
Suggested practice problems from recent sections:

• 10.4: 3, 4, 7, 8, 13, 14, 19, 20

• 10.5: 17, 18, 27, 28, 35, 36

• 10.6: 1, 2, 3, 4, 40, 41, 42, 43

a

Approximate
∫ 7

1
exdx as a Riemann sum with 3 equal intervals, choosing the

left endpoint of each rectangle to be its height.
Solution: 2(e + e3 + e5)

b

Give the general solution of the differential equation

dy

dt
=

ey − 1
ey

t2.

Solution: If y = 0, the right side is 0, so y = 0 is a solution. If y 6= 0, we
have

ey

ey − 1
dy = t2dt.

Integrating both sides (and using u = ey to integrate the left), we have

ln |ey − 1| = t3

3
+ C.

Therefore
|ey − 1| = e

t3
3 +C

and so
ey − 1 = e

t3
3 +C or ey = −e

t3
3 +C .

Solving for y, we get

y = ln
(
e

t3
3 +C + 1

)
or y = ln

(
−e

t3
3 +C + 1

)
or y = 0.

c

Recall that arcsin x =
∫ x

0
1√

1−t2
dt. Show that when y > 0,

arcsin
√

1− 1
y2
≤ y

√
1− 1

y2
.

Solution: arcsin
√

1− 1
y2 =

∫q
1− 1

y2

0
1√

1−t2
dt. Since 1√

1−t2
is increasing, the

area under the curve 1√
1−t2

as t goes from 0 to
√

1− 1
y2 is contained inside the

rectangle with corners (0, 0) and (
√

1− 1
y2 , y). This box has area y

√
1− 1

y2 .
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d

You know that 2 ≤ f(x) ≤ 3 for all x. Is it possible that
∫ 5

2
f(x)dx = 4?

Solution: No.
∫ 3

0
f(x)dx contains the rectangle with corners (2, 0) and (5, 2),

which has area 6, so 6 ≤
∫ 3

0
f(x)dx.

e

What is
∫ −1

−1
cos x

x dx?
Solution: 0, since the bounds are equal.

f

Find a value a > 0 such that
∫ a

1
sin(x−2)
(x−2)2 dx = 0.

Solution: We can’t find the indefinite integral, so we must use geometry.
This function is anti-symmetric around 2: sin(2−c−2)

(2−c−2) = − sin c
c2 = − sin(2+c−2)

(2+c−2)2 .
Therefore we need 1 and a to be symmetric around 2, so a = 3.

g

Define F (x) =
∫ x

0
sin t

t dt. What is d
dxF (ln x)?

Solution: By FTC, F ′(x) = sin x
x , so by the chain rule, d

dxF (ln x) = sin ln x
x ln x .

h

Water is flowing into a container at a rate of W (t)gal/sec (where t is the time).
Express the amount of water that enters the container between t = 0 and t = 4.

Solution:
∫ 4

0
W (t)dt.

i

What is the partial fraction decomposition of

1
(x2 + 4)3(x2 + 1)2(x− 1)3(x + 2)

Solution:

Ax + B

x2 + 4
+

Cx + D

(x2 + 4)2
+

Ex + F

(x2 + 4)3
+

Gx + H

x2 + 1
+

Ix + J

(x2 + 1)2
+

K

x− 1
+

L

(x− 1)2
+

M

(x− 1)3
+

N

x + 2
.

j

Find and solve the partial fraction decomposition for

1
(x2 + 1)(x2 − 1)
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Solution

1
x4 − 1

=
1

(x2 + 1)(x + 1)(x− 1)

=
Ax + B

x2 + 1
+

C

x + 1
+

D

x− 1

so we get

1 = (Ax + B)(x2 − 1) + C(x− 1)(x2 + 1) + D(x + 1)(x2 + 1)

= Ax3 −Ax + Bx2 −B + Cx3 + Cx− Cx2 − C + Dx3 + Dx + Dx2 + D

This give four equations:

0x3 = (A + C + D)x3 (1)

0x2 = (B − C + D)x2 (2)
0x = (−A + C + D)x (3)

1 = −B − C + D (4)

We combine these to get:

(1) + (2) :0 = A + B + 2D (5)
(2) + (3) :0 = −A + B + 2D (6)
(3) + (4) :1 = −A−B + 2D (7)
(5)− (6) :0 = 2A

A = 0 (8)
(8) and (6) :0 = B + 2D (9)
(8) and (7) :1 = −B + 2D (10)

(9)− (10) :− 1 = 2B

B = −1/2 (11)
(11) and (10) :1 = 1/2 + 2D (12)

D = 1/4 (13)
(13), (8), and (1) :0 = 0 + C + 1/4

C = −1/4

So
1

x4 − 1
= − 1

2(x2 + 1)
− 1

4(x + 1)
+

1
4(x− 1)

k

Integrate:

1.
∫

x2 ln x3dx
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2.
∫

x√
1−x2 dx

3.
∫

arcsin x dx

4.
∫

1
x4−1dx

5.
∫

1
4x2+8x+29dx

6.
∫∞
1

ln x
x dx

7.
∫ −∞
1

exdx

Solution:

1. u = ln x3, dv = x2dx, du = 3x2/x3 = 3/x, v = x3/3,
∫

x2 ln x3dx =
(x3/3) ln x3 −

∫
x2dx = (x3/3) ln x3 − x3/3

2. u = 1− x2, du = −2x,
∫

x√
1−x2 dx = − 1

2

∫
u−1/2du = −

√
u = −

√
1− x2

3. u = arcsin x, dv = dx, du = 1√
1−x2 , v = x,

∫
arcsin x dx = x arcsin x −∫

x√
1−x2 dx = x arcsin x +

√
1− x2

4.
∫

1
x4−1dx =

∫
− 1

2(x2+1) −
1

4(x+1) + 1
4(x−1)dx = − 1

2 arctan x− 1
4 ln(x + 1) +

1
4 ln(x− 1)

5. Since (2x + 2)2 = 4x2 + 8x + 4,
∫

1
4x2+8x+29dx =

∫
1

(2x+2)2+25dx =
1
25

∫
1

(2x+2)2
25 +1

dx = 1
25

∫
1

( 2x+2
25 )2+1

dx. Substituting u = 2x+2
5 , du = 2

5dx,

we get
∫

1
4x2+8x+29dx = 1

10

∫
1

u2+1du = 1
10 arctan u = 1

10 arctan 2x+2
5 .

6.
∫∞
1

ln x
x dx = lima→∞

∫ a

1
ln x
x dx. u = ln x, du = dx/x, so

lim
a→∞

∫ a

1

ln x

x
dx = lim

a→∞

∫ ln a

0

udu

= lim
a→∞

u2/2
∣∣ln a

0

= lim
a→∞

(ln2 a/2− 0)

Since lima→∞ ln2 a/2 =∞, this integral does not exist.

7.
∫ −∞
1

exdx = −
∫ 1

−∞ exdx = lima→∞−
∫ 1

−a
exdx = lima→∞− ex|1−a =

lima→∞ e−a − e = −e.

l

Describe the domain, range, and level curves of ln(x2 + y2 − 1).
Solution: ln u is undefined for u ≤ 0, so this is only defined when x2+y2−1 >

0, which is when x2 + y2 > 1. The level curves are solutions c = ln(x2 + y2− 1),
so x2 + y2 = ec + 1, which are circles of radius

√
ec + 1.

4



m

Find the following partial derivatives:

1. ∂
∂x (x3 + xy + ln x)

2. ∂
∂y exexy

3. ∂2

∂x∂y exexy

4. ∂
∂y ln xy

5. ∂3

∂y∂x∂y ex2y2

6. ∂
∂z ln(xy + xz + yz)

Solution:

1. 3x2 + y + 1/x

2. x2exyexexy

3. 2xexyexexy

+ x2yexyexexy

+ x2exyexexy

(exy + xyexy)

4. 1/y

5. ∂
∂y ex2y2

= 2x2yex2y2
, ∂2

∂x∂y ex2y2
= 4xyex2y2

+ 4x3y3ex2y2
, ∂3

∂y∂x∂y ex2y2
=

4xex2y2
+ 8x3y2ex2y2

+ 12x3y2ex2y2
+ 8x5y4ex2y2

6. x+y
xy+xz+yz

n

Indicate whether the following statements are (A)lways True, (S)ometimes True,
or (N)ever True.

1. A function that is continuous at (x, y) is also differentiable at (x, y)

2. If f is differentiable at (x, y) then the partial derivative ∂f
∂x is exists at

(x, y)

3. If f is differentiable and ∇f 6= 0, ∇f is the direction in which f decreases
most rapidly

4. If ∂f
∂x and ∂f

∂y both exist at (x, y) then ∇f(x, y) is defined

5. If f, fx, fy, fxy, fyx are both defined and continuous at (x, y) then the
mixed partials are equal at (x, y)

Solutions:
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1. (S): Some functions are continuous but not differentiable.

2. (A): if f is differentiable (x, y) then all directional derivatives, including
the partial derivatives, exist at (x, y).

3. (N): If f is differentiable and ∇f 6= 0 then ∇f is the direction in which f
increases most rapidly.

4. (A): ∇f(x, y) is just the vector

[
∂f
∂x (x, y)
∂f
∂y (x, y)

]
, which is defined if both its

components are defined.

5. (S): We need these functions to be continuous in a ball containing (x, y),
not just at (x, y), to be sure the mixed partials are equal

o

Find and classify all critical points of x3y − 4xy3 + y
Solution: fx = 3x2y − 4y3 and fy = x3 − 12xy2 + 1, so if ∇f = 0 then

0 = 3x2y − 4y3, 0 = x3 − 12xy2 + 1.

The first equation is 0 = y(3x2 − 4y2), so either y = 0 or 3x2 = 4y2. If y = 0,
the second equation is 0 = x3 +1, so one critical points is (−1, 0). In the second
case, we substitue y2 = 3

4x2 into the second equation to get 0 = x3− 9x3 + 1 so
−1 = −8x3, so x = 1/2 is a solution. Since y2 = 3

4x2 in this case, (1/2,±
√

3/4)
are two more critical points.

fxx = 6xy, fyy = −24xy, fxy = 3x2 − 12y2, so

D = −144x2y2 − (3x2 − 12y2)2.

This is always negative, so all three critical points are saddle points.

p

Find and classify all critical points of exy − e2xy.
Solution: fx = yexy − 2ye2xy = y(exy − 2e2xy) and fy = xexy − 2xe2xy =

x(exy − 2e2xy). If ∇f = 0 then either y = 0 or exy − 2e2xy = 0, and either
x = 0 or exy − 2e2xy = 0. So one critical point is at (0, 0). When y = 0,
exy−2e2xy = e0−2e0 = −1 6= 0, so the other solutions are when exy−2e2xy = 0.
This is equivalent to exy = 2e2xy, and dividing both sides by exy gives 1 = 2exy.
Solving, we get xy = − ln 2. So the critical points are (0, 0) and the hyperbola
(x,− ln 2/x).

To classify, we find fxx = y2exy − 4y2e2xy, fyy = x2exy − 4x2e2xy, and
fxy = fyx = exy − 2e2xy + xyexy − 4xye2xy, and so

D = (y2exy − 4y2e2xy)(x2exy − 4x2e2xy)− (exy − 2e2xy + xyexy − 4xye2xy)2.
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At the origin, almost all these terms disappear, and we have

D(0, 0) = −(e0 − 2e0)2 < 0

so the origin is a saddle point.
On the hyperbola, we can simplify a bit. We have

D(x, y) = x2y2e2xy − 8x2y2e3xy + 16x2y2e4xy − (exy − 2e2xy + xyexy − 4xye2xy)2.

In particular, we never use x or y alone, just xy or x2y2 = (xy)2. Note that
e− ln 2 = eln 2−1

= 1/2 and that e2xy = (exy)2 = 1/4, e3xy = 1/8 and e4xy =
1/16. So on the hyperbola we have

D(x, y) = (ln2 2)/4−(ln2 2)+(ln2 2)−(1/2−1/2−ln 2/2+ln 2)2 = (ln2 2)/4+2−(ln 2/2)2 = 0

so the points on the hyperbola cannot be classified.

q

Find the candidates for where exy achieves its minimum on the circle x2+y2 = 1.
Solution: [yexy, xexy]′ = c[2x, 2y]′, which gives the equations yexy = 2cx and

xexy = 2cy. Multiplying by y and x respectively, y2exy = 2cxy = x2exy. Since
exy is never 0, x2 = y2, and therefore the candidates are (±1/

√
2,±1/

√
2).

r

Find the candidates for where exy achieves its minimum on the hyperbola x =
1/y.

Solution: We solve the second equation to give xy = 1. But exy is constantly
equal to e when xy = 1, so all points are maxima and minima! (If we used
Lagrange multipliers, we’d find that [yexy, xexy]′ = c[y, x]′, so yexy = cy, xexy =
cx, and therefore exy = c and xy = 1. Then, wtih c = e, this is true everywhere
xy = 1.)

s

Find the candidates for where x2 + y2 achieves its minimum on the hyperbola
x = 1/y.

Solution: We solve the second equation to give xy = 1. [2x, 2y] = c[y, x] so
2x = cy, 2y = cx, and so 2x2 = cxy = 2y2, and therefore x2 = y2. Since also
x = 1/y, 1/y2 = y2, so 1 = y4, so y = ±1. Since xy = 1, the candidates are
(1, 1) and (−1,−1).

t

1. Find and classify as stable or unstable the equilibria of

dy

dt
= (y − 3)(ey − e).
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2. y0 is a solution with y0(0) = 0. What is limt→∞ y0?

3. y1 is a solution with y1(0) = 1. What is limt→∞ y1?

4. y2 is a solution with y2(0) = 2. What is limt→∞ y2?

5. y3 is a solution with y3(0) = 3. What is limt→∞ y3?

6. y4 is a solution with y4(0) = 4. What is limt→∞ y4?

Solution:

1. g(y) = (y − 3)(ey − e). g(y) = 0 means y = 3 or ey = e, which means
y = 1. g′(y) = (y − 3)ey + ey − e. g′(3) = e3 − e > 0, so 3 is an unstable
equilibrium. g′(1) = −3e < 0, so 1 is a stable equilibrium.

2. When y0(0) = 0, y′ = g(0) > 0, so y0 is increasing towards the equilibrium,
so limt→∞ y0 = 1.

3. When y1(0) = 1, y′ = g(1) = 0, so y1 is constantly equal to 1, so
limt→∞ y1 = 1.

4. When y2(0) = 2, y′ = g(2) < 0, so y2 is decreasing towards the equilib-
rium, so limt→∞ y2 = 1.

5. When y3(0) = 3, y′ = g(3) = 0, so y3 is constantly equal to 3, so
limt→∞ y3 = 3.

6. When y4(0) = 4, y′ = g(4) > 0, so y4 is increasing away from the equilib-
rium, so limt→∞ y0 =∞.

u

Give an example of an autonomous differential equation which has x3 as a
solution.

Solution: When y = x3, y′ = 3x2. We must express y′ as a function of y,
which is easily done by setting y′ = 3y2/3.
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