MIDTERM 1

Math 340
10/8/2013
Name: \qquad

ID: \qquad
"I have adhered to the Penn Code of Academic Integrity in completing this exam."

Signature:

\qquad

Read all of the following information before starting the exam:

- Check your exam to make sure all pages are present.
- You may assume all graphs are simple (no multiple edges, no loops) and finite.
- You may use writing implements and a single $3 " x 5$ " notecard.
- You may use any result proved in class or in the textbook in your arguments.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Good luck!

1	20	
2	15	
3	15	
4	15	
5	15	
6	20	
Total	100	

1. (20 points)

(a) Draw a bipartite graph with eight vertices where each vertex has degree 2.
(b) Draw a connected planar graph where every vertex has degree 4.
(c) Draw a graph which has an Euler cycle that is also a Hamilton circuit.
(d) Draw a planar graph with a Hamiltonian circuit, an Euler trail, but no Euler cycle.
2. (15 points) For each of the following pairs of graphs, explain how you can be sure the pair is not isomorphic.
(a)

(b)

(c)

3. (15 points) $G=(V, E)$ is a connected graph in which all vertices have even degree. Show that if we remove one edge from G, the graph remains connected.
4. (15 points) Suppose $G=(V, E)$ is a connected graph with v vertices (that is, $|V|=v$). Let $L=\{w \in V \mid \operatorname{deg}(w) \geq 11\}$: the set of vertices with degree at least 11 .
(a) Suppose $|L| \geq v / 2$. Show that $\sum_{w \in V} \operatorname{deg}(w) \geq 6 v$.
(b) Show that if G is planar, $|L|<v / 2$.
5. (15 points) For each of the following, either write down a Hamilton circuit or show the graph does not have one.
(a)

(b)
6. (20 points) We want to prove that if G is a finite graph with no cycles then G can be 2-colored. (The case where G is empty is trivial, so we'll only worry about graphs with at least one vertex.) Let p_{k} be the statement "Every graph with $k+1$ vertices and no cycles can be 2-colored."
(a) Prove p_{0}.
(b) Suppose that p_{k} is true. Prove p_{k+1}. You may find the following fact useful: any finite graph with no cycles has a vertex of degree ≤ 1.
(c) Using the previous two parts, prove that any finite graph with no cycles can be 2-colored.

