Suggested practice problems from recent sections:

- 10.4: 3, 4, 7, 8, 13, 14, 19, 20
- 10.5: 17, 18, 27, 28, 35, 36
- 10.6: 1, 2, 3, 4, 40, 41, 42, 43

а

Approximate $\int_{1}^{7} e^{x} dx$ as a Riemann sum with 3 equal intervals, choosing the left endpoint of each rectangle to be its height.

Solution: $2(e + e^3 + e^5)$

\mathbf{b}

Give the general solution of the differential equation

$$\frac{dy}{dt} = \frac{e^y - 1}{e^y} t^2.$$

Solution: If y = 0, the right side is 0, so y = 0 is a solution. If $y \neq 0$, we have

$$\frac{e^y}{e^y - 1}dy = t^2dt$$

Integrating both sides (and using $u = e^y$ to integrate the left), we have

$$\ln|e^y - 1| = \frac{t^3}{3} + C.$$

Therefore

$$|e^y - 1| = e^{\frac{t^3}{3} + C}$$

and so

$$e^{y} - 1 = e^{\frac{t^{3}}{3} + C}$$
 or $e^{y} = -e^{\frac{t^{3}}{3} + C}$.

Solving for y, we get

$$y = \ln\left(e^{\frac{t^3}{3}+C}+1\right)$$
 or $y = \ln\left(-e^{\frac{t^3}{3}+C}+1\right)$ or $y = 0$.

С

Recall that $\arcsin x = \int_0^x \frac{1}{\sqrt{1-t^2}} dt$. Show that when y > 0,

$$\arcsin\sqrt{1-\frac{1}{y^2}} \le y\sqrt{1-\frac{1}{y^2}}$$

Solution: $\arcsin\sqrt{1-\frac{1}{y^2}} = \int_0^{\sqrt{1-\frac{1}{y^2}}} \frac{1}{\sqrt{1-t^2}} dt$. Since $\frac{1}{\sqrt{1-t^2}}$ is increasing, the area under the curve $\frac{1}{\sqrt{1-t^2}}$ as t goes from 0 to $\sqrt{1-\frac{1}{y^2}}$ is contained inside the rectangle with corners (0,0) and $(\sqrt{1-\frac{1}{y^2}}, y)$. This box has area $y\sqrt{1-\frac{1}{y^2}}$.

You know that $2 \le f(x) \le 3$ for all x. Is it possible that $\int_2^5 f(x)dx = 4$? Solution: No. $\int_0^3 f(x)dx$ contains the rectangle with corners (2,0) and (5,2), which has area 6, so $6 \le \int_0^3 f(x) dx$.

\mathbf{e}

What is $\int_{-1}^{-1} \frac{\cos x}{x} dx$? Solution: 0, since the bounds are equal.

f

Find a value a > 0 such that $\int_{1}^{a} \frac{\sin(x-2)}{(x-2)^2} dx = 0$. Solution: We can't find the indefinite integral, so we must use geometry. This function is anti-symmetric around 2: $\frac{\sin(2-c-2)}{(2-c-2)} = \frac{-\sin c}{c^2} = -\frac{\sin(2+c-2)}{(2+c-2)^2}$. Therefore we need 1 and a to be symmetric around 2, so a = 3.

\mathbf{g}

Define $F(x) = \int_0^x \frac{\sin t}{t} dt$. What is $\frac{d}{dx} F(\ln x)$? Solution: By FTC, $F'(x) = \frac{\sin x}{x}$, so by the chain rule, $\frac{d}{dx} F(\ln x) = \frac{\sinh x}{x \ln x}$.

\mathbf{h}

Water is flowing into a container at a rate of W(t)gal/sec (where t is the time). Express the amount of water that enters the container between t = 0 and t = 4. Solution: $\int_0^4 W(t) dt$.

i

What is the partial fraction decomposition of

$$\frac{1}{(x^2+4)^3(x^2+1)^2(x-1)^3(x+2)}$$

Solution:

$$\frac{Ax+B}{x^2+4} + \frac{Cx+D}{(x^2+4)^2} + \frac{Ex+F}{(x^2+4)^3} + \frac{Gx+H}{x^2+1} + \frac{Ix+J}{(x^2+1)^2} + \frac{K}{x-1} + \frac{L}{(x-1)^2} + \frac{M}{(x-1)^3} + \frac{N}{x+2} + \frac{M}{(x-1)^3} + \frac{M$$

j

Find and solve the partial fraction decomposition for

$$\frac{1}{(x^2+1)(x^2-1)}$$

d

Solution

$$\frac{1}{x^4 - 1} = \frac{1}{(x^2 + 1)(x + 1)(x - 1)}$$
$$= \frac{Ax + B}{x^2 + 1} + \frac{C}{x + 1} + \frac{D}{x - 1}$$

so we get

$$1 = (Ax + B)(x^{2} - 1) + C(x - 1)(x^{2} + 1) + D(x + 1)(x^{2} + 1)$$

= $Ax^{3} - Ax + Bx^{2} - B + Cx^{3} + Cx - Cx^{2} - C + Dx^{3} + Dx + Dx^{2} + D$

This give four equations:

$$0x^{3} = (A + C + D)x^{3} (1)$$

$$0x^{2} = (B - C + D)x^{2} (2)$$

$$0x = (-A + C + D)x (3)$$

$$1 = -B - C + D (4)$$

We combine these to get:

$$(1) + (2) : 0 = A + B + 2D \tag{5}$$

$$(1) + (2) \cdot 0 = A + B + 2D$$

$$(2) + (3) \cdot 0 = -A + B + 2D$$

$$(3) + (4) \cdot 1 = -A - B + 2D$$

$$(5) - (6) \cdot 0 = 2A$$

$$(7)$$

$$3) + (4) : 1 = -A - B + 2D \tag{7}$$

$$A = 0$$
(8)
and (6) :0 = $B + 2D$
(9)

(8) and (6)
$$:0 = B + 2D$$
 (9)
(8) and (7) $:1 = -B + 2D$ (10)

(10)
(9)
$$-(10): -1 = 2B$$

$$B = -1/2 \tag{11}$$

(11) and (10)
$$:1 = 1/2 + 2D$$
 (12)

$$D = 1/4 \tag{13}$$

(13), (8), and (1) :0 =
$$0 + C + 1/4$$

 $C = -1/4$

 So

$$\frac{1}{x^4 - 1} = -\frac{1}{2(x^2 + 1)} - \frac{1}{4(x + 1)} + \frac{1}{4(x - 1)}$$

 \mathbf{k}

Integrate:

1. $\int x^2 \ln x^3 dx$

- 2. $\int \frac{x}{\sqrt{1-x^2}} dx$
- 3. $\int \arcsin x \, dx$
- 4. $\int \frac{1}{x^4 1} dx$
- 5. $\int \frac{1}{4x^2 + 8x + 29} dx$
- 6. $\int_1^\infty \frac{\ln x}{x} dx$
- 7. $\int_{1}^{-\infty} e^x dx$

Solution:

1. $u = \ln x^3, dv = x^2 dx, du = 3x^2/x^3 = 3/x, v = x^3/3, \ \int x^2 \ln x^3 dx = (x^3/3) \ln x^3 - \int x^2 dx = (x^3/3) \ln x^3 - x^3/3$

2.
$$u = 1 - x^2, du = -2x, \int \frac{x}{\sqrt{1 - x^2}} dx = -\frac{1}{2} \int u^{-1/2} du = -\sqrt{u} = -\sqrt{1 - x^2}$$

- 3. $u = \arcsin x, dv = dx, du = \frac{1}{\sqrt{1-x^2}}, v = x, \int \arcsin x \, dx = x \arcsin x \int \frac{x}{\sqrt{1-x^2}} dx = x \arcsin x + \sqrt{1-x^2}$
- 4. $\int \frac{1}{x^{4}-1} dx = \int -\frac{1}{2(x^{2}+1)} \frac{1}{4(x+1)} + \frac{1}{4(x-1)} dx = -\frac{1}{2} \arctan x \frac{1}{4} \ln(x+1) + \frac{1}{4} \ln(x-1)$
- 5. Since $(2x+2)^2 = 4x^2 + 8x + 4$, $\int \frac{1}{4x^2 + 8x + 29} dx = \int \frac{1}{(2x+2)^2 + 25} dx = \frac{1}{25} \int \frac{1}{\frac{(2x+2)^2}{25} + 1} dx = \frac{1}{25} \int \frac{1}{(\frac{2x+2}{25})^2 + 1} dx$. Substituting $u = \frac{2x+2}{5}, du = \frac{2}{5} dx$, we get $\int \frac{1}{4x^2 + 8x + 29} dx = \frac{1}{10} \int \frac{1}{u^2 + 1} du = \frac{1}{10} \arctan u = \frac{1}{10} \arctan \frac{2x+2}{5}$.
- 6. $\int_1^\infty \frac{\ln x}{x} dx = \lim_{a \to \infty} \int_1^a \frac{\ln x}{x} dx. \ u = \ln x, du = dx/x, \text{ so}$

$$\lim_{a \to \infty} \int_{1}^{a} \frac{\ln x}{x} dx = \lim_{a \to \infty} \int_{0}^{\ln a} u du$$
$$= \lim_{a \to \infty} \left| u^{2}/2 \right|_{0}^{\ln a}$$
$$= \lim_{a \to \infty} (\ln^{2} a/2 - 0)$$

Since $\lim_{a\to\infty} \ln^2 a/2 = \infty$, this integral does not exist.

- 7. $\int_{1}^{-\infty} e^{x} dx = -\int_{-\infty}^{1} e^{x} dx = \lim_{a \to \infty} -\int_{-a}^{1} e^{x} dx = \lim_{a \to \infty} -e^{x} \Big|_{-a}^{1} = \lim_{a \to \infty} e^{-a} e = -e.$
- 1

Describe the domain, range, and level curves of $\ln(x^2 + y^2 - 1)$.

Solution: $\ln u$ is undefined for $u \leq 0$, so this is only defined when $x^2 + y^2 - 1 > 0$, which is when $x^2 + y^2 > 1$. The level curves are solutions $c = \ln(x^2 + y^2 - 1)$, so $x^2 + y^2 = e^c + 1$, which are circles of radius $\sqrt{e^c + 1}$.

m

Find the following partial derivatives:

1. $\frac{\partial}{\partial x}(x^3 + xy + \ln x)$ 2. $\frac{\partial}{\partial y}e^{xe^{xy}}$ 3. $\frac{\partial^2}{\partial x \partial y}e^{xe^{xy}}$ 4. $\frac{\partial}{\partial y}\ln xy$ 5. $\frac{\partial^3}{\partial y \partial x \partial y}e^{x^2y^2}$ 6. $\frac{\partial}{\partial z}\ln(xy + xz + yz)$ Solution: 1. $3x^2 + y + 1/x$ 2. $x^2e^{xy}e^{xe^{xy}}$ 3. $2xe^{xy}e^{xe^{xy}} + x^2ye^{xy}e^{xe^{xy}} + x^2e^{xy}e^{xe^{xy}}(e^{xy} + xye^{xy})$ 4. 1/y5. $\frac{\partial}{\partial y}e^{x^2y^2} = 2x^2ye^{x^2y^2}, \frac{\partial^2}{\partial x \partial y}e^{x^2y^2} = 4xye^{x^2y^2} + 4x^3y^3e^{x^2y^2}, \frac{\partial^3}{\partial y \partial x \partial y}e^{x^2y^2} = 4xe^{x^2y^2} + 8x^3y^2e^{x^2y^2} + 12x^3y^2e^{x^2y^2} + 8x^5y^4e^{x^2y^2}$

n

Indicate whether the following statements are (A) lways True, (S) ometimes True, or (N) ever True.

- 1. A function that is continuous at (x, y) is also differentiable at (x, y)
- 2. If f is differentiable at (x,y) then the partial derivative $\frac{\partial f}{\partial x}$ is exists at (x,y)
- 3. If f is differentiable and $\nabla f \neq 0$, ∇f is the direction in which f decreases most rapidly
- 4. If $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ both exist at (x, y) then $\nabla f(x, y)$ is defined
- 5. If $f, f_x, f_y, f_{xy}, f_{yx}$ are both defined and continuous at (x, y) then the mixed partials are equal at (x, y)

Solutions:

- 1. (S): Some functions are continuous but not differentiable.
- 2. (A): if f is differentiable (x, y) then all directional derivatives, including the partial derivatives, exist at (x, y).
- 3. (N): If f is differentiable and $\nabla f \neq 0$ then ∇f is the direction in which f *increases* most rapidly.
- 4. (A): $\nabla f(x,y)$ is just the vector $\begin{bmatrix} \frac{\partial f}{\partial x}(x,y)\\ \frac{\partial f}{\partial y}(x,y) \end{bmatrix}$, which is defined if both its components are defined.
- 5. (S): We need these functions to be continuous in a ball containing (x, y), not just at (x, y), to be sure the mixed partials are equal

0

Find and classify all critical points of $x^3y - 4xy^3 + y$ Solution: $f_x = 3x^2y - 4y^3$ and $f_y = x^3 - 12xy^2 + 1$, so if $\nabla f = 0$ then

$$0 = 3x^2y - 4y^3, 0 = x^3 - 12xy^2 + 1.$$

The first equation is $0 = y(3x^2 - 4y^2)$, so either y = 0 or $3x^2 = 4y^2$. If y = 0, the second equation is $0 = x^3 + 1$, so one critical points is (-1, 0). In the second case, we substitue $y^2 = \frac{3}{4}x^2$ into the second equation to get $0 = x^3 - 9x^3 + 1$ so $-1 = -8x^3$, so x = 1/2 is a solution. Since $y^2 = \frac{3}{4}x^2$ in this case, $(1/2, \pm\sqrt{3}/4)$ are two more critical points.

 $f_{xx} = 6xy, f_{yy} = -24xy, f_{xy} = 3x^2 - 12y^2$, so

$$D = -144x^2y^2 - (3x^2 - 12y^2)^2.$$

This is always negative, so all three critical points are saddle points.

р

Find and classify all critical points of $e^{xy} - e^{2xy}$. Solution: $f_x = ye^{xy} - 2ye^{2xy} = y(e^{xy} - 2e^{2xy})$ and $f_y = xe^{xy} - 2xe^{2xy} = x(e^{xy} - 2e^{2xy})$. If $\nabla f = 0$ then either y = 0 or $e^{xy} - 2e^{2xy} = 0$, and either x = 0 or $e^{xy} - 2e^{2xy} = 0$. So one critical point is at (0,0). When y = 0, $e^{xy}-2e^{2xy}=e^0-2e^0=-1\neq 0$, so the other solutions are when $e^{xy}-2e^{2xy}=0$. This is equivalent to $e^{xy} = 2e^{2xy}$, and dividing both sides by e^{xy} gives $1 = 2e^{xy}$. Solving, we get $xy = -\ln 2$. So the critical points are (0,0) and the hyperbola $(x, -\ln 2/x).$

To classify, we find $f_{xx} = y^2 e^{xy} - 4y^2 e^{2xy}$, $f_{yy} = x^2 e^{xy} - 4x^2 e^{2xy}$, and $f_{xy} = f_{yx} = e^{xy} - 2e^{2xy} + xye^{xy} - 4xye^{2xy}$, and so

$$D = (y^2 e^{xy} - 4y^2 e^{2xy})(x^2 e^{xy} - 4x^2 e^{2xy}) - (e^{xy} - 2e^{2xy} + xye^{xy} - 4xye^{2xy})^2.$$

At the origin, almost all these terms disappear, and we have

$$D(0,0) = -(e^0 - 2e^0)^2 < 0$$

so the origin is a saddle point.

On the hyperbola, we can simplify a bit. We have

$$D(x,y) = x^2 y^2 e^{2xy} - 8x^2 y^2 e^{3xy} + 16x^2 y^2 e^{4xy} - (e^{xy} - 2e^{2xy} + xye^{xy} - 4xye^{2xy})^2$$

In particular, we never use x or y alone, just xy or $x^2y^2 = (xy)^2$. Note that $e^{-\ln 2} = e^{\ln 2^{-1}} = 1/2$ and that $e^{2xy} = (e^{xy})^2 = 1/4$, $e^{3xy} = 1/8$ and $e^{4xy} = 1/16$. So on the hyperbola we have

$$D(x,y) = (\ln^2 2)/4 - (\ln^2 2) + (\ln^2 2) - (1/2 - 1/2 - \ln 2/2 + \ln 2)^2 = (\ln^2 2)/4 + 2 - (\ln 2/2)^2 = 0$$

so the points on the hyperbola cannot be classified.

q

Find the candidates for where e^{xy} achieves its minimum on the circle $x^2 + y^2 = 1$.

Solution: $[ye^{xy}, xe^{xy}]' = c[2x, 2y]'$, which gives the equations $ye^{xy} = 2cx$ and $xe^{xy} = 2cy$. Multiplying by y and x respectively, $y^2e^{xy} = 2cxy = x^2e^{xy}$. Since e^{xy} is never 0, $x^2 = y^2$, and therefore the candidates are $(\pm 1/\sqrt{2}, \pm 1/\sqrt{2})$.

r

Find the candidates for where e^{xy} achieves its minimum on the hyperbola x = 1/y.

Solution: We solve the second equation to give xy = 1. But e^{xy} is constantly equal to e when xy = 1, so all points are maxima and minima! (If we used Lagrange multipliers, we'd find that $[ye^{xy}, xe^{xy}]' = c[y, x]'$, so $ye^{xy} = cy, xe^{xy} = cx$, and therefore $e^{xy} = c$ and xy = 1. Then, with c = e, this is true everywhere xy = 1.)

\mathbf{S}

Find the candidates for where $x^2 + y^2$ achieves its minimum on the hyperbola x = 1/y.

Solution: We solve the second equation to give xy = 1. [2x, 2y] = c[y, x] so 2x = cy, 2y = cx, and so $2x^2 = cxy = 2y^2$, and therefore $x^2 = y^2$. Since also $x = 1/y, 1/y^2 = y^2$, so $1 = y^4$, so $y = \pm 1$. Since xy = 1, the candidates are (1, 1) and (-1, -1).

t

1. Find and classify as stable or unstable the equilibria of

$$\frac{dy}{dt} = (y-3)(e^y - e)$$

- 2. y_0 is a solution with $y_0(0) = 0$. What is $\lim_{t\to\infty} y_0$?
- 3. y_1 is a solution with $y_1(0) = 1$. What is $\lim_{t\to\infty} y_1$?
- 4. y_2 is a solution with $y_2(0) = 2$. What is $\lim_{t\to\infty} y_2$?
- 5. y_3 is a solution with $y_3(0) = 3$. What is $\lim_{t\to\infty} y_3$?
- 6. y_4 is a solution with $y_4(0) = 4$. What is $\lim_{t\to\infty} y_4$?

Solution:

- 1. $g(y) = (y-3)(e^y e)$. g(y) = 0 means y = 3 or $e^y = e$, which means y = 1. $g'(y) = (y-3)e^y + e^y e$. $g'(3) = e^3 e > 0$, so 3 is an unstable equilibrium. g'(1) = -3e < 0, so 1 is a stable equilibrium.
- 2. When $y_0(0) = 0$, y' = g(0) > 0, so y_0 is increasing towards the equilibrium, so $\lim_{t\to\infty} y_0 = 1$.
- 3. When $y_1(0) = 1$, y' = g(1) = 0, so y_1 is constantly equal to 1, so $\lim_{t\to\infty} y_1 = 1$.
- 4. When $y_2(0) = 2$, y' = g(2) < 0, so y_2 is decreasing towards the equilibrium, so $\lim_{t\to\infty} y_2 = 1$.
- 5. When $y_3(0) = 3$, y' = g(3) = 0, so y_3 is constantly equal to 3, so $\lim_{t\to\infty} y_3 = 3$.
- 6. When $y_4(0) = 4$, y' = g(4) > 0, so y_4 is increasing away from the equilibrium, so $\lim_{t\to\infty} y_0 = \infty$.

u

Give an example of an autonomous differential equation which has x^3 as a solution.

Solution: When $y = x^3$, $y' = 3x^2$. We must express y' as a function of y, which is easily done by setting $y' = 3y^{2/3}$.