Practice Midterm

Math 340
9/26/2017
Name: \qquad

ID: \qquad
"I have adhered to the Penn Code of Academic Integrity in completing this exam."

Signature:

\qquad

Read all of the following information before starting the exam:

- Check your exam to make sure all pages are present.
- You may assume all graphs are simple (no multiple edges, no loops) and finite.
- You may use writing implements and a single $3 " x 5$ " notecard.
- You may use any result proved in class or in the textbook in your arguments.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Circle or otherwise indicate your final answers.
- Good luck!

1	20	
2	10	
3	15	
4	10	
5	15	
6	10	
7	20	
Total	100	

1. (20 points)

You do not need to prove that the graphs have the specified properties; it suffices to draw the graphs.
(a) Draw a non-planar graph with a Hamiltonian circuit.
(b) Draw a planar graph with no Hamiltonian circuit.
(c) Draw a bipartite graph with an Euler trail but no Euler cycle.
(d) Draw a bipartite, non-planar graph with a Hamiltonian circuit.
2. (15 points) All three of these graphs have 8 vertices, each of degree 3. Show that no pair of them is isomorphic.

3. (10 points) Show that this graph is non-planar.

4. (10 points) Consider the following graph:

(a) Show that this graph can be colored using 3 colors.
(b) Show that this graph cannot be colored using 2 colors.
5. (15 points) $G=(V, E)$ is a graph with an Euler cycle. (In order for this to make sense, you may assume that $|V| \geq 3$.) Suppose I add some additional edges to obtain a new graph, $G^{\prime}=\left(V, E \cup E^{\prime}\right)$. (So $E^{\prime} \cap E=\emptyset$ and $\left|E^{\prime}\right|>0$; that is, I add at least one edge, and I only add new edges.) If G^{\prime} also has an Euler cycle, prove that $\left|E^{\prime}\right| \geq 3$. (That is, prove that if we add exactly 1 or exactly 2 edges, we can't get an Euler cycle. It matters that we're in a graph, not a multigraph-there are no loops or multiple edges.)
6. (10 points) Show that if n is even and $n \geq 4$ then there is a graph with n vertices such that every vertex has degree 3 and the graph has a Hamilton circuit.
7. (20 points) We want to prove that every finite connected graph has a connected spanning (containing every vertex) subgraph with no circuits. Let p_{k} be the statement "Every connected graph with k vertices has a spanning subgraph with no circuits."
(a) Prove p_{1}, that every connected graph with 1 vertex has a spanning subgraph with no circuits.
(b) Suppose that p_{k} is true. Prove p_{k+1}.
(c) Using the previous two parts, prove that any finite connected graph has a spanning subgraph with no circuits.

