MIDTERM 1

Math 3A
10/19/2009
Name: \qquad

Signature:

\qquad

Read all of the following information before starting the exam:

- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Whenever you invoke a theorem to justify a result, make sure to clearly identify all premises of the theorem, show that they are true, and specify which theorem you are using.
- Circle or otherwise indicate your final answers.
- Good luck!

1	15	
2	15	
3	15	
4	15	
5	15	
6	15	
7	10	
Total	100	

1. (15 points) Find the following limits if they exist; if not, state that they do not exist, and indicate if they go to ∞ or $-\infty$, indicate this as well. You may use any method you like, but clearly indicate intermediate steps and how you obtain your answer.
(a)
$\lim _{x \rightarrow \infty} \tan x$
(b) Find $\lim _{x \rightarrow \pi / 2^{-}} e^{\tan x}$
(c) Find $\lim _{x \rightarrow \infty} \frac{5 x^{4}-7 x^{2}+2}{3 x^{2}+4}$
(d) Find $\lim _{x \rightarrow 1} \frac{1}{x+1}$
(e) Consider the sequence $a_{n}=\sin n \pi$. What is $\lim _{n \rightarrow \infty} a_{n}$?
2. (15 points) Compute

$$
\lim _{x \rightarrow 0^{-}} \sin (2 x) \cos \frac{2}{x}
$$

3. (15 points) Show that the polynomial

$$
x^{3}-100 x^{2}+10
$$

has at least two roots.
4. (15 points) For what value of a is the function

$$
f(x)= \begin{cases}\frac{x^{2}-x-20}{x-5} & \text { if } x \neq 5 \\ a & \text { if } x=5\end{cases}
$$

continuous everywhere?
5. (15 points) Given an example of three sequences, a_{n}, b_{n}, and c_{n}, such that:

- None of the limits $\lim _{n \rightarrow \infty} a_{n}, \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}, \lim _{n \rightarrow \infty} \frac{a_{n}}{c_{n}}$ exist
- The limit $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n} c_{n}}=1$

6. (15 points) (a) Find the derivative of $\sqrt{2 x+1}$ using the chain rule.
(b) Find the derivative of $\sqrt{2 x+1}$ using the definition of the derivative.
7. (10 points) Consider the equality
$f(x+h) g(x+h)-f(x) g(x)=f(x)[g(x+h)-g(x)]+g(x)[f(x+h)-f(x)]+[f(x+h)-f(x)][g(x+h)-g(x)]$.
Draw a diagram illustrating this equality; each of the quantities in the equation should be represented as the area of some shape in this diagram.
