
Chapter 4

Unix Tutorial

Users and applications interact with hardware through an operating system (OS). Unix is a

very basic operating system in that it has just the essentials. Many operating systems, such

as macOS and Linux, are “Unix-like” in that they are built on top of it. All these systems

are then closely compatible at the Unix level—knowing Unix is a versatile skill.

The user interface for Unix is a command-line shell, which we’ll be using to do operations

on the computer’s file system. This may feel tedious at first, after all, you’ve managed files

up until now without it. However, the advantage of Unix is in writing scripts that automate

repetitive tasks. This enables you to work accurately with arbitrarily many files of whatever

size.

Unix Shell

If you’re using macOS or Linux, search your computer for the “Terminal.”1 This an appli-

cation that runs shells, which here are command-line interfaces. The default will generally

be a Unix shell called the “Bash.” The current line of the Bash will prompt you with the

following,

[Computer's name]:~ [Working directory][Username]$

Commands are typed after the dollar sign ($). We will optionally suppress the information

in the prompt by typing PS1='$ ' and pressing the “enter” key.

[Computer's name]:~ [Working directory][Username]$ PS1='$ '

$

1For other operating systems ask Google—your best friend when programming. Windows is not Unix-like,
but you can download “Git” which will emulate the Terminal environment.

15

16 CHAPTER 4. UNIX TUTORIAL

The current line is now prompted by '$ '. For future reference, ctrl+C stops any commands

that are still running, and the Bash session can be ended with ctrl+D . (These are useful if

you’re stuck in a loop for instance.)

File system

Everything on your computer is stored in directories (aka folders). They form a tree hierarchy;

each directory has a unique parent that contains it—with the exception of the root, which has

no parent. The Bash has a current working directory where commands are executed from.

The following three commands will allow you to navigate through your files: “pwd,” “ls,” and

“cd.” These are some of the most frequent commands you’ll use. “Print working directory,”

pwd , gives the full path of the current working directory.

$ pwd

/Users/JohnCleese

This says the current working directory is “JohnCleese” inside of the “User” directory, which

is itself inside of the root directory. (The current user is generally the default directory.)

Use this command frequently to double check that you are in the directory you mean to be

in. “List” files, ls , prints the files in the current working directory. For example, the user’s

directory will typically look like,

$ ls

Applications Library

Desktop Movies

Documents Pictures

Downloads Public

“Change directory,” cd , navigates the file system. Suppose we want to be in the “applica-

tions” directory, we need only type,

$ cd applications

To confirm that this worked, run “pwd.”

$ pwd

/Users/JohnCleese/applications

The computer knew where to find “applications” because it was in the current working

directory. Otherwise, the path of the new working directory must be inputted. For instance,

the following would go to the “desktop” directory.

17

$ cd /Users/JohnCleese/desktop

$ pwd

/Users/JohnCleese/desktop

$ ls

Fawlty_Towers.pdf Monty Python Text.txt

Unix has shortcuts for various directories. Along with being easier to read, these shortcuts

can make code robust to where it is being executed.

• . is the “current working directory.” (/Users/JohnCleese/desktop)

• .. is the “parent directory.” (/User/JohnCleese)

• - is the “previous working directory.” (/Users/JohnCleese/applications)

• ˜ is the default “user’s directory.” (/Users/JohnCleese)

For example, we could write cd - to go back to the “applications” directory. Notice that no

input to the “cd” command takes us back to the default user’s directory.

$ cd

$ pwd

/Users/JohnCleese

Whitespace

The Bash uses whitespace to separate multiple arguments. If a name involves spaces, then it

must be put in quotes on the command line. Otherwise, the name will be split into distinct

arguments, and the Bash will give a corresponding error.

$ cd ~/desktop/Monty Python

-bash: cd: /Users/JohnCleese/desktop/Monty: No such file or directory

$ cd ~/desktop/'Monty Python'

$ pwd

/Users/JohnCleese/desktop/Monty Python

The best way to avoid errors caused by whitespace is simply not to use it within names, e.g.

use ‘_’ instead.

18 CHAPTER 4. UNIX TUTORIAL

Flags

Commands often have various options for how they are used. These options can be selected

by adding flags between the command and any input. For instance, ls -F appends a “/” to

directories in its printout.

$ cd ~/desktop

$ ls -F

Fawlty_Towers.pdf Monty Python/ Text.txt

There are many files on your computer that are suppressed from view. ls -a will show all

files in your current directory. (Try this command in your default directory and you might

be surprised by the number of such files.) Multiple flags can be concatenated, for instance

ls -a -F . Typing man before a command takes you to its manual page, e.g. man ls . Among

much else, this page will explain all optional flags. Press “q” to exit the manual back to the

command line. (Alternative commands to man are info and help .)

Make, move, copy, and remove

“Make directory,” mkdir , creates a new directory.

$ cd ~/desktop/'Monty Python'

$ mkdir Silly_Walks

$ ls -F

Silly_Walks/

The touch command “touches” a file; if the file did not exist, then it creates it. (Otherwise,

it simply changes the “modification” and “access” times.)

$ touch Parrot.sh

$ ls -F

Parrot.sh Silly_Walks/

In this example we created the blank shell script “Parrot.sh.” Any kind of blank text file can

be created this way. “Move,” mv , can change the directory of a file as well as its name.

The first input specifies a current file, and the second input specifies where to move it. For

example,

$ mv Parrot.sh ../Ex_Parrot.sh

This moved the file “Parrot.sh” to the parent directory and changed the name to “Ex_Parrot.sh.”

Be careful not to accidentally overwrite files; if there had already been such a file, then it

19

would have been overwritten. The -n flag prevents overwriting (see man mv for more in-

formation). “Copy” files, cp , works the same way as mv except that the original file is not

deleted. For example,

$ cp ../Ex_Parrot.sh Copy_of_Ex_Parrot.sh

This created a copy of “Ex_Parrot.sh” called “Copy_of_Ex_Parrot.sh” in the current direc-

tory. “Remove,” rm , permanently2 deletes a file.

$ rm Copy_of_Ex_Parrot.sh

$ ls

Silly_Walks

Note that the flag “-d” must be used to delete a directory. If the directory is not empty, then

the flag “-r” must be used to delete all files within it. (Be especially careful when using this

flag.)

Output

The echo command outputs text.

$ echo Hello world!

Hello world!

The text can be directed to a file using > or >> . If the file doesn’t exist, then it will be

created.

$ echo [some text 1] > example.txt

$ echo [some text 2] >> example.txt

The > overwrites any such file, whereas >> appends the text to end of the file. (The

opposite direction < can be used to input files to commands.) For those curious, the Bash

provides its own inline plain text editor called nano . (This won’t be used for automation, so

there’s not much reason to use this instead of the text editor application on your computer.)

Arithmetic

Arithmetic can be done within double parentheses.

$ echo $((8+2))

10

2It is deleted and does not go into a trash bin, so be careful when using this command.

20 CHAPTER 4. UNIX TUTORIAL

$ echo $((7*3))

21

$ echo $((23/4))

5

Often an expression needs to be preceded by a dollar sign ($). Otherwise, “echo” would simply

print the expression ((8+2)) instead of the result of 10. Alternatively, evaluate “expression,”

expr , can be used.

$ expr 7 - 12

-5

$ expr 13 * 5

65

Loops

The following for loop prints out the numbers 1 to 5 on separate lines.

$ for i in 1 2 3 4 5

> do

> echo $i

> done

Instead of listing out the values of i, the for loop can be written as in C and Java.

$ for ((i=1; i<=5; i++))

> do

> echo $i

> done

Semicolons can be used to put multiple commands on the same line. The following for loop

is equivalent to the previous.

$ for ((i=1; i<=5; i++)); do echo $i; done

A while loop is very similar, but instead evaluates a logical statement.

$ while logical statement ; do ... ; done

21

Logic and if statements

“If statements” have the following structure.

$ if logical statement 1 ; then

> ...

> elif logical statement 2 ; then

> ...

> else

> ...

> fi

The following are logical operators in mathematical expressions.

• < is “less than,” and <= is less than or equal to.

• > is “greater than,” and >= is greater than or equal to.

• == is “equal to,” and != is “not equal to.”

$ if ((1 <= 2)); then echo true; else echo false; fi

true

$ if ((5 == 3)); then echo true; else echo false; fi

false

Strings can be compared like numbers, but they must be enclosed in brackets, e.g.

$ if ['ABC' != 'XYZ']; then echo true; else false; fi

true

Logical statements can be concatenated with “and” && , and “or” || .

Prime numbers example

In the following toy project, we are going to make a shell script that computes all of the

prime numbers up to an arbitrary N . First, we’ll make a new directory for the project. Start

in whatever directory you like, e.g. you desktop.

$ mkdir Prime_Calculator

$ cd Prime_Calculator

$ touch Times_Table.sh

$ touch Calculator.sh

22 CHAPTER 4. UNIX TUTORIAL

We’ll use the “Times_Table” script to output all composite numbers less than N . Then, the

“Calculator” script will find all of the primes.

Shell scripts

Shell scripts are plain text files with the extension .sh . Unix commands can be written

in shell scripts the same way they would be written in the Bash. Consider the following

“Times_Table” script. (Copy and paste into the file.)

This is a helper script for computing prime numbers.

For each number i less than sqrt(N), this script computes its multiples.

These multiples are output as individual text files in the Table directory.

The only input is N.

rm -r Table # Removes the old multiplication table.

mkdir Table # Creates a new multiplication table directory.

For all numbers i less than N, compute the multiples of i.

for ((i=2; i<=$1; i++))

do

Consider all j-th multiples of i (between i and N/i).

for ((j=i; j<=($1/i); j++))

do # Output i*j as a multiple of i.

echo $((i*j)) >> "Table/Multiples_of_$i.txt"

done

done

Inputs are referenced in order as $1, $2, . . . within the script. Our script only takes in one

input, N , which is denoted by $1. The bash command runs shell scripts.

$ bash Times_Table.sh 100

This ran the “Times_Table” script with N = 100.

Viewing files

Let’s inspect the output in the “Table” directory.

$ cd Table

$ ls

Multiples_of_10.txt Multiples_of_4.txt Multiples_of_7.txt

Multiples_of_2.txt Multiples_of_5.txt Multiples_of_8.txt

Multiples_of_3.txt Multiples_of_6.txt Multiples_of_9.txt

23

There are many commands for viewing files in the Bash. cat prints out the contents of a

file. head prints out the first ten lines unless you specify a different number. Whereas, tail

prints out the last lines of a file.

$ head -3 Multiples_of_2.txt

4

6

8

Wildcards

“Word count,” wc , computes the total number of words in a file. Supposing we were inter-

ested in the total number of each such multiple, the following would compute it.

$ wc -l *.txt

The asterisk (*) is a wildcard for any valid expression. In this example, the word count

command took every “.txt” file in the directory as input. Now, a question mark (?) is a

wildcard for any single character.

$ wc -l Multiples_of_?.txt

This computes the word count for the multiples of any single digit.

Pipes

“Sort numerically,” sort -n , takes a list of numbers and sorts it in ascending order.

$ sort -n *.txt

This took all of the numbers in all of the text files and sorted them. Note that there will be

plenty of duplicates for numbers with multiple factors. “Unique,” uniq , eliminates any adja-

cent duplicates within a list. Apply this command after sorting will eliminate any duplicates.

This is accomplished with pipes (|).

$ sort -n *.txt | uniq

The lefthand side of the pipe (|) is computed first and then inputted into the command on

the righthand side. In this example, the output is all of the composite numbers less than

N = 100.

24 CHAPTER 4. UNIX TUTORIAL

Calculator

The final step in computing the prime numbers is to take the complement of the composite

numbers. After a couple quick Google searches, you would find that,

$ seq 2 100

lists all the integers from 2 to 100. And, comm -23 takes the set minus of two lists. Hence,

the following gives all the primes under 100,

$ comm -23 <(seq 2 100) <(sort -n *.txt | uniq)

Note that the < (. . .) is being used to group as a single input. To automate this cal-

culation, we simply have to write a script that executes this last command after calling

“Times_Table.sh.” Our “Calculator.sh” code is:

bash Times_Table.sh $1

echo $(comm -23 <(seq 2 $1) <(sort -n Table/*.txt | uniq)) > Primes.txt

Woohoo! Now you can compute all of the prime numbers less than N by calling,

$ bash Calculator.sh N

in your “Prime_Calculator” directory.

	Why High-Performance Computing in Economics?
	Computation and Economic Theory

	Why Software Engineering?
	The Goal
	Correctness
	Efficiency
	Maintainability
	Reproducibility
	Documentation
	Scalability
	Portability

	The Means
	Textbooks and classic monographs
	The manual: your best friend
	Additional resources

	Tools and Techniques
	Warnings

	OS and Basic Utilities
	Unix Tutorial
	Version Control: Git
	Getting Started
	Configuring Git
	Creating a Repository
	Ignoring Things
	Tracking Changes

	Git File Structure
	Staging Area
	Git Branches and Merging
	Dealing with Conflicts
	Rebase, Revert, & Remove

	Hosting
	Publishing & Licensing
	Collaboration

	Conclusion

	Make Tutorial
	Setup
	Makefile
	Run Make
	Conclusion

	Dynamic Notebooks: Jupyter, Markdown, and Pandoc
	Jupyter
	Markdown
	Pandoc

	Julia Tutorial
	Why Julia?
	Installing Julia
	Packages
	Types
	Fundamental commands
	Variables
	Arithmetic operators
	Logical operators
	Boolean operators and ascertain functions
	Standard mathematical functions

	Arrays
	Vectors
	Matrices
	Sparse matrices
	Characters
	Strings
	I/O

	Programming Structures
	Functions
	Recursion, closures, and currying
	MapReduce
	Loops
	Conditionals

	Other Data Structures
	Tuples
	Dictionaries
	Sets
	Composite types
	Mutable Composite Types
	Parametric Composite Types
	Type Union

	Metaprogramming
	Plots
	Random Numbers
	Multiple Files
	Timing
	Parallel
	Some Advanced Topics
	A Worked-out Example

