FINAL EXAM

Math 3A
12/10/2009

Name:

\qquad

Signature:

Section:

\qquad

Read all of the following information before starting the exam:

- NO CALCULATORS!
- Check your exam to make sure all pages are present.
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Whenever you invoke a theorem to justify a result, make sure to clearly identify all premises of the theorem, show that they are true, and specify which theorem you are using.
- Circle or otherwise indicate your final answers.
- Good luck!

1	20	
2	20	
3	20	
4	30	
5	30	
6	25	
7	25	
8	30	
Total	200	

1. (20 points) Find the following derivatives:
(a) $\frac{d}{d x} x(\ln x)$
(b) $\frac{d}{d x} \ln \left(\tan \left(e^{\sin ^{-1} x}\right)\right)$
(c) $\frac{d}{d x} \frac{\left(x^{2}+x\right) e^{x} \sin x}{\left(x^{4}+1\right) \cos x}$
(d) $\quad \frac{d^{1000}}{d x^{1000}}(\sin x+\cos x)$
2. (20 points) Indicate the type of indeterminate form of the following limits, if any, and find the value of the limit.
(a) $\quad \lim _{x \rightarrow \infty} \frac{x \ln x}{e^{x}}$
(b) $\quad \lim _{x \rightarrow \infty} x^{\frac{1}{x^{2}}}$
(c) $\quad \lim _{x \rightarrow 2^{+}} \frac{x-3}{x-2}$
3. (20 points) (a) Find the general antiderivative of $x^{3}+\sec ^{2}(2 x)$.
(b) Find the particular antiderivative of $f(x)=\frac{1}{x^{3}}$ such that $F(1)=1$.
4. (30 points) You are on one side of a river 1 km wide. You wish to reach your camp, which is on the other side of the river and 1 km away. You can swim at $3 \mathrm{~km} / \mathrm{hour}$ and walk at 5 km/hour.

(a) Suppose you swim to a point $*$ on the far side of the river (a horizontal distance of $x \mathrm{~km}$), and then walk the rest of the way ($1-x \mathrm{~km}$) to the camp. What is the total time it takes you to reach the camp, as a function of x ? (Remember that the time taken is given by $\frac{\text { distance }}{\text { rate }}$.)
(b) What are the candidates (both critical points and endpoints) for the value of x which minimizes the time taken?
5. (30 points) A fish (on the surface of the water) is being reeled in from a point 10 m above the surface of the water. The fishing line being shortened at a rate of $2 \mathrm{~m} / \mathrm{s}$.

(a) Give an equation relating the angle θ between the fishing line and the water with the length of the fishing line.
(b) When the fishing line is 25 m long, what is $\cos \theta$?
(c) How quickly is θ changing when the fishing line is 25 m long?
6. (25 points) Let $f(x)=x^{6}+4 x^{4}+x^{2}-7$.
(a) Show that $f(x)$ has at least two distinct real roots.
(b) Suppose $f(x)$ had three distinct roots, $a<b<d$; conclude that $f^{\prime}(x)$ must have two distinct real roots.
(c) Show that f^{\prime} cannot have two distinct real roots.
7. (25 points) A cylinder with height exactly 2 m has volume $V(r)=2 \pi r^{2}$ where r is the radius of the base.
(a) Give relative error in r.
(b) If the relative error in r is 0.02 , what is the relative error in $V(r)$?
8. (30 points) This problem concerns the function

$$
f(x)=\frac{x^{2}+4 x-5}{x-2} .
$$

(Note that the rest of the exam-parts (a) through (i) over three pages - are all referring to this function.) The following information may be useful:

- $f^{\prime}(x)=\frac{x^{2}-4 x-3}{(x-2)^{2}}$
- $f^{\prime \prime}(x)=\frac{14}{(x-2)^{3}}$
- $f(x)=x+6+\frac{7}{x-2}$
(a) Identify the points where f is 0 or undefined, and the intervals where f is positive or negative. (You may indicate intervals in any intelligible format you like.)
(b) Identify the critical points of f, and the intervals where f is increasing or decreasing.
(c) Identify the inflection points of f, and the intervals where f is concave up or concave down.
(d) Determine

$$
\lim _{x \rightarrow 2^{-}} f(x)
$$

(e) Determine

$$
\lim _{x \rightarrow 2^{+}} f(x)
$$

(f) Determine

$$
\lim _{x \rightarrow \infty} f(x) \text { and } \lim _{x \rightarrow \infty}[f(x)-(x+6)]
$$

(g) Determine

$$
\lim _{x \rightarrow-\infty} f(x) \text { and } \lim _{x \rightarrow-\infty}[f(x)-(x+6)]
$$

(h) Describe all asymptotes (horizontal, vertical, or oblique) of f.
(i) Sketch a graph of f. Be sure to indicate all zeros, critical points, inflection points, and asymptotes of f.

