Suggested practice problems from recent sections:

- 10.4: 3, 4, 7, 8, 13, 14, 19, 20
- 10.5: 17, 18, 27, 28, 35, 36
- 10.6: 1, 2, 3, 4, 40, 41, 42, 43

a

Approximate $\int_1^7 e^x dx$ as a Riemann sum with 3 equal intervals, choosing the left endpoint of each rectangle to be its height.

\mathbf{b}

Give the general solution of the differential equation

$$\frac{dy}{dt} = \frac{e^y - 1}{e^y} t^2.$$

С

Recall that $\arcsin x = \int_0^x \frac{1}{\sqrt{1-t^2}} dt$. Show that when $y \ge 1$,

$$\arcsin\sqrt{1-\frac{1}{y^2}} \le y\sqrt{1-\frac{1}{y^2}}.$$

\mathbf{d}

You know that $2 \le f(x) \le 3$ for all x. Is it possible that $\int_2^5 f(x) dx = 4$?

\mathbf{e}

What is $\int_{-1}^{-1} \frac{\cos x}{x} dx$?

f

Find a value a > 0 such that $\int_1^a \frac{\sin(x-2)}{(x-2)^2} dx = 0$.

\mathbf{g}

Define $F(x) = \int_0^x \frac{\sin t}{t} dt$. What is $\frac{d}{dx} F(\ln x)$?

\mathbf{h}

Water is flowing into a container at a rate of W(t)gal/sec (where t is the time). Express the amount of water that enters the container between t = 0 and t = 4. What is the partial fraction decomposition of

$$\frac{1}{(x^2+4)^3(x^2+1)^2(x-1)^3(x+2)}$$

j

Find and solve the partial fraction decomposition for

$$\frac{1}{(x^2+1)(x^2-1)}$$

\mathbf{k}

Integrate:

1.
$$\int x^2 \ln x^3 dx$$

2.
$$\int \frac{x}{\sqrt{1-x^2}} dx$$

3.
$$\int \arcsin x \, dx$$

4.
$$\int \frac{1}{x^4-1} dx$$

5.
$$\int \frac{1}{4x^2+8x+29} dx$$

6.
$$\int_1^\infty \frac{\ln x}{x} dx$$

7.
$$\int_1^{-\infty} e^x dx$$

L	-		
L			
L.			
		L	

Describe the domain, range, and level curves of $\ln(x^2 + y^2 - 1)$.

m

Find the following partial derivatives:

1. $\frac{\partial}{\partial x}(x^3 + xy + \ln x)$ 2. $\frac{\partial}{\partial y}e^{xe^{xy}}$ 3. $\frac{\partial^2}{\partial x \partial y}e^{xe^{xy}}$ 4. $\frac{\partial}{\partial y}\ln xy$

5.
$$\frac{\partial^3}{\partial y \partial x \partial y} e^{x^2 y^2}$$

6.
$$\frac{\partial}{\partial z} \ln(xy + xz + yz)$$

i

Indicate whether the following statements are (A) lways True, (S) ometimes True, or (N) ever True.

- 1. A function that is continuous at (x, y) is also differentiable at (x, y)
- 2. If f is differentiable at (x,y) then the partial derivative $\frac{\partial f}{\partial x}$ is exists at (x,y)
- 3. If f is differentiable and $\nabla f \neq 0$, ∇f is the direction in which f decreases most rapidly
- 4. If $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ both exist at (x, y) then $\nabla f(x, y)$ is defined
- 5. If $f, f_x, f_y, f_{xy}, f_{yx}$ are both defined and continuous at (x, y) then the mixed partials are equal at (x, y)

0

Find and classify all critical points of $x^3y - 4xy^3 + y$

\mathbf{p}

Find and classify all critical points of $e^{xy} - e^{2xy}$.

q

Find the candidates for where e^{xy} achieves its minimum on the circle $x^2 + y^2 = 1$.

\mathbf{r}

Find the candidates for where e^{xy} achieves its minimum on the hyperbola x = 1/y.

\mathbf{S}

Find the candidates for where $x^2 + y^2$ achieves its minimum on the hyperbola x = 1/y.

t

1. Find and classify as stable or unstable the equilibria of

$$\frac{dy}{dt} = (y-3)(e^y - e).$$

2. y_0 is a solution with $y_0(0) = 0$. What is $\lim_{t\to\infty} y_0$?

\mathbf{n}

- 3. y_1 is a solution with $y_1(0) = 1$. What is $\lim_{t\to\infty} y_1$?
- 4. y_2 is a solution with $y_2(0) = 2$. What is $\lim_{t\to\infty} y_2$?
- 5. y_3 is a solution with $y_3(0) = 3$. What is $\lim_{t\to\infty} y_3$?
- 6. y_4 is a solution with $y_4(0) = 4$. What is $\lim_{t\to\infty} y_4$?

u

Give an example of an autonomous differential equation which has x^3 as a solution.