
Math 3B Homework2 Solutions (Winter 2011)

Section 6.1

33. Define f(x) = 1−x2, and we partition [−1, 1] into five equal subintervals,

each of length ∆xk =
1−(−1)

5
= 0.4:

[−1,−0.6], [−0.6,−0.2], [−0.2, 0.2], [0.2, 0.6], and [0.6, 1].

Then the corresponding Riemann sum is given by

SP = Σ5
k=1f(ck)∆xk = 0.4Σ5

k=1f(ck).

The midpoints are c1 = −0.8, c2 = −0.4, c3 = 0, c4 = 0.4 and c5 = 0.8,
and then

SP = 0.4[f(−0.8) + f(−0.4) + f(0) + f(0.4) + f(0.8)] = 1.36.

34. Define f(x) = 2+x2, and we partition [−1, 1] into five equal subintervals,

each of length ∆xk =
1−(−1)

5
= 0.4:

[−1,−0.6], [−0.6,−0.2], [−0.2, 0.2], [0.2, 0.6], and [0.6, 1].

Then the corresponding Riemann sum is given by

SP = Σ5
k=1f(ck)∆xk = 0.4Σ5

k=1f(ck).

The right endpoints are c1 = −0.6, c2 = −0.2, c3 = 0.2, c4 = 0.6 and
c5 = 1, and then

SP = 0.4[f(−0.6) + f(−0.2) + f(0.2) + f(0.6) + f(1)] = 4.72.

39. The area ST of a trapezoid is given ST = 1
2
(a + b)h, where h is the

height, and a and b are the lengths of the parallel sides. See Figure 1(Last
page). Then from Geometric interpretation of definite integrals,∫ b

a

xdx = Sshade = Strapezoid =
1

2
(a+ b)(b− a) =

b2 − a2

2
.

41. lim∥P∥→0 Σ
n
k=12c

3
k∆xk =

∫ 2

1
2x3dx

42. lim∥P∥→0 Σ
n
k=1

√
ck∆xk =

∫ 4

1

√
xdx

49. ∫ 6

2

(x+ 1)1/3dx = lim
∥P∥→0

Σn
k=1(ck + 1)1/3∆xk

where x0 = 2 < x1 < x2 < · · · < xn = 6, n = 1, 2, ..., is a sequence of
partitions of [2, 6], ck ∈ [xk−1, xk], ∆xk = xk − xk−1.
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50. ∫ 3

1

e−2xdx = lim
∥P∥→0

Σn
k=1e

−2ck∆xk

where x0 = 1 < x1 < x2 < · · · < xn = 3, n = 1, 2, ..., is a sequence of
partitions of [1, 3], ck ∈ [xk−1, xk], ∆xk = xk − xk−1.

53. ∫ 5

0

g(x)dx = lim
∥P∥→0

Σn
k=1g(ck)∆xk

where x0 = 0 < x1 < x2 < · · · < xn = 5, n = 1, 2, ..., is a sequence of
partitions of [0, 5], ck ∈ [xk−1, xk], ∆xk = xk − xk−1.

57. See Figure 2(Last page). Let AS denote the area of the shade region.

Then
∫ 5

0
e−xdx = AS.

58. See Figure 3(Last page). Let AU denote the area of the shade region
above the x-axis and AL be the total area of the shade regions below the
x-axis. Then

∫ π

−π
cosxdx = AU − AL = 0.

64. Calculate
∫ 1

1/2

√
1− x2dx. See Figure 4.

Setting y =
√
1− x2 gives x2 + y2 = 1, which denotes a unit circle. Let

O = (0, 0), A = (1
2
,
√
3
2
), B = (1

2
, 0) and C = (1, 0). Then

∫ 1

1/2

√
1− x2dx is

the area of the shade region(See Figure 4), which is enclosed by line segments

AB, BC and the arc ÂC. Thus if let S
ÔAC

and S∆OAB denote the areas of

SectorOAC and Triangle ∆OAB respectively, from cos∠AOB = |OB|
|OA| =

1
2
,

we know ∠AOB = π
3
. So∫ 1

1/2

√
1− x2dx = S

ÔAC
− S∆OAB

=
1

2
|OA|2∠AOB − 1

2
|OA||OB| sin∠AOB

=
π

6
−

√
3

8
.

65. Calculate
∫ 2

−2
(
√
4− x2 − 2)dx. See Figure 5.

Setting y =
√
4− x2 − 2 gives x2 + (y + 2)2 = 4, which denotes a circle.

Let A = (−2, 0), B = (−2,−2), C = (2,−2) and D = (2, 0). Since the
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shade region is below x-axis, then∫ 2

−2

(
√
4− x2 − 2)dx = −Sshade

= −S�ABCD + S half circle

= −|AD||AB|+ 1

2
π22

= 2π − 8.

68. Given that
∫ a

0
x2dx = 1

3
a3, from properties of integrals, we get

(a) ∫ 2

0

1

2
x2dx =

1

2

∫ 2

0

x2dx =
1

2
× 1

3
× 23 =

4

3

(b) ∫ −2

−3

3x2dx = 3(

∫ 0

−3

x2dx+

∫ −2

0

x2dx)

= 3(−
∫ −3

0

x2dx+

∫ −2

0

x2dx)

= 3[−1

3
(−3)3 +

1

3
(−2)3]

= 19

(c) ∫ 3

−1

1

3
x2dx =

1

3
(

∫ 0

−1

x2dx+

∫ 3

0

x2dx)

=
1

3
(−

∫ −1

0

x2dx+

∫ 3

0

x2dx)

=
1

3
[−1

3
(−1)3 +

1

3
33]

=
28

9

(d) ∫ 1

1

3x2dx = 0
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(e) From the similar discussion in Question 39, we obtain∫ 3

−2

(x+ 1)2dx =

∫ 3

−2

(x2 + 2x+ 1)dx

=

∫ 3

−2

x2dx+

∫ 3

−2

2xdx+

∫ 3

−2

1dx

= [

∫ 3

0

x2dx−
∫ −2

0

x2dx] + 2

∫ 3

−2

xdx+

∫ 3

−2

1dx

=
33 − (−2)3

3
+ 2

32 − (−2)2

2
+ (3− (−2))× 1

=
65

3

(f) Similar as above,∫ 4

2

(x− 2)2dx =

∫ 4

2

(x2 − 4x+ 4)dx

=

∫ 4

2

x2dx−
∫ 4

2

4xdx+

∫ 4

2

4dx

= [

∫ 4

0

x2dx−
∫ 2

0

x2dx]− 4

∫ 4

2

xdx+ 4

∫ 4

2

1dx

=
43 − 23

3
− 4

42 − 22

2
+ (4− 2)× 4

=
8

3

70. From the first property of the integral∫ a

a

f(x)dx = 0,

we have ∫ −3

−3

e−x2/2dx = 0.

73. See Figure 6. We have a fact that tan(−x) = − tanx, which implies
tanx is odd and thus symmetric about x = 0. Then the area of the re-
gion below the graph of f(x) = tanx and above the x-axis between 0 and
1(denoted by A+) is same as the area of the region above the graph of f and
below the x-axis between −1 and 0(denoted by A−). Therefore A+ = A−
and ∫ 1

−1

tanxdx = A+ − A− = 0.
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Remark: Actually for any odd function f(x), and a ≥ 0 such that (−a, a)
is in the domain of f(x), we always have∫ a

−a

f(x)dx = 0.

81. See Figure 7 for a ∈ [0, 2π]. Using the interpretation of the definite
integral as the signed area, we see from the graph of f(x) = cosx that the
graph of f(x) is positive for 0 ≤ x < π

2
and 3π

2
< x ≤ 2π, while negative for

π
2
< x < 3π

2
. Moreover from the symmetry analysis, we can conclude that:

when 0 < a < π,
∫ a

0
cos xdx > 0;

when π < a < 2π,
∫ a

0
cos xdx < 0.

Then combining the results above together implies that a = π
2
maximizes

the integral.

82. See Figure 8. We see from the graph of f(x) = sin x that the graph of
f(x) is positive for 0 < x < π and negative for π < x < 2π. Moreover from
the symmetry analysis, we can conclude that:

when 0 < a < 2π,
∫ a

0
sinxdx > 0 and

∫ 2π

0
sinxdx = 0.

Then there is only one value a = 2π in (0, 2π] such that∫ a

0

sin xdx = 0.

Section 6.2

8. Remark: There is a problem in this question.

First note that f(x) =
√
2 + csc2 x is continuous for 0 < x < π, but f(x)

is not well defined at x = 0. So if we still want to apply FTC, we have to
change the lower limit of integration from 0 to some small positive number
ε > 0.

Thus the result should be that for ε ≤ x < π,

dy

dx
=

d

dx

∫ x

ε

√
2 + csc2 udu =

√
2 + csc2 x

9. First note that f(x) = xe4x is continuous everywhere. Then from FTC,
we have

dy

dx
=

d

dx

∫ x

3

ue4udu = xe4x
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Additional*: Prove Leibniz’s rule in the case where f is continuous ev-
erywhere.

Leibniz’s Rule: If g(x) and h(x) are differentiable functions and f(u)
is continuous for u between g(x) and h(x), then

d

dx

∫ h(x)

g(x)

f(u)du = f [h(x)]h′(x)− f [g(x)]g′(x)

Proof. First note that f(u) is continuous everywhere, then write F (x) =∫ x

0
f(u)du, and thus from FTC,

F ′(x) = f(x).

Next by some basic properties of integrals and chain rule,

d

dx

∫ h(x)

g(x)

f(u)du =
d

dx
[

∫ h(x)

0

f(u)du+

∫ 0

g(x)

f(u)du]

=
d

dx
{F [h(x)]− F [g(x)]}

= F ′[h(x)]h′(x)− F ′[g(x)]g′(x)

= f [h(x)]h′(x)− f [g(x)]g′(x)
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