## Math 3A Homework 3 Solution (Fall 2010)

## Section 3.1

9. $f(x)=e^{-x^{2} / 2}$

| x | $-2-0.1$ | $-2-0.01$ | $-2-0.001$ | $-2+0.001$ | $-2+0.01$ | $-2+0.1$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(\mathrm{x})$ | 0.1102505 | 0.1326488 | 0.1350648 | 0.1356061 | 0.1380623 | 0.1644744 |

Since $f(-2)=e^{-(-2)^{2} / 2}=e^{-2} \approx 0.1353352$, from the table, we can see

$$
\lim _{x \rightarrow-2} e^{-x^{2} / 2}=e^{-2}
$$

10*. $f(x)=\frac{e^{x}+1}{2 x+3}$

| x | -0.1 | -0.01 | -0.001 | +0.001 | +0.01 | +0.1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(\mathrm{x})$ | 0.680299 | 0.6678019 | 0.666778 | 0.6665558 | 0.6655795 | 0.6578659 |

Since $f(0)=\frac{e^{0}+1}{0+3}=\frac{2}{3} \approx 0.6667$, from the table, we can see

$$
\lim _{x \rightarrow 0} \frac{e^{x}+1}{2 x+3}=\frac{2}{3} .
$$

21. $f(x)=\frac{2}{x-4}$

| x | $4-0.1$ | $4-0.01$ | $4-0.001$ | $4-0.0001$ | $4-0.00001$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(\mathrm{x})$ | -20 | -200 | -2000 | -20000 | -200000 |

From the table, we can see

$$
\lim _{x \rightarrow 4-} \frac{2}{x-4}=-\infty
$$

22*. $f(x)=\frac{1}{x-3}$

| $x$ | $3+0.00001$ | $3+0.0001$ | $3+0.001$ | $3+0.01$ | $3+0.1$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(\mathrm{x})$ | 100000 | 10000 | 1000 | 100 | 10 |

From the table, we can see

$$
\lim _{x \rightarrow 3+} \frac{1}{x-3}=\infty
$$

47. $f(x)=\frac{1-x^{2}}{1-x}$ is a rational function, but since

$$
\begin{gathered}
\lim _{x \rightarrow 1}(1-x)=0, \\
1
\end{gathered}
$$

we cannot use Rule 4. Hence using the similar method in Example 15 of Section 3.1 gives

$$
\lim _{x \rightarrow 1} \frac{1-x^{2}}{1-x}=\lim _{x \rightarrow 1} \frac{(1-x)(1+x)}{1-x}=\lim _{x \rightarrow 1}(1+x)=1+1=2
$$

48*. $f(u)=\frac{9-u^{2}}{3-u}$ is a rational function, but since

$$
\lim _{u \rightarrow 3}(3-u)=0
$$

we cannot use Rule 4. Hence using the similar method in Example 15 of Section 3.1 gives

$$
\lim _{u \rightarrow 3} \frac{9-u^{2}}{3-u}=\lim _{u \rightarrow 3} \frac{(3-u)(3+u)}{3-u}=\lim _{u \rightarrow 3}(3+u)=3+3=6
$$

## Section 3.2

To check whether a function is continuous at $x=c$, we need to check the following three conditions:

1. $f(x)$ is defined at $x=c$.
2. $\lim _{x \rightarrow c} f(x)$ exists.
3. $\lim _{x \rightarrow c} f(x)=f(c)$
4. First it is easy to see that the domain $\mathbf{D}$ of

$$
f(x)= \begin{cases}\frac{x^{2}-3 x+2}{x-2} & \text { if } x \neq 1 \\ 1 & \text { if } x=1\end{cases}
$$

is $\mathbf{D}=\{x \in \mathbb{R}: x \neq 2\}$.
So from Condition $1, x=2$ is a discontinuity of $f(x)$.
Next, $\lim _{x \rightarrow 1} f(x)=\frac{1^{2}-3 \times 1+2}{1-2}=0 \neq 1=f(1)$ implies that $f(x)$ doesn't satisfy Condition 3.

In sum, the discontinuities of $f(x)$ are $x=1$ and $x=2$.
12*. It is easy to see that

$$
f(x)= \begin{cases}x^{2}-1 & \text { if } x \leq 0 \\ x & \text { if } x>0\end{cases}
$$

is continuous when $x>0$ or $x<0$. But at the break point $x=0$, we have One-Sided limits:

$$
\lim _{x \rightarrow 0+} f(x)=\lim _{2} x \rightarrow 0+\infty=0
$$

and

$$
\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0-}\left(x^{2}-1\right)=-1,
$$

which imply that $\lim _{x \rightarrow 0} f(x)$ doesn't exist.
Then $f(x)$ has only one discontinuity at $x=0$.
23. First find the domain $\mathbf{D}$ of $f(x)=\tan (2 \pi x)$.

Since $f(x)=\tan (2 \pi x)=\frac{\sin (2 \pi x)}{\cos (2 \pi x)}$,
$\mathbf{D}=\{\cos (2 \pi x) \neq 0\}=\left\{2 \pi x \neq k \pi+\frac{\pi}{2}, k \in \mathbb{Z}\right\}=\left\{x \in \mathbb{R}: x \neq \frac{k}{2}+\frac{1}{4}, k \in \mathbb{Z}\right\}$. Moreover, $f(x)$ is a trigonometric function, then it is continuous for all $x \in \mathbf{D}$.

24*. First find the domain $\mathbf{D}$ of $f(x)=\sin \left(\frac{2 x}{3+x}\right)$.
$\mathbf{D}=\{3+x \neq 0\}=\{x \in \mathbb{R}: x \neq-3\}$.
Moreover, $f(x)$ is a composition of a trigonometric function and a rational function, then it is continuous for all $x \in \mathbf{D}$.

25(b). Obviously

$$
f(x)= \begin{cases}x^{2}+2 & \text { if } x \leq 0 \\ x+c & \text { if } x>0\end{cases}
$$

is continuous for all $x>0$ or $x<0$.
At $x=0$, we have

$$
\lim _{x \rightarrow 0+} f(x)=\lim _{x \rightarrow 0+}(x+c)=c
$$

and

$$
\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0-} x^{2}+2=2 .
$$

If $f(x)$ is continuous at $x=0$, we should have

$$
c=\lim _{x \rightarrow 0+} f(x)=\lim _{x \rightarrow 0-} f(x)=f(0)=2 .
$$

Then if $c=2, f(x)$ is continuous for all reals.
26(b)*. Obviously

$$
f(x)= \begin{cases}\frac{1}{x} & \text { if } x \geq 1 \\ 2 x+c & \text { if } x<1\end{cases}
$$

is continuous for all $x>1$ or $x<1$.
At $x=1$, we have

$$
\lim _{x \rightarrow 1+} f(x)=\lim _{x \rightarrow 1+}(1 / x)=1
$$

and

$$
\lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1-}^{3}(2 x+c)=2+c .
$$

If $f(x)$ is continuous at $x=1$, we should have

$$
2+c=\lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1+} f(x)=f(1)=1
$$

which implies $c=-1$.
Then if $c=-1, f(x)$ is continuous for all reals.
41. Since $e^{x}$ and $e^{2 x}$ are both exponential functions, and thus continuous, then

$$
\lim _{x \rightarrow 0}\left(e^{x}-1\right)=0
$$

so we cannot use Rule 4. But using the similar method in Example 15 of Section 3.1 gives

$$
\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{e^{x}-1}=\lim _{x \rightarrow 0} \frac{\left(e^{x}-1\right)\left(e^{x}+1\right)}{e^{x}-1}=\lim _{x \rightarrow 0}\left(e^{x}+1\right)=e^{0}+1=2
$$

42*. Since $e^{x}$ and $e^{-x}$ are both exponential functions, and thus continuous, then applying Limit Laws gives

$$
\lim _{x \rightarrow 0} \frac{e^{-x}-e^{x}}{e^{-x}+1}=\frac{\lim _{x \rightarrow 0} e^{-x}-\lim _{x \rightarrow 0} e^{x}}{\lim _{x \rightarrow 0} e^{-x}+\lim _{x \rightarrow 0} 1}=\frac{e^{0}-e^{0}}{e^{0}+1}=\frac{1-1}{1+1}=0
$$

## Section 3.3

17. If we take $t=-x, x \rightarrow-\infty$ is equivalent to $t \rightarrow \infty$, then the original limit becomes

$$
\lim _{x \rightarrow-\infty} \exp [x]=\lim _{t \rightarrow \infty} e^{-t}=0
$$

18*. From the definition of the logarithmic functions, we know $e^{\ln x}=x$. Then

$$
\lim _{x \rightarrow \infty} \exp [-\ln x]=\lim _{x \rightarrow \infty} \frac{1}{\exp [\ln x]}=\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

19. 

$$
\lim _{x \rightarrow \infty} \frac{3 e^{2 x}}{2 e^{2 x}-e^{x}}=\lim _{x \rightarrow \infty} \frac{3}{2-e^{-x}}=\frac{3}{2-0}=\frac{3}{2}
$$

$20^{*}$.

$$
\lim _{x \rightarrow \infty} \frac{3 e^{2 x}}{2 e^{2 x}-e^{3 x}}=\lim _{x \rightarrow \infty} \frac{3 e^{-x}}{2 e^{-x}-1}=\frac{0}{0-1}=0
$$

Additional Question*: Give examples of two functions, $f(x)$ and $g(x)$, such that $\lim _{x \rightarrow 1} f(x)$ does not exist, and $\lim _{x \rightarrow 1} g(x)$ does not exist,
but $\lim _{x \rightarrow 1} \frac{f(x)}{g(x)}=0$.*
One of solutions: Take $f(x)=\frac{1}{1-x}$ and $g(x)=\frac{1}{(1-x)^{2}}$. Then $\lim _{x \rightarrow 1} f(x)$ and $\lim _{x \rightarrow 1} g(x)$ do not exist, since they are both $\infty$.
But, $\lim _{x \rightarrow 1} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 1}(1-x)=0$.

