
Exploiting Symmetry in

High-Dimensional Dynamic Programming

Mahdi Ebrahimi Kahou1 Jesús Fernández-Villaverde2 Jesse Perla1 Arnav Sood3

August 7, 2023

1University of British Columbia, Vancouver School of Economics

2University of Pennsylvania

3Carnegie Mellon University

Motivation

• Most models in macro (and other fields) deal with either:

1. Representative agent (canonical RBC and New Keynesian models). Sometimes two agents (models of

financial frictions, international business cycles).

2. A continuum of agents (canonical Krusell-Smith model).

• However, many models of interest deal with a finite (but large) number of agents and aggregate

uncertainty:

1. Models with many locations (countries, regions, metropolitan areas, industries).

2. Models with many households (e.g., overlapping generations, different types) instead of a continuum.

3. Models of industry dynamics with many firms.

4. Models of networks.

• Models with finite agents are increasingly popular as we accumulate more micro data.

1

Challenge

• In (most) models with a finite number of agents and aggregate shocks, agents need to keep track of

their own states and the states of everyone else.

• Think about an N-locations business cycle model à la Backus, Kehoe, and Kydland (1992): the agent

in location n needs to know her own 7 states and the 7 states in each of the other N − 1 locations.

• With N = 50 (U.S. states), number of state variables is 350.

• How do you solve a model with 350 state variables?

1. What about perturbation à la Judd and Guu (1993)? Problems are often inherently nonlinear (e.g.,

occasionally binding constraints) or non-ergodic (e.g., no steady states, large transitional dynamics).

2. What about sparse grids? Even the most aggressive approaches à la Brumm and Scheidegger (2017)

cannot be pushed beyond 30 state variables in most real life applications.

3. What about something that looks like Krusell and Smith (1998)? Wait for it!

2

Curse of dimensionality

Two components (Bellman, 1958, p. IX):

1. The cardinality of the state space is enormous: memory requirements, update of coefficients, ...

• With 266 state variables, a grid of 2 points per state (low and high) or, equivalently, a tensor of 2

polynomials per state (a level and a slope) have more elements than the Eddington number, the

estimated number of protons (≈ 1080) in the universe.

2. It is difficult to evaluate highly-dimensional conditional expectations: continuation value function,

Euler equations, ...

• Computing integrals is an exponentially-hard function of their dimensions.

3

Symmetry

• Symmetry is one of the most powerful ideas in math.

Hermann Weyl, 1952

Symmetry, as wide or as narrow as you may define its meaning, is one idea by which man through the

ages has tried to comprehend and create order, beauty, and perfection...

Symmetry is a vast subject, significant in art and nature. Mathematics lies at its root, and it would be

hard to find a better one on which to demonstrate the working of the mathematical intellect.

• Also, old tradition in economics that goes back decades (Samuelson, 1990, Mertens and Judd, 2018);

let me skip the literature review.

• Intuition: we search in “better” function spaces.

4

5

6

What do we do?

• We introduce permutation-invariant dynamic programming and the associated concept of

permutation-invariant economies.

• Common feature of many (most?) models of interest: the policy functions of the agents are the

same, they are just evaluated at different points.

• In a multi-location model of the U.S.: if (the representative agent in) California had the same capital

and productivity as Texas, it would behave as Texas and vice versa.

• Many forms of ex-ante heterogeneity are encompassed as pseudo-states (more on this later on).

• The solution of the model is invariant under all the permutations of other agents’ states. In

equilibrium, the Walrasian auctioneer removes indexes!

7

Why does permutation invariance help?

Permutation invariance tackles the two components of the “curse of dimensionality”:

1. The value and policy functions belong to the family of permutation-invariant functions ⇒ they can

be represented (exactly!) using a latent dimension (possibly much lower than the number of states).

• It helps to understand why the Krusell-Smith method works as N → ∞.

2. A (fast) concentration of measure appears ⇒ a “fancy” law of large numbers for equilibrium objects

such as value and policy functions.

• We can calculate conditional expectations with a single Monte Carlo draw from the distribution of

idiosyncratic shocks (no, in general, you do not want to set the shocks to zero: e.g., the typical set of a

Normal distribution is an orbit around the mode, not the mode) and quadrature for the aggregate shocks.

Thus, we can handle models with thousands of state variables. Our application today has up to 10,000

states. Perfectly feasible (given enough memory) to handle millions of states.

8

A deep learning approach

• We show how to train a neural network that implements the permutation-invariant dynamic

programming problem as dictated by our representation theorem.

• Strictly speaking, neural networks are not required. You only need a flexible functional basis to

implement a projection.

• Neural networks have the numerical advantages, though, that we have described in previous slide

decks.

9

How do we pick our application to show how all this works?

• In terms of application, there are two routes:

1. I can introduce a sophisticated application where our method “shines.”

2. Or, I can show you how our ideas work in a well-known example.

• Today, I do not have the time to tell you about the methods and the application.

• Besides, if I tell you about a sophisticated application, how do you know our “solution” works?

• So, let me present a well-known example (with a twist)...

• ...and leave for another day the more sophisticated applications.

10

Our application

A variation of the Lucas and Prescott (1971) model of investment under uncertainty with N firms.

Why?

1. Ljungqvist and Sargent (2018), pp. 226-228, use it to introduce recursive competitive equilibria.

2. Simple model that fits in one slide.

3. Under one parameterization, the model has a known LQ solution, which gives us an exact

benchmark: We can show that our solution will be extremely accurate.

4. By changing one parameter, the model is nonlinear and, yet, our method handles the nonlinear case

as easily as the LQ case and, according to the Euler residuals, with high accuracy.

11

A ‘big X , little x ’ dynamic programming problem

Consider:

v(x ,X) = max
u

{
r
(
x , u,X

)
+ βE [v(x ′,X ′)]

}
s.t. x ′ = g(x , u) + σw + ηω

X ′ = G (X) + ΩW + ηω1N

where:

1. x is the individual state of the agent.

2. X is a vector stacking the individual states of all of the N agents in the economy.

3. u is the control.

4. w is random innovation to the individual state, stacked in W ∼ N (0N , IN) and where, w.l.o.g.,

w = W1.

5. ω ∼ N (0, 1) is a random aggregate innovation to all the individual states.

12

Some preliminaries

• A permutation matrix is a square matrix with a single 1 in each row and column and zeros

everywhere else.

• These matrices are called “permutation” because, when they premultiply (postmultiply) a conformable

matrix A, they permute the rows (columns) of A.

• Let SN be the set of all n! permutation matrices of size N × N. For example:

S2 =

{[
1 0

0 1

]
,

[
0 1

1 0

]}

• (If you know about this): SN is the symmetric group under matrix multiplication.

• The algebraic properties of the symmetric group will be doing a lot of the heavy lifting in the proof of

our theorems, but you do not need to worry about it.

13

Permutation-invariant dynamic programming

A ‘big X , little x ’ dynamic programming problem is a permutation-invariant dynamic programming

problem if, for all (x ,X) ∈ RN+1 and all permutations π ∈ SN , the reward function r is permutation

invariant:

r(x , u, πX) = r(x , u,X)

the deterministic component of the law of motion for X is permutation equivariant:

G (πX) = πG (X)

and the covariance matrix of the idiosyncratic shocks satisfies

πΩ = Ωπ

14

Permutation invariance of the optimal solution

Proposition

The optimal solution of a permutation-invariant dynamic programming problem is permutation invariant.

That is, for all π ∈ SN :

u(x , πX) = u(x ,X)

and:

v(x , πX) = v(x ,X)

15

Main result I: Representation of permutation-invariant functions

Proposition (based on Wagstaff et al., 2019)

Let f : RN+1 → R be a continuous permutation-invariant function under SN , i.e., for all (x ,X) ∈ RN+1

and all π ∈ SN :

f (x , πX) = f (x ,X)

Then, there exist a latent dimension L ≤ N and continuous functions ρ : RL+1 → R and ϕ : R → RL

such that:

f (x ,X) = ρ

(
x ,

1

N

N∑
i=1

ϕ(Xi)

)

This proposition should remind you of Krusell-Smith!

Intuition: Take f : 2N → R. If f is permutation invariant, it has at most N + 1 outputs. Thus, ϕ(·) is the
identity function (i.e., L = 1) and ρ maps the sum of 1’s in the string into the N + 1 outputs. Using some

results from the symmetric group, you can generalize the idea to the RN+1 domain.
16

Main result II: Concentration of measure

Concentration of measure when expected gradients are bounded in N

Suppose z ∼ N (0N ,Σ), where the spectral radius of Σ, denoted by ρ(Σ), is independent of N and

f : RN → R is a function with expected gradient bounded in N. Then:

P
(∣∣f (z)− E [f (z)]

∣∣ ≥ ϵ
)
≤ ρ(Σ)C

ϵ2
1

N

As Ledoux (2001) puts it: “A random variable that depends in a Lipschitz way on many independent

variables (but not too much on any of them) is essentially constant.”

With concentration of measure, dimensionality is not a curse; it is a blessing!

17

A permutation-invariant economy

• Industry consisting of N > 1 firms, each producing the same good.

• A firm i produces output x with x units of capital.

• Thus, the vector X ≡ [x1, . . . xN]
⊤ is the production (or capital) of the whole industry.

• The inverse demand function for the industry is, for some ν ≥ 1 (this is our twist!):

p(X) = 1− 1

N

N∑
i=1

xνi

• The firm does not consider the impact of its individual decisions on p(X).

• Due to adjustment frictions, investing u has a cost γ
2 u

2.

• Law of motion for capital x ′ = (1− δ)x + u + σw + ηω where w ∼ N (0, 1) an i.i.d. idiosyncratic

shock, and ω ∼ N (0, 1) an i.i.d. aggregate shock, common to all firms.

• The firm chooses u to maximize E
[∑∞

t=0 β
t
(
p(X)x − γ

2 u
2
)]
. 18

Recursive problem

• The recursive problem of the firm taking the exogenous policy û(·,X) for all other firms as given is:

v(x ,X) = max
u

{
p(X)x − γ

2
u2 + βE [v(x ′,X ′)]

}
s.t. x ′ = (1− δ)x + u + σw + ηω

X ′
i = (1− δ)Xi + û(Xi ,X) + σWi + ηω, for i ∈ {1, ...,N}

19

Equilibrium and Euler equation

Definition

A recursive permutation-invariant competitive equilibrium is a v(x ,X), û(x ,X), and laws of motion for

capital such that:

• Given û(x ,X), v(x ,X) is the value function solving the recursive problem from previous slide for each

agent and u(x ,X) is the optimal policy function.

• The optimal policy is symmetric, i.e., u(x ,X) = û(x ,X).

• The laws of motion for capital satisfy:

X ′
i = (1− δ)Xi + û(Xi ,X) + σWi + ηω, for i ∈ {1, ...,N}

The Euler equation for the firm:

γu(x ,X) = βE [p(X ′) + γ(1− δ)u(x ′,X ′)]

20

Solving the model

• We want to find a global solution that is accurate beyond a ball around some particular X ss (usually

the steady state of the model).

• Why? Compute transitional dynamics from far away the steady state, study large shocks, ...

• From the representation of permutation-invariant functions, we know that the policy function that

satisfies the previous Euler equation has the form:

u(x ,X) = ρ

(
x ,

1

N

N∑
i=1

ϕ(Xi)

)

• But, in general, we do not know ρ(·) or ϕ(·).

• Thus, we will approximate ρ(·) and ϕ(·) using deep learning.

21

Our deep learning architectures

• We will specify several deep learning architectures H(θ):

1. ϕ is approximated as a function of a finite set of moments à la Krusell-Smith but in a fully nonlinear way

as in Fernández-Villaverde et al. (2019). We use 1 and 4 moments.

2. ϕ is approximated by a flexible ReLU network (with two layers each with 128 nodes).

• The baseline ϕ(Identity), ϕ(Moments), and ϕ(ReLU) have 49.4K, 49.8K, and 66.8K coefficients

respectively regardless of N.

• In all cases, ρ is a highly parameterized neural network with four layers.

• A surprising benefit of a high-dimensional approximation is the “double-descent” phenomenon in

machine learning (see Belkin et al., 2019, and Advani et al., 2020): more coefficients makes it easier

to find minimum-norm solutions.

• All the code in PyTorch Lightning and run on GPUs.

22

Moments architecture

23

ReLU architecture

24

Training and calibration

Algorithm Network training

1: Given by network architecture H(θ) for u(x ,X), define the Euler residuals:

ε(x ,X ; θ) ≡ γu(x ,X)− βE [P(X ′) + γ(1− δ)u(x ′,X ′)]

2: Pick {Xm(0), ...,Xm(T)} for m = 1, ..,M trajectories given some initial point of interest.

3: Evaluate εm,t(x ,X ; θ) for some or all the points above.

4: Solve using ADAM (a stochastic gradient descent with adaptive moment estimation):

min
θ

1

M

M∑
m=1

T∑
t=0

(εm,t(x ,X ; θ))2

• Parameter values: β = 0.95, γ = 90, σ = 0.005, and η = 0.001. Idiosyncratic risk 5 times larger than

aggregate risk.

• We will study two cases: linear (ν = 1) and nonlinear (ν > 1) demand functions.
25

Case I

• With ν = 1, we have a linear demand function: p(X) = 1− 1
N

∑N
i=1 xi .

• It generates an LQ dynamic programming problem (only the mean of xi matters!).

• We can find the exact u(x ,X) using the linear regulator solution.

• The LQ solution gives us a benchmark against which we can compare our deep learning solution.

• The neural network “learns” very quickly that the solution is u(x ,X) = H0 +
1
NH1

∑N
i=1 xi .

• We also compute a modified linear regulator solution with one Monte Carlo draw instead of setting

the individual shocks to zero: illustrates how concentration of measure works.

• Bonus point: we show how to implement this modified linear regulator solution. Useful for

non-Gaussian LQ problems where certainty equivalence does not hold.

26

100 101 102 103 104

N

10−2

10−3

10−4

10−5

Std. Dev. of ε(X; u)

100 101 102 103 104

N

10−2

10−3

10−4

10−5

Std. Dev. of u(X ′) Errors

Figure 1: The concentration of the optimal policy u(X ′) for ν = 1.

27

0 25 50
Time(t)

10−12

10−10

10−8

10−6

Test MSE (ε) with φ(Moments)

0 25 50
Time(t)

10−12

10−10

10−8

10−6

Test MSE (ε) with φ(Identity)

0 25 50
Time(t)

10−12

10−10

10−8

10−6

Test MSE (ε) with φ(ReLU)

4

6

×10−7

Figure 2: The Euler residuals for ν = 1 and N = 128 for ϕ(Identity), ϕ(Moments), and ϕ(ReLU). The dark blue

curve shows the average residuals along equilibrium paths for 256 different trajectories. The shaded areas depict

the 2.5th and 97.5th percentiles.
28

0 10 20 30 40 50 60
Time(t)

0.0250

0.0275

0.0300

0.0325

u(Xt) with φ(Identity), φ(Moments) and φ(ReLU) : Equilibrium Path

u(Xt), LQ

u(Xt), φ(Identity)

u(Xt), φ(Moments)

u(Xt), φ(ReLU)

54 55 56

0.0340

0.0341

Figure 3: Comparison between baseline approximate solutions and the LQ-regulator solution for the case with

ν = 1 and N = 128.
29

100 101 102 103 104 105

N

80

90

100

Computation time(seconds)

100 101 102 103 104 105

N

2

3

4

5

×10−7 Mean Test Loss(ε)

Figure 4: Performance of the ϕ(ReLU) for different N (median value of 21 trials).

30

Table 1: Performance of Different Networks in Solving the Linear Model

Time
(s)

Params
(K)

Train MSE
(ε)

Test MSE
(ε)

Val MSE
(ε)

Policy Error
(|u − uref|)

Policy Error(
|u−uref|

uref

)
group description

ϕ(Identity)
Baseline 42 49.4 4.1e-06 3.3e-07 3.3e-07 2.9e-05 0.10%

Thin (64 nodes) 33 12.4 3.7e-06 2.7e-07 2.7e-07 3.4e-05 0.10%

ϕ(Moments)

Baseline 55 49.8 1.4e-06 7.6e-07 7.6e-07 2.8e-05 0.09%

Moments (1,2) 211 49.5 2.4e-06 1.1e-06 2.3e-06 4.4e-05 0.14%

Very Shallow(1 layer) 241 0.6 1.1e-05 8.4e-06 7.9e-06 1.1e-02 34.00%

Thin (64 nodes) 82 12.6 1.6e-06 9.1e-07 9.2e-07 3.8e-05 0.12%

ϕ(ReLU)

Baseline 107 66.8 3.7e-06 3.3e-07 3.3e-07 2.7e-05 0.09%

L = 2 86 66.3 1.3e-05 2.1e-07 2.2e-07 2.6e-05 0.08%

L = 16 91 69.9 5.5e-06 1.5e-07 1.5e-07 2.1e-05 0.07%

Shallow(ϕ : 1 layer, ρ : 2 layers) 79 17.7 2.0e-06 5.5e-07 5.5e-07 3.2e-05 0.11%

Deep(ϕ : 4 layers, ρ : 8 layers) 242 165.1 2.1e-03 2.2e-03 2.1e-03 2.7e-03 8.50%

Thin(ϕ, ρ : 64 nodes) 87 17.0 1.1e-05 4.5e-07 4.5e-07 3.0e-05 0.10%

31

Case II

• With ν > 1, we have a nonlinear demand function: p(X) = 1− 1
N

∑N
i=1 x

ν
i .

• Notice how, now, the whole distribution of of xi matters!

• But we can still find the solution to this nonlinear case using exactly the same functional

approximation and algorithm as before.

• We do not need change anything in the code except the value of ν.

• Since the LQ solution no longer holds, we do not have an exact solution to use as a benchmark.

• But we can always check the Euler residuals.

32

0 25 50
Time(t)

10−10

10−9

10−8

10−7

10−6

10−5

Test MSE (ε) with φ(Moments)

0 25 50
Time(t)

10−10

10−9

10−8

10−7

10−6

10−5

Test MSE (ε) with φ(ReLU)

0.75

1.00

1.25

1.50

×10−6

Figure 5: The Euler residuals for ν = 1.5 and N = 128 for ϕ(Moments) and ϕ(ReLU). The dark blue curve shows

the average residuals along equilibrium paths for 256 different trajectories. The shaded areas depict the 2.5th and

97.5th percentiles.
33

0 10 20 30 40 50 60
Time(t)

0.025

0.030

0.035

u(Xt) with φ(ReLU): Equilibrium Path

ν = 1.0

ν = 1.05

ν = 1.1

ν = 1.5

Figure 6: The optimal policy u along the equilibrium paths for ν = [1.0, 1.05, 1.1, 1.5] and N = 128. Each path

shows the optimal policy for a single trajectory.
34

Table 2: Nonlinear Model Performance

Time
(s)

Params
(K)

Train MSE
(ε)

Test MSE
(ε)

Val MSE
(ε)

group description

ϕ(Moments)

Baseline 26 49.8 6.0e-06 5.0e-06 3.8e-06

Moments (1) 24 49.4 2.7e-05 6.5e-06 3.4e-06

Moments (1,2) 27 49.5 8.0e-06 5.1e-06 3.6e-06

Very Shallow (1 layer) 252 0.6 8.3e-06 1.4e+00 5.0e-06

Shallow (2 layers) 35 17.0 5.8e-06 1.2e+00 4.4e-06

Thin (32 nodes) 66 3.2 1.1e-05 9.7e-06 4.4e-06

ϕ(ReLU)

Baseline 60 67.1 1.4e-05 4.7e-06 3.3e-06

L = 1 109 66.3 9.4e-06 1.3e-05 4.5e-06

L = 2 73 66.6 1.0e-05 3.3e-06 2.3e-06

L = 8 73 68.1 1.1e-05 4.9e-06 2.0e-06

L = 16 72 70.2 1.5e-05 5.4e-06 1.7e-06

Very Shallow(ϕ, ρ : 1 layer) 136 1.4 8.9e-06 4.8e+06 4.9e-06

Shallow(ϕ, ρ : 2 layers) 47 34.3 1.0e-05 9.2e-06 2.8e-06

Thin(ϕ, ρ : 32 nodes) 52 4.5 1.3e-05 6.0e-06 2.7e-06

35

0 200 400

Step

10−5

10−3

10−1

Validation MSE ε

0 200 400

Step

10−5

10−3

10−1

Training MSE ε

Figure 7: Training and validation loss of the Euler residuals ε. The training procedure utilizes 3 data points in the

state space for an economy with ν = 1 and N = 512.
36

Extensions

1. Decreasing returns to scale: the policy becomes a function of x .

2. Multiple productivity types.

3. Complex idiosyncratic states.

4. Global solutions with transitions and aggregate shocks.

5. “Non-atomic” agents.

6. Many different network architectures.

37

0 10 20 30 40 50 60
Time(t)

10−9

10−8

10−7

10−6

10−5

Test MSE (ε) with φ(Moments)

Figure 8: The Euler residuals for ν = 1, µ = 0.05, and N = 128, over 256 different trajectories. The shaded areas

depict the 2.5th and 97.5th percentiles. In this case, the baseline ϕ(Moments) is used to approximate the optimal

policy.

38

Table 3: Linear Model Performance in Additional Experiments

Time
(s)

Params
(K)

Train MSE
(ε)

Test MSE
(ε)

Val MSE
(ε)

Policy Error
(|u − uref|)

Policy Error(
|u−uref|

uref

)
group description

ϕ(Identity)

Baseline 42 49.4 4.1e-06 3.3e-07 3.3e-07 2.9e-05 0.10%

Thin (64 nodes) 33 12.4 3.7e-06 2.7e-07 2.7e-07 3.4e-05 0.10%

Shallow (2 layers) 159 16.6 3.7e-06 7.8e-07 7.6e-07 9.4e-03 33.53%

ϕ(Moments)

Baseline 55 49.8 1.4e-06 7.6e-07 7.6e-07 2.8e-05 0.09%

Moments (1,2) 211 49.5 2.4e-06 1.1e-06 2.3e-06 4.4e-05 0.14%

Very Shallow(1 layer) 241 0.6 1.1e-05 8.4e-06 7.9e-06 1.1e-02 34.00%

Shallow (2 layers) 137 17.0 1.6e-06 9.9e-07 9.5e-07 1.8e-02 59.41%

Deep(8 layers) 241 115.3 2.8e-06 1.2e-06 1.0e-06 5.2e-05 0.16%

Thin (64 nodes) 82 12.6 1.6e-06 9.1e-07 9.2e-07 3.8e-05 0.12%

Wide (256 nodes) 61 197.9 1.8e-06 8.7e-07 8.0e-07 4.3e-05 0.13%

ϕ(ReLU)

Baseline 107 66.8 3.7e-06 3.3e-07 3.3e-07 2.7e-05 0.09%

L = 1 88 66.0 1.8e-05 2.3e-07 2.4e-07 2.8e-05 0.10%

L = 2 86 66.3 1.3e-05 2.1e-07 2.2e-07 2.6e-05 0.08%

L = 8 70 67.8 3.0e-05 5.9e-07 5.9e-07 3.3e-05 0.11%

L = 16 91 69.9 5.5e-06 1.5e-07 1.5e-07 2.1e-05 0.07%

Shallow(ϕ : 1 layer, ρ : 2 layers) 79 17.7 2.0e-06 5.5e-07 5.5e-07 3.2e-05 0.11%

Shallow(ϕ : 1 layer) 58 50.4 8.7e-06 1.5e-07 1.5e-07 2.5e-05 0.08%

Shallow(ρ : 2 layers) 89 34.0 3.1e-06 4.2e-07 4.2e-07 2.7e-05 0.09%

Deep(ϕ : 4 layers, ρ : 8 layers) 242 165.1 2.1e-03 2.2e-03 2.1e-03 2.7e-03 8.50%

Very Thin(ϕ, ρ : 16 nodes) 45 1.2 1.2e-05 4.9e-07 4.9e-07 3.2e-05 0.10%

Thin(ϕ, ρ : 64 nodes) 87 17.0 1.1e-05 4.5e-07 4.5e-07 3.0e-05 0.10%

Wide(ϕ, ρ : 256 nodes) 115 264.7 5.4e-06 4.0e-07 4.0e-07 4.1e-05 0.13%

39

Examples of models one can compute now

1. Models with rich ex-ante heterogeneity and aggregate shocks (OLG, many different household types).

2. Models of firm dynamics.

3. Open economy models with many locations.

4. Closed economy business cycle models with multisectors.

5. Network models.

6. Search and matching models.

40

