Math 3A, Fall 2010 - Homework 2 [due Oct 4th] - Solutions

Section 2.2

3. Determine the values of the sequence $\left\{a_{n}\right\}, a_{n}=\frac{1}{n+2}$, for $n=0,1,2,3,4,5$.

Solution.

n	0	1	2	3	4	5
a_{n}	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{7}$

4*. Determine the values of the sequence $\left\{a_{n}\right\}, a_{n}=\frac{1}{1+n^{2}}$, for $n=0,1,2,3,4,5$.

Solution.

$a_{0}=\frac{1}{1+0^{2}}=\frac{1}{1+0}=\frac{1}{1}=1, \quad a_{1}=\frac{1}{1+1^{2}}=\frac{1}{1+1}=\frac{1}{2}, \quad a_{2}=\frac{1}{1+2^{2}}=\frac{1}{1+4}=\frac{1}{5}$,
$a_{3}=\frac{1}{1+3^{2}}=\frac{1}{1+9}=\frac{1}{10}, \quad a_{4}=\frac{1}{1+4^{2}}=\frac{1}{1+16}=\frac{1}{17}, \quad a_{5}=\frac{1}{1+5^{2}}=\frac{1}{1+25}=\frac{1}{26}$

n	0	1	2	3	4	5
a_{n}	1	$\frac{1}{2}$	$\frac{1}{5}$	$\frac{1}{10}$	$\frac{1}{17}$	$\frac{1}{26}$

31. Find an expression for a_{n} on the basis of the values of $a_{0}, a_{1}, a_{2}, \ldots$

$$
-1,2,-3,4,-5, \ldots
$$

Solution.

The signs are alternating, so each term will be a positive number multiplied by $(-1)^{n+1}$ [or $(-1)^{n-1}$, which is the same]. Absolute values of the terms are $1,2,3,4,5, \ldots$, and since the sequence starts with 0th term, we recognize them as $\left|a_{n}\right|=n+1$. Thus, the formula is $a_{n}=(-1)^{n+1}(n+1)$, and it is easy to verify it for $n=0,1, \ldots, 5$.
32^{*}. Find an expression for a_{n} on the basis of the values of $a_{0}, a_{1}, a_{2}, \ldots$

$$
2,-4,6,-8,10 \ldots
$$

Solution.

The signs are alternating, so each term will be a positive number multiplied by $(-1)^{n}$. Absolute values of the terms are $2,4,6,8,10 \ldots$, and since the sequence starts with 0 th term, we recognize them as $\left|a_{n}\right|=2 n+2$. Thus, the formula is $a_{n}=(-1)^{n}(2 n+2)$, and it is easy to verify it for $n=0,1, \ldots, 5$.
41. Write the first five terms of the sequence $\left\{a_{n}\right\}, a_{n}=\frac{1}{n^{2}+1}$, and find $\lim _{n \rightarrow \infty} a_{n}$.

Solution.

n	0	1	2	3	4
a_{n}	1	$\frac{1}{2}$	$\frac{1}{5}$	$\frac{1}{10}$	$\frac{1}{17}$

It seems that the sequence converges to 0, i.e. $\lim _{n \rightarrow \infty} a_{n}=0$.
If we wanted to show it rigorously, we would use the limit laws and write:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{1}{n^{2}+1} \div \frac{n^{2}}{n^{2}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}}{1+\frac{1}{n^{2}}}=\frac{\lim _{n \rightarrow \infty} \frac{1}{n^{2}}}{\lim _{n \rightarrow \infty} 1+\lim _{n \rightarrow \infty} \frac{1}{n^{2}}} \\
=\frac{\lim _{n \rightarrow \infty}\left(\frac{1}{n} \cdot \frac{1}{n}\right)}{1+\lim _{n \rightarrow \infty}\left(\frac{1}{n} \cdot \frac{1}{n}\right)}=\frac{\lim _{n \rightarrow \infty} \frac{1}{n} \cdot \lim _{n \rightarrow \infty} \frac{1}{n}}{1+\lim _{n \rightarrow \infty} \frac{1}{n} \cdot \lim _{n \rightarrow \infty} \frac{1}{n}}=\frac{0 \cdot 0}{1+0 \cdot 0}=0
\end{gathered}
$$

42^{*}. Write the first five terms of the sequence $\left\{a_{n}\right\}, a_{n}=\frac{1}{\sqrt{n+1}}$, and find $\lim _{n \rightarrow \infty} a_{n}$.
Solution.

n	0	1	2	3	4
a_{n}	1	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{3}}$	$\frac{1}{2}$	$\frac{1}{\sqrt{5}}$

It seems that the sequence converges to 0, i.e. $\lim _{n \rightarrow \infty} a_{n}=0$.
If we wanted to show it rigorously, we would use the limit laws and write:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n+1}}=\lim _{n \rightarrow \infty} \sqrt{\frac{1}{n+1}}=\sqrt{\lim _{n \rightarrow \infty} \frac{1}{n+1}}=\sqrt{\lim _{n \rightarrow \infty} \frac{1}{n+1} \div \frac{n}{n}} \\
=\sqrt{\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{1+\frac{1}{n}}}=\sqrt{\frac{\lim _{n \rightarrow \infty} \frac{1}{n}}{\lim _{n \rightarrow \infty} 1+\lim _{n \rightarrow \infty} \frac{1}{n}}}=\sqrt{\frac{0}{1+0}}=\sqrt{0}=0
\end{gathered}
$$

Above we used the property $\lim _{n \rightarrow \infty} \sqrt{b_{n}}=\sqrt{\lim _{n \rightarrow \infty} b_{n}}$, which we didn't learn yet.
47. Write the first five terms of the sequence $\left\{a_{n}\right\}, a_{n}=\sqrt{n}$, and determine whether $\lim _{n \rightarrow \infty} a_{n}$ exists. If the limit exists, find it.
Solution.

n	0	1	2	3	4
a_{n}	0	1	$\sqrt{2}$	$\sqrt{3}$	2

It seems that the sequence "diverges to ∞ ", i.e. the limit $\lim _{n \rightarrow \infty} a_{n}$ does not exist.
48*. Write the first five terms of the sequence $\left\{a_{n}\right\}, a_{n}=n^{2}$, and determine whether $\lim _{n \rightarrow \infty} a_{n}$ exists. If the limit exists, find it.
Solution.

n	0	1	2	3	4
a_{n}	0	1	4	9	16

It seems that the sequence "diverges to ∞ ", i.e. the limit $\lim _{n \rightarrow \infty} a_{n}$ does not exist.
75. Use the limit laws to determine the limit.

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{2}}
$$

Solution.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{2}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n^{2}}\right)=\lim _{n \rightarrow \infty} 1+\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \\
& \quad=1+\lim _{n \rightarrow \infty}\left(\frac{1}{n} \cdot \frac{1}{n}\right)=1+\lim _{n \rightarrow \infty} \frac{1}{n} \cdot \lim _{n \rightarrow \infty} \frac{1}{n}=1+0 \cdot 0=1
\end{aligned}
$$

76^{*}. Use the limit laws to determine the limit.

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}-5}{n^{2}}
$$

Solution.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{3 n^{2}-5}{n^{2}}=\lim _{n \rightarrow \infty}\left(3-\frac{5}{n^{2}}\right)=\lim _{n \rightarrow \infty} 3-\lim _{n \rightarrow \infty} \frac{5}{n^{2}}=3-5 \lim _{n \rightarrow \infty} \frac{1}{n^{2}} \\
& =3-5 \lim _{n \rightarrow \infty}\left(\frac{1}{n} \cdot \frac{1}{n}\right)=3-5 \lim _{n \rightarrow \infty} \frac{1}{n} \cdot \lim _{n \rightarrow \infty} \frac{1}{n}=3-5 \cdot 0 \cdot 0=3
\end{aligned}
$$

