1 Reading

Read the proof of the Cantor-Schroeder-Bernstein Theorem and start trying to understand it.

2 Response

Do you understand the statement of the Cantor-Schroeder-Bernstein Theorem? Does each of the individual steps in the proof follow from what comes before? Do the steps successfully prove what the theorem claims?

Theorem 2.1 (Cantor-Schroeder-Bernstein). Let A and B be functions and suppose that f : $A \rightarrow B$ and $g: B \rightarrow A$ are one-to-one functions. Then A and B have the same cardinality (i.e. there is a bijection between A and B).

Proof. We define a sequence of sets, interleaved between subsets of A and subsets of B, by

$$
B_{1}=B \backslash f[A], A_{n}=g\left[B_{n}\right], B_{n+1}=f\left[A_{n}\right] .
$$

Observe that if $a \in \bigcup_{n \in \mathbb{N}} A_{n}$ then, by definition, there is a $b \in B$ with $g(b)=a$. Since g is one-to-one, this b is uniquely defined, so we will write $g^{-1}(a)$ for it.
We define $h: A \rightarrow B$ as follows:

$$
h(a)= \begin{cases}g^{-1}(a) & \text { if } a \in \bigcup_{n \in \mathbb{N}} A_{n} \\ f(a) & \text { otherwise }\end{cases}
$$

We claim that h is a bijection. First, we check that h is one-to-one. Suppose $a_{1}, a_{2} \in A$ and $a_{1} \neq a_{2}$. We have to consider cases depending on whether or not a_{1} and a_{2} belong to $\bigcup_{n \in \mathbb{N}} A_{n}$. If a_{1}, a_{2} are both in $\bigcup_{n \in \mathbb{N}} A_{n}$ then $h\left(a_{1}\right)=g^{-1}\left(a_{1}\right)$ and $h\left(a_{2}\right)=g^{-1}\left(a_{2}\right)$, and by the definition of the inverse (and the fact that g is a function), $h\left(a_{1}\right) \neq h\left(a_{2}\right)$.
If neither is in $\bigcup_{n \in \mathbb{N}} A_{n}$ then $h\left(a_{1}\right)=f\left(a_{1}\right) \neq f\left(a_{2}\right)=h\left(a_{2}\right)$ since f is one-to-one.
If one is in $\bigcup_{n \in \mathbb{N}} A_{n}$ and one is not, assume without loss of generality that $a_{1} \in \bigcup_{n \in \mathbb{N}} A_{n}$ and $a_{2} \notin \bigcup_{n \in \mathbb{N}} A_{n}$. Then $h\left(a_{1}\right)=g^{-1}\left(a_{1}\right) \in B_{n}$ for some n. If $n>1$ then $g^{-1}\left(a_{1}\right)=f\left(a^{\prime}\right)$ for some $a^{\prime} \in A_{n-1}$. Since $a_{2} \notin \bigcup_{n \in \mathbb{N}} A_{n}, a^{\prime} \neq a_{2}$, and since f is one-to-one, $h\left(a_{2}\right)=f\left(a_{2}\right) \neq f\left(a^{\prime}\right)=$ $h\left(a_{1}\right)$. If $n=1$ then $g^{-1}\left(a_{1}\right) \notin f[A]$, so $h\left(a_{2}\right)=f\left(a_{2}\right) \neq g^{-1}\left(a_{1}\right)=h\left(a_{1}\right)$.
Therefore h is one-to-one.
To see that h is onto, take any $b \in B$. If $b \in \bigcup_{n \in \mathbb{N}} B_{n}$ then $g(b) \in \bigcup_{n \in \mathbb{N}} A_{n}$, so $h(g(b))=$ $g^{-1}(g(b))=b$. If $b \notin \bigcup_{n \in \mathbb{N}} B_{n}$ then $b \notin B_{1}$, so $b \in f[A]$, so there is an $a \in A$ with $f(a)=b$, and since f is one-to-one, there is exactly one such a. If $a \in \bigcup_{n \in \mathbb{N}} A_{n}$ then $a \in A_{n}$ for some n, so $b \in B_{n+1} \subseteq \bigcup_{n \in \mathbb{N}} B_{n}$, which is a contradiction. So $a \notin \bigcup_{n \in \mathbb{N}} A_{n}$, so $h(a)=f(a)=b$.

