5.4 .4

Let l be the length of the rectangular area and let h be its height. Then the perimeter is $p=2 l+3 h$. The area is $A=l h=384$, so $l=384 / h$. Therefore $p=2 * 384 / h+3 h$, so

$$
\frac{d p}{d h}=-\frac{2 * 384}{h^{2}}+3
$$

Setting $\frac{d p}{d h}=0$, we have $3=\frac{2 * 384}{h^{2}}$, so

$$
h^{2}=\frac{2 * 384}{3}
$$

Solving for h, we get $h= \pm 16$. Since h must be positive, the critical point is $h=16$. Finally, checking the second derivative, we have

$$
\frac{d^{2} p}{d h^{2}}=\frac{4 * 384}{h^{3}}>0
$$

so this graph is always concave up when $h>0$, so $h=16$ must be a minimum, and therefore the minimum perimeter is 96 .

5.4 .12

We wish to minimize $d=\sqrt{x^{2}+y^{2}}$ given that $y=1+2 x$. It suffices to minimize $D=d^{2}=x^{2}+y^{2}$. Substituting for y, we have $D=x^{2}+(1+2 x)^{2}=$ $x^{2}+1+4 x+4 x^{2}=5 x^{2}+4 x+1$.

$$
\frac{d D}{d x}=10 x+4
$$

Setting this equal to 0 , we have $10 x+4=0$, so $x=-2 / 5$. There are no endpoints, and $\frac{d^{2} D}{d x^{2}}=10>0$, so the graph is always concave up, so $x=-2 / 5$ is a minimum.

5.4 .22

We have $b=20-a$ and wish to maximize $m=a b=a(20-a)=20 a-a^{2}$. $\frac{d m}{d a}=20-2 a$, so setting $20-2 a=0, a=10$, so $b=10$ and $m=a b=100$.

5.5.8

$\lim _{x \rightarrow 0} x \sin x=0, \lim _{x \rightarrow 0} 1-\cos x=0$, so this is an indeterminate form of type $0 / 0$, so it is equal by LH to

$$
\lim _{x \rightarrow 0} \frac{x \cos x+\sin x}{\sin x}
$$

By LH again, this is equal to

$$
\lim _{x \rightarrow 0} \frac{\cos x-x \sin x+\cos x}{\cos x}=2
$$

5.5.16

Top and bottom are both going to 0 , this has type $0 / 0$, so by LH , this is equal to

$$
\lim _{x \rightarrow 0} \frac{5^{x} \ln 5}{7^{x} \ln 7}=\frac{\ln 5}{\ln 7}
$$

5.5.26

This is equal to $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}$, which by LH is equal to

$$
\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}=\left[\lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0\right.
$$

5.5.28

By the same method as the previous part, after n derivatives applied to $\frac{x^{n}}{e^{x}}$, the top becomes $n \cdot(n-1) \cdots$ while the bottom remains e^{x}, so this is equal to 0 .

5.5.56

The top goes to 0 while the bottom goes to 1 , so the answer is 0 .

