
Practice Midterm Solutions
1. (20 points)
You do not need to prove that the graphs have the specified properties; it suffices to draw the
graphs.

(a) Draw a non-planar graph with a Hamiltonian circuit.

(b) Draw a planar graph with no Hamiltonian circuit.

(c) Draw a bipartite graph with an Euler trail but no Euler cycle.

(d) Draw a bipartite, non-planar graph with a Hamiltonian circuit.

2. (15 points) All three of these graphs have 8 vertices, each of degree 3. Show that no pair
of them is isomorphic.
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The first two graphs both have subgraphs isomorphic to K3 (i.e. triangles); the

third does not, so the third is not isomorphic to either of the others. The second

graph has subgraphs isomorphic to C4 (the circuit with four vertices---the ‘‘square’’)

while the first does not, so the first two are not isomorphic.

3. (10 points) Show that this graph is non-planar.
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The following graph is a subgraph which is also a subdivision of K3,3; by Kuratowski’s

theorem, the original graph is non-planar.
1
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4. (10 points) Consider the following graph:

(a) Show that this graph can be colored using 3 colors.
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(b) Show that this graph cannot be colored using 2 colors.
By theorems we have proven, a graph can be 2 colored iff it is bipartite, which happens

iff it has no odd cycles. But there is a cycle of length 5, so this graph cannot

be 2 colored.

5. (15 points) G = (V,E) is a graph with an Euler cycle. (In order for this to make sense,
you may assume that |V | ≥ 3.) Suppose I add some additional edges to obtain a new graph,
G′ = (V,E ∪ E′). (So E′ ∩ E = ∅ and |E′| > 0; that is, I add at least one edge, and I only add
new edges.) If G′ also has an Euler cycle, prove that |E′| ≥ 3. (That is, prove that if we add
exactly 1 or exactly 2 edges, we can’t get an Euler cycle. It matters that we’re in a graph, not
a multigraph—there are no loops or multiple edges.)
Since G has an Euler cycle, every vertex has even degree. Since G′ also has an

Euler cycle, each vertex in G′ still has even degree. If |E′| = 1 then the two ends

of the single new edge each see their degrees increase by 1, so they would have odd

degree; that is impossible, so |E′| > 1. If |E′| = 2 then the total degree increases

by 4; that must be spread across at least 3 vertices (it cannot be two vertices getting

two new edges each, because G′ does not have multiple edges). So |E′| > 2 as well,

so |E′| ≥ 3.

6. (10 points) Show that if n is even and n ≥ 4 then there is a graph with n vertices such
that every vertex has degree 3 and the graph has a Hamilton circuit.
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When n is 4, this is K4. Suppose that we have a graph G with n vertices where every

vertex has degree 3 and the graph has a Hamiltonian circuit, and we want to construct

a graph with n+2 vertices with the same property. Choose two edges in the Hamiltonian

circuit, which do not share endpoints, say an edge from a to b and a second edge

from s to t. (These exist because the graph is connected and has ≥ 4 vertices---the

first and third edges in the Hamiltonian circuit always work.)

We define G′ to contain the vertices of G plus two new vertices x, y. We delete

the edge between a, b and the edge between s, t, and add edges x − y, a − x, b − x,
s− y, t− y; each vertex has degree 3 in the new graph as well. The Hamiltonian

circuit is like the old Hamiltonian circuit except that we replace a−b with a−
x− b and s− t with s− y − t.

a b
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a b

t s

x

y

7. (20 points) We want to prove that every finite connected graph has a connected spanning
(containing every vertex) subgraph with no circuits. Let pk be the statement “Every connected
graph with k vertices has a spanning subgraph with no circuits.”

(a) Prove p1, that every connected graph with 1 vertex has a spanning subgraph with
no circuits.
If a graph has 1 vertex, it is its own spanning subgraph.

(b) Suppose that pk is true. Prove pk+1.
Suppose every graph with k vertices has a spanning subgraph. Take a graph G with

k+1 vertices, and pick any vertex v. The graph G′ = G\{v} has connected components,

and v must have at least one edge to each connected component (because the original

graph was connected). By the inductive hypothesis, each component contains a spanning

subgraph with no circuits. Combine these spanning subgraphs with the vertex v and

exactly one edge from v to the spanning subgraph of each component. This is spanning

(it contains every vertex other than v, and also v), connected, and has no circuits

(each component of G′ has no circuit in the spanning subgraph, and no circuit includes

v because once we pass through v into any component, we can never leave that component

again.1

(c) Using the previous two parts, prove that any finite connected graph has a spanning
subgraph with no circuits.
By induction on k. The base case is the first part, the inductive case is the second

part. So, by induction on k, every finite connected graph has a spanning subgraph

with no circuits.

1I tweaked this problem to talk about circuits instead of cycles because I thought that made it slightly easier.
If you solved it using cycles, the same basic argument applies; to see there are no cycles, notice that once you
cross the bridge from any component to v, you can’t get back to that component because there is only one such
“bridge”.
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