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Basic RBC

e Social Planner’s problem:

max E i B' {log ct + 1 log (1 — It)}
t=0

ct+ ki1 = K& ()T (1 —8)ky, ViE>0
zt = pz—1+et, €6~ N(0,0)

e This is a dynamic optimization problem.



Computing the RBC

e The previous problem does not have a known “paper and pencil” so-
lution.

e We will work with an approximation: Perturbation Theory.

e We will undertake a first order perturbation of the model.

e How well will the approximation work?



Equilibrium Conditions

From the household problem-+firms’s problem+-aggregate conditions:

1

— = BE; {
Ct

Ct
wl—lt

et + ki1 = K (€)% + (1 — 6) ky
2t = PZg—1 T €t

(1 + ak® L (e7ty) T — 6)}
Ct+1

= (1 — o) k§* ()t 7171




Finding a Deterministic Solution

e We search for the first component of the solution.

e If 0 = 0, the equilibrium conditions are:

1 1
— 1 ka—lll—a_(s
Ct 6Ct—|—1( e t t )
Y = (1—a) k{1, ®
1 — 1

ct + ki1 = k{1 + (1 — 6) ky



Steady State

e The equilibrium conditions imply a steady state:

I 5% (14 k1t —6)

C

(2

C
11
c+ 8k = kot

=(1—a)k™“

e The first equation can be written as:

1
S 14k lla_g
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Solving the Steady State

Solution:

o= —*b
Q+ pu

[ = ok

c = Ok

y — kall—a

\l



Linearization |

e Loglinearization or linearization?

e Advantages and disadvantages

e We can linearize and perform later a change of variables.



Linearization ||

We linearize:

iZﬁEt{

Ct

(1 + akf‘_l (e*tl)1=% — 6)}
Ct+1

C — —
VT = (= a) kP ()

et + ki1 = kf (€)' + (1 — 6) Ky
2t = PZg—1 T €t

around [, k, and c with a First-order Taylor Expansion.
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Linearization Il

We get:

1oy —2(ctq1— ) + (1 — a) Bz 1+

~ (et C)—Et{a(a—1)6%(kt+1—k)+a(1—a]€)ﬁ%(lt+1—l)}
Sl =)t e (=) = (L= @)z § (k= k) = T (= D)

(ct —¢c)+ (ko1 — k) = { y<(1_a)zt+%(kt_k)+(1;a)(lt_l)> }
+ (1 —6) (kt — k)

2t = PZg—1 T €t

10



Rewriting the System |
Or:
ay(ct —c) = Ey{ay (ci41 — ¢) + azzpy1 +az(kip1 — k) + ag (ley1 — 1)}
(ct —c) = agzt + %c (kt — k) + ag (It — 1)
(ct —c) + (kty1 — k) = azzt + ag (ke — k) + ag (it — 1)

2t = P2y—1 T+ &t
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Rewriting the System ||

where

= —2 az =a(l—a)pf

a1

a3:a€a—1)ﬁ% oz;;zoz(l—oz)ﬁ%
a5 = (1—a)c 046:—(%4—(1—10)0
a7=(l—a)y ag =yz + (1 —96)
ag :y(l_la) y = Lol—o
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Rewriting the System IlI

After some algebra the system is reduced to:

A(kyy1—k)+ Bkt —k)+ C(lt — 1)+ Dz =0
Et(G(kH_l—k)—l—H(kt—k)—l—J(lH_l—l)—l—K(lt—l)+LZt_|_1—|—Mzt):0

Eizi41 = pzt
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Guess Policy Functions

We guess policy functions of the form (k;11 — k) = P (kt — k) + Q2 and
(lt — 1) = R(kt — k) + Sz¢, plug them in and get:

A(P (kt — k) + Qzt) + B (kt — k)

+C (R (kt — k) + Szt) + Dz =0

G (P (kt — k) + Qzt) + H (kt — k) + J (R(P (kt — k) + Qzt) + SNzt)
+K(R(kt —k)+Sz)+ (LN + M)z =0
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Solving the System |

Since these equations need to hold for any value (k;41 — k) or z; we need
to equate each coefficient to zero, on (k; — k):

AP+ B+CR = 0
GP+H+JRP+ KR = 0

and on z:

AQ+CS+D = 0
(G+JR)Q+JSN+KS+LN+M = 0
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Solving the System ||
e We have a system of four equations on four unknowns.
e To solve it note that R = —% (AP + B) = —%AP — %B

e T[hen:

B K QGC KB — HC
p? (— _ )P —0
* A+J JA + JA

a quadratic equation on P.
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Solving the System llI

e \We have two solutions:

one stable and another unstable.

e If we pick the stable root and find R = —% (AP + B) we have to a
system of two linear equations on two unknowns with solution:

—~D(JN + K)+CLN +CM

Q =

AJN +AK -CG—-CJR

—ALN — AM 4+ DG+ DJR

S =

AJN+ AK - CG —-CJR
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Practical Implementation

e How do we do this in practice?

e Solving quadratic equations: “A Toolkit for Analyzing Nonlinear Dy-
namic Stochastic Models Easily” by Harald Uhlig.

e Using dynare.
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General Structure of Linearized System

Given m states x+, n controls v, and k exogenous stochastic processes
zt+1, we have:
Axy+ Bxy_1+Cyr + Dz =0
By (Friy1+Goy+ Hry 1 + Jyp1 + Kye + L2y + Mz) =0
Eizi11 = Nz

where C'is of size [ Xxn,l > n and of rank n, that F'is of size (m +n — ) X
n, and that IV has only stable eigenvalues.
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Policy Functions

We guess policy functions of the form:

rt = Pri_ 1+ Qz¢
Yyt = Rxy 1+ Sz

where P, (Q, R, and S are matrices such that the computed equilibrium is
stable.
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Policy Functions

For simplicity, suppose | = n. See Uhlig for general case (I have never be
in the situation where [ = n did not hold).

Then:

1. P satisfies the matrix quadratic equation:
(F—JCtA) P>~ (JCT'B- G+ KC 'A)P—~KC'B+H =0
The equilibrium is stable iff max (abs (eig (P))) < 1.

2. R is given by:
R=-C"1(AP+ B)
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3. (Q satisfies:

N'®(F—JCA)+ I, ® (JR+ FP+ G — KC 'A) vec(Q)
= vec((JC'D~ L) N+ KC™'D - M)

4. S satisfies:

S=—-C"1(AQ + D)
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How to Solve Quadratic Equations

To solve
VP2 - TP-0O=0

for the m X m matrix P:

1. Define the 2m X 2m matrices:

— | T © I 2 %%
__[Im Om],andA—!Om Im]

2. Let s be the generalized eigenvector and A\ be the corresponding
generalized eigenvalue of = with respect to A. Then we can write
s’ = [\2/, x'] for some x € R™.

23



3. If there are m generalized eigenvalues A1, Ao, ..., A, together with gen-

eralized eigenvectors si,...,sm of = with respect to A, written as
s = [Aw;,m;} for some x; € R™ and if (z1,...,zm) is linearly inde-
pendent, then:

P=oAQ 1
is a solution to the matrix quadratic equation where Q = [x1, ..., Tm]

and A = [M\q,...,Am]. The solution of P is stable if max |\;| < 1.
Conversely, any diagonalizable solution P can be written in this way.
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How to Implement This Solver

Available Code:

1. My own code: undeteri.m.

2. Uhlig’'s web page: http://www.wiwi.hu-berlin.de/wpol/html/toolkit.htn

25



An Alternative Dynare

e What is Dynare? A platform for the solution, simulation, and estima-
tion of DSGE models in economics.

e Developed by Michel Juilliard and collaborators.

e | am one of them:)

e http://www.cepremap.cnrs.fr/dynare/
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Dynare takes a more “blackbox approach”.

However, you can access the files...

...and it is very easy to use.

Short tutorial.
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Our Benchmark Model

e We are now ready to compute our benchmark model.

e We begin finding the steady state.

e As before, a variable £ with no time index represent the value of that
variable in the steady state.
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Steady State |

e From the first order conditions of the household:.

c 9=p0c%(r+1-96)}

R
—0 __ —0
c © = [Bc p
VI =c w

e We forget the money condition because the central bank, through
open market operations, will supply all the needed money to support
the chosen interest rate.

e Also, we normalize the price level to one.
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Steady State I

e From the problem of the intermediate good producer:

« El

l—ar

k =

e Also:

where A = 1.
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Steady State Il

e Now, since p* = p:
(2 (e
l—« 0! €

e By markets clearing:

c+ 6k =y =kM?
where we have used the fact that x = 6k and that:

1
v

e The Taylor rule will be trivially satisfied and we can drop it from the
computation.
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Steady State IV

e Our steady state equations, cancelling redundant constants are:

l—ar

()" () e
1 — « o g

c+ 8k = k@

e A system of six equations on six unknowns.

32



Solving for the Steady State |

e Note first that:

wl—a _ (1 . a)l—oz e

€

1
a /e —1\T-a (1
w:(l—a)al—a(€ )1 (——1—|—6

e T[hen:

33
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Solving for the Steady State ||
e We are left with a system of two equations on two unknowns:
Yl = w

c+6Ql = Q%

e Substituting ¢ = (Q% — 6Q) [, we have

C ’YG
w(Qa—6Q> cTw=
1

, w\rte
c = — —
((Q 6Q)" ¢>

34



Steady State

35

_e—1
me = ==
k = Ql
r = Ok
y:kall—a
Q—_a w



Log-Linearizing Equilibrium Conditions
e Take variable xy.

e Substitute by zeTt where:

Lt — |Og—
X

e Notation: a variable ; represents the log-deviation with respect to
the steady state.

e Linearize with respect to ;.
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Households Conditions |

° zplz = ¢; “wy or YlVeVt = ¢=TeTCtyeWt gets loglinearized to:

vl = —ocy + wy

e [ hen:
¢ 7 = BBdc;{ (rey1 +1- 8)}
or.
C—Je—JEt — ﬁEt{C_Ue_UaH'l (Te?t"i'l + 1 — 5)}

that gets loglinearized to:

—oct = —oEyci1 + BrEiry g

37



Households Conditions ||

e Also:

Ry

—c __ —0 +1

Cy = ﬁEt{CH_l }
Tt4+1

or:

_ _ AN _ _ AN R oy _/\
c e 0Ct — 6Et{c 0 o—0Ct11 (_eRt+1 7rt+1) }
s

that gets loglinearized to:

—ocy = —oEici 1 + By (Rt—|—1 — 7ATt+1)

e We do not loglinearize the money condition because the central bank,
through open market operations, will supply all the needed money to
support the chosen interest rate.
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Marginal Cost

e We know:

or.:

e Loglinearizes to:

A

mer = —Ap + (1 — ) @y + afy

39



Pricing Condition |

e \We have:

Er Y (B80p) visr {( i mCt+T> y;jkt—i—T} =0,

P\
yfzkt—|—7' — ( 4 > Yt+1,
Pt+r

where

40



Pricing Condition |l

e Also:

+—0 DPt+1

Ey Z (ﬁep)T Ut+r

=0

o0
Ey Z (B0p)" vitr
7=0

o0 * 1—¢
Er Y (80p)" vitr { (( Pig ) — 2 i ]

3

8_

41
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Working on the Expression |

e If we prepare the expression for loglinearization (and eliminating the
index ¢ because of the symmetric equilibrium assumption):

*

o0 l—e ~ ~
Ey ) (80p)" v (%) yeVt+rt(1=e)p—(1—€)ptir+ytr —
7=0

oo «\ —€
€ ) o~k I~ — ~
7=0
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Working on the Expression |l

*

£ _ 1 P _
e Note that _=ymc =1, b = 1,

e Dropping redundant constants, we get:

o
. s SR
E: Y (86p)" eVtrr+(1—e)pf —(1—€)Dtr+ysrr —
7=0

oo
Et Z (/Bep)T €Ut+T_6ﬁ+5pt—|—7'+m0t—|—7"|‘yt+7-
7=0
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Working on the Expression |1l

Then

o0
Ly Z (BOp)" (Vt4r + (L —€)pf — (1 — €) Ptr + Yttr) =
7=0

0. @)
= E; Y (B80p)” (Vt4-r — €Dt + €Pt+r + MCttr + Yitr)
7=0
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Working on the Expression |V:

Ei > (80p)" (P; — Ditr) = Bt > (80p)” M yr =
7=0 7=0
E »  (B9p)" b = E Z (80p)" Pe+r + E Z (80p)" mcqr =
7=0 =0

1 o __
1— 50 pr = Ey Z (B0p)” Ditr + Er Y (B0p)” meitr =
I % 7=0

= (1 — B0p) Ey Z (80p)” Dt+r + (1 — BOp) Ey Z (B0p)" mcyyr
"y
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Working on the Expression V

e Note that:

@)
(1—B0p) Bt ) (B0p)" Br+r = (1— BOp) Dt + (1 — B0p) BOpEtDri1 + ..
7=0
= pt + BOpE; (D41 — Pt) + -
= Pt—1+Dt —DPt—1+ BOpETiL1 + ...
o
= D1+ Er > (80p) Titr

7=0

0@ @)

P =Dbi—1+Er Y (B0p)" Tpr + (1 — 86p) By > (80p)” mcyir
7=0 7=0
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Working on the Expression VI

e Now:

@)
pr = D1+ 7+ (1—B0p)mes+ Er Y (80p)” Rpyr
—1
o T
+ (1 — B6p) Et > (80p)” mctyr

T=1

e If we forward the equation one term:

o0 Q)
Etpyi1 =0t + Et Y (80p) Tey11r + (1 —B80p) Bt Y (80p)” Mmcsy14+
7=0 7=0
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Working on the Expression VI

e We multiply it by £80p:

o0
BOpEpi 1 = B0ppr + Er Y (80p)™ T Fpi 1y s
7=0

©.@)

+(1—B6p) B Y (BOp) My y14r
7=0

e Then:

B — Pe—1 = BOpEy (Piy1 — Pr) + 7t + (1 — B6p) mcs
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Price Index

1
e Since the price index is equal to p; = [pr%__f + (1 —6p) pfl_a] 1=

® we can write:

R ] R 1
pept — Qppl—se(l—e)pt—l + (1 . ep) pl—se(l—e)pt} I—<

D; [ ~ 1
ePt  — gpe(l—e)pt—l + (1 _ Hp) 6(1—5)@‘} -

e Loglinearizes to:

pt =0ppr—1+ (1 —60p)p; = 7t = (1 — 0p) (Pf — Pt—1)
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Evolution of Inflation

e We can put together the price index and the pricing condition:

Tt T41
— BO,E
g, POPE

+ 7t + (1 — B6p) mey
or:

e Simplifies to:

Tt = BEymi 1 + A <—At + (1 —a)w + oz?t)

where \ = (1_91“)9(;_591’) and ey = — A + (1 — o) ws + ary
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New Keynesian Phillips Curve

e The expression:
Tt = BEm1 + Amey

is known as the New Keynesian Phillips Curve

e Empirical performance?

e Large literature:
1. Lagged inflation versus expected inflation.

2. Measures of marginal cost.
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Production Function |

e Now:
R Ay - -
P

e Cancelling constants:

eyt _ 64 _ eakt+(1—a)lt
e EJtetDt

e T hen:
@tZz‘it-l-agt-l—(l—a)it—ks(;t—?t)
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Production Function Il

e Now we find expressions for the loglinearized values of j; and py:

~ . . 1 1
jt = logjs —logj = —=log| | p;;°di| —logp
£ 0
_ 1 1oy
pt = logps —logp = log / Py di| —logp
1—¢ 0
e T hen:
= 1 /1 .
Jt = ——/ (pit — p) di
pJo
~ 1 1—¢ /1 _
pr = — / (pit — p) di
1—¢ p Jo
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Production Function Il
) Clearly 3t = ]/;\t.

e T hen:
@t:flt+aﬁt+(1—a)l}

e No first-order loss of efficiency!
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Aggregate Conditions |

e We know ct + x4 = y¢ or celt + zelt = yegt that loglinearizes to:
cC + Ty = Yy
o Also ki1 = (1 —68)ky + x4 or keFtl = (1 — 6) keFt + ze®t that

loglinearizes to:

k/]%t—kl = (1 — 5) k%t + xx¢
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Aggregate Conditions ||

e Finally:

or.:

e Loglinearizes to:

by — o wtlt
1l —anrg
Lokt — ¢ W G-y
—ar

ki = Wy + Il — ¢
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Government

e We have that:

R _ (Boymm moye (w " o
R R s Y

L1 — YRRV Ty Yt

or.

e Loglinearizes to:

Rt—l—l = YRERt + vr7t + ’Yy:/y\t T Pt
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Loglinear System

—o¢t = Ey(—0Ciy1+ Brriqn)
—ocy = FEy (—05t+1 + Ry1 — 7ATt+1)
Vit = —o + Wy
G = Ag+aki+(1—a)ly
Yyt = cC+ xxt
kEt—l—l = (1-9) kEt + xT¢
ke = W+l — 7

Riy1 = YrBt+ 77t + vyt + ¢4
ft = BEFi1+A(—At+ (1 —a) @y + ofy)
Ay = pAi1+ 2
a system of 10 equations on 10 variables: {ag, lAt, T+, Yt, Et, W, Tt, ﬁt—l—la ¢, flt} :
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Solving the System
e We can put the system in Uhlig’s form.

e To do so, we redefine §t+1 and 7; as (pseudo) state-variables in order
to have at most as many control variables as deterministic equations.

e States, controls, and shocks:

Xt = (Et—l—l Riy1 7 >/

N
A~

/
Y = (Ct It Tr Y wy Tt)

Zy = (Zt %)l
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Deterministic Bloc
vl + o6 — Wy
Gt — Ay — aky — (L — ) Iy
Yyt — cC — Ty
kkip1 — (1 — 6) kky — x2y
ke — Wy — Iy + 7

Rt—l—l - /YRRt — 77T7/"\-t — ’Yy@\t — Pt

60
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Expectational Bloc

ocy + Ey(—ociy1 + Brigya)
oct + Riy1 + Et (—0Ciq1 — Tp41)
Tt — BErs1 — A (= Ay + (1 — 0) @ + o)

Two stochastic processes
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Matrices of the Deterministic Bloc

oo | | oo
~—~~
@
_
i
) — i
- loo | o
QO
bo | oo o
N— -
|
@
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Matrices of the Expectational Bloc

|

3
o o <
~ ~
o O O _a
o O O —
N
~
CCC 5o |
~_
__ o O o
n ooo
~ ~ © O O
i
o |l ~ b bo
~_
o O O
~_ N
| .

@) Do -
~ ~ O O O
Q.
OO_OOO
OOOOOO
nUnUnUnUOnU
(JU
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Matrices of the Stochastic Process

v=(§ o)
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Solution of the Problem

Xt = PXy 1+QZ;
Y1 = RXy 1+5%;
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Beyond Linearization

e We solved the model using one particular approach.

e How different are the computational answers provided by alternative
solution methods for dynamic equilibrium economies?

e Why do we care?
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e Stochastic neoclassical growth model is nearly linear for the benchmark
calibration.

— Linear methods may be good enough.

e Unsatisfactory answer for many economic questions: we want to use
highly nonlinear models.

— Linear methods not enough.
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Solution Methods

1. Linearization: levels and logs.

2. Perturbation: levels and logs, different orders.

3. Projection methods: spectral and Finite Elements.

4. Value Function lteration.

5. Other?
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Evaluation Criteria

e Accuracy.

e Computational cost.

e Programming cost
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What Do We Know about Other Methods?

e Perturbation methods deliver an interesting compromise between ac-
curacy, speed and programming burden (Problem: Analytical deriva-
tives).

e Second order perturbations much better than linear with trivial addi-
tional computational cost.

e Finite Elements method the best for estimation purposes.

e Linear methods can deliver misleading answers.

e Linearization in Levels can be better than in Logs.
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A Quick Overview

e Numerous problems in macroeconomics involve functional equations
of the form:

H(d) =0

e Examples: Value Function, Euler Equations.

e Regular equations are particular examples of functional equations.

e How do we solve functional equations?

71



Two Main Approaches

1. Projection Methods:

d" (z,0) = > _ 0,V;(z)
1=0

We pick a basis {W; (z)};27 and “project” H (-) against that basis.

2. Perturbation Methods:

d" (z,0) = éei (z — zg)"

We use implicit-function theorems to find coefficients 6,.
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Solution Methods |: Projection (Spectral)

e Standard Reference: Judd (1992).

e Choose a basis for the policy functions.

e Restrict the policy function to a be a linear combination of the ele-
ments of the basis.

e Plug the policy function in the Equilibrium Conditions and find the
unknown coefficients.
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e Use Chebyshev polynomial.

e Pseudospectral (collocation) weigthing.
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Solution Methods Il: Projection (Finite Elements)

e Standard Reference: McGrattan (1999)

e Bound the domain of the state variables.

e Partition this domain in nonintersecting elements.

e Choose a basis for the policy functions in each element.

e Plug the policy function in the Equilibrium Conditions and find the
unknown coefficients.
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e Use linear basis.

e Galerkin weighting.

e We can be smart picking our grid.
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Solution Methods Ill: Perturbation Methods

e Most complicated problems have particular cases that are easy to solve.

e Often, we can use the solution to the particular case as a building
block of the general solution.

e Very successful in physics.

e Judd and Guu (1993) showed how to apply it to economic problems.
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A Simple Example

e Imagine we want to find the (possible more than one) roots of:

w3—4.1:c—|—0.2 =0

such that = < 0.

e This a tricky, cubic equation.

e How do we do it?
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Main ldea

e Transform the problem rewriting it in terms of a small perturbation
parameter.

e Solve the new problem for a particular choice of the perturbation pa-
rameter.

e Use the previous solution to approximate the solution of original the
problem.
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Step 1: Transform the Problem

e Write the problem into a perturbation problem indexed by a small
parameter ¢.

e This step is usually ambiguous since there are different ways to do so.

e A natural, and convenient, choice for our case is to rewrite the equation
as:

23— (4+e)z+2=0

where ¢ = 0.1.
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Step 2: Solve the New Problem

e Index the solutions as a function of the perturbation parameter x =
g (e):
g(e)’—(44¢)g(e)+2e=0

and assume each of this solution is smooth (this can be shown to be

the case for our particular example).

e Note that € = 0 is easy to solve:
23 — 4z =0

that has roots g(0) = —2,0,2. Since we require z < 0, we take
g9(0) = -2
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Step 3: Build the Approximated Solution

e By Taylor's Theorem:

g (O)n

x—g(8)|s—0_g(0)+ Z

e Substitute the solution into the problem and recover the coefficients
n
g (0) and gn—(!mfor n = 1,... in an iterative way.

e Let's do it!
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Zeroth -Order Approximation
e We just take e =0 .
e Before we found that g (0) = —2.
e Is this a good approximation?
w3—4.1ac—|—0.2:0:>

—-8+82+4+02=04

e |t depends!
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First -Order Approximation

e Take the derivative of g (£)3 — (4 4+ ¢) g (¢) + 2 = 0 with respect to
£:

39(e)°g'(e) —g(e) —(4+e)d () +2=0

e Set e =0

39(0)°g’ (0) —g(0) —4g'(0) +2=0

e But we just found that g (0) = —2, so:

8¢’ (0) +4 =0
that implies ¢’ (0) = —%.
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First -Order Approximation

e By Taylor: z = g(¢)|.—_g >~ g(0) —l—g ( Je1 or

1
xr~ —2 — —¢
2

e For our case e =0.1

1
33:—2—5*0.1:—2.05

e Is this a good approximation?

a:3—4.133—|—0.2:0:>
—8.615125 + 8.405 + 0.2 = —0.010125
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Second -Order Approximation

e Take the derivative of 3¢ (£)2 ¢’ (¢) — g (e)— (4 + €) ¢’ () +2 = 0 with
respect to ¢:

69 (<) (9 ()" +39()%¢" () — g’ (€) — ' () — (4 + ) g" () = O

e Sete =0
69 (0) (4 (0))” + 39 (0)2g” (0) — 24’ (0) — 4¢" (0) = 0

e Since g(0) = —2 and ¢’ (0) = —%, we get:
8¢"(0) —2=0
that implies ¢’ (0) = %.
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Second -Order Approximation

e By Taylor:z = g(¢)|.—g _g(O)—l—g (O) 1 —I—g ( Je2 or

5 1 +1
—2 — —¢ 3
2 38

e For our case e =0.1

1 1
r=—2— > *x 0.1 4 3 * 0.01 = —2.04875

e Is this a good approximation?

a:3—4.133—|—0.2:0:>
—8.59937523242188 + 8.399875 + 0.2 = 4.997675781240329e — 004
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Some Remarks

e The exact solution (up to machine precession of 14 decimal places) is
x = —2.04880884817015.

e A second-order approximation delivers: * = —2.04875

e Relative error: 0.00002872393906.

e Yes, this was a rigged, but suggestive, example.
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A Couple of Points to Remember

1. We transformed the original problem into a perturbation problem in
such a way that the zeroth-order approximation has an analytical so-
lution.

2. Solving for the first iteration involves a nonlinear (although trivial in
our case) equation. All further iterations only require to solve a linear
equation in one unknown.
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An Application in Macroeconomics: Basic RBC

@)
max Ep ) Bt {log ¢}
t=0
ct+kin1 = etk +(1—6)k, VE>0
zt = pzi—1+oe, e¢ ~N(0,1)

Equilibrium Conditions

1 1
— = BE;
Ct Ct+1

ct + kt_|_1 — eztkta + (1 — (5) ky
2t = Pzt—1 + O&¢

1+ a2l ¢
( S — o)
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Computing the RBC

e We already discuss that the previous problem does not have a known
“paper and pencil” solution.

e One particular case the model has a closed form solution: § = 1.

e Why? Because, the income and the substitution effect from a produc-
tivity shock cancel each other.

e Not very realistic but we are trying to learn here.
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Solution
e By “Guess and Verify"
ct = (1 — ap) e*kg

ki1 = afetk

e How can you check? Plug the solution in the equilibrium conditions.
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Another Way to Solve the Problem

e Now let us suppose that you missed the lecture where “Guess and

Verify” was explained.
e You need to compute the RBC.

e What you are searching for? A policy functions for consumption:

ct = c(kt, z¢)

and another one for capital:

ki1 = k(kt, 2t)
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Equilibrium Conditions

e We substitute in the equilibrium conditions the budget constraint and
the law of motion for technology.

e Then, we have the equilibrium conditions:

1 8E aePATOe1k (K, zt)o‘_l
= BEy
c (kt, ) c(k (kt, 2t) , pzt + o€t 41)

C (kt, Zt) + k (kt, Zt) = eztkta

e The Euler equation is the equivalent of 3 — 4.1z + 0.2 = 0 in our
simple example, and c(k¢, z¢) and k (k¢, z¢) are the equivalents of .
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A Perturbation Approach

e You want to transform the problem.

e Which perturbation parameter? standard deviation o.

e Why o7

e Set 0 = 0 =-deterministic model, z; = 0 and e* = 1.
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Taylor's Theorem
e We search for policy function ¢; = ¢ (k¢, z¢; ) and ki1 = k (K¢, 2¢; 0).

e Equilibrium conditions:

B ( 1 3 aePA T 1k (ky, 24 J)O‘_l )
, _
c (kt, zt; 0) c(k (kt, zt;0), pzt + 04115 0)
C(kt, Zt O‘) + k (kt, Zt; O‘) — eztkta = 0

e We will take derivatives with respect to k¢, z¢, and o.
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Asymptotic Expansion ¢t = c(kt, 2¢;0)|1 00

ct = c(k,0;0)
+ci (k,0;0) (kt — k) + c2(k,0;0) 2t + co (k,0;0) o
1 1
+ockk (K, 0:0) (ke — k) + ~Chz (K, 0:0) (ke — k) 2

1 1
+5cko (K, 0:0) (bt — k) 0 + ~cz (k, 05 0) 24 (kt — k)

1 1
—|-§sz (k,0;0) Zt2 + ECZU (k,0;0) zto

1 1
—|—§Cgk (k, 0; 0) o (kt — k) + ECOZ (ky 0; O) Ozt

1
+-¢52 (K, 0;0) 0%+ ...
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Asymptotic Expansion ki1 1 = k (kt, z¢; 0)|
» 210 )| £.0,0

kiv1 = k (k,0;0)
+ky (K, 0:0) kg + ks (K, 0; 0) 2 + ko (K, 0: 0) &

1
+=kyp. (K, 0;0) (k 2, 1
y» Y t — k - ,
+%k ) + 2kkz (ka 0; O) (kt — k) <t
P ka(kvO;O)(kt_k l
7 K)o+ o (6,0:0) ke =
_ . 2
5 zz (k,O,O) zZ¢ + Ekza (k,O;O) 21O
1
+—-k k(k,O;O ki — L
5o ) o (k¢ k)+§kaz(k,0;0)azt

1
+5ko2 (k. 0;0) o’ + ..
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Comment on Notation

e From now on, to save on notation, | will just write

F (kt, z¢;0) = By | c(kyz0) 7 c(k(ke,260),02t+0ei4150) | =

1 aelPt T Ot 1 k(K 2;0) Y
c(kt,zt;a) + k(kt,zt;a) — eztkta [

e Note that:
F (kta 2t 0) = H (C (kta 2t 0) y C (k (kta 2t 0) y Zt+11 0) ) k (kta 2t J) ) kta 2t O-)

e | will use H; to represent the partial derivative of H with respect to
the ¢ component and drop the evaluation at the steady state of the

functions when we do not need it.
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Zeroth -Order Approximation

e First, we evaluate o0 = 0:

F (k¢ 0;0) =0
e Steady state:
1 ak®—1
=8
C C

or,
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Steady State

e Then:
c=c(k,0;0) = (aﬁ)ﬁ — (aﬁ)ﬁ
k = k(k,0;0) = (af)Ta

e How good is this approximation?
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First -Order Approximation

e We take derivatives of F' (k¢, z¢; o) around k,0, and 0.

o With respect to ky:
Fk (k, 0; 0) =0

e With respect to z;:
F,(k,0;0)=0

e With respect to o:
Fs(k,0;0) =0
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Solving the System |

Remember that:

F (kta 2t 0) = H (C (kta 2t 0) y C (k (kta 2t J) y Zt-+11 0) ) k (kta 2t J) ) kta 2t 0)

Then:
Fy. (k,0;0) = Hicy, + Hocpky + H3ky, + Hy = 0

F> (k,0;0) = Hicy + Hp (cikz + cpp) + H3zkz + Hs =0
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Solving the System Il

e Note that:

Fi. (k,0;0) = Hicp + Hocpky + H3zkp + Hg =0
F>(k,0;0) = Hjcy+ Hy(cpkz + cpp) + Hzk, + Hs =0

is a quadratic system of four equations on four unknowns: cg, cz, kg,
and k..

e Procedures to solve quadratic systems: Uhlig (1999).

e Why quadratic? Stable and unstable manifold.
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Solving the System llI

e Note that:

Fa‘ (k, O, 0) — H]_Co' —|_ H2 (Ckko‘ —|_ Co') —|_ H3ko' —|_ H6 — O

is a linear, and homogeneous system in cs and kg.

e Hence
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Comparison with Linearization

e After Kydland and Prescott (1982) a popular method to solve eco-
nomic models has been the use of a LQ approximation.

e Close relative: linearization of equilibrium conditions.

e When properly implemented linearization, LQ, and first-order pertur-
bation are equivalent.

e Advantages of linearization:
1. Theorems.

2. Higher order terms.
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Second -Order Approximation

e \We take second-order derivatives of F'(k¢, z¢; o) around k,0, and O:

Fii (k,0;0) =
Fy.. (k,0;0)
Fi, (k,0;0)
F; (k,0;0)
F>s (k,0;0) =
Foo (K,0;0) =

o O O O O O

e Remember Young's theorem!
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Solving the System

e We substitute the coefficients that we already know.

e A linear system of 12 equations on 12 unknowns. Why linear?

e Cross-terms ko and zo are zero.

e Conjecture on all the terms with odd powers of o.
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Correction for Risk
e We have a term in o2.
e Captures precautionary behavior.

e We do not have certainty equivalence any more!

e Important advantage of second order approximation.
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Higher Order Terms

e \We can continue the iteration for as long as we want.

e Often, a few iterations will be enough.

e The level of accuracy depends on the goal of the exercise: Fernandez-
Villaverde, Rubio-Ramirez, and Santos (2005).
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A Computer

e In practice you do all this approximations with a computer.

e Burden: analytical derivatives.

e Why are numerical derivatives a bad idea?

e More theoretical point: do the derivatives exist? (Santos, 1992).
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Code

e First and second order: Matlab and Dynare.

e Higher order: Mathematica, Fortran code by Jinn and Judd.
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An Example

e Let me run a second order approximation.

e Our choices

Calibrated Parameters

Parameter

g

(87

P

Value

0.99

0.33

0.95

0.01
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Computation

e Steady State:

¢ = (af)a — (af)Ta = 0.388069
k= (aB)T = 0.1883

e First order components.

¢, (k,0;0) = 0.680101 ky (K, 0;0) = O
c; (k,0;0) = 0.388069 k. (k,0;0) = 0.1883
co (k,0;0) =0 ks (k,0;0) =0
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Comparison

¢t = 0.6733e7tkp-33
¢t ~ 0.388069 + 0.680101 (ks — k) + 0.388069z;

and:

ki1 = 0.3267e*kP-33
ki1 ~ 0.1883 + 0.1883 (ks — k) + 0.33z
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Second-Order Terms

116

kkk (/C, 0; 0) = —1.1742
ki (k,0;0) = 0.330003
Ko (ka 0; O) =0
k.- (k,0;0) = 0.188304
k»o (k,0;0) =0
k_>(k,0;0) =0



Non Local Accuracy test (Judd, 1992, and Judd and Guu, 1997)

Given the Euler equation:

1 B aezHlki(kt, zt)o‘_l
. = I —
ct (kt : Zt) cl (kz(kt, Zt), Zt_|_1)

we can define:

: . Zt+1ki Lk oa—1
EE"(kt,zt) =1 —c' (kt,2t) By (ae (kt, 2t) )

Ci (k’i(kt, Zt), Zt_|_1>
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Changes of Variables

e \We approximated our solution in levels.

e We could have done it in logs.

e Why stop there? Why not in powers of the state variables?

e Judd (2002) has provided methods for changes of variables.

e We apply and extend ideas to the stochastic neoclassical growth model.
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A General Transformation

e \We look at solutions of the form:
c'“—cg — a(kc—kg) + cz
K7 —k§ = (kS —k§) +dz

e Note that:

1. If v, ¢, u and ¢ are 1 we get the linear representation.

2. As v, ¢ and u tend to zero and ¢ is equal to 1 we get the loglinear

approximation.
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Theory

e T he first order solution can be written as

f(z) =~ f(a) + (z —a) f'(a)

e Expand g(y) = h(f(X (y))) around b = Y (a), where X (y) is the
inverse of Y ().

e Then:

g(y) =h(f (X () =9(b)+ ga(b) (Y (z) — %)
where go = hAf{‘Xé comes from the application of the chain rule.

e From this expression it is easy to see that if we have computed the
values of f;“, then it is straightforward to find the value of g4.
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Coefficients Relation

e Remember that the linear solution is:

<k, — ko) = a1 (k —kg) + b1z
(L —lp) c1(k — ko) + dy2

e [ hen we show that:

- —1
a3 = Tk ay by = vk] by

c3 = BIf~ 1k ey | d3 = bty
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Finding the Parameters v, ¢, 1 and ¢

e Minimize over a grid the Euler Error.

e Some optimal results

Table 6.2.2: Euler Equation Errors

Y 9 7 SEE
1 1 1 0.0856279
0.986534 | 0.991673 | 2.47856 | 0.0279944
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Sensitivity Analysis

e Different parameter values.

e Most interesting finding is when we change o:

Table 6.3.3: Optimal Parameters for different o's

o

~

¢

L

0.014

0.98140

0.98766

2.47753

0.028

1.04804

1.05265

1.73209

0.056

1.23753

1.22394

0.77369

e A first order approximation corrects for changes in variance!
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A Quasi-Optimal Approximation |

e Sensitivity analysis reveals that for different parametrizations

Y =6

e This suggests the quasi-optimal approximation:

K7 —k§ = ag (k" —kj) + b3z
=1 = c3(k7 —k§) + daz
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A Quasi-Optimal Approximation |l

e Note that if define k = kY — kg and [ = I¥ — lg we get:

AN

K = a3E—|—b3Z
[ = C3E + d3z

e Linear system:

1. Use for analytical study (Campbell, 1994 and Woodford, 2003).

2. Use for estimation with a Kalman Filter.
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Labor Supply

Figure 5.1.1: Labor Supplyatz=0,t=2/c = 0.007
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Investment

Figure 5.1.2: Investmentatz=0,t=2/c = 0.007
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Labor Supply

Figure 5.1.3 : Labor Supply atz=0,t1=50/c=0.035
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Figure 5.1.4 :

Investmentatz=0,t=50/

c =0.035
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Flgure 5.2.1: Den5|ty of Output T=2 l c =0.007
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Figure 5.2.2 : Density of Capital, t=2/c

= 0.007
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Figure 5.2.3 : Density of Labor,t=2/c = 0.007

Linear
Log-Linear
FEM
Chebyshev
Perturbation 2
Perturbation 5
Value Function

0.31

0.315




6000

5000

4000

3000

2000

1000

Figure 5.2.4 : Density of Consumption, t=2/c = 0.007
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Figure 5.2.5: Time Series for Output, t =2/ c = 0.007
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Figure 5.2.6: Time Series for Capital, t=2/c = 0.007
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Figure 5.2.7 : Density of Output,t=50/c

= 0.035
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Figure 5.2.8 : Density of Capital, t=50/c=0.035
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Figure 5.2.9 : Density of Labor, 1t =50/ c =0.035
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Figure 5.2.10 : Density of Consumption, t =50/ c = 0.035
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Figure 5.3.1 : Empirical CDF of den Haan Marcet Tests, 1

0/5=0.035
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Log10|Euler Equation Error|

Figure 5.4.1: Euler Equation Errors, Linear Approximation, t=2/ ¢ = 0.007
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Figure 5.4.2: Euler Equation Errors, Log-Linear Approximation, 1 =2/ c = 0.007
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Figure 5.4.3 : Euler Equation Errors, Finite Elements Approximation, t =2/ ¢ = 0.007
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Figure 5.4.4 : Euler Equation Errors, Chebyshev Approximation, t=2/ ¢ = 0.007
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Figure 5.4.5: Euler Equation Errors, 2nd Order Perturbation Approximation, 1 =2/ c = 0.007
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Figure 5.4.6: Euler Equation Errors, 5th Other Perturbation Approximation, 1t =2/ ¢ = 0.007
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Figure 5.4.7 : Euler Equation Errors, Value Function Approximation, 1 =2/ c = 0.007
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Euler Equation Error
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Figure 5.4.9 :

Euler Equation Errorsatz=0,t1=2/0c=0.007
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Figure 5.4.11 : Marginal Density of Capital versus Euler Errors at z=0,t =2/ ¢ = 0.007
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Log10|Euler Equation Error|

Figure 5.4.12 : Euler Equation Errors, Linear Approximation, 1t =50/ c=0.035
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Figure 5.4.13 : Euler Equation Errors, Log-Linear Approximation, 1t =50/ ¢ =0.035
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Figure 5.4.14 : Euler Equation Errors, Finite Elements Approximation, t=50/c=0.035
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Log10|Euler Equation Error|

Figure 5.4.15 : Euler Equation Errors, Chebyshev Appr., 1=50/0c=0.035
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Figure 5.4.16 : Euler Equation Errors, 2nd Order Perturbation Appr., t=50/c=0.035
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Figure 5.4.17 : Euler Equation Errors, 5th Order Perturbation Appr., t=50/c=0.035
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Log10|Euler Equation Error|

Figure 5.4.18 : Euler Equation Errors, Value Function Appr., t=50/c=0.035
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Figure 5.4.19 : Euler Eq. Errors, 2nd Order Log-Linear Perturbation Appr., t=50/c=0.035
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Log10|Euler Equation Error|
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Figure 5.4.20 :

Euler Equation Errors atz=0,t=50/c=0.035
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Table 5.4.1: Integral of the Euler Errors (x10~%)

Linear 0.2291
Log-Linear 0.6306
Finite Elements | 0.0537
Chebyshev 0.0369

Perturbation 2 | 0.0481
Perturbation 5 | 0.0369
Value Function | 0.0224
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Table 5.4.2: Integral of the Euler Errors (x10~%)

Linear 7.12
Log-Linear 24.37
Finite Elements 0.34
Chebyshev 0.22
Perturbation 2 7.76
Perturbation 5 8.91
Perturbation 2 (log) | 6.47
Value Function 0.32
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Figure 6.2.1 : Euler Equation Errorsatz=0,t=2/c =0.007
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Figure 6.2.2 : Euler Equation Errorsatz=0,t=2/c =0.007
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Figure 6.2.3. : Euler Equation Errorsatz=0,t1=2/c =0.007
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Computing Time and Reproducibility

e How methods compare?

e Web page:

www.econ.upenn.edu/~ jesusfv/companion.htm
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