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The problem

e We want to approximate (“learn”) an unknown function:
y = f(x)
where y is a scalar and x = {x9 = 1, x1, x2, ..., xy} a vector (including a constant).
e We care about the case when N is large (possibly in the thousands!).

e Easy to extend to the case where y is a vector (e.g., a probability distribution), but notation becomes
cumbersome.

e In economics, f(x) can be a value function, a policy function, a pricing kernel, a conditional
expectation, a classifier, ...



A neural network

e An artificial neural network (a.k.a. a connectionist system) is a approximation to f(x) of the form:

M
y = f(X) = gNN (X; 0) =6 + Z 9m¢ (Zm)

where ¢(-) is an arbitrary activation function and:

N
Zm = § en,an
n=0

e The x,'s are known as the features of the data, which belong to a feature space X.

The ¢ (zm)'s are known as the representation of the data (a generalized linear model).

M is known as the width of the model (wide vs. thin networks).

“Training” the network: We select § such that gV (x; ) is as close to f(x) as possible given some
relevant metric (e.g., the ¢2 norm).
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Intuition

e Intuition 1: A biological interpretation, but | do not find it too useful. Closer to econometrics (e.g.,
NOLS, semiparametric regression, and sieves) and differential geometry.

e Intuition 2: We look for representations of the features of the data that are informationally efficient.

e Intuition 3 (more advanced): We look for translations and rotations of the data that deliver a more
convenient geometry by moving from a parent space to a simpler one.
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Comparison with other approximations

e Compare:
M N
F(x) = g™ (x;0) =060+ > Omd (Z 9n7mx,,>
m=1 n=0

with a standard projection:

M
0 6 () = o+ 3 o (0

where ¢, is, for example, a Chebyshev polynomial.
e We exchange the rich parameterization of coefficients for the parsimony of basis functions.

e How we determine the coefficients will also be different, but this is somewhat less important.



y do neural networks “work”?

e Neural networks consist entirely of chains of tensor operations: we take x, we perform affine
transformations, and apply an activation function.

e Thus, these tensor operations are geometric transformations of x. In fact, a better name for neural
networks could be chained geometric transformations.

e In other words: a neural network is a complex geometric transformation in a high-dimensional space.
e Deep neural networks look for convenient geometrical representations of high-dimensional manifolds.

e The success of any functional approximation problem is to search for the right geometric space in
which to perform it, not to search for a “better” basis function.

e Think about:
y =k =logy = alogk+ (1 — a)log !






Deep learning, |

e A deep learning network is an acyclic multilayer composition of J > 1 neural networks:

N
0 _ po E 0
Zm = HO,m + en,mxn
n=1
and

M
Zpy = Oom+ Y Omd" (20)
m=1

M)
y = gP(xi0) =03+ ) _ 070" (20 ")
m=1

where the MM, M@ and ¢*(-), $?(-), ... are possibly different across each layer of the network.

e A deep network creates new representations by composing older representations.
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Deep learning, Il

e Sometimes known as deep feedforward neural networks or, of fully connected, multilayer perceptrons
(MLPs).

e “Feedforward” comes from the fact that the composition of neural networks can be represented as a
directed acyclic graph, which lacks feedback. We can have more general recurrent structures.

e Jis known as the depth of the network (deep vs. shallow networks).
e The case J =1 is a standard neural network.

e As before, we can select 6 such that gP (x; #) approximates a target function f(x) as closely as
possible under some relevant metric.

e All other aspects (selecting ¢(-), J, M, ...) are known as the network architecture. We will discuss
extensively at the end of this slide block how to determine them.
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y do deep neural networks “work” better?

e Why do we want to introduce hidden layers?

1. It works! Evolution of ImageNet winners.

2. The number of representations increases exponentially with the number of hidden layers while

computational cost grows linearly.

3. Intuition: hidden layers induce highly nonlinear behavior in the joint creation of representations without

the need to have domain knowledge (used, in other algorithms, in some form of greedy pre-processing).
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Some consequences

e Because of the previous arguments, neural networks can efficiently approximate extremely complex
functions.

e In particular, under certain (relatively weak) conditions:

1. Neural networks are universal approximators.

2. Neural networks break the “curse of dimensionality.”

e Furthermore, neural networks are easy to code, stable, and scalable for multiprocessing (neural
networks are built around tensors).
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Further advantages

e Neural networks and deep learning often require less “inside knowledge" by experts on the area.
e While results can be highly counter-intuitive, deep neural networks deliver excellent performance.

e OQutstanding open source libraries (Tensorflow, Keras, Pytorch, JAX) that integrate well with easy

scripting languages (Python).
e Newer algorithms: batch normalization, residual connections, and depthwise separable convolutions.

e More recently, development of dedicated hardware (TPUs, Al accelerators, FPGAs) are likely to
maintain a hedge for the area.

e The richness of an ecosystem is key for its long-run success.
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Limitations of neural networks and deep learning

e While neural networks and deep learning can work extremely well, there is no such a thing as a silver
bullet.

e Clear and serious trade-offs in real-life applications.
e We often require tens of thousands of observations to properly train a deep network.

e Of course, sometimes “observations” are endogenous (we can simulate them) and we can implement
data augmentation, but if your goal is to forecast GDP next quarter, it is unlikely a deep neural
network will beat an ARIMA(n,p,q) (at least only with macro variables).

e |Issues of interpretation.

e We are very far from any type of general human intelligence. Think about the process of designing a
rocket.
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Digging deeper




Activation functions |

e Traditionally:

1. ldentity function:

¢(2) =z
Used in linear regression.
2. A sigmoidal function:
1
0(2) = 1T

3. Step function (a limiting case as z grows quickly):

¢(z)=1if z>0,¢(z) = 0 otherwise.

4. Hyperbolic tangent:

21



Sigmoidal:
T

1
1+e—*

activation
T

funcion

22



Hyperbolic tangent :

-1
e¥+1

activation funcion

0.8

0.6 -

0.2

23



Activation functions Il

e Some activation functions that have gained popularity recently:

1. Rectified linear unit (ReLU):
6 (2) = max(0,2)

2. Parametric RelLU:
¢ (z) = max(z, az)

3. Continuously Differentiable Exponential Linear Units (CELU):

¢ (z) = max(0, z) + min(0, a(e/* — 1))

4. Softplus:
@ (z) = log(l+ €%)
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Interpretation

e () controls the activation threshold.

e The level of the #;'s for i > 0 control the activation rate (the higher the 6;'s, the harder the
activation).

e Some textbooks separate the activation threshold and scaling coefficients from 6 as different
coefficients in ¢, but such separation moves notation farther away from standard econometrics.

e But in practice 6 does not have a structural interpretation, so the identification problem is of
secondary importance.
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Different ReLUs: 6; max(0, 6, + 6;1z)

max(0, z) max(0,1+ x) max(0, -1+ z)
-2 0 2 -2 0 2 2 ) 2
max (0, 0.5z) max(0, 1.5z) max(0, —z)
2 0 2 2 0 2 -2 ) 2
—max(0, z) —max(0, —z) —maz(0, —1.5z)
2 0 2 2 0 2 2 0 2
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Two classic (yet remarkable) results |

Borel measurable function

A map f: X — Y between two topological spaces is called Borel measurable if f~(A) is a Borel set for
any open set A on Y (the Borel sets are all the open sets built through the operations of countable

union, countable intersection, and relative complement).

Universal approximation theorem: Hornik, Stinchcombe, and White (1989)
A neural network with at least one layer can approximate any Borel measurable function mapping

finite-dimensional spaces to any desired degree of accuracy.

e Intuition of the result.

e Comparison with other results in series approximations.
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A six ReLUs approximation

—max(0, 7.7 — 5z) = max(0, —1.3 — 1.2z) . max(0,1+ 1.2z)
3 3
2 2
1 1
0 0
1 1
2 2
3 -3
1 0 1 AZ 1 0 1 -A-Z 1 0 1
max(0, —0.2 4+ 1.2z) , max(0, —1.1 + 2z) . max (0, —5 + 5x)
3 3
2 2
1 1
0 0
1 1
2 -2
3 -3
1 o 1 42 1 0 1 42 1 0 1
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Two classic (yet remarkable) results 1l

e Assume, as well, that we are dealing with the class of functions for which the Fourier transform of

their gradient is integrable.

Breaking the curse of dimensionality: Barron (1993)

A one-layer NN achieves integrated square errors of order O(1/M), where M is the number of nodes. In
comparison, for series approximations, the integrated square error is of order O(1/(M?/N)) where N is
the dimensions of the function to be approximated.

e More general theorems by Leshno et al. (1993) and Bach (2017).

e What about Chebyshev polynomials? Splines? Problems of convergence and generalization

(“extrapolation™).

e There is another, yet more subtle curse of dimensionality: data availability. We will return to this
concern while dealing with symmetries
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Playing with multiple layers

e Often, fewer neurons in higher layers allow for compression of learning into fewer features. In fact,
intermediate features are many times interesting by themselves.

e We can also add multidimensional outputs.

e Or even to produce, as output, a probability distribution, for example, using a softmax layer:
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Training




e We need to specify a loss function to train the network (i.e., select 6).

e A natural loss function: the quadratic error function £ (6;Y,Y):

0 = argmginé’(H;Y,y)

L
= arg m@ln Zg (95)//-,}//)

=1

= argmlnfzﬂy, (x; 0)||°

e Where from do the observations Y come? Observed data vs. simulated epochs.

e Initial # come from a normal distribution NV(0, o). For example: o = 4, /——=2—— but other

Ninput +Noutput
choices are possible.
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Alternative loss functions

e Other loss functions can be used.

e For instance, we can add regularization terms:
1. 41 (LASSO): A >, 16il.
2. (> (ridge regression, aka as Tikhonov regularization): A>"._; 6?.

3. A combination of both norms (elastic net): A1 >_,_, |0i| + X3, 67
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Backpropagation

e We can easily calculate £(6%; Y,y) and VE(6*; Y,y) for a given 6*.

e In particular, for the gradient, we use backpropagation (Rumelhart et al., 1986):

o€ (9;)//’}7/) o )

o6, V&uo)

W = (v —g(x;0))¢(zm), for Vm
W = (vi—&(x;0)) Omxnd’ (zm), for ¥n,m

where ¢'(z) is the derivative of the activation function.

e The derivative ¢’(z) will be trivial to evaluate if we use a ReLU. Also, modern libraries use automatic
differentiation, which interacts particularly well with backpropagation.

e Backpropagation will be particularly important when we use multiple layers.
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An example

Let us go back to our simple function x3 + x? — x — 1.

Let us train a 3-layer network.

Simple code in Matlab.

Suggested exercise: write an equivalent code in Python with PyTorch or JAX.
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Architecture design




Architecture design

e Before, we have taken many aspects of the network architecture as given.

e But in practice, you need to design them (hence, importance of having access to a good deep
learning library).

e Choices ( “hyperparameters”):
1. ¢(-): activation function.
2. M: number of neurons.
3. J: number of layers.
4. Number and size of epochs.

e Notation for whole architecture: A.

e Use £(0;Y,y) with some form of regularization ({1 or ¢»), cross-validation, or dropout.
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Cross-validation
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(b) After applying dropout.

a) Standard Neural Net



An online illustration

We can play with many of these hyperparameters easily with the right libraries.

Nothing substitutes practice.

An interesting additional webpage: https://playground.tensorflow.org/.

You can play with all the aspects of the architecture in several standard problems (from easy to
challenging).

e Spend some time with this webpage!
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e Principles:
1. Trade-off error/computational time.

2. Better to err on the side of too many M.

e Double descent phenomenon (we will come back to this point later).
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Appendix: Historical background
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A bit of history, |

e Original idea of neural networks goes back to 1943: Warren McCulloch (1898-1969) and Walter Pitts
(1923-1969): “A Logical Calculus of the Ideas Immanent in Nervous Activity.”

e Inspired by:

1. Turing's ideas on computation. Much of it developed in detail in “"Computing Machinery and

Intelligence,” which is arguably the most influential paper in the history of Computer Science.
The work on mathematical biology of Nicolas Rashevsky (1899-1972), Pitts's advisor.

3. Propositional logic by Alfred North Whitehead and Bertrand Russell.

e Donald Hebb (1949) proposes an updated rule modifying the connection strengths between neurons
(i.e., Hebbian learning).
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A bit of history, Il

e Perceptron by Frank Rosenblatt (1928-1971) in the late 1950s and early 1960s: the simplest
feedforward neural networks that yields a universal approximator.

e However, XOR problem identified by Minsky and Papert (1969) led to a move toward expert systems
in Al (although scope of XOR problem was misunderstood at the time).

e Neural networks enjoyed a brief spike of popularity in the late 1980s and early 1990s, but largely
abandoned by late 1990s.
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Current interest

Neural networks revived in the second half of the 2000s.

Why?
1. Suddenly, the large computational and data requirements required to train the networks efficiently
became available at a reasonable cost.
2. New algorithms such as backpropagation through stochastic gradient descent became popular (although
they were already known).
Some well-known successes (Krizhevsky, Sutskever, and Hinton, 2012) and industrial applications:

deep learning quickly replaced SVM, random forest, and gradient boosted trees as most powerful
learning algorithm.

Currently, neural networks are among the most active areas of research in computer science and
applied math.

47



AlphaGo

e Big splash: AlphaGo vs. Lee Sedol in March 2016.

e Silver et al. (2018): now applied to chess, shogi, Go, and StarCraft II.

Check also:

1. https://deepmind.com/research/alphago/.
2. https://www.alphagomovie.com/

3. https:
//deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

Very different than Deep Blue vs. Kasparov (1997): expert systems of Al.

New and surprising strategies.

e However, you need to keep this accomplishment in perspective.
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Rollout policy
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