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Some background

e These slides are available at www.sas.upenn.edu/~jesusfv/LLM.pdf. | will periodically update
them.

Also, for more general material on artificial intelligence and deep learning, check:

1. https://www.sas.upenn.edu/~jesusfv/teaching.html.

2. https://youtu.be/ky51TihM1UO.

The code examples use Python+PyTorch, but you can follow the arguments without any knowledge
of Python+PyTorch.

| will cite further references (many online!), but let me know if you want specific references.

Thanks to many coauthors and students.


www.sas.upenn.edu/~jesusfv/LLM.pdf
https://www.sas.upenn.edu/~jesusfv/teaching.html
https://youtu.be/ky5lTihMlU0

e A complete treatment of large language models (LLMs) and their application in economics deserves a
whole semester of lecturing.

e Instead, | will focus on a few key ideas (e.g., what is a LLM?, transduction, embedding, and
attention).

e | will go from the more general to the more technical:
1. The revolution of LLMs.
2. On the role of LLMs in economics.
3. Text as data.
4. Natural language processing.

5. The transformer model.



The revolution of LLMs



What is a LLM?

e ChatGPT, a chatbot built on top of the GPT LLM released on November 28, 2022, has popularized
deep learning models trained with a text corpus.

e Language models learn a probability distribution over language:
P(wi, ..., wp)
For example, what is the most likely word after “European Central” in an article at the FT?

e A language model can use many different probability structures and not necessarily a deep neural
networks (even if the latter have gained much popularity).

e Large in terms of training data (e.g., Common Crawl, Wikipedia, GitHub, ...) and parameters (e.g.,
PaLM has 540 billion parameters; GPT-4 rumored to have 1 trillion).



Dataset Sampling prop. Epochs Disk size

CommonCrawl 67.0%

C4 15.0%
Github 4.5%
Wikipedia 4.5%
Books 4.5%
ArXiv 2.5%

StackExchange 2.0%

1.10
1.06
0.64
2.45
2.23
1.06
1.03

33TB
783 GB
328 GB
83 GB
85 GB
92 GB
78 GB

Table 1: Pre-training data. Data mixtures used for pre-
training, for each subset we list the sampling propor-
tion, number of epochs performed on the subset when
training on 1.4T tokens, and disk size. The pre-training
runs on 1T tokens have the same sampling proportion.



Training compute (FLOPs) of milestone Machine Learning systems over time
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Training compute (FLOPs) of milestone Machine Learning systems over time
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Location, location, location

e Original contribution by Elman (1990): Finding Structure in Time.

e Key idea: exploit the location of words within a text.

OUTPUT UNITS

?

HIDDEN UNITS

|:l

INPUT UNITS CONTEXT UNITS

Figure 2. A simple recurrent network in which activations are copied from hidden layer fo
context layer on a one-for-one basis, with fixed weight of 1.0. Dotted lines represent train- 7
able connections.




The transformers

e Why now?

e Conjunction of:
1. A pathbreaking algorithmic revolution: transformer models based on self-attention (December 2017).
2. GPUs: attention multiheads can run on separate GPUs openings.

3. We have learned that we want to train LLMs according to power laws linking complexity and data.
Hoffman et al., 2022: for every doubling of model size the number of training tokens should also be
doubled.

e This is the reason behind the “T" in GPT (generative pre-trained transformer).
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Compare Financials
NASDAQ: NVDA

Market Summary > NVIDIA Corp

454.69 uso
+391.97 (624.95%) 4 past 5 years

Closed: Jul 14, 7:59 PM EDT - Disclaimer
After hours 456.54 +1.85 (0.41%)

1D 5D ™ 6M YTD 1Y 5Y Max

500 62.72USD Jul 20,2018

400
300!
2001
100!
o T T T T
2020 2021 2022 2023
Open 465.83 Mkt cap 1.12T CDP score B
High 480.88 P/E ratio 236.30 52-wk high 480.88
Low 450.60 Div yield 0.035% 52-wk low 108.13

10



Training Compute-Optimal Large Language Models

Jordan Hoffmann*, Sebastian Borgeaud*, Arthur Mensch*, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan,
Erich Elsen, Jack W. Rae, Oriol Vinyals and Laurent Sifre*

*Equal contributions

We investigate the optimal model size and number of tokens for training a transformer language model
under a given compute budget. We find that current large language models are significantly under-
trained, a consequence of the recent focus on scaling language models whilst keeping the amount of
training data constant. By training over 400 language models ranging from 70 million to over 16 billion
parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the model size and
the number of training tokens should be scaled equally: for every doubling of model size the number
of training tokens should also be doubled. We test this hypothesis by training a predicted compute-
optimal model, Chinchilla, that uses the same compute budget as Gopher but with 70B parameters and
4x more more data. Chinchilla uniformly and significantly outperforms Gopher (280B), GPT-3 (175B),
Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large range of downstream evaluation tasks.
This also means that Chinchilla uses substantially less compute for fine-tuning and inference, greatly
facilitating downstream usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of
67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.
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Three kinds of LLM

e Generic language models: predicting the next token. | will center on this one type.
e Instruction tuned.

e Dialog tuned: ChatGPT (the base model is hard to interact with).

12



The uses of LL

e All three types share that they are trained to tackle text-based tasks:

1.

2.

Text classification.

Text summarization (including sentiment analysis).
Text generation (including translation and coding).
Questions/Answers.

Common sense reasoning.

e Because of these capabilities, we can consider LLMs as a part of generative Al: models capable of

generating new content.

e This is the reason behind the “G" in GPT (generative pre-trained transformer).

13



Foundation models |

Some authors are even talking about foundation models: instead of multiple pipelines for each task,

we have a common one.

e Key reason: embedding.

Adapted models and pluggings.

e Emerging properties we do not fully understand:

1. For example, LLMs seem to have a theory of the mind.

2. Related to old ideas in F.A. Hayek's The Sensory Order.

14
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Foundation models |l

e How far away are we from human-level artificial general intelligence (AGI)? (what is intelligence
anyway?).

e Questions:

1. Hallucinations?
2. Safety vs. accuracy?

3. Existential risk from Al?

e https://munkdebates.com/debates/artificial-intelligence

18
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On the Opportunities and Risks of
Foundation Models

Rishi Bommasani* Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora
Sydney von Arx Michael S. Bernstein Jeannette Bohg Antoine Bosselut Emma Brunskill
Erik Brynjolfsson Shyamal Buch Dallas Card Rodrigo Castellon Niladri Chatterji
Annie Chen Kathleen Creel Jared Quincy Davis Dorottya Demszky Chris Donahue
Moussa Doumbouya Esin Durmus = Stefano Ermon John Etchemendy Kawin Ethayarajh
LiFei-Fei Chelsea Finn Trevor Gale Lauren Gillespie Karan Goel Noah Goodman
Shelby Grossman Neel Guha Tatsunori Hashimoto Peter Henderson John Hewitt
Daniel E.Ho Jenny Hong Kyle Hsu Jing Huang Thomas Icard Saahil Jain
Dan Jurafsky Pratyusha Kalluri Siddharth Karamcheti Geoff Keeling Fereshte Khani
Omar Khattab Pang Wei Koh Mark Krass Ranjay Krishna Rohith Kuditipudi
Ananya Kumar Faisal Ladhak MinaLee Tony Lee Jure Leskovec Isabelle Levent
Xiang LisaLi XuechenLi TengyuMa Ali Malik Christopher D. Manning
Suvir Mirchandani  Eric Mitchell Zanele Munyikwa Suraj Nair ~Avanika Narayan
Deepak Narayanan Ben Newman Allen Nie Juan Carlos Niebles Hamed Nilforoshan
Julian Nyarko Giray Ogut Laurel Orr Isabel Papadimitriou Joon Sung Park Chris Piech
Eva Portelance Christopher Potts ~ Aditi Raghunathan Rob Reich Hongyu Ren
Frieda Rong Yusuf Roohani Camilo Ruiz Jack Ryan Christopher Ré Dorsa Sadigh
Shiori Sagawa Keshav Santhanam Andy Shih Krishnan Srinivasan = Alex Tamkin
Rohan Taori Armin W. Thomas Florian Tramér Rose E. Wang William Wang Bohan Wu
liajun Wu  Yuhuai Wu Sang Michael Xie Michihiro Yasunaga Jiaxuan You Matei Zaharia
Michael Zhang Tianyi Zhang Xikun Zhang Yuhui Zhang Lucia Zheng Kaitlyn Zhou
Percy Liang*'

Center for Research on Foundation Models (CRFM)
Stanford Institute for Human-Centered Artificial Intelligence (HAI)
Stanford University
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General vs. specialized LLM

e Either for general purpose or specialized corpora of documents.

e You can pre-train the LLM in a large dataset and adapt it to a smaller corpus (even zero-shot
learning).

e For example, all documents within the Fed, all the NBER working papers, all articles at the FT.
e This is the reason behind the “P" in GPT (generative pre-trained transformer).
e Parameter-efficient fine-tuning methods, prompt training, and supervised learning.
e Key idea: Transduction (particular—particular) vs. induction (particular—general—particular).

e Related to the failure of the project of building a universal formal grammar in the 1970s (we will
return to this point later on).
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Language Models are Few-Shot Learners

Tom B. Brown* Benjamin Mann* Nick Ryder* Melanie Subbiah*
Jared Kaplan® Prafulla Dhariwal Arvind Neelakantan Pranav Shyam Girish Sastry

Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan

Rewon Child Aditya Ramesh Daniel M. Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Ilya Sutskever Dario Amodei
OpenAl
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Chatbots vs. APIs

e You might have used the chatbot for ChatGPT. This is the reason behind the “Chat” in ChatGPT
(chatbot for generative pre-trained transformer).

e However, for more systematic research, one can use APIs (application programming interfaces) and
focus on prompt design:

openai

openai.ChatCompletion.create(
model= s

messages=|

{




OREILLY"

GPT-3,

Building Innovative
NLP Products
Using Large
Language Models

Sandra Kublik &
Shubham Saboo
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Life beyond ChatGPT

1. ChatGPT: designed for chatbots and conversational Al.

2. Llama 2: best open source model, trained on 1-1.4T tokens.

3. Bard: Google.

4. LangChain: designed for translation.

5. Cohere: designed for text classification, summarization, and sentiment analysis.

6. Many others.
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On the role of LLMs in
economics



How can LLMs change my workflow?

Text as data by M. Gentzkow, B.T. Kelly, and M. Taddy: general introductory survey.

Text algorithms in economics by E. Ash and S. Hansen: general introductory survey.

A User's Guide to GPT and LLMs for Economic Research by K. Bryan: examples of how to use LLM
in your daily research.

Second half of https://youtu.be/bZQun8Y4L2A by A. Karpathy: nice tricks for good prompting.

Language Models and Cognitive Automation for Economic Research by A. Korinek: application of
LLM for ideation, writing, background research, data analysis, coding, and mathematical derivations.
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https://youtu.be/bZQun8Y4L2A

How can | apply LLMs to learn about the economy?

e Hedonic prices and quality-adjusted price indices powered by Al by P. Bajari et al.: use product
description text to predict product prices.

e Bloated Disclosures: Can ChatGPT Help Investors Process Financial Information? by A. Kim, M.
Muhn, and V. Nikolaev: probe the economic usefulness of LLMs in summarizing complex corporate
disclosures using the stock market as a laboratory.

e Asset Embeddings by X. Gabaix, R.S.J. Koijen, and M. Yogo: learn asset embeddings from investors'’
holdings data.

e Work2vec: Using language models to understand wage premia by S.H. Bana: uncover the premia
associated with eight in-demand certifications.

e Out of One, Many: Using Language Models to Simulate Human Samples by L.P. Argyle et al.: using
LLMs to synthesize data from undersample populations.

30



What are the effects of LLMs on the economy? (positive and normative)

e Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus? by
J.J. Horton: LLM as an approximation of bounded-rational agents.

e Economics, Hayek, and Large Language Models by T. Cowen: a podcast about how LLM might
change our conception of how economies work.

e Generative Al at Work by E. Brynjolfsson, D. Li, and L.R. Raymond.
e Preparing for the (Non-Existent?) Future of Work by A. Korinek and M. Juelfs.

e GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models by
T. Eloundou, S. Manning, P. Mishkin, and D. Rock.

e Regulating Transformative Technologies by D. Acemoglu and T. Lensman.

e Power and Progress by D. Acemoglu and S. Johnson.
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Text as data



Text is the new data

e Important for economics:
1. Statements by policy makers.
2. Political manifestos.
3. Legal documents (court decisions, criminal records).
4. Companies earning reports.
5. Costumer complaints.
6. Documents in libraries and archives.
7. News, news commentary, and interviews.
8. Verbal surveys.

9. Opinion mining and sentiment analysis from social media.

32



How do we handle text?

How do we use text in economic and statistical methods?

Historically: reading the documents (or interviewing the authors)! But too slow, prone to errors and
biases, and hard to replicate.

Basic statistics: Inference in an Authorship Problem by Mosteller and Wallace (1963).

Machine learning can help to extend the scope of text analysis.
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Potential uses

e Large area with many other applications in economics:

1. Measurement.
2. Prediction.

3. Causality.

35
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Natural language processing




Natural language processing

e Natural language processing (NLP): field specialized in how computers can deal with language as it
appears in “natural” contexts (speech, text, ...).

e One of the very first applications of computers: Georgetown-IBM experiment in automatic translation
in 1954.

e Classical NLP was based on symbolic rules (John Searle's Chinese room experiment and ELIZA) and
Chomskyan theories of linguistics.

e After some early success, the field stagnated.

e In comparison, modern NLP is built around statistical models.

e Base of its recent success.
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Modern language models refute
Chomsky’s approach to language

Steven T. Piantadosi®”
2UC Berkeley, Psychology bHelen Wills Neuroscience Institute

The rise and success of large language models undermines virtually every strong
claim for the innateness of language that has been proposed by generative linguis-
tics. Modern machine learning has subverted and bypassed the entire theoretical
framework of Chomsky’s approach, including its core claims to particular insights,
principles, structures, and processes. I describe the sense in which modern lan-
guage models implement genuine theories of language, including representations
of syntactic and semantic structure. I highlight the relationship between contem-
porary models and prior approaches in linguistics, namely those based on gradient
computations and memorized constructions. I also respond to several critiques of
large language models, including claims that they can’t answer “why” questions,
and skepticism that they are informative about real life acquisition. Most notably,
large language models have attained remarkable success at discovering grammar
without using any of the methods that some in linguistics insisted were necessary
for a science of language to progress.
42



The transformer model




The transformer model

e Deep convolutional neural networks, introduced in 2012, greatly impacted computer vision.

But NLP (at the time, built around RNN and CNN) had lagged.

Vaswani et al. (2017): Attention Is All You Need. Group of researchers affiliated with Google.

83,844 Google Scholar citations as of August 2, 2023.

Transformers applied to other fields outside natural language processing (Visual transformers,
DALL-E). In fact, anything that is set-to-set.

Built around two ideas:

1. (Self-)Attention.

2. Encoder/decoder structure.
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Steps to build a transformer model

1. Formalizing text.
2. Text wrangling.
3. Tokenization.

4. Embedding.

5. Attention.

6. Output.

7. Training.

8. Extensions.
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Step I: Formalizing text




Some terminology

e Corpus: the dataset under consideration (e.g., corporate reports, political speeches, statements, court
decisions, newspaper articles, tweets, ...).

e Third-declension neutral noun in Latin: nominative plural corpora.
e Document: each of the components of the corpus.
e Terms: each of the components of a document (usually words).

e Ngrams: Adjacent terms that we may want to handle together (“United States,” “high
unemployment™).

e Metadata: covariates associated with each document (not always present).
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What is text?

e Formally, a text is an ordered string of characters.

e Some of these may be from the Latin alphabet —'a’, ‘A’ — but there may also be:
1. Decorated Latin letters (e.g., 4).
2. Non-Latin alphabetic characters (e.g., Chinese, Arabic, Hebrew).
3. Punctuation (e.g., ‘'!").
4. White spaces, tabs, newlines.
5. Numbers.

6. Non-alphanumeric characters (e.g., ‘Q").
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Step II: Text wrangling




From files to databases, |

e First step is to pre-process strings to obtain a cleaner representation.
e This is often the “secret sauce of LLM.”

e Rattenbury et al., (2017) claim that between 50% and 80% of real-life data analysis is spent with

data wrangling.
e Turning raw text files into structured databases is often a challenge:

1. Separate metadata from text.

Identify relevant portions of the text (paragraphs, sections, etc).

»

3. Remove graphs and charts.

4. Often, concerns about copyright, consent, safety, and privacy considerations.
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Jeffrey Heer, Sean Kandel & Connor Carreras
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From files to databases, ||

e First step for non-editable files is conversion to an editable format, usually with optical character
recognition (OCR) software.

e This is another potential application of deep learning.

e Check, for example: Shen et al. (2021), LayoutParser: A Unified Toolkit for Deep Learning Based
Document Image Analysis.

e With raw text files, we can use regular expressions to identify relevant patterns.
e HTML and XML pages provide structure through tagging.

e If all else fails, manual extraction.
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Raw text files

The Quartz guide to bad data,

https://qz.com/572338/the-quartz-guide-to-bad-data/

| once acquired the complete dog licensing database for Cook County, Illinois. Instead of requiring the
person registering their dog to choose a breed from a list, the creators of the system had simply given
them a text field to type into. As a result this database contained at least 250 spellings of Chihuahua.

e |ssues:

Inconsistent spelling and historical changes.

N/A, blank, or null values.

0 values (or —1 or dates 1900, 1904, 1969, or 1970).
Text is garbled.

Lines ends are garbled.

e & > W N =

Text comes from OCR.
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HER ON VACATION! wETHM FORMATTED LIKE AN ADDRESS!
|
SCENARIDS WHERE (T f %i*— 5 HoPELESS)
T KNOW REGULAR
EXPRESSIONS .

5 K

54



Regular expressions |

e Regular expressions: sequence of characters that specifies a search pattern.
e You need to learn a programming language that manipulates regular expressions efficiently.

e About regular expressions in general:

1. Tutorial: https://www.regular-expressions.info/reference.html.

2. Online trial: https://regexr.com/.
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Regular expressions ||

e Modern programming languages have powerful regular expressions capabilities.
e In Python: https://www.tutorialspoint.com/python/python_reg_expressions.htm.

e In R: https://evoldyn.gitlab.io/evomics-2018/ref-sheets/R_strings.pdf.
1. Key packages: dplyr, stringr, and tidyr part of tidyverse.
2. In particular, learn to use the piping command from dplyr to make code more readable.

3. Look also at https://www.tidytextmining.com/ for text mining.
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Step lll: Tokenization




nizati

Tokenization is splitting a raw character string into useful semantic pieces for processing called tokens.

For example, we chop the string of characters:
“The European Central Bank is in Frankfurt”

into

“The", "European”, “Central”, “Bank”, "is", "“in’

1

, “Frankfurt”.
Often, tokens are words, but there may be characters, numbers, punctuation, and white spaces.

Simple rules work well, but not perfectly. For example, splitting on white space and punctuation will
separate hyphenated phrases, as in “risk-averse agent” and contractions, as in “aren‘t”.

While, in practice, one uses a specialized library for tokenization, it is important to understand
tokenization in some more detail.
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Vocabularies

e Tokenization relies on a vocabulary: a list of all allowed tokens.

Oxford English dictionary & 170k words in current use (vs. more than one mil ever used).

We take advantage of that, in practice, we only use around 40k words (with a clear Zipf's law
distribution). Other words are mapped into the 40k or masked as unknown.

For specialized LLM, we might want to have specific vocabularies.
e How?

1. Domain knowledge.

2. Stop-words removal.

3. Linguistic roots.

4. Multi-word phrases.
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Linguistic roots

e For many applications, the relevant information in tokens is their linguistic root, not their
grammatical form (English in an inflected language). We may want to treat “prefer,” “prefers,” and
“preferences” as equivalent tokens.

e Two options:

1. Stemming: Deterministic algorithm for removing suffixes. Check, for example, Porter stemmer:
https://tartarus.org/martin/PorterStemmer/.

Stem need not be an English word: Porter stemmer maps ‘inflation’ to ‘inflat’.

2. Lemmatizing: Tag each token with its part of speech, then look up each (word, position) pair in a
vocabulary to find the linguistic root.

E.g., “saw” tagged as a verb would be converted to “see”, “saw” tagged as a noun left unchanged.

e A related transformation is case-folding each alphabetic token into lowercase. Not without ambiguity,

e.g., "US" and "us" are each mapped into the same token.
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Multi-word phrases

e Sometimes groups of individual tokens like “"Banco de Espafa” or “text mining” have a specific
meaning.

e One ad-hoc strategy is to tabulate the frequency of all unique two-token (bigram) or three-token
(trigram) phrases in the data and convert the most common into a single token.

noou "

e For example, in FOMC data, the most common bigrams include “interest rate,” “labor market,

“basi point”; most common trigrams include “feder fund rate,” “real interest rate,” ‘“real gdp

(LT

growth,” “unit labor cost.”
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Tokenization in GPT-3

e GPT-3 tokenizer here: https://platform.openai.com/tokenizer.

e GPT-3 uses byte pair encoding (https://github.com/openai/tiktoken):
1. Common words are a single token, less frequent words are represented by multiple tokens:
“Enconding” is tokenized as “Enc” and “oding”.

2. Odd words are dropped.

e We assign every token an ID from a vocabulary with a total of 50257 tokens. For memory reasons,
one may want to cap the vocabulary at 22 = 65536 tokens.

e Example: “European Central Bank” — “European”, “Central”, “Bank” — [22030, 5694, 5018].

e More precisely, we represent each integer as a one-hot vector wy 50207 with a 1 in the corresponding
entry.
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Step IV: Embedding




Embedding

e In natural language, words bundle in predictable patterns:
P(Bank|European + Central) > 0
but
P(Giraffe|European + Central) ~ 0

This means we can use probabilities to generate predictions.

We can capture this idea with an embedding: a representation of a token as a vector.

e We can estimate static embeddings with a simple logistic classifier (Word2vec).

Useful for tasks such as document classification or sentiment analysis.

e However, static embeddings are not powerful enough for many interesting problems.

We want more complex models that can incorporate contextual information.
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Contextual embedding into vectors

e We take each token and embed it into a dense n-dim vector, to which we will add some context
information.

e Why do we do this?

1. Dimensionality reduction.

2. More importantly: projection into a more informative space (interpretability?).

e Also, we usually do this in blocks of tokens: it will train the transformer to make predictions within
the block.
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Embedding in GPT-3

e GPT-3 uses input blocks of m = 2048 tokens (even if it needs to leave space empty): Booagx50227
where each row is one token and a 12288-dim embedding.

e More concretely, we get a sequence-embeddings matrix:

E
E2O48 x12228 — B2O48 x50227 * W50227 x 12228

where W7 10008 is an embedding weight matrix (we will see later how we pick it).

e For example:
“European” =[0.01,-0.99,---,0.34,0.12]

66



Why is embedding key?

e Since we have a vector representation for each token, we can define standard vector operations by
looking at the closest embedding:

e Sum: Bank = European + Central

[0.03,-0.9, - - ,0.42,0.36] ~ [0.01, —0.99, - - - ,0.34,0.12] + [0.02,0.09, - - - , 0.08,0.24]

e Subtraction: Frankfurt = European Commission + Brussels — European Central Bank.

e We can map any piece of information into an n-dimension vector. Whether there are tokens from text,
pixels from photographs, Fourier weights from a recording, etc, is irrelevant — foundation models.
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e We mentioned before we want to incorporate context into our embedding.

Distributional semantics: “A word is characterized by the company it keeps” (Firth, 1957).

Think about the sentence: “I seat in the bank inside the bank office by the river bank where you
bank."”

We capture these relations by looking at the position of a token within a block: encoding.

Quite different ways to do it, language-dependent (i.e., compare English, an analytic language, with
Latin, a synthetic one!)
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Positional encoding in GPT-3

e We take the position of each token within the block [0 — 2047] through 12288 sinusoidal functions,
each with a different frequency.

e Thus, we get a sequence-positional-encodings matrix:

S2048x 12228 = SiN12088( B204gx50227)
Extrapolate easily.

e \We sum the sequence-embeddings matrix and sequence-positional-encodings matrix:

SExpagx12228 = Enoasx 12208 + S2048x 12228
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Step V: Attention




Attention

e Train the neural network to focus on some input data (e.g., some tokens) and lower the weights of
other inputs by sharing communication among tokens.

e Mimics human cognition.

e Generalization of ideas floating since the 1990s (multiplicative modules, sigma pi units, and
hyper-networks).

e Permutation invariant (unless we introduce positional encoding).
e Particularly easy to parallelize with GPUs because it avoids the previous approach of using recurrence.

e A more detailed introduction:
https://www.youtube.com/watch?v=AIliwuClvH6k&ab_channel=GoogleDeepMind.
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Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, & is the kernel
size of convolutions and 7 the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? ) 0(1) O(1)

Recurrent O(n - ) (n) O(n)

Convolutional O(k-n - d?) 0(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)
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Query, key, and value |

We take a sequence x = (xq, ..., Xn) of n-dim input vectors and produce a sequence y = (y1,.-.,¥m)

of p-dim output vectors.

p is the head size.

With our previous example of GPT-3, m = 2048 and n = 12288.

In a database, you have a query and obtain a value.

e Often, you want to have a key for each value.
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Query, key, and value Il

e Every token emits a query (“what am | looking for?”) and a key (“what do | contain?") vector.

e Three components:
1. Q: query Qmxp = softmax (SE,,,X,,W,,QXP).
2. K: key Kmxp = softmax (SEmX,,W,,KXp).
3. V: value Vinxp = softmax (SEmxnWok,)-

e Importance matrix softmax (QKT) represents the relative importance of each token with respect to
all others (“affinities").

e Then:
Attention(Q, K, V) = softmax (QKT) V

You can think about Attention(Q, K, V) as a refined embedding.
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Scaling, masking, and multiheads

e Scaling: we can scale (QKT) by \/n before applying softmax.

e Masking: some words in the input sequence are masked. Many possible reasons: GPT-3 to avoid
having an encoder.
e Multiheads: We build multiple attention weights W@, WK:r \WV:r where r is the index of the

self-attention path.

e There is a simpler implementation of query, key, value: dot product.
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Scaling, masking, and multiheads in GPT-3

e In GPT-3, we have p = 128 and 96 attention weights for a total of 12228 (same as n).

e Also, we multiply by a new weight matrix Wy, add original SE, and normalize to get an output
Attention norm(Q, K, V')2048x12228-

1. Why sum? Skip connection (also known as a residual or shortcut connection).

2. Why normalization?
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(a) without skip connections (b) with skip connections
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Layer Normalization

Jimmy Lei Ba Jamie Ryan Kiros Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
jimmy@psi.toronto.edu rkiros@cs.toronto.edu and Google Inc.

hinton@cs.toronto.edu

Abstract

Training state-of-the-art, deep neural networks is computationally expensive. One
way to reduce the training time is to normalize the activities of the neurons. A
recently introduced technique called batch normalization uses the distribution of
the summed input to a neuron over a mini-batch of training cases to compute a
mean and variance which are then used to normalize the summed input to that
neuron on each training case. This significantly reduces the training time in feed-
forward neural networks. However, the effect of batch normalization is dependent
on the mini-batch size and it is not obvious how to apply it to recurrent neural net-
works. In this paper, we transpose batch normalization into layer normalization by
computing the mean and variance used for normalization from all of the summed
inputs to the neurons in a layer on a single training case. Like batch normalization,
we also give each neuron its own adaptive bias and gain which are applied after
the normalization but before the non-linearity. Unlike batch normalization, layer
normalization performs exactly the same computation at training and test times.
It is also straightforward to apply to recurrent neural networks by computing the
normalization statistics separately at each time step. Layer normalization is very
effective at stabilizing the hidden state dynamics in recurrent networks. Empiri-
cally, we show that layer normalization can substantially reduce the training time
compared with previously published techniques.
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Step VI: Output




e Next, we pass the result Attentionom(Q, K, V) through a feed forward neural network with ReLUs

F
to get Yooagx12008-

e Why? Forecasting.

We sum YZ 5. 10008 = Attention,om(Q, K, V) + YF and normalize.

Finally, we get Y with the inverse of our embedding weight matrix:

YE( WE)(fl)

We apply softmax and select a word among the top-k probabilities.

e Also, we can use human alignment.
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Step VII: Training




Practical implementation |

GPT-3 uses 499 billion tokens in the full training data. The Common Crawl data set contains 410 of
those.

Loss function to select all the relevant weights: the average negative log-likelihood per token.

Dropout.

Powerful optimizer.

e Length of training vs. size of model and data.
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Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the

English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

BLEU Training Cost (FLOPs)

Model
EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0-10%°
GNMT + RL [38] 24.6 39.92 2.3-10  1.4-10%
ConvS2S [9] 25.16 40.46 9.6-10"® 1.5-10%
MoE [32] 26.03 40.56 2.0-10% 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 2630  41.16 1.8-10%°  1.1-10%!
ConvS2S Ensemble [9] 26.36 41.29 7.7-10°  1.2-10%
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 284 41.8 2.3-10"
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Table 3: Variations on the Transformer architecture. Unlisted values are identical to those of the base
model. All metrics are on the English-to-German translation development set, newstest2013. Listed
perplexities are per-wordpiece, according to our byte-pair encoding, and should not be compared to
per-word perplexities.

N dimodel dsr h dy dy P, drop  €ls :::;;l (]:C)llsf;) E;L.f\:}[).] pil’f(l)’l;b
base | 6 512 2048 8 64 64 0.1 0.1 100K | 4.92 25.8 65
1 512 512 5.29 24.9
(A) 4 128 128 5.00 25.5
16 32 32 491 25.8
32 16 16 5.01 25.4
®) 16 5.16 25.1 58
32 5.01 25.4 60
2 6.11 23.7 36
4 5.19 253 50
8 4.88 25.5 80
©) 256 32 32 5.75 24.5 28
1024 128 128 4.66 26.0 168
1024 5.12 25.4 53
4096 4.75 26.2 90
0.0 5.77 24.6
0.2 4.95 25.5
D) 0.0 4671 253
0.2 5.47 25.7
(E) positional embedding instead of sinusoids 4.92 25.7
big | 6 1024 4096 16 0.3 300K | 433 264 213
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Practical implementation Il

e Train and validation data.

e Different approaches:

1. Supervised fine-tuning (SFT): The raw model is pre-trained on a large dataset and then trained on
smaller but higher-quality datasets.

2. Reinforcement Learning from Human Feedback (RLHF).

3. Generating vs. ranking answers.

e Check https://thegradient.pub/ai-is-domestification/.
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GPT Assistant training pipeline

Stage Pretraining Supervised Finetuning Reward Modeling Reinforcement Learning

Raw internet Demonstrations () Comparisons () Prompts ()
text trillions of words Ideal Assistant responses, e 100K —1M comparisons e ~10K-100K prompts e
Dataset low-quality, large quantity ~10-100K (prompt, response) written by contractors written by contractors
written by contractors low quantity, high quality low quantity, high quality
low quantity, high quality

Language modeling Language modeling Binary classification Reinforcement Learning
Algorithm predict the next token predict the next token predict rewards consistent w generate tokens that maximize
preferences the reward

init init init from SFT
0 e from a 0 from 0 0 use RM
Base model SFT model RM model RL model

1000s of GPUs 1-100 GPUs 1-100 GPUs 1-100 GPUs

months of training days of training days of training days of training

ex: GPT, LLaMA, PaLM ex: Vicuna-13B ex: ChatGPT, Claude
can deploy this model can deploy this model can deploy this model




Win rate against SFT 175B
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e Python + PyTorch allow for an easy implementation of this architecture.

e Code online:

1. http://nlp.seas.harvard.edu/annotated-transformer/.

2. https://www.youtube.com/watch?v=kCc8FmEbinY and https://github.com/karpathy/nanoGPT.

e You want to run the code on GPUs.
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Step VIII: Extensions




Simplifying

The original transformer architecture also has a decoder component. Why?

It turns out we do not need an encoder or a decoder.

We can dispense with one of the two.

1. Autoencoders: BERT.

2. Autoregressive language models: GPT.

Cross-attention: Q's and K’s come from outside sources of information.
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Original transformer

Eleuther Al

98



Frontier work: QAs and Assistants

QAs: either quote from a text or created from scratch.

Hope to avoid domain knowledge.

Design of assistants through prompt design and pre-train.

e Unfortunately, some of the details of frontier models are not public.

But check: https://youtu.be/bZQun8Y4L2A.
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