Give an example of a function f such that:

- f is defined everywhere on $[0,1]$,
- f has a local maximum in the interval $[0,1]$,
- f has no local minimum in the interval $[0,1]$,
- f has a global maximum in the interval $[0,1]$,
- f has no local minimum in the interval $[0,1]$.

2

Give an example of a function f such that:

- f is defined everywhere on $[0,1]$,
- f has a local maximum in the interval $(0,1)$,
- f has no local minimum in the interval $[0,1]$,
- f has a global maximum in the interval $[0,1]$, and this maximum is neither 0 nor 1,
- f has no local minimum in the interval $[0,1]$.

3

Give an example of a function f such that:

- f is defined everywhere on $[0,1]$,
- f has local maxima at both 0 and 1 ,
- f has no local extrema in $(0,1)$,

4

Give an example of a function f such that:

- $f(0)=-1$,
- $f(1)=1$,
- f is continuous on $(0,1)$,
- There is no c in $(0,1)$ such that $f(c)=0$

5

Give an example of a function f such that:

- $f(0)=f(1)=0$,
- f is continuous on $[0,1]$,
- There is no c in $(0,1)$ such that $f^{\prime}(c)=0$

6

Give an example of a function f such that:

- $f(0)=f(1)=0$,
- f is continuous on $(0,1)$,
- f is differentiable on $(0,1)$,
- There is no c in $(0,1)$ such that $f^{\prime}(c)=0$

7

Give an example of a function f such that:

- $f(0)=0$,
- $f(1)=1$,
- f is continuous on $[0,1]$,
- There is no c in $(0,1)$ such that $f^{\prime}(c)=1$

8

Give an example of a function f such that:

- $f(0)=0$,
- $f(1)=1$,
- f is continuous on $(0,1)$,
- f is differentiable on $(0,1)$,
- There is no c in $(0,1)$ such that $f^{\prime}(c)=1$

