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1. (20 points) One of the following is valid, and the other is not. Give a deduction of the
valid one and prove that there is no deduction of the other.

∀xφ→ ∃xφ, ∃xφ→ ∀xφ.

Solution: An example of a valid deduction of ∀xφ→ ∃xφ is:

∀xφ→ φ (Q1, since φxx is the same as φ)

φ→ ∃xφ (Q2)

∀x→ ∃xφ (PC)

If we don’t want to use Q2 on grounds of its redundancy, we could instead give

∀xφ→ φ (Q1)

∀x¬φ→ ¬φ (Q1)

∀xφ→ ∃x¬φ (PC)

(Because ∃x¬φ is the same as ¬∀x¬φ, so the propositional form is {A→ B,C → ¬B} ⇒ A→
¬C, which is a tautoloty.)
To see that 6` ∃xφ → ∀xφ, we can use soundness and show 6� ∃xφ → ∀xφ. When φ x > 5, the
standard model N has N 6� ∃xφ→ ∀xφ.
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2. (20 points) Consider a language with a unary function symbol g and a binary predicate
symbol P. Give two examples of models which are not elementarily equivalent.

Solution: Let A be the model with |A| = N, PA = {0}, and gA the identity function.
Let B be the model with |B| = N, PB = {0}, and gB(n) = n+ 1.
Then A � ∀xgx = x while B `6 ∀xgx = x.
(There are lots and lots of examples of pairs of structures which are not elementarily equivalent.
A complete answer definitely needs two fully defined structures and an example of a formula
satisfied by one but not the other.)
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3. (20 points) Consider a language with a single constant symbol e, a binary function symbol
f , and a unary predicate symbol Q. Let A be a model with:

• |A| = Q,

• eA = 0,

• fA(q, r) = q − r,

• QA = {1/z | z ∈ Z \ 0}.

Let s(vi) = 1/i.
(a) What is s(e)?

Solution: 0

(b) What is s(fv2v3)?
Solution: 1/6

(c) Does �A Qfv2v3[s] hold?
Solution: Yes

(d) Does �A ∀v4(Qv4 → Qfev4)[s] hold?
Solution: Yes: If A � Qv4[s

′] then v4 = 1/z for some z, so s′(fev4) = −1/z = 1/(−z), so
A � Qfev4[s

′].
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4. (20 points) You have a computer terminal into which you can type 0’s and 1’s. At any
point (that is, after you have typed some finite sequence), it may reject the input with an error.
(For instance, you might type 0, then 1, and then 0, at which point it gives an error, so it rejects
the sequence 010.) Note that if a sequence is rejected, all longer sequences are also rejected
(since if you tried to type them, you’d get stopped along the way).

Suppose that for every possible length, there is at least one input of that which is not rejected.
(And therefore all initial segments must also not be rejected.) Prove that there is a sequence of
infinite length which is not rejected. (That is, every finite initial segment of this infinite sequence
is not rejected.)
Solution: The clue here is that to get from something about finite lengths to infinite lengths,
the only tool we have around is the Compactness Theorem. In order to use it, we have to figure
out how to encode this situation as a set of sentences so that any model of these sentences is
describing an infinite sequence.
We could take a language with infinitely many 1-ary predicate symbols, A1, A2, . . . , An, . . . and
a constant symbol c. Let us write A1

i c to mean just Aic and A0
1c to mean ¬Aic. Whenever

b1 · · · bn is rejected, Σ should contain the sentence

¬(Ab1
1 c ∧ · · ·A

bn
n c).

(For instance, if 010 is rejected, Σ contains ¬(¬A1c ∧A2c ∧A3c).)
For any finite subset Σ0 ⊆ Σ, only finitely many predicate symbols A1, . . . , An appear. There is
some sequence b1, . . . , bn which is not rejected. Consider the structure B where |B| is a single
element: |B| = {∗}, cB = ∗, and ∗ ∈ AB

i exactly if bi = 1. Since this path is not rejected and
no initial segment is rejected, B satisfies every formula in Σ0.
So Σ is finitely satisfiable, and therefore satisfiable. Let B satisfy Σ and take the sequence with
bi = 1 if and only if B � Aic. Then b1b2 · · · is an infinite sequence which is not rejected.
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5. (20 points) Consider a language with a single unary function symbol f , a single unary
predicate symbol P , and =. Let Σ be the sentences:

• ∀xffx = x,

• ∀xPx↔ ¬Pfx

• ∃x1∃x2x1 6= x2,

• ∃x1∃x2∃x3x1 6= x2 ∧ x1 6= x3 ∧ x2 6= x3,

• · · ·

(The last two sentences and · · · collectively say there are infinitely many elements.) Prove that
CnΣ is complete.
Solution: Consider a countable model of Σ, A. It must contain infinitely many elements. Since
fA is its own inverse, fA must be injective and surjective. So fA is a bijection and, by the second
axiom, is a bijection between PA and |A| \ PA.
This gives a complete description of a countable model of Σ: fA is a bijection between two
disjoint infinite sets, PA and |A| \ PA.
Therefore any two countable models of Σ are isomorphic: if A and B are models of Σ, pick
any bijection π : PA → PB (which exists since both sets are countably infinite), and then for
a ∈ PA, define π(fA(a)) = fB(π(a)).
(We could also give an argument analogous to the one we saw in class, building an isomrophism
between two arbitrary countable models by a back-and-forth argument.
Suppose CnΣ were not complete, so there is some φ so that both Σ ∪ {φ} and Σ ∪ {¬φ} are
consistent. Then, by completeness, there are models A+ � Σ ∪ {φ} and B+ � Σ ∪ {¬φ}. These
must be infinite because they are models of Σ, so by DLS, there are countable models A ≺ A+

and B ≺ B+. We have just shown that A ∼= B. This is a contradiction, since A � φ and
B � ¬φ.
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