Homework 7

5.1, 41. Since $f(x)=-x^{2}+2$ is continuous on $[-1,2]$, and differentiable on $(-1,2)$, therefore by MVT, there exists c in $(-1,2)$, such that $f^{\prime}(c)=\frac{f(2)-f(1)}{2-(-1)}=-1$.
42. Since $f(x)=x^{3}$ is continuous on $[-1,0]$, and differentiable on $(-1,0)$, therefore by MVT, there exists c in $(-1,0)$ thus in $(-1,1)$, such that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}=1$.
43. We should draw a function that is continuous on $[0,1]$ and differentiable on $(0,1)$, the graph is omitted. For the second statement the reason is that: by MVT, since $f(x)$ is a function that is continuous on $[0,1]$ and differentiable on $(0,1)$, therefore there existse a point c in $(0,1)$, such that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$.
44. We should draw a function that is continuous on $[0,1]$ and differentiable on $(0,1)$, and should have two "peaks". The graph is omitted. For the second statement the reason is that: by MVT, since $f(x)$ is a function that is continuous on $[0,1]$ and differentiable on $(0,1)$, therefore there existse a point c in $(0,1)$, such that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$.
46. Since f is continuous on $[a, b]$, and differentiable on (a, b), and $f(b)-f(a)>0$, then by MVT, there exists c in (a, b), such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}>0$.
47. since $f(x)$ is not constant, then we can find a point d in (a, b) such that $f(d) \neq 0$, so $f(d)>0$ or $f(d)<0$. If $f(d)>0$, apply MVT on $[a, d]$, we get there exists a point c_{1} in (a, d), such that $f\left(c_{1}\right)=\frac{f(d)-f(a)}{d-a}>0$, since $f(d)-f(a)=f(d)>0$; and then apply MVT on $[d, b]$, we get that there exists a point c_{2} in (d, b), such that $f\left(c_{2}\right)=\frac{f(b)-f(d)}{b-d}<0$, since $f(b)-f(d)=-f(d)<0$. Similarly if $f(d)<0$, we can also find such two points satisfy the required conditions.
5.2, 6. $y=(x-2)^{3}+3, x \in R$.
$y^{\prime}=3(X-2)^{2} \geq 0$ for all $x \in R$, therefore $f(x)$ is increasing on R.
$y^{\prime \prime}=6(x-2)$, then when $x>2, y^{\prime \prime}>0$, thus y concave up; then when $x<2, y^{\prime \prime}<0$, thus y concave down.
7. $y=\sqrt{x+1}, x \geq-1$.
$y^{\prime}=\frac{1}{2 \sqrt{x+1}} \geq 0$, for all $x \geq-1$, thus y is increasing on $x \geq-1$.
$y^{\prime \prime}=\frac{-1}{4(x+1)^{\frac{3}{2}}}<0$, for $x>-1$, therefore y is concave down for $x>-1$.
8. $y=(3 x-1)^{\frac{1}{3}}, x \in R$
$y^{\prime}=\frac{1}{3}(3 x-1)^{-\frac{2}{3}} \geq 0$, thus the function is increasing on R.
$y^{\prime \prime}=-\frac{2}{9}(3 x-1)^{-\frac{5}{3}}$:when $x<\frac{1}{3}, y^{\prime \prime}>0$, thus concave up;
when $x>\frac{1}{3}, y^{\prime \prime}<0$, thus concave down.
9. $y=\frac{1}{x}, x \neq 0$
$y^{\prime}=-\frac{1}{x^{2}}<0$ for all $x \neq 0$, thus the function is decreasing.
$y^{\prime \prime}=\frac{2}{x^{3}}$: when $x>0, y^{\prime \prime}>0$, thus concave up;
when $x<0, y^{\prime \prime}<0$, thus concave down.
$31 f(P)=e^{-a P}$, then $f^{\prime}(P)=-a e^{-a P}<0$, therefore $f(P)$ decreases.
$32 f(P)=\left(1+\frac{a P}{k}\right)^{-k}$, then $f^{\prime}(P)=-a\left(1+\frac{a P}{k}\right)^{-k-1}<0$, since P and k are both positive constants,
therefore $f(P)$ decreases.
5.3 2. $y=\sqrt{x-1}, \quad 1 \leq x \leq 2$.
$y^{\prime}=\frac{1}{\sqrt{x-1}}>0$, for $1<x \leq 2$, therefore the function is increasing. And for $1 \leq x \leq 2$, the local maximum is $(2, f(2))=(2,1)$, and the local minimum is $(1, f(1))=(1,0)$, therefore the absolute maximum is $(2,1)$, and absolute minimum is $(1,0)$.
3. $y=\ln (2 x-1), 1 \leq x \leq 2$.
$y^{\prime}=\frac{2}{2 x-1}>0$ for all $1 \leq \bar{x} \leq 2$, thus the local maximum is $(2, f(2))=(2, \ln 3)$, and the local minimum is $(1, f(1))=(1,0)$, therefore the absolute maximum is $(2, \ln 3)$, and absolute minimum is $(1,0)$.
4. $y=\ln \frac{x}{x+1}, \quad x>0$.
$y^{\prime}=\frac{1}{x(x+1)}>0$, for all $x>0$. therefore, there is no maximum or minimum.
(5.) $y=x e^{-x}, \quad 0 \leq x \leq 1$
$y^{\prime}=e^{-x}(1-x) \geq 0$, for all $0 \leq x \leq 1$, therefore the function is increasing. thus the local maximum is $(1, f(1))=\left(1, \frac{1}{e}\right)$, and the local minimum is $(0, f(0))=(0,0)$, therefore the absolute maximum is $\left(1, \frac{1}{e}\right)$, and absolute minimum is $(0,0)$
19. $f(x)=x^{3}-2, x \in R$.
$f^{\prime \prime}(x)=6 x$, let $f^{\prime \prime}(x)=0$. we get $x=0$, and when $x>0, f^{\prime \prime}(x)>0$, and when $x<0, f^{\prime \prime}(x)<0$, therefore, at $x=0$, the concavity changes, therefore, $x=0$ is the inflection point of $f(x)$.
20. $f(x)=(x-3)^{5}, \quad x \in R$.
$f^{\prime \prime}(x)=20(x-3)^{3}$, let $f^{\prime \prime}(x)=0$, we get $x=3$, and when $x>3, f^{\prime \prime}(x>0)$, and when $x<3, f^{\prime \prime}(x)<0$, therefore, at $x=3$, the concavity changes, therefore $x=3$ is the inflection point of $f(x)$.

Draw a function f so that $f^{\prime}(x)$ is negative when x is negative, $f^{\prime}(x)$ is positive when x is positive, but $f(0)$ is not a minimum.
The function $f(x)=-\left|\frac{1}{x}\right|$ for $x \neq 0$ works.

