Math 3B, Midterm 1 Solutions

1. (a) We partition the interval $[1,3]$ into four equal subintervals, hence the length of each subinterval is $\Delta x_{k}=\frac{3-1}{4}=\frac{1}{2}$, and the endpoints of the subintervals are $1,1.5,2,2.5,3$. Therefore the midpoints are $c_{1}=1.25, c_{2}=1.75, c_{3}=2.25, c_{4}=2.75$. The Riemann sum approximation to the integral using midpoints of four subintervals is thus given by

$$
\begin{aligned}
\int_{1}^{3} \sin (x) d x & \approx \sum_{k=1}^{4} \sin \left(c_{k}\right) \Delta x_{k} \\
& =\frac{1}{2}(\sin (1.25)+\sin (1.75)+\sin (2.25)+\sin (2.75))
\end{aligned}
$$

(b) We partition the interval $[0,1]$ into three equal subintervals, hence the width of each subinterval is $\Delta x_{k}=\frac{1-0}{3}=\frac{1}{3}$, and the endpoints of the subintervals are $0, \frac{1}{3}, \frac{2}{3}, 1$. The left endpoints of the three subintervals are $c_{1}=0, c_{2}=\frac{1}{3}, c_{3}=\frac{2}{3}$. The Riemann sum approximation to the integral using left endpoints of three subintervals is thus given by

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & \approx \sum_{k=1}^{3} f\left(c_{k}\right) \Delta x_{k} \\
& =\frac{1}{3}\left(f(0)+f\left(\frac{1}{3}\right)+f\left(\frac{2}{3}\right)\right) .
\end{aligned}
$$

2. (a) $\int_{2}^{2} g(x) d x=0$ by one the properties of integration.
(b) We have

$$
\int_{0}^{3} g(x) d x=\int_{0}^{1} g(x) d x+\int_{1}^{3} g(x) d x
$$

by one of the properties of integration, hence

$$
\int_{1}^{3} g(x) d x=\int_{0}^{3} g(x) d x-\int_{0}^{1} g(x) d x=5-1=4
$$

(c) No. When x is in the interval $[3,5]$, we have that $g(x) \geq 2$ by the information given, hence

$$
\int_{3}^{5} g(x) d x \geq \int_{3}^{5} 2 d x=2(5-3)=4 .
$$

Thus it is inconsistent with the given information that the integal is equal to 3 .
(d) Yes. To have $\int_{0}^{5} g(x) d x=13$, it is necessary and sufficient to have

$$
\int_{3}^{5} g(x) d x=13-\int_{0}^{3} g(x) d x=13-5=8
$$

The restriction $2 \leq g(x) \leq 4$ does not rule out such a possibility: If $g(x)=4$ for $x \in[3,5]$, then $\int_{3}^{5} g(x) d x=8$.
(It was not necessary on the exam to give an explicit example of a function $g(x)$ with the given properties (including continuity), but here is one:

$$
g(x)=\left\{\begin{array}{ll}
1, & 0 \leq x \leq 1 \\
\frac{1}{2}(x-1)+1, & 1 \leq x \leq 2 \\
\frac{5}{2}(x-2)+\frac{3}{2}, & 2 \leq x \leq 3 \\
4, & 3 \leq x \leq 5
\end{array} .\right)
$$

3. (a)

$$
\int e^{x}+x^{2} d x=e^{x}+\frac{1}{3} x^{3}+C .
$$

(b) Integrating by means of a substitution,

$$
\begin{aligned}
\int \frac{e^{1 / x}}{x^{2}} d x & =\left|\begin{array}{l}
u=1 / x \\
d u=-1 / x^{2} d x
\end{array}\right| \\
& =\int-e^{u} d u \\
& =-e^{u}+C \\
& =-e^{1 / x}+C .
\end{aligned}
$$

(c)

$$
\int 7 x^{4}+5 x^{2} d x=\frac{7}{5} x^{5}+\frac{5}{3} x^{3}+C
$$

(d)

$$
\int \sec ^{2} x d x=\tan x+C
$$

4. (a)

$$
\begin{aligned}
\int_{0}^{1} e^{x}+x^{2} d x=e^{x}+\left.\frac{1}{3} x^{3}\right|_{0} ^{1}=\left(e^{1}+\frac{1}{3}\right)-\left(e^{0}+0\right) & =e-\frac{2}{3} \\
& (\approx 2.052)
\end{aligned}
$$

(b) The function $\frac{e^{1 / x}}{x^{2}}$ is not continuous on the interval $[-1,1]$ (it is discontinuous at the point $x=0$).
(c)

$$
\begin{aligned}
\int_{2}^{4} 7 x^{4}+5 x^{2} d x=\frac{7}{5} x^{5}+\left.\frac{5}{3} x^{3}\right|_{2} ^{4} & =\left(\frac{7}{5} \cdot 4^{5}+\frac{5}{3} \cdot 4^{3}\right)-\left(\frac{7}{5} \cdot 2^{4}+\frac{5}{3} \cdot 2^{3}\right) \\
(& \left.=\frac{22658}{15} \approx 1504.533\right)
\end{aligned}
$$

(d)

$$
\begin{aligned}
\int_{0}^{\pi / 4} \sec ^{2} x d x=\left.\tan x\right|_{0} ^{\pi / 4} & =\tan (\pi / 4)-\tan (0) \\
& (=1-0=1)
\end{aligned}
$$

5. (a) Since $f(x)=e^{-x^{2}} \sin x$ is an odd function (i.e. $\left.f(-x)=-f(x)\right)$ and the interval of integration is symmetric about 0 , we have

$$
\int_{-2}^{2} e^{-x^{2}} \sin x d x=0
$$

(b) The graph of $\sqrt{4-x^{2}}$ is the upper half of a circle of radius 2 centered at the origin in $\mathbf{R}^{2} . \int_{-2}^{2} \sqrt{4-x^{2}} d x$ is therefore half the area of this circle, hence equal to $\frac{1}{2} \pi \cdot 2^{2}=2 \pi$.
6. To find the points of intersection between the two curves we set $8-x^{6}=$ $7 x^{3}$ and solve for x :

$$
\begin{aligned}
8-x^{6} & =7 x^{3} \\
x^{6}+7 x^{3}-8 & =0 \\
\left(x^{3}\right)^{2}+7 x^{3}-8 & =0 \\
\left(x^{3}+8\right)\left(x^{3}-1\right) & =0 \\
x^{3} & =-8,1 \\
x & =-2,1 .
\end{aligned}
$$

Testing a point in the interval $[-2,1]$ we see that when $x=0$ we have $8-x^{6}=8>0=7 x^{3}$, thus the curve $y=8-x^{6}$ is above the curve $y=7 x^{3}$ on this interval. Thus the area contained between the two curves is

$$
\begin{aligned}
\int_{-2}^{1}\left(8-x^{6}\right)-7 x^{3} d x & =8 x-\frac{1}{7} x^{7}-\left.\frac{7}{4} x^{4}\right|_{-2} ^{1} \\
& =\left(8-\frac{1}{7}-\frac{7}{4}\right)-\left(8(-2)-\frac{1}{7}(-2)^{7}-\frac{7}{4}(-2)^{4}\right) \\
& \left(=\frac{891}{28} \approx 31.821\right) .
\end{aligned}
$$

