Suggested practice problems from recent sections:
e 10.4: 3,4, 7,8, 13, 14, 19, 20

e 10.5: 17, 18, 27, 28, 35, 36

e 10.6: 1, 2, 3, 4, 40, 41, 42, 43

a

Approximate ff e’dxr as a Riemann sum with 3 equal intervals, choosing the
left endpoint of each rectangle to be its height.
Solution: 2(e + €3 + €°)

b

Give the general solution of the differential equation
dy e¥ -1,
dt — e¥

Solution: If y = 0, the right side is 0, so y = 0 is a solution. If y # 0, we
have

dy = t3dt.

6?/71

Integrating both sides (and using u = e¥ to integrate the left), we have
3
InjeY —1]=—=+C.
3
Therefore

and so

Solving for y, we get
43 3
y=1In (e?"rc + 1) ory =In (—e%+c + 1) ory=0.

C

Recall that arcsinx = fo mdt Show that when y > 0,

/ 1 / 1
arcsin 17—2§y 17E.

1 P .
Solution: arcsin 4 /1 fo 1 ieE dt Since 17 18 increasing, the
area under the curve \/ﬁ as t goes from 0 to 4 /1 — y% is contained inside the

rectangle with corners (0,0) and (/1 — y%, y). This box has area y,/1 — y%




d

You know that 2 < f(z) < 3 for all z. Is it possible that f25 flx)dx =47
Solution: No. f03 f(z)dz contains the rectangle with corners (2,0) and (5, 2),
which has area 6, so 6 < fOS f(x)dz.

e

What is f__ll ST g7
Solution: 0, since the bounds are equal.

f
Find a value a > 0 such that [’ Sl(‘;(f;)? dx = 0.

Solution: We can’t find the indefinite integral, so we must use geometry.
This function is anti-symmetric around 2: 51?2(3;2;)2) = *zi;lc = 7%.

Therefore we need 1 and a to be symmetric around 2, so a = 3.

g

Define F(z) = [ #2tdt. What is L F(Inx)?

Solution: By FTC, F'(z) = 22 50 by the chain rule, £ F(Inz) = sitlnz,

x zlnx

h

Water is flowing into a container at a rate of W (t)gal/sec (where ¢ is the time).
Express the amount of water that enters the container between ¢t = 0 and ¢t = 4.

Solution: f(;l W (t)dt.

i

What is the partial fraction decomposition of

1
(22 +4)% (22 + 1)*(z — 1)*(z + 2)
Solution:
Az+B Czx+D FEx+F Gzx+H Ix+J L K . L L M n N
2244 (22+44)2 (22443 2241 (22412 x-1 (z—1)2 (z—-1)3 x+2

j
Find and solve the partial fraction decomposition for

1
(z2+1)(22 - 1)



Solution

1 1
2t -1 (2+D(@+1)(z-1)
Ax+ B c D

- 2 +1 +x+1+m—1

so we get

1=(Az+B)(z* = 1)+ C(x — 1)(z* +1) + D(z + 1)(2* + 1)
= Az® — Az + Bx?> — B+ Ca2® + Cax — C2* — C+ D2 + Dz + Da? + D
This give four equations:
02° = (A+C + D)2® (1)
022 = (B — C + D)2? (2)

0z =(—A+C+ D)z (3)
1=-B-C+D (4)

We combine these to get:

1)+ (2):0=A4A+B+2D (5)
(2)+@B3):0=—-A+B+2D (6)
3)+(4):1=-A-B+2D (7
(5) — (6) :0=24
A= (8)
(8) and (6) :0 =B +2D (9)
(8) and (7) :1 =—-B+2D (10
(9) — (10): — 1 =2B
B=-1/2 (11)
(11) and (10) :1 = 1/2+ 2D (12)
D=1/4 (13)
(13),(8), and (1) :0=0+C+1/4
C=-1/4
So
1 1 1 1
A1 2@t d@tD) dz-1)
k
Integrate:

1. [2?Ina’dx



v
. Jarcsinz dz
J s de

)

6. floo h‘TIdx

= w

ot

dzx

7. flfoo e*dx
Solution:

= Inzd,dv = 2%dz,du = 32?/2% = 3/x,v = 23/3, [2?Ina’de =
3/3)Inz® — [22de = (2%/3)Ina® — 23 /3

2. u=1-—22%du= -2z, fﬁdaz:—%fu’lﬂduz —Vu=—V1— 2?2

"G

1
fﬁdw = zarcsinz + V1 — 22

3. u = arcsinz,dv = dx,du = ﬁ,v =z, [arcsinz do = warcsinz —

4 [ Fegde= | —2(121+1) - 4(11“) + 4(m£1)dx = —larctanz— {In(z+1)+
iln(z —1)

5. Since (2z + 2)? = 42? + 8z + 4, [ rrgagde = [ TS +2})2 s d
%fﬁdm = %fmdx Substituting v = 222 du = Zdu,

_ 1 2m+2
we get f 4$2+8$+29 dr = 15 L 2Jrldu = 0 arctanu = 1 arctan

6. [ BIdy =lim, . [, BZdr. u=Inz,du = dz/z, so

IHJU Ina

lim —dx = lim udu
a— o0 1 x a— 00 0
= lim u2/2‘lna
a— 00
= lim (ln a/2—0)
a— 00

Since lim,_, o In? a/2 = oo, this integral does not exist.

—00 . 1 T 9 1 z BT 21 o
7. [0 Tetde = — [0 efdr = limy_ oo — [* €dr = lim,_oo — €71, =

a

lim, ,ooe™® —e= —e.

|

Describe the domain, range, and level curves of In(z? + 32 — 1).

Solution: Inwu is undefined for u < 0, so this is only defined when z2+3%—1 >
0, which is when 22 +y? > 1. The level curves are solutions ¢ = In(2? +y% — 1),
so 22 4+ y? = e° + 1, which are circles of radius v/e¢ + 1.



m

Find the following partial derivatives:

1. Z(z® + 2y +nz)
90 xe™?
2. y €
8% we®V
3. 5293 €
0
4. By Inzy
63 x2y2
5. 8y8m8y6
6. % In(zy + x2 + yz)
Solution:
L322 +y+1/x
2. z2eVere”’
3. 2ze™er” 4 x?yemere™ 4 p2emVere (%Y 4 xyetV)
4. 1/y
@ x2y2 _ 2 x2y2 82 3,/_2y2 _ x2y2 3 3 3:2?}2 33 x2y2 _
5. By € = 2x°ye T = dxye + 4dx°y°e s Dyozdy© =
2,2 2, 2 2,2 2,2
dxe™ ¥ 4+ 8x3y%e™ YV + 1223y%e™ ¥ 4 8xdyte” ¥
6. —tu
o zytzztyz
n

Indicate whether the following statements are (A4 )lways True, (S)ometimes True,
or (N)ever True.

1.

A function that is continuous at (z,y) is also differentiable at (z,y)

2. If f is differentiable at (z,y) then the partial derivative % is exists at
(z,y)

3. If f is differentiable and V f # 0, V f is the direction in which f decreases
most rapidly

4. If % and % both exist at (z,y) then V f(x,y) is defined

5. If f, fz, fy, foy: fy= are both defined and continuous at (z,y) then the
mixed partials are equal at (z,vy)

Solutions:



1. (S): Some functions are continuous but not differentiable.

2. (A): if f is differentiable (z,y) then all directional derivatives, including
the partial derivatives, exist at (z,y).

3. (N): If f is differentiable and Vf # 0 then Vf is the direction in which f
increases most rapidly.

4. (A): Vf(z,y) is just the vector [ 2% ) ] , which is defined if both its

components are defined.

5. (S): We need these functions to be continuous in a ball containing (z, y),
not just at (z,y), to be sure the mixed partials are equal

o

Find and classify all critical points of 23y — 4zy® + y
Solution: f, = 3z%y — 4y® and f, = 2® — 122y*> + 1, so if Vf = 0 then

0 =322y — 49,0 = 2® — 122y + 1.

The first equation is 0 = y(322 — 4y2), so either y = 0 or 322 = 432, If y = 0,
the second equation is 0 = 2 + 1, so one critical points is (—1,0). In the second
case, we substitue y? = %zz into the second equation to get 0 = z% — 923 + 1 so
—1= —8z%, s0o z = 1/2 is a solution. Since y*> = 322 in this case, (1/2,£V/3/4)
are two more critical points.

fox = 62y, fyy = —24zy, fr, = 32% —12y%, so
D = —1442%y? — (322 — 12¢°)%

This is always negative, so all three critical points are saddle points.

p

Find and classify all critical points of e*¥ — e2%¥.

Solution: f, = ye™ — 2ye®™¥ = y(e™¥ — 2¢**) and f, = we™ — 2ze*™V =
z(e®™ — 2e**). If Vf = 0 then either y = 0 or e®¥ — 2e?*¥ = (0, and either
z = 0 or e® — 2¢**¥ = (. So one critical point is at (0,0). When y = 0,
eV —2e2%¥ = 0 —2e0 = —1 +#£ 0, so the other solutions are when e —2e?*¥ = (.
This is equivalent to e*¥ = 2¢%?Y, and dividing both sides by e*¥ gives 1 = 2¢*V.
Solving, we get xy = —In2. So the critical points are (0,0) and the hyperbola
(z,—In2/x).

To classify, we find f,, = y?e™ — 4y?e®*V, f,, = 2%e™ — 42%e*¥, and
foy = fyo = €Y — 2e®™ + pye™ — 4aye®™¥, and so

D= (erzy - 4y262my)(x26“’ - 4x262wy) — (e™ — 2% 4 pye®? — 4xy62"”y)2.



At the origin, almost all these terms disappear, and we have
D(0,0) = —(e” —2e")? < 0

so the origin is a saddle point.
On the hyperbola, we can simplify a bit. We have

D(x,y) = z2y%e® — 822%™ + 1622yt — (™Y — 2627 4 zye®™ — dxye?™V)?.

In particular, we never use z or y alone, just zy or x2y?> = (wy)%. Note that
e"In2 = 27" = 1/9 and that €2 = (¢®¥)2 = 1/4, €3 = 1/8 and el*¥ =
1/16. So on the hyperbola we have

D(z,y) = (In?2) /4—(In* 2)+(In* 2)—(1/2—1/2—1In2/2+1n 2)? = (In?2) /4+2—(In2/2)> = 0

so the points on the hyperbola cannot be classified.

q

Find the candidates for where e®¥ achieves its minimum on the circle z2+y? = 1.

Solution: [ye™¥, xze*¥] = c[2z,2y]’, which gives the equations ye*¥ = 2¢x and
ze™ = 2cy. Multiplying by y and x respectively, y2e®¥ = 2caxy = x2e®. Since
e is never 0, x2 = y?, and therefore the candidates are (+1/v/2,4+1/v/2).

r

Find the candidates for where e*¥ achieves its minimum on the hyperbola x =
1/y.

Solution: We solve the second equation to give xy = 1. But ¥ is constantly
equal to e when xy = 1, so all points are maxima and minima! (If we used
Lagrange multipliers, we’d find that [ye*¥, xe®]" = c[y, x|, so ye®¥ = cy, xe®¥ =
cx, and therefore e®¥ = ¢ and zy = 1. Then, wtih ¢ = e, this is true everywhere
xy=1.)

S

Find the candidates for where x2 + y? achieves its minimum on the hyperbola
x=1/y.

Solution: We solve the second equation to give zy = 1. [2x,2y] = ¢y, z] so
2z = cy,2y = cx, and so 222 = caxy = 2y?, and therefore 22 = 32. Since also
r=1/y, 1/y> = y? so 1 = y* soy = +1. Since xy = 1, the candidates are
(1,1) and (-1, -1).

1. Find and classify as stable or unstable the equilibria of

dy _ v _
S UEDICE!



2. gy is a solution with yo(0) = 0. What is lim; e 40?

3. y1 is a solution with y1(0) = 1. What is lim; oo y17

4. yo is a solution with y2(0) = 2. What is lim—, o0 ya?

5. ys is a solution with y3(0) = 3. What is lim; . Y37

6. y4 is a solution with y4(0) = 4. What is lim; o y4?

Solution:

1. g(y) = (y —3)(e¥ —e). g(y) = 0 means y = 3 or e¥ = e, which means

y=1 ¢'(y) =(y—3)e? +e¥ —e. ¢'(3) =e> —e > 0, so 3 is an unstable
equilibrium. ¢’(1) = —3e < 0, so 1 is a stable equilibrium.

2. When y0(0) =0, ¥’ = g(0) > 0, so yp is increasing towards the equilibrium,
so limy_,00 yo = 1.

3. When 3,(0) = 1, ¥ = g(1) = 0, so y; is constantly equal to 1, so
limy ooy = 1.

4. When y2(0) = 2, ¢y = ¢(2) < 0, so yo is decreasing towards the equilib-
rium, so lim;_, yo = 1.

5. When y3(0) = 3, ¥ = ¢g(3) = 0, so ys3 is constantly equal to 3, so
limt—M)O Ys = 3.

6. When y4(0) =4, ¢y = g(4) > 0, so y4 is increasing away from the equilib-
rium, so lim;_. o yo = 0.

u

Give an example of an autonomous differential equation which has z3 as a
solution.

Solution: When y = 2, 3/ = 322. We must express y’ as a function of y,
which is easily done by setting y’ = 3y2/3.



