Math 3A, Fall 2010 - Homework 5 [due Nov 1st] - Solutions

SECTION 4.4

3. Differentiate the function with respect to the independent variable.
$f(x)=\left(1-3 x^{2}\right)^{4}$
Solution. One can decompose f as the composition $f(x)=f_{2}\left(f_{1}(x)\right)$, where $f_{1}(x)=$ $1-3 x^{2}$ and $f_{2}(y)=y^{4}$. Using the chain rule we get:

$$
f^{\prime}(x)=f_{2}^{\prime}\left(f_{1}(x)\right) f_{1}^{\prime}(x)=4\left(1-3 x^{2}\right)^{3}(-6 x)
$$

or after simplification

$$
f^{\prime}(x)=-24 x\left(1-3 x^{2}\right)^{3}
$$

4*. Differentiate the function with respect to the independent variable.
$f(x)=\left(5 x^{2}-3 x\right)^{3}$
Solution. One can decompose f as the composition $f(x)=f_{2}\left(f_{1}(x)\right)$, where $f_{1}(x)=$ $5 x^{2}-3 x$ and $f_{2}(y)=y^{3}$. Using the chain rule we get:

$$
f^{\prime}(x)=f_{2}^{\prime}\left(f_{1}(x)\right) f_{1}^{\prime}(x)=3\left(5 x^{2}-3 x\right)^{2}(10 x-3)
$$

15. Differentiate the function with respect to the independent variable.
$f(s)=\sqrt{s+\sqrt{s}}$
Solution. One can decompose f as the composition $f(s)=f_{2}\left(f_{1}(s)\right)$, where $f_{1}(s)=$ $s+\sqrt{s}=s+s^{1 / 2}$ and $f_{2}(t)=\sqrt{t}=t^{1 / 2}$. Using the chain rule we get:

$$
f^{\prime}(s)=f_{2}^{\prime}\left(f_{1}(s)\right) f_{1}^{\prime}(s)=\frac{1}{2}\left(s+s^{1 / 2}\right)^{-1 / 2}\left(1+\frac{1}{2} s^{-1 / 2}\right)
$$

or after simplification

$$
f^{\prime}(s)=\frac{2 \sqrt{s}+1}{4 \sqrt{s} \sqrt{s+\sqrt{s}}}
$$

16*. Differentiate the function with respect to the independent variable.
$g(t)=\sqrt{t^{2}+\sqrt{t+1}}$
Solution. One can decompose g as the composition $g(t)=g_{2}\left(g_{1}(t)\right)$, where $g_{1}(t)=$ $t^{2}+\sqrt{t+1}=t^{2}+(t+1)^{1 / 2}$ and $g_{2}(u)=\sqrt{u}=u^{1 / 2}$. Using the chain rule we get:

$$
g^{\prime}(t)=g_{2}^{\prime}\left(g_{1}(t)\right) g_{1}^{\prime}(t)=\frac{1}{2}\left(t^{2}+(t+1)^{1 / 2}\right)^{-1 / 2}\left(2 t+\frac{1}{2}(t+1)^{-1 / 2}\right)
$$

or after simplification

$$
g^{\prime}(t)=\frac{4 t \sqrt{t+1}+1}{4 \sqrt{t+1} \sqrt{t^{2}+\sqrt{t+1}}}
$$

61. Assume that x and y are differentiable functions of t. Find $\frac{d y}{d t}$ when $x^{2}+y^{2}=1, \frac{d x}{d t}=2$ for $x=\frac{1}{2}$, and $y>0$.
Solution. Observe that $x=\frac{1}{2}$ and $y>0$ together with the equation give $\left(\frac{1}{2}\right)^{2}+y^{2}=1$, i.e. $y=\frac{\sqrt{3}}{2}$. Differentiating the equation $x^{2}+y^{2}=1$ with respect to t and using the chain rule we obtain

$$
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=0
$$

Plugging in $x=\frac{1}{2}, y=\frac{\sqrt{3}}{2}, \frac{d x}{d t}=2$ we get

$$
2 \cdot \frac{1}{2} \cdot 2+2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{d y}{d t}=0
$$

and thus $\frac{d y}{d t}=-\frac{2}{\sqrt{3}}=-\frac{2 \sqrt{3}}{3}$.
62*. Assume that x and y are differentiable functions of t. Find $\frac{d y}{d t}$ when $y^{2}=x^{2}-x^{4}, \frac{d x}{d t}=1$ for $x=\frac{1}{2}$, and $y>0$.
Solution. Observe that $x=\frac{1}{2}$ and $y>0$ together with the equation give $y^{2}=\left(\frac{1}{2}\right)^{2}-$ $\left(\frac{1}{2}\right)^{4}=\frac{3}{16}$, i.e. $y=\frac{\sqrt{3}}{4}$. Differentiating the equation $y^{2}=x^{2}-x^{4}$ with respect to t and using the chain rule we obtain

$$
2 y \frac{d y}{d t}=2 x \frac{d x}{d t}-4 x^{3} \frac{d x}{d t}
$$

Plugging in $x=\frac{1}{2}, y=\frac{\sqrt{3}}{4}, \frac{d x}{d t}=1$ we get

$$
2 \cdot \frac{\sqrt{3}}{4} \cdot \frac{d y}{d t}=2 \cdot \frac{1}{2} \cdot 1-4 \cdot\left(\frac{1}{2}\right)^{3} \cdot 1
$$

i.e.

$$
\frac{\sqrt{3}}{2} \cdot \frac{d y}{d t}=\frac{1}{2}
$$

and thus $\frac{d y}{d t}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
69. Suppose that water is stored in a cylindrical tank of radius 5 m . If the height of the water in the tank is h, then the volume of the water is $V=\pi r^{2} h=25 \pi h \mathrm{~m}^{2}$. If we drain the water at a rate of 250 liters per minute, what is the rate at which the water level inside the tank drops?
Solution. Differentiating $V=25 \pi h$ with respect to t we get

$$
\frac{d V}{d t}=25 \pi \frac{d h}{d t}
$$

Since $\frac{d V}{d t}=250 \frac{1}{\min }=0.25 \frac{\mathrm{~m}^{3}}{\min }$ we get from above

$$
\frac{d h}{d t}=\frac{0.25}{25 \pi}=\frac{1}{100 \pi}
$$

and so the rate is $\frac{1}{100 \pi} \frac{\mathrm{~m}}{\mathrm{~min}}$ [meters per minute].

70*. Suppose that we pump water into an inverted right circular conical tank at the rate of 5 cubic feet per minute. The tank has height of 6 ft and the radius on top is 3 ft . What is the rate at which the water level is rising when the water is 2 ft deep? (Note that the volume of a right circular cone of radius r and height h is $V=\frac{1}{3} \pi r^{2} h$.)
Solution. When the water level is h and the radius on top of the water level is r, we can equal the proportions

$$
\frac{h}{6}=\frac{r}{3}
$$

to get $r=\frac{1}{2} h$. Therefore the formula becomes

$$
V=\frac{1}{3} \pi\left(\frac{1}{2} h\right)^{2} h=\frac{\pi}{12} h^{3}
$$

Differentiating with respect to t gives

$$
\frac{d V}{d t}=\frac{\pi}{4} h^{2} \frac{d h}{d t}
$$

Since $\frac{d V}{d t}=5$ and we are interested in the moment when $h=2$, we finally obtain

$$
\frac{d h}{d t}=\frac{5}{(\pi / 4) 2^{2}}=\frac{5}{\pi}
$$

and so the rate is $\frac{5}{\pi} \frac{\mathrm{ft}}{\mathrm{min}}$.
75. Find the first and the second derivative of the function.
$g(x)=\frac{x-1}{x+1}$
Solution. Using the quotient rule we get:

$$
g^{\prime}(x)=\frac{1 \cdot(x+1)-(x-1) \cdot 1}{(x+1)^{2}}=\frac{2}{(x+1)^{2}}
$$

and once again:

$$
g^{\prime \prime}(x)=\frac{0 \cdot(x+1)^{2}-2 \cdot 2(x+1)}{(x+1)^{4}}=\frac{-4}{(x+1)^{3}}
$$

76*. Find the first and the second derivative of the function.
$h(s)=\frac{1}{s^{2}+2}$
Solution. Using the quotient rule we get:

$$
h^{\prime}(s)=\frac{0 \cdot\left(s^{2}+2\right)-1 \cdot 2 s}{\left(s^{2}+2\right)^{2}}=\frac{-2 s}{\left(s^{2}+2\right)^{2}}
$$

and once again, together with the chain rule for $\left(\left(s^{2}+2\right)^{2}\right)^{\prime}=2\left(s^{2}+2\right) \cdot 2 s$:

$$
h^{\prime \prime}(s)=\frac{(-2) \cdot\left(s^{2}+2\right)^{2}-(-2 s) \cdot 2\left(s^{2}+2\right) \cdot 2 s}{\left(s^{2}+2\right)^{4}}=\frac{6 s^{2}-4}{\left(s^{2}+2\right)^{3}}
$$

83. Find the first 10 derivatives of $y=x^{5}$.

Solution.

$$
\begin{aligned}
y^{\prime} & =5 x^{4} \\
y^{\prime \prime} & =5 \cdot 4 \cdot x^{3}=20 x^{3} \\
y^{(3)} & =5 \cdot 4 \cdot 3 \cdot x^{2}=60 x^{2} \\
y^{(4)} & =5 \cdot 4 \cdot 3 \cdot 2 \cdot x=120 x \\
y^{(5)} & =5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120 \\
y^{(6)} & =0 \\
y^{(7)} & =0 \\
y^{(8)} & =0 \\
y^{(9)} & =0 \\
y^{(10)} & =0
\end{aligned}
$$

84*. Find $f^{(n)}(x)$ and $f^{(n+1)}(x)$ of $f(x)=x^{n}$.
Solution.

$$
\begin{aligned}
f^{\prime}(x) & =n x^{n-1} \\
f^{\prime \prime}(x) & =n(n-1) x^{n-2} \\
f^{(3)}(x) & =n(n-1)(n-2) x^{n-3} \\
\cdots & \cdots \\
f^{(n)}(x) & =n(n-1)(n-2) \ldots 3 \cdot 2 \cdot 1 \cdot x^{0}=n! \\
f^{(n+1)}(x) & =0
\end{aligned}
$$

Section 4.5

5. Find the derivative with respect to the independent variable.
$f(x)=\tan x-\cot x$
Solution.

$$
f^{\prime}(x)=\sec ^{2} x-\left(-\csc ^{2} x\right)=\sec ^{2} x+\csc ^{2} x
$$

6*. Find the derivative with respect to the independent variable.
$f(x)=\sec x-\csc x$
Solution.

$$
f^{\prime}(x)=\sec x \tan x-(-\csc x \cot x)=\sec x \tan x+\csc x \cot x
$$

47. Find the derivative with respect to the independent variable.
$g(x)=\frac{1}{\csc ^{3}\left(1-5 x^{2}\right)}$
Solution. It is convenient to use $\csc \theta=\frac{1}{\sin \theta}$ and rewrite the function as

$$
g(x)=\sin ^{3}\left(1-5 x^{2}\right)=\left(\sin \left(1-5 x^{2}\right)\right)^{3}
$$

Now we apply the chain rule:

$$
g^{\prime}(x)=3\left(\sin \left(1-5 x^{2}\right)\right)^{2}(-10 x)=-30 x \sin ^{2}\left(1-5 x^{2}\right)
$$

48*. Find the derivative with respect to the independent variable.
$h(x)=\cot (3 x) \csc (3 x)$
Solution. We apply the product rule:

$$
h^{\prime}(x)=-\csc ^{2}(3 x) \cdot 3 \cdot \csc (3 x)+\cot (3 x) \cdot(-\csc (3 x) \cot (3 x)) \cdot 3
$$

and this result can be simplified as

$$
h^{\prime}(x)=-3 \csc ^{3}(3 x)-3 \cot ^{2}(3 x) \csc (3 x)
$$

63. Use the quotient rule to show that

$$
\frac{d}{d x} \sec x=\sec x \tan x
$$

Solution.

$$
\begin{aligned}
\frac{d}{d x} \sec x & =\frac{d}{d x}\left(\frac{1}{\cos x}\right)=\frac{0 \cdot \cos x-1 \cdot(-\sin x)}{\cos ^{2} x} \\
& =\frac{\sin x}{\cos ^{2} x}=\frac{1}{\cos x} \cdot \frac{\sin x}{\cos x}=\sec x \tan x
\end{aligned}
$$

64 . Use the quotient rule to show that

$$
\frac{d}{d x} \csc x=-\csc x \cot x
$$

Solution.

$$
\begin{aligned}
\frac{d}{d x} \csc x & =\frac{d}{d x}\left(\frac{1}{\sin x}\right)=\frac{0 \cdot \sin x-1 \cdot \cos x}{\sin ^{2} x} \\
& =\frac{-\cos x}{\sin ^{2} x}=-\frac{1}{\sin x} \cdot \frac{\cos x}{\sin x}=-\csc x \cot x
\end{aligned}
$$

Section 4.6

1. Differentiate the function with respect to the independent variable.
$f(x)=e^{3 x}$
Solution. Using the chain rule we get:

$$
f^{\prime}(x)=e^{3 x} \cdot 3=3 e^{3 x}
$$

2*. Differentiate the function with respect to the independent variable.
$f(x)=e^{-2 x}$
Solution. Using the chain rule we get:

$$
f^{\prime}(x)=e^{-2 x} \cdot(-2)=-2 e^{-2 x}
$$

45. Differentiate the function with respect to the independent variable.
$f(x)=2^{\sqrt{x^{2}-1}}$
Solution. One can decompose f as the composition $f(x)=f_{3}\left(f_{2}\left(f_{1}(x)\right)\right)$, where $f_{1}(x)=$ $x^{2}-1, f_{2}(y)=\sqrt{y}, f_{3}(z)=2^{z}$. Using the chain rule we get:

$$
f^{\prime}(x)=f_{3}^{\prime}\left(f_{2}\left(f_{1}(x)\right)\right) f_{2}^{\prime}\left(f_{1}(x)\right) f_{1}^{\prime}(x)=2^{\sqrt{x^{2}-1}} \ln 2 \cdot \frac{1}{2}\left(x^{2}-1\right)^{-1 / 2} \cdot 2 x
$$

or after simplification

$$
f^{\prime}(x)=\frac{x 2^{\sqrt{x^{2}-1}} \ln 2}{\sqrt{x^{2}-1}}
$$

46*. Differentiate the function with respect to the independent variable.
$f(x)=4^{\sqrt{1-2 x^{3}}}$
Solution. One can decompose f as the composition $f(x)=f_{3}\left(f_{2}\left(f_{1}(x)\right)\right)$, where $f_{1}(x)=$ $1-2 x^{3}, f_{2}(y)=\sqrt{y}, f_{3}(z)=4^{z}$. Using the chain rule we get:

$$
f^{\prime}(x)=f_{3}^{\prime}\left(f_{2}\left(f_{1}(x)\right)\right) f_{2}^{\prime}\left(f_{1}(x)\right) f_{1}^{\prime}(x)=4^{\sqrt{1-2 x^{3}}} \ln 4 \cdot \frac{1}{2}\left(1-2 x^{3}\right)^{-1 / 2} \cdot\left(-6 x^{2}\right)
$$

or after simplification

$$
f^{\prime}(x)=\frac{-3 x^{2} 4^{\sqrt{1-2 x^{3}}} \ln 4}{\sqrt{1-2 x^{3}}}
$$

