MIDTERM

Math 340		
9/26/2017	Name:	
	ID:	
"I have adhered to the Penr	Code of Academic Integrity in completing this exam."	
	Signature:	

Read all of the following information before starting the exam:

- Check your exam to make sure all pages are present.
- You may assume all graphs are simple (no multiple edges, no loops) and finite.
- You may use writing implements and a single 3"x5" notecard.
- You may use any result proved in class or in the textbook in your arguments.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Good luck!

1	20	
2	15	
3	15	
4	15	
5	15	
6	20	
Total	100	

Name:

1. (20 points)

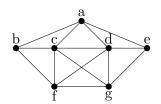
You do not need to prove that the graphs have the specified properties; it suffices to draw the graphs.

(a) Draw a bipartite graph with eight vertices where each vertex has degree 2.

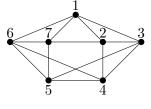
(b) Draw a connected planar graph where every vertex has degree 4.

 (\mathbf{c}) Draw a graph which has an Euler cycle that is also a Hamilton circuit.

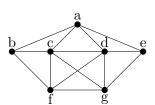
 (\mathbf{d}) Draw a planar graph with a Hamiltonian circuit, an Euler trail, but no Euler cycle.

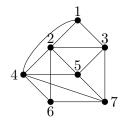


 (\mathbf{b})



 (\mathbf{c})





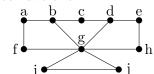
3. (15 points) G = (V, E) is a connected graph in which all vertices have even degree. Show that if we remove one edge from G, the graph remains connected.

Name:

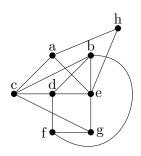
4. (15 points) Suppose G = (V, E) is a connected graph with v vertices (that is, |V| = v). Let $L = \{w \in V \mid deg(w) \ge 11\}$: the set of vertices with degree at least 11. (a) Suppose $|L| \ge v/2$. Show that $\sum_{w \in V} deg(w) \ge 6v$.

Show that if G is planar, |L| < v/2. (\mathbf{b})

5. (15 points) For each of the following, either write down a Hamilton circuit or show the graph does not have one.



 (\mathbf{a})



 (\mathbf{b})

- **6.** (20 points) We want to prove that if G is a finite graph with no cycles then G can be 2-colored. (The case where G is empty is trivial, so we'll only worry about graphs with at least one vertex.) Let p_k be the statement "Every graph with k vertices and no cycles can be 2-colored."
 - (a) Prove p_1 .

(b) Suppose that p_k is true. Prove p_{k+1} . You may find the following fact useful: any finite graph with no cycles has a vertex of degree ≤ 1 .

(c) Prove that any finite graph with no cycles can be 2-colored.