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1. (20 points) One of the following is valid, and the other is not. Give a deduction of the
valid one and prove that there is no deduction of the other.

∀xφ→ ∃xφ, ∃xφ→ ∀xφ.
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2. (20 points) Consider a language with a unary function symbol g and a binary predicate
symbol P. Give two examples of models which are not elementarily equivalent.
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3. (20 points) Consider a language with a single constant symbol e, a binary function symbol
f , and a unary predicate symbol Q. Let A be a model with:

• |A| = Q,

• eA = 0,

• fA(q, r) = q − r,

• QA = {1/z | z ∈ Z \ 0}.

Let s(vi) = 1/i.
(a) What is s(e)?

(b) What is s(fv2v3)?

(c) Does �A Qfv2v3[s] hold?

(d) Does �A ∀v4(Qv4 → Qfev4)[s] hold?
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4. (20 points) You have a computer terminal into which you can type 0’s and 1’s. At any
point (that is, after you have typed some finite sequence), it may reject the input with an error.
(For instance, you might type 0, then 1, and then 0, at which point it gives an error, so it rejects
the sequence 010.) Note that if a sequence is rejected, all longer sequences are also rejected
(since if you tried to type them, you’d get stopped along the way).

Suppose that for every possible length, there is at least one input of that which is not rejected.
(And therefore all initial segments must also not be rejected.) Prove that there is a sequence of
infinite length which is not rejected. (That is, every finite initial segment of this infinite sequence
is not rejected.)
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5. (20 points) Consider a language with a single unary function symbol f , a single unary
predicate symbol P , and =. Let Σ be the sentences:

• ∀xffx = x,

• ∀xPx↔ ¬Pfx

• ∃x1∃x2x1 6= x2,

• ∃x1∃x2∃x3x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3,

• · · ·

(The last two sentences and · · · collectively say there are infinitely many elements.) Prove that
CnΣ is complete.
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