Suggested practice problems from recent sections:

- 10.4: $3,4,7,8,13,14,19,20$
- 10.5: 17, 18, 27, 28, 35, 36
- 10.6: $1,2,3,4,40,41,42,43$

a

Approximate $\int_{1}^{7} e^{x} d x$ as a Riemann sum with 3 equal intervals, choosing the left endpoint of each rectangle to be its height.

Solution: $2\left(e+e^{3}+e^{5}\right)$

b

Give the general solution of the differential equation

$$
\frac{d y}{d t}=\frac{e^{y}-1}{e^{y}} t^{2}
$$

Solution: If $y=0$, the right side is 0 , so $y=0$ is a solution. If $y \neq 0$, we have

$$
\frac{e^{y}}{e^{y}-1} d y=t^{2} d t
$$

Integrating both sides (and using $u=e^{y}$ to integrate the left), we have

$$
\ln \left|e^{y}-1\right|=\frac{t^{3}}{3}+C
$$

Therefore

$$
\left|e^{y}-1\right|=e^{\frac{t^{3}}{3}+C}
$$

and so

$$
e^{y}-1=e^{\frac{t^{3}}{3}+C} \text { or } e^{y}=-e^{\frac{t^{3}}{3}+C}
$$

Solving for y, we get

$$
y=\ln \left(e^{\frac{t^{3}}{3}+C}+1\right) \text { or } y=\ln \left(-e^{\frac{t^{3}}{3}+C}+1\right) \text { or } y=0 .
$$

C
Recall that $\arcsin x=\int_{0}^{x} \frac{1}{\sqrt{1-t^{2}}} d t$. Show that when $y>0$,

$$
\arcsin \sqrt{1-\frac{1}{y^{2}}} \leq y \sqrt{1-\frac{1}{y^{2}}}
$$

Solution: $\arcsin \sqrt{1-\frac{1}{y^{2}}}=\int_{0}^{\sqrt{1-\frac{1}{y^{2}}}} \frac{1}{\sqrt{1-t^{2}}} d t$. Since $\frac{1}{\sqrt{1-t^{2}}}$ is increasing, the area under the curve $\frac{1}{\sqrt{1-t^{2}}}$ as t goes from 0 to $\sqrt{1-\frac{1}{y^{2}}}$ is contained inside the rectangle with corners $(0,0)$ and $\left(\sqrt{1-\frac{1}{y^{2}}}, y\right)$. This box has area $y \sqrt{1-\frac{1}{y^{2}}}$.

d

You know that $2 \leq f(x) \leq 3$ for all x. Is it possible that $\int_{2}^{5} f(x) d x=4$?
Solution: No. $\int_{0}^{3} f(x) d x$ contains the rectangle with corners $(2,0)$ and $(5,2)$, which has area 6 , so $6 \leq \int_{0}^{3} f(x) d x$.
e
What is $\int_{-1}^{-1} \frac{\cos x}{x} d x$?
Solution: 0 , since the bounds are equal.

f

Find a value $a>0$ such that $\int_{1}^{a} \frac{\sin (x-2)}{(x-2)^{2}} d x=0$.
Solution: We can't find the indefinite integral, so we must use geometry. This function is anti-symmetric around 2: $\frac{\sin (2-c-2)}{(2-c-2)}=\frac{-\sin c}{c^{2}}=-\frac{\sin (2+c-2)}{(2+c-2)^{2}}$. Therefore we need 1 and a to be symmetric around 2 , so $a=3$.

g

Define $F(x)=\int_{0}^{x} \frac{\sin t}{t} d t$. What is $\frac{d}{d x} F(\ln x)$?
Solution: By FTC, $F^{\prime}(x)=\frac{\sin x}{x}$, so by the chain rule, $\frac{d}{d x} F(\ln x)=\frac{\sin \ln x}{x \ln x}$.

h

Water is flowing into a container at a rate of $W(t) g a l / \sec$ (where t is the time). Express the amount of water that enters the container between $t=0$ and $t=4$.

Solution: $\int_{0}^{4} W(t) d t$.

i

What is the partial fraction decomposition of

$$
\frac{1}{\left(x^{2}+4\right)^{3}\left(x^{2}+1\right)^{2}(x-1)^{3}(x+2)}
$$

Solution:
$\frac{A x+B}{x^{2}+4}+\frac{C x+D}{\left(x^{2}+4\right)^{2}}+\frac{E x+F}{\left(x^{2}+4\right)^{3}}+\frac{G x+H}{x^{2}+1}+\frac{I x+J}{\left(x^{2}+1\right)^{2}}+\frac{K}{x-1}+\frac{L}{(x-1)^{2}}+\frac{M}{(x-1)^{3}}+\frac{N}{x+2}$.

j

Find and solve the partial fraction decomposition for

$$
\frac{1}{\left(x^{2}+1\right)\left(x^{2}-1\right)}
$$

Solution

$$
\begin{aligned}
\frac{1}{x^{4}-1} & =\frac{1}{\left(x^{2}+1\right)(x+1)(x-1)} \\
& =\frac{A x+B}{x^{2}+1}+\frac{C}{x+1}+\frac{D}{x-1}
\end{aligned}
$$

so we get

$$
\begin{aligned}
1 & =(A x+B)\left(x^{2}-1\right)+C(x-1)\left(x^{2}+1\right)+D(x+1)\left(x^{2}+1\right) \\
& =A x^{3}-A x+B x^{2}-B+C x^{3}+C x-C x^{2}-C+D x^{3}+D x+D x^{2}+D
\end{aligned}
$$

This give four equations:

$$
\begin{aligned}
0 x^{3} & =(A+C+D) x^{3}(1) \\
0 x^{2} & =(B-C+D) x^{2}(2) \\
0 x & =(-A+C+D) x(3) \\
1 & =-B-C+D(4)
\end{aligned}
$$

We combine these to get:

$$
\begin{align*}
&(1)+(2): 0=A+B+2 D \tag{5}\\
&(2)+(3): 0=-A+B+2 D \tag{6}\\
&(3)+(4): 1=-A-B+2 D \tag{7}\\
&(5)-(6): 0=2 A \\
& A=0 \tag{8}\\
& \text { (8) and }(6): 0=B+2 D \tag{9}\\
& \text { (8) and }(7): 1=-B+2 D \tag{10}\\
&(9)-(10):-1=2 B \\
& B=-1 / 2 \tag{11}\\
&(11) \text { and }(10): 1=1 / 2+2 D \tag{12}\\
& D=1 / 4 \tag{13}\\
&(13),(8), \text { and }(1): 0=0+C+1 / 4 \\
& C=-1 / 4
\end{align*}
$$

So

$$
\frac{1}{x^{4}-1}=-\frac{1}{2\left(x^{2}+1\right)}-\frac{1}{4(x+1)}+\frac{1}{4(x-1)}
$$

k

Integrate:

1. $\int x^{2} \ln x^{3} d x$
2. $\int \frac{x}{\sqrt{1-x^{2}}} d x$
3. $\int \arcsin x d x$
4. $\int \frac{1}{x^{4}-1} d x$
5. $\int \frac{1}{4 x^{2}+8 x+29} d x$
6. $\int_{1}^{\infty} \frac{\ln x}{x} d x$
7. $\int_{1}^{-\infty} e^{x} d x$

Solution:

1. $u=\ln x^{3}, d v=x^{2} d x, d u=3 x^{2} / x^{3}=3 / x, v=x^{3} / 3, \int x^{2} \ln x^{3} d x=$ $\left(x^{3} / 3\right) \ln x^{3}-\int x^{2} d x=\left(x^{3} / 3\right) \ln x^{3}-x^{3} / 3$
2. $u=1-x^{2}, d u=-2 x, \int \frac{x}{\sqrt{1-x^{2}}} d x=-\frac{1}{2} \int u^{-1 / 2} d u=-\sqrt{u}=-\sqrt{1-x^{2}}$
3. $u=\arcsin x, d v=d x, d u=\frac{1}{\sqrt{1-x^{2}}}, v=x, \int \arcsin x d x=x \arcsin x-$ $\int \frac{x}{\sqrt{1-x^{2}}} d x=x \arcsin x+\sqrt{1-x^{2}}$
4. $\int \frac{1}{x^{4}-1} d x=\int-\frac{1}{2\left(x^{2}+1\right)}-\frac{1}{4(x+1)}+\frac{1}{4(x-1)} d x=-\frac{1}{2} \arctan x-\frac{1}{4} \ln (x+1)+$ $\frac{1}{4} \ln (x-1)$
5. Since $(2 x+2)^{2}=4 x^{2}+8 x+4, \int \frac{1}{4 x^{2}+8 x+29} d x=\int \frac{1}{(2 x+2)^{2}+25} d x=$ $\frac{1}{25} \int \frac{1}{\frac{(2 x+2)^{2}}{25}+1} d x=\frac{1}{25} \int \frac{1}{\left(\frac{2 x+2}{25}\right)^{2}+1} d x$. Substituting $u=\frac{2 x+2}{5}, d u=\frac{2}{5} d x$, we get $\int^{25} \frac{1}{4 x^{2}+8 x+29} d x=\frac{1}{10} \int \frac{1}{u^{2}+1} d u=\frac{1}{10} \arctan u=\frac{1}{10} \arctan \frac{2 x+2}{5}$.
6. $\int_{1}^{\infty} \frac{\ln x}{x} d x=\lim _{a \rightarrow \infty} \int_{1}^{a} \frac{\ln x}{x} d x . u=\ln x, d u=d x / x$, so

$$
\begin{aligned}
\lim _{a \rightarrow \infty} \int_{1}^{a} \frac{\ln x}{x} d x & =\lim _{a \rightarrow \infty} \int_{0}^{\ln a} u d u \\
& =\lim _{a \rightarrow \infty} u^{2} /\left.2\right|_{0} ^{\ln a} \\
& =\lim _{a \rightarrow \infty}\left(\ln ^{2} a / 2-0\right)
\end{aligned}
$$

Since $\lim _{a \rightarrow \infty} \ln ^{2} a / 2=\infty$, this integral does not exist.
7. $\int_{1}^{-\infty} e^{x} d x=-\int_{-\infty}^{1} e^{x} d x=\lim _{a \rightarrow \infty}-\int_{-a}^{1} e^{x} d x=\lim _{a \rightarrow \infty}-\left.e^{x}\right|_{-a} ^{1}=$ $\lim _{a \rightarrow \infty} e^{-a}-e=-e$.

1

Describe the domain, range, and level curves of $\ln \left(x^{2}+y^{2}-1\right)$.
Solution: $\ln u$ is undefined for $u \leq 0$, so this is only defined when $x^{2}+y^{2}-1>$ 0 , which is when $x^{2}+y^{2}>1$. The level curves are solutions $c=\ln \left(x^{2}+y^{2}-1\right)$, so $x^{2}+y^{2}=e^{c}+1$, which are circles of radius $\sqrt{e^{c}+1}$.
m
Find the following partial derivatives:

1. $\frac{\partial}{\partial x}\left(x^{3}+x y+\ln x\right)$
2. $\frac{\partial}{\partial y} e^{x e^{x y}}$
3. $\frac{\partial^{2}}{\partial x \partial y} e^{x e^{x y}}$
4. $\frac{\partial}{\partial y} \ln x y$
5. $\frac{\partial^{3}}{\partial y \partial x \partial y} e^{x^{2} y^{2}}$
6. $\frac{\partial}{\partial z} \ln (x y+x z+y z)$

Solution:

1. $3 x^{2}+y+1 / x$
2. $x^{2} e^{x y} e^{x e^{x y}}$
3. $2 x e^{x y} e^{x e^{x y}}+x^{2} y e^{x y} e^{x e^{x y}}+x^{2} e^{x y} e^{x e^{x y}}\left(e^{x y}+x y e^{x y}\right)$
4. $1 / y$
5. $\frac{\partial}{\partial y} e^{x^{2} y^{2}}=2 x^{2} y e^{x^{2} y^{2}}, \frac{\partial^{2}}{\partial x \partial y} e^{x^{2} y^{2}}=4 x y e^{x^{2} y^{2}}+4 x^{3} y^{3} e^{x^{2} y^{2}}, \frac{\partial^{3}}{\partial y \partial x \partial y} e^{x^{2} y^{2}}=$ $4 x e^{x^{2} y^{2}}+8 x^{3} y^{2} e^{x^{2} y^{2}}+12 x^{3} y^{2} e^{x^{2} y^{2}}+8 x^{5} y^{4} e^{x^{2} y^{2}}$
6. $\frac{x+y}{x y+x z+y z}$

n

Indicate whether the following statements are (A)lways True, (S)ometimes True, or (N) ever True.

1. A function that is continuous at (x, y) is also differentiable at (x, y)
2. If f is differentiable at (x, y) then the partial derivative $\frac{\partial f}{\partial x}$ is exists at (x, y)
3. If f is differentiable and $\nabla f \neq 0, \nabla f$ is the direction in which f decreases most rapidly
4. If $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ both exist at (x, y) then $\nabla f(x, y)$ is defined
5. If $f, f_{x}, f_{y}, f_{x y}, f_{y x}$ are both defined and continuous at (x, y) then the mixed partials are equal at (x, y)

Solutions:

1. (S): Some functions are continuous but not differentiable.
2. (A): if f is differentiable (x, y) then all directional derivatives, including the partial derivatives, exist at (x, y).
3. (N): If f is differentiable and $\nabla f \neq 0$ then ∇f is the direction in which f increases most rapidly.
4. (A): $\nabla f(x, y)$ is just the vector $\left[\begin{array}{c}\frac{\partial f}{\partial x}(x, y) \\ \frac{\partial f}{\partial y}(x, y)\end{array}\right]$, which is defined if both its components are defined.
5. (S): We need these functions to be continuous in a ball containing (x, y), not just at (x, y), to be sure the mixed partials are equal

0

Find and classify all critical points of $x^{3} y-4 x y^{3}+y$
Solution: $f_{x}=3 x^{2} y-4 y^{3}$ and $f_{y}=x^{3}-12 x y^{2}+1$, so if $\nabla f=0$ then

$$
0=3 x^{2} y-4 y^{3}, 0=x^{3}-12 x y^{2}+1
$$

The first equation is $0=y\left(3 x^{2}-4 y^{2}\right)$, so either $y=0$ or $3 x^{2}=4 y^{2}$. If $y=0$, the second equation is $0=x^{3}+1$, so one critical points is $(-1,0)$. In the second case, we substitue $y^{2}=\frac{3}{4} x^{2}$ into the second equation to get $0=x^{3}-9 x^{3}+1$ so $-1=-8 x^{3}$, so $x=1 / 2$ is a solution. Since $y^{2}=\frac{3}{4} x^{2}$ in this case, $(1 / 2, \pm \sqrt{3} / 4)$ are two more critical points.

$$
\begin{aligned}
& f_{x x}=6 x y, f_{y y}=-24 x y, f_{x y}=3 x^{2}-12 y^{2}, \text { so } \\
& \qquad D=-144 x^{2} y^{2}-\left(3 x^{2}-12 y^{2}\right)^{2} .
\end{aligned}
$$

This is always negative, so all three critical points are saddle points.

p

Find and classify all critical points of $e^{x y}-e^{2 x y}$.
Solution: $f_{x}=y e^{x y}-2 y e^{2 x y}=y\left(e^{x y}-2 e^{2 x y}\right)$ and $f_{y}=x e^{x y}-2 x e^{2 x y}=$ $x\left(e^{x y}-2 e^{2 x y}\right)$. If $\nabla f=0$ then either $y=0$ or $e^{x y}-2 e^{2 x y}=0$, and either $x=0$ or $e^{x y}-2 e^{2 x y}=0$. So one critical point is at $(0,0)$. When $y=0$, $e^{x y}-2 e^{2 x y}=e^{0}-2 e^{0}=-1 \neq 0$, so the other solutions are when $e^{x y}-2 e^{2 x y}=0$. This is equivalent to $e^{x y}=2 e^{2 x y}$, and dividing both sides by $e^{x y}$ gives $1=2 e^{x y}$. Solving, we get $x y=-\ln 2$. So the critical points are $(0,0)$ and the hyperbola $(x,-\ln 2 / x)$.

To classify, we find $f_{x x}=y^{2} e^{x y}-4 y^{2} e^{2 x y}, f_{y y}=x^{2} e^{x y}-4 x^{2} e^{2 x y}$, and $f_{x y}=f_{y x}=e^{x y}-2 e^{2 x y}+x y e^{x y}-4 x y e^{2 x y}$, and so

$$
D=\left(y^{2} e^{x y}-4 y^{2} e^{2 x y}\right)\left(x^{2} e^{x y}-4 x^{2} e^{2 x y}\right)-\left(e^{x y}-2 e^{2 x y}+x y e^{x y}-4 x y e^{2 x y}\right)^{2} .
$$

At the origin, almost all these terms disappear, and we have

$$
D(0,0)=-\left(e^{0}-2 e^{0}\right)^{2}<0
$$

so the origin is a saddle point.
On the hyperbola, we can simplify a bit. We have

$$
D(x, y)=x^{2} y^{2} e^{2 x y}-8 x^{2} y^{2} e^{3 x y}+16 x^{2} y^{2} e^{4 x y}-\left(e^{x y}-2 e^{2 x y}+x y e^{x y}-4 x y e^{2 x y}\right)^{2} .
$$

In particular, we never use x or y alone, just $x y$ or $x^{2} y^{2}=(x y)^{2}$. Note that $e^{-\ln 2}=e^{\ln 2^{-1}}=1 / 2$ and that $e^{2 x y}=\left(e^{x y}\right)^{2}=1 / 4, e^{3 x y}=1 / 8$ and $e^{4 x y}=$ $1 / 16$. So on the hyperbola we have
$D(x, y)=\left(\ln ^{2} 2\right) / 4-\left(\ln ^{2} 2\right)+\left(\ln ^{2} 2\right)-(1 / 2-1 / 2-\ln 2 / 2+\ln 2)^{2}=\left(\ln ^{2} 2\right) / 4+2-(\ln 2 / 2)^{2}=0$ so the points on the hyperbola cannot be classified.

q

Find the candidates for where $e^{x y}$ achieves its minimum on the circle $x^{2}+y^{2}=1$.
Solution: $\left[y e^{x y}, x e^{x y}\right]^{\prime}=c[2 x, 2 y]^{\prime}$, which gives the equations $y e^{x y}=2 c x$ and $x e^{x y}=2 c y$. Multiplying by y and x respectively, $y^{2} e^{x y}=2 c x y=x^{2} e^{x y}$. Since $e^{x y}$ is never $0, x^{2}=y^{2}$, and therefore the candidates are $(\pm 1 / \sqrt{2}, \pm 1 / \sqrt{2})$.

r

Find the candidates for where $e^{x y}$ achieves its minimum on the hyperbola $x=$ $1 / y$.

Solution: We solve the second equation to give $x y=1$. But $e^{x y}$ is constantly equal to e when $x y=1$, so all points are maxima and minima! (If we used Lagrange multipliers, we'd find that $\left[y e^{x y}, x e^{x y}\right]^{\prime}=c[y, x]^{\prime}$, so $y e^{x y}=c y, x e^{x y}=$ $c x$, and therefore $e^{x y}=c$ and $x y=1$. Then, wtih $c=e$, this is true everywhere $x y=1$.)

S

Find the candidates for where $x^{2}+y^{2}$ achieves its minimum on the hyperbola $x=1 / y$.

Solution: We solve the second equation to give $x y=1 .[2 x, 2 y]=c[y, x]$ so $2 x=c y, 2 y=c x$, and so $2 x^{2}=c x y=2 y^{2}$, and therefore $x^{2}=y^{2}$. Since also $x=1 / y, 1 / y^{2}=y^{2}$, so $1=y^{4}$, so $y= \pm 1$. Since $x y=1$, the candidates are $(1,1)$ and $(-1,-1)$.
t

1. Find and classify as stable or unstable the equilibria of

$$
\frac{d y}{d t}=(y-3)\left(e^{y}-e\right) .
$$

2. y_{0} is a solution with $y_{0}(0)=0$. What is $\lim _{t \rightarrow \infty} y_{0}$?
3. y_{1} is a solution with $y_{1}(0)=1$. What is $\lim _{t \rightarrow \infty} y_{1}$?
4. y_{2} is a solution with $y_{2}(0)=2$. What is $\lim _{t \rightarrow \infty} y_{2}$?
5. y_{3} is a solution with $y_{3}(0)=3$. What is $\lim _{t \rightarrow \infty} y_{3}$?
6. y_{4} is a solution with $y_{4}(0)=4$. What is $\lim _{t \rightarrow \infty} y_{4}$?

Solution:

1. $g(y)=(y-3)\left(e^{y}-e\right) \cdot g(y)=0$ means $y=3$ or $e^{y}=e$, which means $y=1$. $g^{\prime}(y)=(y-3) e^{y}+e^{y}-e . g^{\prime}(3)=e^{3}-e>0$, so 3 is an unstable equilibrium. $g^{\prime}(1)=-3 e<0$, so 1 is a stable equilibrium.
2. When $y_{0}(0)=0, y^{\prime}=g(0)>0$, so y_{0} is increasing towards the equilibrium, so $\lim _{t \rightarrow \infty} y_{0}=1$.
3. When $y_{1}(0)=1, y^{\prime}=g(1)=0$, so y_{1} is constantly equal to 1 , so $\lim _{t \rightarrow \infty} y_{1}=1$.
4. When $y_{2}(0)=2, y^{\prime}=g(2)<0$, so y_{2} is decreasing towards the equilibrium, so $\lim _{t \rightarrow \infty} y_{2}=1$.
5. When $y_{3}(0)=3, y^{\prime}=g(3)=0$, so y_{3} is constantly equal to 3 , so $\lim _{t \rightarrow \infty} y_{3}=3$.
6. When $y_{4}(0)=4, y^{\prime}=g(4)>0$, so y_{4} is increasing away from the equilibrium, so $\lim _{t \rightarrow \infty} y_{0}=\infty$.

u

Give an example of an autonomous differential equation which has x^{3} as a solution.

Solution: When $y=x^{3}, y^{\prime}=3 x^{2}$. We must express y^{\prime} as a function of y, which is easily done by setting $y^{\prime}=3 y^{2 / 3}$.

