error.

It turns out that the subtleties we’ve been ignoring create some
complications here: when we get into the details, there are two definitions
which are equivalent for graphs, but lead to distinct generalizations for
3-graphs. One is equivalent to partitionwise stability while the other ends
up being strictly between partitionwise and slicewise stability.
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Tame Hypergraph Regularity: Admitting binary error

The situation for admitting binary error is even messier right now.

We can guess what admitting binary error should mean: R admits binary
error if, for any ε > 0, there is an N so that after we have each asked N
questions about two of the variables, we are each allowed to give up ε of
the time, and any time none of us gives up, we are able to get the right
answer by combining our information.

This is exactly like our definition of admitting unary error, except that the
players ask questions about two variables at a time.
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Tame Hypergraph Regularity: Admitting binary error

For graphs, confident approximations were characterized by omitting the
half-graphs.

We know what the analog of the half-graph is for 3-graphs:
it’s the 3-graphs in R3

sum, where there’s an edge when x + y + z < n.

One way to see the resemblence is to think about the pictures. The
half-graph looks like a square divided along the diagonal, while a drawing a
of R3

sum would look like a cube divided along the diagonal.

Indeed, R3
sum does not admit binary error.
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Tame Hypergraph Regularity: Admitting binary error

But Terry and Wolf found a family of other counterexamples.

The first
example in this family is called GS3. In R3

GS3
, the sets X = Y = Z are the

set of sequences of digits in {0, 1, 2} of length n.

To figure out if x , y , z is an edge, we add the sequences, position by
position, modulo 3—that is, we add up the first digits of each, and if it’s
more than 3, subtract 3 until we get 0, 1, or 2. Then we add the second
digit the same way, and so on. For instance, if we have the triple
0000001112, 0001121122, 0121221222, adding them digit by digit modulo
3 gives 0122010120.

x , y , z is an edge if the first 1 appears before the first 2.
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Tame Hypergraph Regularity: Admitting binary error

Showing that R3
GS3

doesn’t admit binary error is quite difficult.

Some intuition starts with the observation that if you know x and y , even
in full detail, there’s always a z which gives us an edge and a z which
gives us a non-edge: knowing two coordinates, even in their entirety,
doesn’t help predict what’s going to happen.
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Tame Hypergraph Regularity: Admitting binary error

More generally, instead of having sequences of digits in {0, 1, 2}, we could
have digits {0, 1, 2, . . . , k} for some k ≥ 2.

We add digits modulo k , and
to decide whether x , y , z is an edge, we look at the first non-zero digit,
and decide whether it’s an edge based on this value—say, a 1 means an
edge and any other value means a non-edge. All these variants also fail to
admit binary error.

82 / 92



Tame Hypergraph Regularity: Admitting binary error

More generally, instead of having sequences of digits in {0, 1, 2}, we could
have digits {0, 1, 2, . . . , k} for some k ≥ 2. We add digits modulo k , and
to decide whether x , y , z is an edge, we look at the first non-zero digit,
and decide whether it’s an edge based on this value—say, a 1 means an
edge and any other value means a non-edge.

All these variants also fail to
admit binary error.

82 / 92



Tame Hypergraph Regularity: Admitting binary error

More generally, instead of having sequences of digits in {0, 1, 2}, we could
have digits {0, 1, 2, . . . , k} for some k ≥ 2. We add digits modulo k , and
to decide whether x , y , z is an edge, we look at the first non-zero digit,
and decide whether it’s an edge based on this value—say, a 1 means an
edge and any other value means a non-edge. All these variants also fail to
admit binary error.

82 / 92



Tame Hypergraph Regularity: Admitting binary error

Furthermore, R3
sum and R3

GS3
are distinct obstacles to admitting binary

error: neither is contained in the other.

You might hope that there’s some common obstruction contained in both,
but there’s not.

Theorem
If R3 is contained in both R3

sum and R3
GS3

then R3 admits binary error.
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Tame Hypergraph Regularity: Admitting binary error

So, unlike our other dividing lines, there isn’t going to be a single family of
3-graphs which characterize admitting binary error.

There’s some hope for a different kind of characterization, perhaps with
“partial 3-graphs” (where some triples are not committed to being either
edges or non-edges). There is a characterization involving some fairly
complicated “trees”.
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Tame Hypergraph Regularity: Admitting linear error
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Tame Hypergraph Regularity: Admitting linear error

The notion of admitting binary error is incomparable with being unary
approximable—a particular rule could have either one, neither, or both:

The basic examples of things which don’t admit binary error, like R3
sum

and R3
GS3

, are unary approximable. And the basic examples of things

which are not unary approximable, like R3
rand pair , do admit binary error.

There’s a notion that encompasses all these examples, but is still more
restrictive than being merely binary approximable.
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Tame Hypergraph Regularity: Admitting linear error

To explain this final notion, we need a new game which combines our
previous games.

In the new game, we play both versions of the binary game, sequentially:
first, we play the unary game, each asking questions about one value.
Then we get together and share information. Then, based on that
information, we can ask more questions, this time about two values at
time. Then we get together and base our guess on that new information.
A small fraction of the time, we’re allowed to give up, but most of the
time, we have to make a guess and get it correct.

All our variations amount to tweaking two parameters of this general game:
which stages we ask questions at, and when we decide whether to give up.
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Tame Hypergraph Regularity: Admitting linear error

Binary approximable lets us wait until the very end, after we’ve shared the
binary information, to decide whether to give up. (Whether or not we play
the unary stage doesn’t matter because when we get the full binary stage,
it doesn’t help us.)

Unary approximable corresponds to skipping the
second stage, but waiting until the very end, after we share the unary
information, to decide whether to give up.

Admitting unary error skips the second stage and requires us to decide
whether to give up before sharing information, and admitting binary error
skips the first stage and requires us to decide whether to give up before
sharing information.

Our new notion comes from playing both stages, and requiring that we
decide whether to give up after sharing the unary information but before
asking binary question.
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Tame Hypergraph Regularity: Admitting linear error

Here’s what that means.

The house will pick an ε > 0 and we’ll say how
many questions we need at each stage. Then the house picks a 3-graph
from the rule and weights and chooses x , y , and z .

Then we ask our unary questions. When we get back together, a small
fraction (< ε) of the time, we’re allowed to say we don’t know what’s
going to happen. The rest of the time, we go back and ask our binary
questions, compare our answers, and make our guess, and now we need to
get the right answer.

That is, we don’t have to get it right all the time, but we need to decide
at the end of the unary game whether or not we’re going to get it right,
before we get to ask any binary questions.

If we can win this game, we can say the 3-graph is admits linear error.
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Tame Hypergraph Regularity: Admitting linear error

The name “admits linear error” comes from this same idea in a slightly
different context, so it’s a little hard to justify.

But for our purposes, it’s important to distinguish unary error, which
comes from one player’s unary information, and linear error, which lets us
use everyone’s unary information.
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Tame Hypergraph Regularity: Admitting linear error

This new notion seems complicated, but it turns out to be easier to
characterize than some of the others.

Remember the example R3
fun: we’ll take X and Y to be the set of

numbers up to n, and then take Z to be all the functions from X to Y .
Then we say that x , y , z is an edge if y < z(x).

Theorem (Terry–Wolf)

R3 admits linear error if and only if there is some n so that R3 does not
contain the R3

fun example of size n.
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Tame Hypergraph Regularity: Admitting linear error

Putting these together, these properties look like this:
Binary approximable = finite VC2 dimension

Admits linear error = omits R3
fun

Admits binary error = ???

Unary approximable = finite slicewise VC1 dimension

Admits unary error = partitionwise stable
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