Suggested practice problems from recent sections:

- 10.4: $3,4,7,8,13,14,19,20$
- 10.5: $17,18,27,28,35,36$
- 10.6: $1,2,3,4,40,41,42,43$

a

Approximate $\int_{1}^{7} e^{x} d x$ as a Riemann sum with 3 equal intervals, choosing the left endpoint of each rectangle to be its height.
b
Give the general solution of the differential equation

$$
\frac{d y}{d t}=\frac{e^{y}-1}{e^{y}} t^{2} .
$$

c
Recall that $\arcsin x=\int_{0}^{x} \frac{1}{\sqrt{1-t^{2}}} d t$. Show that when $y \geq 1$,

$$
\arcsin \sqrt{1-\frac{1}{y^{2}}} \leq y \sqrt{1-\frac{1}{y^{2}}}
$$

d

You know that $2 \leq f(x) \leq 3$ for all x. Is it possible that $\int_{2}^{5} f(x) d x=4$?

e

What is $\int_{-1}^{-1} \frac{\cos x}{x} d x$?

f

Find a value $a>0$ such that $\int_{1}^{a} \frac{\sin (x-2)}{(x-2)^{2}} d x=0$.

g

Define $F(x)=\int_{0}^{x} \frac{\sin t}{t} d t$. What is $\frac{d}{d x} F(\ln x)$?

h

Water is flowing into a container at a rate of $W(t) g a l / \sec$ (where t is the time).
Express the amount of water that enters the container between $t=0$ and $t=4$.
i
What is the partial fraction decomposition of

$$
\frac{1}{\left(x^{2}+4\right)^{3}\left(x^{2}+1\right)^{2}(x-1)^{3}(x+2)}
$$

j

Find and solve the partial fraction decomposition for

$$
\frac{1}{\left(x^{2}+1\right)\left(x^{2}-1\right)}
$$

k
Integrate:

1. $\int x^{2} \ln x^{3} d x$
2. $\int \frac{x}{\sqrt{1-x^{2}}} d x$
3. $\int \arcsin x d x$
4. $\int \frac{1}{x^{4}-1} d x$
5. $\int \frac{1}{4 x^{2}+8 x+29} d x$
6. $\int_{1}^{\infty} \frac{\ln x}{x} d x$
7. $\int_{1}^{-\infty} e^{x} d x$

1
Describe the domain, range, and level curves of $\ln \left(x^{2}+y^{2}-1\right)$.
m
Find the following partial derivatives:

1. $\frac{\partial}{\partial x}\left(x^{3}+x y+\ln x\right)$
2. $\frac{\partial}{\partial y} e^{x e^{x y}}$
3. $\frac{\partial^{2}}{\partial x \partial y} e^{x e^{x y}}$
4. $\frac{\partial}{\partial y} \ln x y$
5. $\frac{\partial^{3}}{\partial y \partial x \partial y} e^{x^{2} y^{2}}$
6. $\frac{\partial}{\partial z} \ln (x y+x z+y z)$

n

Indicate whether the following statements are (A)lways True, (S)ometimes True, or (N) ever True.

1. A function that is continuous at (x, y) is also differentiable at (x, y)
2. If f is differentiable at (x, y) then the partial derivative $\frac{\partial f}{\partial x}$ is exists at (x, y)
3. If f is differentiable and $\nabla f \neq 0, \nabla f$ is the direction in which f decreases most rapidly
4. If $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ both exist at (x, y) then $\nabla f(x, y)$ is defined
5. If $f, f_{x}, f_{y}, f_{x y}, f_{y x}$ are both defined and continuous at (x, y) then the mixed partials are equal at (x, y)

0
Find and classify all critical points of $x^{3} y-4 x y^{3}+y$

p

Find and classify all critical points of $e^{x y}-e^{2 x y}$.

q

Find the candidates for where $e^{x y}$ achieves its minimum on the circle $x^{2}+y^{2}=1$.
r
Find the candidates for where $e^{x y}$ achieves its minimum on the hyperbola $x=$ $1 / y$.

S
Find the candidates for where $x^{2}+y^{2}$ achieves its minimum on the hyperbola $x=1 / y$.

t

1. Find and classify as stable or unstable the equilibria of

$$
\frac{d y}{d t}=(y-3)\left(e^{y}-e\right)
$$

2. y_{0} is a solution with $y_{0}(0)=0$. What is $\lim _{t \rightarrow \infty} y_{0}$?
3. y_{1} is a solution with $y_{1}(0)=1$. What is $\lim _{t \rightarrow \infty} y_{1}$?
4. y_{2} is a solution with $y_{2}(0)=2$. What is $\lim _{t \rightarrow \infty} y_{2}$?
5. y_{3} is a solution with $y_{3}(0)=3$. What is $\lim _{t \rightarrow \infty} y_{3}$?
6. y_{4} is a solution with $y_{4}(0)=4$. What is $\lim _{t \rightarrow \infty} y_{4}$?

u

Give an example of an autonomous differential equation which has x^{3} as a solution.

