Math 3B Homework2 Solutions (Winter 2011)

Section 6.1

33. Define $f(x)=1-x^{2}$, and we partition $[-1,1]$ into five equal subintervals, each of length $\Delta x_{k}=\frac{1-(-1)}{5}=0.4$:
$[-1,-0.6],[-0.6,-0.2],[-0.2,0.2],[0.2,0.6]$, and $[0.6,1]$.
Then the corresponding Riemann sum is given by

$$
S_{P}=\Sigma_{k=1}^{5} f\left(c_{k}\right) \Delta x_{k}=0.4 \Sigma_{k=1}^{5} f\left(c_{k}\right) .
$$

The midpoints are $c_{1}=-0.8, c_{2}=-0.4, c_{3}=0, c_{4}=0.4$ and $c_{5}=0.8$, and then

$$
S_{P}=0.4[f(-0.8)+f(-0.4)+f(0)+f(0.4)+f(0.8)]=1.36 .
$$

34. Define $f(x)=2+x^{2}$, and we partition $[-1,1]$ into five equal subintervals, each of length $\Delta x_{k}=\frac{1-(-1)}{5}=0.4$:

$$
[-1,-0.6],[-0.6,-0.2],[-0.2,0.2],[0.2,0.6], \text { and }[0.6,1] \text {. }
$$

Then the corresponding Riemann sum is given by

$$
S_{P}=\Sigma_{k=1}^{5} f\left(c_{k}\right) \Delta x_{k}=0.4 \Sigma_{k=1}^{5} f\left(c_{k}\right)
$$

The right endpoints are $c_{1}=-0.6, c_{2}=-0.2, c_{3}=0.2, c_{4}=0.6$ and $c_{5}=1$, and then

$$
S_{P}=0.4[f(-0.6)+f(-0.2)+f(0.2)+f(0.6)+f(1)]=4.72
$$

39. The area S_{T} of a trapezoid is given $S_{T}=\frac{1}{2}(a+b) h$, where h is the height, and a and b are the lengths of the parallel sides. See Figure 1(Last page). Then from Geometric interpretation of definite integrals,

$$
\int_{a}^{b} x d x=S_{\text {shade }}=S_{\text {trapezoid }}=\frac{1}{2}(a+b)(b-a)=\frac{b^{2}-a^{2}}{2} .
$$

41. $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} 2 c_{k}^{3} \Delta x_{k}=\int_{1}^{2} 2 x^{3} d x$
42. $\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n} \sqrt{c_{k}} \Delta x_{k}=\int_{1}^{4} \sqrt{x} d x$
43.

$$
\int_{2}^{6}(x+1)^{1 / 3} d x=\lim _{\|P\| \rightarrow 0} \sum_{k=1}^{n}\left(c_{k}+1\right)^{1 / 3} \Delta x_{k}
$$

where $x_{0}=2<x_{1}<x_{2}<\cdots<x_{n}=6, n=1,2, \ldots$, is a sequence of partitions of $[2,6], c_{k} \in\left[x_{k-1}, x_{k}\right], \Delta x_{k}=x_{k}-x_{k-1}$.
50.

$$
\int_{1}^{3} e^{-2 x} d x=\lim _{\|P\| \rightarrow 0} \Sigma_{k=1}^{n} e^{-2 c_{k}} \Delta x_{k}
$$

where $x_{0}=1<x_{1}<x_{2}<\cdots<x_{n}=3, n=1,2, \ldots$, is a sequence of partitions of $[1,3], c_{k} \in\left[x_{k-1}, x_{k}\right], \Delta x_{k}=x_{k}-x_{k-1}$.
53.

$$
\int_{0}^{5} g(x) d x=\lim _{\|P\| \rightarrow 0} \Sigma_{k=1}^{n} g\left(c_{k}\right) \Delta x_{k}
$$

where $x_{0}=0<x_{1}<x_{2}<\cdots<x_{n}=5, n=1,2, \ldots$, is a sequence of partitions of $[0,5], c_{k} \in\left[x_{k-1}, x_{k}\right], \Delta x_{k}=x_{k}-x_{k-1}$.
57. See Figure 2(Last page). Let A_{S} denote the area of the shade region. Then $\int_{0}^{5} e^{-x} d x=A_{S}$.
58. See Figure 3(Last page). Let A_{U} denote the area of the shade region above the x-axis and A_{L} be the total area of the shade regions below the x-axis. Then $\int_{-\pi}^{\pi} \cos x d x=A_{U}-A_{L}=0$.
64. Calculate $\int_{1 / 2}^{1} \sqrt{1-x^{2}} d x$. See Figure 4.

Setting $y=\sqrt{1-x^{2}}$ gives $x^{2}+y^{2}=1$, which denotes a unit circle. Let $O=(0,0), A=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), B=\left(\frac{1}{2}, 0\right)$ and $C=(1,0)$. Then $\int_{1 / 2}^{1} \sqrt{1-x^{2}} d x$ is the area of the shade region(See Figure 4), which is enclosed by line segments $A B, B C$ and the arc $\widehat{A C}$. Thus if let $S_{\widehat{O A C}}$ and $S_{\triangle O A B}$ denote the areas of Sector $O A C$ and Triangle $\triangle O A B$ respectively, from $\cos \angle A O B=\frac{|O B|}{|O A|}=\frac{1}{2}$, we know $\angle A O B=\frac{\pi}{3}$. So

$$
\begin{aligned}
\int_{1 / 2}^{1} \sqrt{1-x^{2}} d x & =S_{\widehat{O A C}}-S_{\triangle O A B} \\
& =\frac{1}{2}|O A|^{2} \angle A O B-\frac{1}{2}|O A||O B| \sin \angle A O B \\
& =\frac{\pi}{6}-\frac{\sqrt{3}}{8}
\end{aligned}
$$

65. Calculate $\int_{-2}^{2}\left(\sqrt{4-x^{2}}-2\right) d x$. See Figure 5 .

Setting $y=\sqrt{4-x^{2}}-2$ gives $x^{2}+(y+2)^{2}=4$, which denotes a circle. Let $A=(-2,0), B=(-2,-2), C=(2,-2)$ and $D=(2,0)$. Since the
shade region is below x-axis, then

$$
\begin{aligned}
\int_{-2}^{2}\left(\sqrt{4-x^{2}}-2\right) d x & =-S_{\text {shade }} \\
& =-S_{\square \mathrm{ABCD}}+S_{\text {half circle }} \\
& =-|A D \| A B|+\frac{1}{2} \pi 2^{2} \\
& =2 \pi-8 .
\end{aligned}
$$

68. Given that $\int_{0}^{a} x^{2} d x=\frac{1}{3} a^{3}$, from properties of integrals, we get (a)

$$
\int_{0}^{2} \frac{1}{2} x^{2} d x=\frac{1}{2} \int_{0}^{2} x^{2} d x=\frac{1}{2} \times \frac{1}{3} \times 2^{3}=\frac{4}{3}
$$

(b)

$$
\begin{aligned}
\int_{-3}^{-2} 3 x^{2} d x & =3\left(\int_{-3}^{0} x^{2} d x+\int_{0}^{-2} x^{2} d x\right) \\
& =3\left(-\int_{0}^{-3} x^{2} d x+\int_{0}^{-2} x^{2} d x\right) \\
& =3\left[-\frac{1}{3}(-3)^{3}+\frac{1}{3}(-2)^{3}\right] \\
& =19
\end{aligned}
$$

(c)

$$
\begin{aligned}
\int_{-1}^{3} \frac{1}{3} x^{2} d x & =\frac{1}{3}\left(\int_{-1}^{0} x^{2} d x+\int_{0}^{3} x^{2} d x\right) \\
& =\frac{1}{3}\left(-\int_{0}^{-1} x^{2} d x+\int_{0}^{3} x^{2} d x\right) \\
& =\frac{1}{3}\left[-\frac{1}{3}(-1)^{3}+\frac{1}{3} 3^{3}\right] \\
& =\frac{28}{9}
\end{aligned}
$$

(d)

$$
\int_{1}^{1} 3 x^{2} d x=0
$$

(e) From the similar discussion in Question 39, we obtain

$$
\begin{aligned}
\int_{-2}^{3}(x+1)^{2} d x & =\int_{-2}^{3}\left(x^{2}+2 x+1\right) d x \\
& =\int_{-2}^{3} x^{2} d x+\int_{-2}^{3} 2 x d x+\int_{-2}^{3} 1 d x \\
& =\left[\int_{0}^{3} x^{2} d x-\int_{0}^{-2} x^{2} d x\right]+2 \int_{-2}^{3} x d x+\int_{-2}^{3} 1 d x \\
& =\frac{3^{3}-(-2)^{3}}{3}+2 \frac{3^{2}-(-2)^{2}}{2}+(3-(-2)) \times 1 \\
& =\frac{65}{3}
\end{aligned}
$$

(f) Similar as above,

$$
\begin{aligned}
\int_{2}^{4}(x-2)^{2} d x & =\int_{2}^{4}\left(x^{2}-4 x+4\right) d x \\
& =\int_{2}^{4} x^{2} d x-\int_{2}^{4} 4 x d x+\int_{2}^{4} 4 d x \\
& =\left[\int_{0}^{4} x^{2} d x-\int_{0}^{2} x^{2} d x\right]-4 \int_{2}^{4} x d x+4 \int_{2}^{4} 1 d x \\
& =\frac{4^{3}-2^{3}}{3}-4 \frac{4^{2}-2^{2}}{2}+(4-2) \times 4 \\
& =\frac{8}{3}
\end{aligned}
$$

70. From the first property of the integral

$$
\int_{a}^{a} f(x) d x=0
$$

we have

$$
\int_{-3}^{-3} e^{-x^{2} / 2} d x=0
$$

73. See Figure 6. We have a fact that $\tan (-x)=-\tan x$, which implies $\tan x$ is odd and thus symmetric about $x=0$. Then the area of the region below the graph of $f(x)=\tan x$ and above the x-axis between 0 and 1 (denoted by A_{+}) is same as the area of the region above the graph of f and below the x-axis between -1 and $0\left(\right.$ denoted by $\left.A_{-}\right)$. Therefore $A_{+}=A_{-}$ and

$$
\int_{-1}^{1} \tan x d x=A_{+}-A_{-}=0 .
$$

Remark: Actually for any odd function $f(x)$, and $a \geq 0$ such that ($-a, a$) is in the domain of $f(x)$, we always have

$$
\int_{-a}^{a} f(x) d x=0
$$

81. See Figure 7 for $a \in[0,2 \pi]$. Using the interpretation of the definite integral as the signed area, we see from the graph of $f(x)=\cos x$ that the graph of $f(x)$ is positive for $0 \leq x<\frac{\pi}{2}$ and $\frac{3 \pi}{2}<x \leq 2 \pi$, while negative for $\frac{\pi}{2}<x<\frac{3 \pi}{2}$. Moreover from the symmetry analysis, we can conclude that:
when $0<a<\pi, \int_{0}^{a} \cos x d x>0$;
when $\pi<a<2 \pi, \int_{0}^{a} \cos x d x<0$.
Then combining the results above together implies that $a=\frac{\pi}{2}$ maximizes the integral.
82. See Figure 8. We see from the graph of $f(x)=\sin x$ that the graph of $f(x)$ is positive for $0<x<\pi$ and negative for $\pi<x<2 \pi$. Moreover from the symmetry analysis, we can conclude that:
when $0<a<2 \pi, \int_{0}^{a} \sin x d x>0$ and $\int_{0}^{2 \pi} \sin x d x=0$.
Then there is only one value $a=2 \pi$ in ($0,2 \pi$] such that

$$
\int_{0}^{a} \sin x d x=0
$$

Section 6.2

8. Remark: There is a problem in this question.

First note that $f(x)=\sqrt{2+\csc ^{2} x}$ is continuous for $0<x<\pi$, but $f(x)$ is not well defined at $x=0$. So if we still want to apply FTC, we have to change the lower limit of integration from 0 to some small positive number $\varepsilon>0$.

Thus the result should be that for $\varepsilon \leq x<\pi$,

$$
\frac{d y}{d x}=\frac{d}{d x} \int_{\varepsilon}^{x} \sqrt{2+\csc ^{2} u} d u=\sqrt{2+\csc ^{2} x}
$$

9. First note that $f(x)=x e^{4 x}$ is continuous everywhere. Then from FTC, we have

$$
\frac{d y}{d x}=\frac{d}{d x} \int_{3}^{x} u e^{4 u} d u=x e^{4 x}
$$

Additional*: Prove Leibniz's rule in the case where f is continuous everywhere.

Leibniz's Rule: If $g(x)$ and $h(x)$ are differentiable functions and $f(u)$ is continuous for u between $g(x)$ and $h(x)$, then

$$
\frac{d}{d x} \int_{g(x)}^{h(x)} f(u) d u=f[h(x)] h^{\prime}(x)-f[g(x)] g^{\prime}(x)
$$

Proof. First note that $f(u)$ is continuous everywhere, then write $F(x)=$ $\int_{0}^{x} f(u) d u$, and thus from FTC,

$$
F^{\prime}(x)=f(x) .
$$

Next by some basic properties of integrals and chain rule,

$$
\begin{aligned}
\frac{d}{d x} \int_{g(x)}^{h(x)} f(u) d u & =\frac{d}{d x}\left[\int_{0}^{h(x)} f(u) d u+\int_{g(x)}^{0} f(u) d u\right] \\
& =\frac{d}{d x}\{F[h(x)]-F[g(x)]\} \\
& =F^{\prime}[h(x)] h^{\prime}(x)-F^{\prime}[g(x)] g^{\prime}(x) \\
& =f[h(x)] h^{\prime}(x)-f[g(x)] g^{\prime}(x)
\end{aligned}
$$

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

