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Several challenges

Several challenges

How do we document the presence of time-varying uncertainty?

How do we distinguish time-variation in the data and in expectations?
Forecaster disagreement?

How much of the uncertainty is exogenous or endogenous?

How do we take DSGE models with time-varying uncertainty to the
data?

1 Likelihood function.

2 Method of moments.

Because of time limitations, I will focus on the first and last
challenges.
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Documenting time-varying uncertainty.

Interest rates
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Documenting time-varying uncertainty.

A real life example

Remember our decomposition of interest rates:

rt = r︸︷︷︸
mean

+ εtb,t︸︷︷︸
T-Bill shocks

+ εr ,t︸︷︷︸
Spread shocks

εtb,t and εr ,t follow:

εtb,t = ρtbεtb,t−1 + e
σtb,tutb,t , utb,t ∼ N (0, 1)

εr ,t = ρr εr ,t−1 + e
σr ,tur ,t , ur ,t ∼ N (0, 1)

σtb,t and σr ,t follow:

σtb,t =
(
1− ρσtb

)
σtb + ρσtb

σtb,t−1 + ηtbuσtb ,t , uσtb ,t ∼ N (0, 1)

σr ,t =
(
1− ρσr

)
σr + ρσr

σr ,t−1 + ηruσr ,t , uσr ,t ∼ N (0, 1)
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Documenting time-varying uncertainty.

Stochastic volatility

Remember, as well, that we postulated a general process for
stochastic volatility:

xt = ρxt−1 + σt εt , εt ∼ N (0, 1).

and

log σt = (1− ρσ) log σ+ ρσ log σt−1 +
(
1− ρ2σ

) 1
2 ηut , ut ∼ N (0, 1).

We discussed this was a concrete example of a richer class of
specifications.

Main point: non-linear structure.
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Documenting time-varying uncertainty.

State space representation I

Define:

St =
(
xt−1
σt

)
Then, we have a transition equation:(

xt
σt+1

)
= f

((
xt
σt

)
,

(
εt
ut+1

)
;γ

)
where the first row of f (·) is:

xt = ρxt−1 + σt εt

and the second is

log σt+1 = (1− ρσ) log σ+ ρσ log σt +
(
1− ρ2σ

) 1
2 ηut+1

The vector of parameters:

γ = (ρ, ρσ, log σ, η)
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Documenting time-varying uncertainty.

State space representation II

In more compact notation:

St = f (St−1,Wt ;γ)

We also have a trivial measurement equation:

Yt =
(
1 0

) ( xt
σt+1

)
In more general notation:

Yt = g (St ,Vt ;γ)

Note Markov structure.

Note also how we can easily accommodate more general cases.
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Documenting time-varying uncertainty.

Shocks

{Wt} and {Vt} are independent of each other.

{Wt} is known as process noise and {Vt} as measurement noise.

Wt and Vt have zero mean.

No assumptions on the distribution beyond that.
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Documenting time-varying uncertainty.

Conditional densities

From St = f (St−1,Wt ;γ) , we can compute p (St |St−1;γ).

From Yt = g (St ,Vt ;γ), we can compute p (Yt |St ;γ) .

From St = f (St−1,Wt ;γ) and Yt = g (St ,Vt ;γ), we have:

Yt = g (f (St−1,Wt ;γ) ,Vt ;γ)

and hence we can compute p (Yt |St−1;γ).
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Filtering

Filtering, smoothing, and forecasting

Filtering: we are concerned with what we have learned up to current
observation.

Smoothing: we are concerned with what we learn with the full sample.

Forecasting: we are concerned with future realizations.
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Filtering

Goal of filtering I

Compute conditional densities: p
(
St |y t−1;γ

)
and p (St |y t ;γ) .

Why?

1 It allows probability statements regarding the situation of the system.

2 Compute conditional moments: mean, st |t and st |t−1, and variances
Pt |t and Pt |t−1.

3 Other functions of the states. Examples of interest.

Theoretical point: do the conditional densities exist?
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Filtering

Goals of filtering II

Evaluate the likelihood function of the observables yT at parameter
values γ:

p
(
yT ;γ

)
Given the Markov structure of our state space representation:

p
(
yT ;γ

)
= p (y1|γ)

T

∏
t=2
p
(
yt |y t−1;γ

)
Then:

p
(
yT ;γ

)
=
∫
p (y1|s1;γ) dS1

T

∏
t=2

∫
p (yt |St ;γ) p

(
St |y t−1;γ

)
dSt

Hence, knowledge of
{
p
(
St |y t−1;γ

)}T
t=1 and p (S1;γ) allow the

evaluation of the likelihood of the model.
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Filtering

Two fundamental tools

1 Chapman-Kolmogorov equation:

p
(
St |y t−1;γ

)
=
∫
p (St |St−1;γ) p

(
St−1|y t−1;γ

)
dSt−1

2 Bayes’theorem:

p
(
St |y t ;γ

)
=
p (yt |St ;γ) p

(
St |y t−1;γ

)
p (yt |y t−1;γ)

where:

p
(
yt |y t−1;γ

)
=
∫
p (yt |St ;γ) p

(
St |y t−1;γ

)
dSt
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Filtering

Interpretation

All filtering problems have two steps: prediction and update.

1 Chapman-Kolmogorov equation is one-step ahead predictor.

2 Bayes’theorem updates the conditional density of states given the new
observation.

We can think of those two equations as operators that map measures
into measures.
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Filtering

Recursion for conditional distribution

Combining the Chapman-Kolmogorov and the Bayes’theorem:

p
(
St |y t ;γ

)
=∫

p (St |St−1;γ) p
(
St−1|y t−1;γ

)
dSt−1∫ {∫

p (St |St−1;γ) p (St−1|y t−1;γ) dSt−1
}
p (yt |St ;γ) dSt

p (yt |St ;γ)

To initiate that recursion, we only need a value for s0 or p (S0;γ).

Applying the Chapman-Kolmogorov equation once more, we get{
p
(
St |y t−1;γ

)}T
t=1to evaluate the likelihood function.
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Filtering

Initial conditions

From previous discussion, we know that we need a value for s1 or
p (S1;γ) .

Stationary models: ergodic distribution.

Non-stationary models: more complicated. Importance of
transformations.

Forgetting conditions.

Non-contraction properties of the Bayes operator.
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Filtering

Smoothing

We are interested on the distribution of the state conditional on all
the observations, on p

(
St |yT ;γ

)
and p

(
yt |yT ;γ

)
.

We compute:

p
(
St |yT ;γ

)
= p

(
St |y t ;γ

) ∫ p
(
St+1|yT ;γ

)
p (St+1|St ;γ)

p (St+1|y t ;γ)
dSt+1

a backward recursion that we initialize with p
(
ST |yT ;γ

)
,

{p (St |y t ;γ)}Tt=1 and
{
p
(
St |y t−1;γ

)}T
t=1 we obtained from filtering.
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Filtering

Forecasting

We apply the Chapman-Kolmogorov equation recursively, we can get
p (St+j |y t ;γ) , j ≥ 1.

Integrating recursively:

p
(
yl+1|y l ;γ

)
=
∫
p (yl+1|Sl+1;γ) p

(
Sl+1|y l ;γ

)
dSl+1

from t + 1 to t + j , we get p
(
yt+j |yT ;γ

)
.

Clearly smoothing and forecasting require to solve the filtering
problem first!
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Filtering

Problem of filtering

We have the recursion

p
(
St |y t ;γ

)
=∫

p (St |St−1;γ) p
(
St−1|y t−1;γ

)
dSt−1∫ {∫

p (St |St−1;γ) p (St−1|y t−1;γ) dSt−1
}
p (yt |St ;γ) dSt

p (yt |St ;γ)

A lot of complicated and high dimensional integrals (plus the one
involved in the likelihood).

In general, we do not have closed form solution for them.

Translate, spread, and deform (TSD) the conditional densities in ways
that impossibilities to fit them within any known parametric family.
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Filtering

Exception

There is one exception: linear and Gaussian case.

Why? Because if the system is linear and Gaussian, all the conditional
probabilities are also Gaussian.

Linear and Gaussian state spaces models translate and spread the
conditional distributions, but they do not deform them.

For Gaussian distributions, we only need to track mean and variance
(suffi cient statistics).

Kalman filter accomplishes this goal effi ciently.
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Nonlinear Filtering

Nonlinear filtering

Different approaches.

Deterministic filtering:

1 Kalman family.

2 Grid-based filtering.

Simulation filtering:

1 McMc.

2 Particle filtering.
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Nonlinear Filtering

Particle filtering I

Remember,

1 Transition equation:

St = f (St−1,Wt ;γ)

2 Measurement equation:

Yt = g (St ,Vt ;γ)
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Nonlinear Filtering

Particle filtering II

Some Assumptions:

1 We can partition {Wt} into two independent sequences {W1,t} and
{W2,t}, s.t. Wt = (W1,t ,W2,t ) and
dim (W2,t ) + dim (Vt ) ≥ dim (Yt ).

2 We can always evaluate the conditional densities
p
(
yt |W t

1 , y
t−1, S0;γ

)
.

3 The model assigns positive probability to the data.
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Nonlinear Filtering

Rewriting the likelihood function

Evaluate the likelihood function of the a sequence of realizations of
the observable yT at a particular parameter value γ:

p
(
yT ;γ

)

We factorize it as (careful with initial condition!):

p
(
yT ;γ

)
=

T

∏
t=1
p
(
yt |y t−1;γ

)
=

T

∏
t=1

∫ ∫
p
(
yt |W t

1 , y
t−1,S0;γ

)
p
(
W t
1 , S0|y t−1;γ

)
dW t

1 dS0
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Nonlinear Filtering

A law of large numbers

If
{{
st |t−1,i0 ,w t |t−1,i1

}N
i=1

}T
t=1

N i.i.d. draws from{
p
(
W t
1 , S0|y t−1;γ

)}T
t=1, then:

p
(
yT ;γ

)
'

T

∏
t=1

1
N

N

∑
i=1
p
(
yt |w t |t−1,i1 , y t−1, st |t−1,i0 ;γ

)

The problem of evaluating the likelihood is equivalent to the problem of
drawing from

{
p
(
W t
1 , S0|y t−1;γ

)}T
t=1
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Nonlinear Filtering

Introducing particles I

{
st−1,i0 ,w t−1,i1

}N
i=1

N i.i.d. draws from p
(
W t−1
1 ,S0|y t−1;γ

)
.

Each st−1,i0 ,w t−1,i1 is a particle and
{
st−1,i0 ,w t−1,i1

}N
i=1

a swarm of

particles.{
st |t−1,i0 ,w t |t−1,i1

}N
i=1

N i.i.d. draws from p
(
W t
1 ,S0|y t−1;γ

)
.

Jesús Fernández-Villaverde (PENN) Econometrics March 7, 2016 26 / 69



Nonlinear Filtering

Introducing particles II

Each st |t−1,i0 ,w t |t−1,i1 is a proposed particle and{
st |t−1,i0 ,w t |t−1,i1

}N
i=1

a swarm of proposed particles.

Weights:

qit =
p
(
yt |w t |t−1,i1 , y t−1, st |t−1,i0 ;γ

)
∑N
i=1 p

(
yt |w t |t−1,i1 , y t−1, st |t−1,i0 ;γ

)
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Nonlinear Filtering

A proposition

Theorem

Let
{
s̃ i0, w̃

i
1

}N
i=1 be a draw with replacement from

{
st |t−1,i0 ,w t |t−1,i1

}N
i=1

and probabilities qit . Then
{
s̃ i0, w̃

i
1

}N
i=1 is a draw from p (W t

1 , S0|y t ;γ).

Importance:

1 It shows how a draw
{
st |t−1,i0 ,w t |t−1,i1

}N
i=1

from p
(
W t
1 , S0 |y t−1;γ

)
can be used to draw

{
st ,i0 ,w

t ,i
1

}N
i=1

from p (W t
1 , S0 |y t ;γ).

2 With a draw
{
st ,i0 ,w

t ,i
1

}N
i=1

from p (W t
1 , S0 |y t ;γ) we can use

p (W1,t+1;γ) to get a draw
{
st+1|t ,i0 ,w t+1|t ,i1

}N
i=1

and iterate the

procedure.
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Nonlinear Filtering

Algorithm

Step 0, Initialization: Set t  1 and set
p
(
W t−1
1 ,S0|y t−1;γ

)
= p (S0;γ).

Step 1, Prediction: Sample N values
{
st |t−1,i0 ,w t |t−1,i1

}N
i=1

from

the density p
(
W t
1 ,S0|y t−1;γ

)
= p (W1,t ;γ) p

(
W t−1
1 , S0|y t−1;γ

)
.

Step 2, Weighting: Assign to each draw st |t−1,i0 ,w t |t−1,i1 the
weight qit.

Step 3, Sampling: Draw
{
st ,i0 ,w

t ,i
1

}N
i=1

with rep. from{
st |t−1,i0 ,w t |t−1,i1

}N
i=1

with probabilities
{
qit
}N
i=1. If t < T set

t  t + 1 and go to step 1. Otherwise go to step 4.

Step 4, Likelihood: Use
{{
st |t−1,i0 ,w t |t−1,i1

}N
i=1

}T
t=1

to compute:

p
(
yT ;γ

)
'

T

∏
t=1

1
N

N

∑
i=1
p
(
yt |w t |t−1,i1 , y t−1, st |t−1,i0 ;γ

)
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Nonlinear Filtering

Evaluating a Particle filter

We just saw a plain vanilla particle filter.

How well does it work in real life?

Is it feasible to implement in large models?
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Nonlinear Filtering

Why did we resample?

We could have not resampled and just used the weights as you would
have done in importance sampling (this is known as sequential
importance sampling).

Most weights go to zero.

But resampling impoverish the swarm.

Eventually, this becomes a problem.
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Nonlinear Filtering
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Nonlinear Filtering

Why did we resample?

Effective Sample Size:

ESSt =
1[

∑N
i=1 p

(
yt |w t |t−1,i1 , y t−1, st |t−1,i0 ;γ

)]2
Alternatives:

1 Stratified resampling (Kitagawa, 1996): optimal in terms of variance.

2 Adaptive resampling.
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Nonlinear Filtering

Simpler notation

To simplify notation:

1 Let me write the conditional distributions in terms of the current state
(instead of the innovations and the initial state).

2 Let me forget about the special notation required for period 1
(y t−1 = ∅).

Then, the evaluation of the likelihood is just:

p
(
yT ;γ

)
=

T

∏
t=1

∫ ∫
p
(
yt |S t ;γ

)
p
(
St |y t−1;γ

)
dSt

Thus, we are looking for
{{
st |t−1,i

}N
i=1

}T
t=1

N i.i.d. draws from{
p
(
St |y t−1;γ

)}T
t=1 .
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Nonlinear Filtering

Improving our Particle filter I

Remember what we did:

1 We draw from
st |t−1,i ∼ p

(
St |st−1,i ;γ

)
2 We resample them with:

qit =
p
(
yt |st |t−1,i , y t−1;γ

)
∑Ni=1 p

(
yt |st |t−1,i , y t−1;γ

)
But, what if I can draw instead from st |t−1,i ∼ q

(
St |st−1,i , yt ;γ

)
?

Intuition.
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Nonlinear Filtering

Improving our Particle filter II

New weights:

qit =
p
(
yt |st |t−1,i , y t−1;γ

)
p(St |s t−1,i ;γ)
q(St |s t−1,i ,yt ;γ)

∑N
i=1 p

(
yt |st |t−1,i , y t−1;γ

) p(St |s t−1,i ;γ)
q(St |s t−1,i ,yt ;γ)

Clearly, if
q
(
St |st−1,i , yt ;γ

)
= p

(
St |st−1,i ;γ

)
we get back our basic Particle Filter.

How do we create the proposal q
(
St |st−1,i , yt ;γ

)
?

1 Linearized model.

2 Unscented Kalman filter.

3 Information from the problem.
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Nonlinear Filtering

Improving our Particle filter III

Auxiliary Particle Filter: Pitt and Shephard (1999).

Imagine we can compute either

p
(
yt+1|st ,i

)
or

p̃
(
yt+1|st ,i

)
Then:

qit =
p̃
(
yt+1|st ,i

)
p
(
yt |st |t−1,i , y t−1;γ

)
p(St |s t−1,i ;γ)
q(St |s t−1,i ,yt ;γ)

∑N
i=1 p̃ (yt+1|st ,i ) p

(
yt |st |t−1,i , y t−1;γ

) p(St |s t−1,i ;γ)
q(St |s t−1,i ,yt ;γ)

Auxiliary Particle Filter tends to work well when we have fat tail...

...but it can temperamental.
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Nonlinear Filtering

Improving our Particle filter IV

Resample-Move.

Blocking.

Many others.

A Tutorial on Particle Filtering and Smoothing: Fifteen years later, by
Doucet and Johansen (2012)
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Nonlinear Filtering

Nesting it in a McMc

Fernández-Villaverde and Rubio Ramírez (2007) and Flury and
Shepard (2008).

You nest the Particle filter inside an otherwise standard McMc.

Two caveats:

1 Lack of differentiability of the Particle filter.

2 Random numbers constant to avoid chatter and to be able to swap
operators.
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Nonlinear Filtering

Parallel programming

Why?

Divide and conquer.

Shared and distributed memory.

Main approaches:

1 OpenMP.

2 MPI.

3 GPU programming: CUDA and OpenCL.
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Nonlinear Filtering
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Nonlinear Filtering

Tools

In Matlab: parallel toolboox.

In R: package parallel.

In Julia: built-in procedures.

In Mathematica: parallel computing tools.

GPUs: ArrayFire.
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Nonlinear Filtering

Parallel Particle filter

Simplest strategy: generating and evaluating draws.

A temptation: multiple swarms.

How to nest with a McMc?
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Nonlinear Filtering

A problem

Basic Random Walk Metropolis Hastings is diffi cult to parallelize.

Why? Proposal draw θ∗i+1 depends on θi .

Inherently serial procedure.

Assume, instead, that we have N processors.

Possible solutions:

1 Run parallel chains.

2 Independence sampling.

3 Pre-fetching.
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Nonlinear Filtering

Multiple chains

We run N chains, one in each processor.

We merge them at the end.

It goes against the principle of one, large chain.

But it may works well when the burn-in period is small.

If the burn-in is large or the chain has subtle convergence issues, it
results in waste of time and bad performance.
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Nonlinear Filtering

Independence sampling

We generate N proposals θ̃
j
i+1 from an independent distribution.

We evaluate the posterior from each proposal in a different processor.

We do N Metropolis steps with each proposal.

Advantage: extremely simple to code, nearly linear speed up.

Disadvantage: independence sampling is very ineffi cient.
Solution⇒design a better proposal density.
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Nonlinear Filtering

Prefetching I

Proposed by Brockwell (2006).

Idea: we can compute the relevant posteriors several periods in
advance.

Set superindex 1 for rejection and 2 for acceptance.

Advantage: if we reject a draw, we have already evaluated the next
step.

Disadvantage: wasteful. More generally, you can show that the speed
up will converge only to log2 N.
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Nonlinear Filtering

Prefetching II

1 Assume we are at θi .

2 We draw 2 paths for iteration i + 1,
{

θ̃
1
i+1 = θi , θ̃

2
i+1 ∼ g (θi )

}
.

3 We draw 4 paths for iteration i + 2{
θ̃
11
i+2 = θ̃

1
i+1, θ̃

12
i+2 ∼ g

(
θ̃
1
i+1

)
, θ̃
21
i+2 = θ̃

2
i+1, θ̃

22
i+2 ∼ g

(
θ̃
2
i+1

)}
.

4 We iterate h steps, until we have N = 2h possible sequences.

5 We evaluate each of the posteriors p
(

θ̃
1,...,1
i+h

)
, ..., p

(
θ̃
2,...,2
i+h

)
in each

of the N processors.

6 We do a MH in each step of the path using the previous posteriors
(note that any intermediate posterior is the same as the corresponding
final draw where all the following children are “rejections”).
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Nonlinear Filtering

A simpler prefetching algorithm I

Algorithm for N processors, where N is small.

Given θi :

1 We draw N
{

θ̃i+1,1, ..., θ̃i+1,N

}
and we evaluate the posteriors

p
(

θ̃i+1,1

)
, ..., p

(
θ̃i+1,N

)
.

2 We evaluate the first proposal, θ̃i+1,1:

1 If accepted, we disregard θi+1,2, ..., θi+1,2.

2 If rejected, we make θi+1 = θi and θ̃i+2,1 = θ̃i+1,2 is our new proposal
for i + 2.

3 We continue down the list of N proposals until we accept one.

Advantage: if we reject a draw, we have already evaluated the next
step.
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Nonlinear Filtering

A simpler prefetching algorithm II

Imagine we have a PC with N = 4 processors.

Well gauged acceptance for a normal SV model≈ 20%− 25%. Let
me fix it to 25% for simplicity.

Then:

1 P(accepting 1st draw) = 0.25. We advance 1 step.

2 P(accepting 2nd draw) = 0.75 ∗ 0.25. We advance 2 steps.
3 P(accepting 3tr draw) = 0.752 ∗ 0.25. We advance 3 steps.
4 P(accepting 4th draw) = 0.753 ∗ 0.25. We advance 4 steps.
5 P(not accepting any draw) = 0.75∗4. We advance 4 steps.

Therefore, expected numbers of steps advanced in the chain:

1 ∗ 0.25+ 2 ∗ 0.75 ∗ 0.25+ 3 ∗ 0.75∗2 ∗ 0.25+ 4 ∗ 0.753 = 2.7344
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Taking DSGE-SV Models to the Data

First-order approximation

Remember that the first-order approximation of a canonical RBC
model without persistence in productivity shocks:

k̂t+1 = a1k̂t + a2εt , εt ∼ N (0, 1)

Then:

k̂t+1 = a1
(
a1k̂t−1 + a2εt−1

)
+ a2εt

= a21 k̂t−1 + a1a2εt−1 + a2εt

Since a1 < 1 and assuming k̂0 = 0

k̂t+1 = a2
t

∑
j=0
aj1εt−j

which is a well-understood MA system.
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Taking DSGE-SV Models to the Data

Higher-order approximations

Second-order approximation:

k̂t+1 = a0 + a1k̂t + a2εt + a3k̂2t + a4ε
2
t + a5k̂t εt , εt ∼ N (0, 1)

Then:

k̂t+1 = a0 + a1
(
a0 + a1k̂t + a2εt + a3k̂2t + a4ε

2
t + a5k̂t εt

)
+ a2εt

+a3
(
a0 + a1k̂t + a2εt + a3k̂2t + a4ε

2
t + a5k̂t εt

)2
+ a4ε2t

+a5
(
a0 + a1k̂t + a2εt + a3k̂2t + a4ε

2
t + a5k̂t εt

)
εt

We have terms in k̂3t and k̂
4
t .
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Taking DSGE-SV Models to the Data

Problem

For a large realization of εt , the terms in k̂3t and k̂
4
t make the system

explode.

This will happen as soon as we have a large simulation⇒
no unconditional moments would exist based on this approximation.

This is true even when the corresponding linear approximation is
stable.

Then:

1 How do you calibrate? (translation, spread, and deformation).

2 How do you implement GMM or SMM?

3 Asymptotics?
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Taking DSGE-SV Models to the Data

A solution

For second-order approximations, Kim et al. (2008): pruning.

Idea:

k̂t+1 = a0 + a1
(
a0 + a1k̂t + a2εt + a3k̂2t + a4ε

2
t + a5k̂t εt

)
+ a2εt

+a3
(
a0 + a1k̂t + a2εt + a3k̂2t + a4ε

2
t + a5k̂t εt

)2
+ a4ε2t

+a5
(
a0 + a1k̂t + a2εt + a3k̂2t + a4ε

2
t + a5k̂t εt

)
εt

We omit terms raised to powers higher than 2.

Pruned approximation does not explode.
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Taking DSGE-SV Models to the Data

What do we do?

Build a pruned state-space system.

Apply pruning to an approximation of any arbitrary order.

Prove that first and second unconditional moments exist.

Closed-form expressions for first and second unconditional moments
and IRFs.

Conditions for the existence of some higher unconditional moments,
such as skewness and kurtosis.

Apply to a New Keynesian model with EZ preferences.

Software available for distribution.
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Taking DSGE-SV Models to the Data

Practical consequences

1 GMM and IRF-matching can be implemented without simulation.

2 First and second unconditional moments or IRFs can be computed in
a trivial amount of time for medium-sized DSGE models
approximated up to third-order.

3 Use the unconditional moment conditions in optimal GMM estimation
to build a limited information likelihood function for Bayesian
inference (Kim, 2002).

4 Foundation for indirect inference as in Smith (1993) and SMM as in
Duffi e and Singleton (1993).

5 Calibration.
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State-Space Representations

Dynamic models and state-space representations

Dynamic model:

xt+1 = h (xt , σ) + σηεt+1, εt+1 ∼ IID (0, I)
yt = g (xt , σ)

Comparison with our previous structure.

Again, general framework (augmented state vector).
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State-Space Representations

The state-space system I

Perturbation methods approximate h (xt , σ) and g (xt , σ) with
Taylor-series expansions around xss = σ = 0.

A first-order approximated state-space system replaces g (xt , σ) and
h (xt , σ) with gxxt and hxxt .

If ∀ mod (eig (hx)) < 1, the approximation fluctuates around the
steady state (also its mean value).

Thus, easy to calibrate the model based on first and second moments
or to estimate it using Bayesian methods, MLE, GMM, SMM, etc.
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State-Space Representations

The state-space system II

We can replace g (xt , σ) and h (xt , σ) with their higher-order
Taylor-series expansions.

However, the approximated state-space system cannot, in general, be
shown to have any finite moments.

Also, it often displays explosive dynamics.

This occurs even with simple versions of the New Keynesian model.

Hence, it is diffi cult to use the approximated state-space system to
calibrate or to estimate the parameters of the model.
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State-Space Representations

The pruning method: second-order approximation I

Partition states: [ (
xft
)′

(xst )
′
]

Original state-space representation:

x(2)t+1 = hx
(
xft + x

s
t

)
+
1
2
Hxx

((
xft + x

s
t

)
⊗
(
xft + x

s
t

))
+
1
2
hσσσ2 + σηεt+1

y(2)t = gxx
(2)
t +

1
2
Gxx

(
x(2)t ⊗ x

(2)
t

)
+
1
2
gσσσ2

Jesús Fernández-Villaverde (PENN) Econometrics March 7, 2016 60 / 69



State-Space Representations

The pruning method: second-order approximation II

New state-space representation:

xft+1 = hxx
f
t + σηεt+1

xst+1 = hxx
s
t +

1
2
Hxx

(
xft ⊗ xft

)
+
1
2
hσσσ2

yft = gxx
f
t

yst = gx
(
xft + x

s
t

)
+
1
2
Gxx

(
xft ⊗ xft

)
+
1
2
gσσσ2

All variables are second-order polynomials of the innovations.
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State-Space Representations

The pruning method: third-order approximation I

Partition states: [ (
xft
)′

(xst )
′ (

xrdt
)′ ]

Original state-space representation:

x(3)t+1 = hxx
(3)
t +

1
2
Hxx

(
x(3)t ⊗ x

(3)
t

)
+
1
6
Hxxx

(
x(3)t ⊗ x

(3)
t ⊗ x

(3)
t

)
+
1
2
hσσσ2 +

3
6
hσσxσ

2x(3)t +
1
6
hσσσσ3 + σηεt+1

y(3)t = gxx
(3)
t +

1
2
Gxx

(
x(3)t ⊗ x

(3)
t

)
+
1
6
Gxxx

(
x(3)t ⊗ x

(3)
t ⊗ x

(3)
t

)
+
1
2
gσσσ2 +

3
6
gσσxσ

2x(3)t +
1
6
gσσσσ3
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State-Space Representations

The pruning method: third-order approximation II

New state-space representation:

Second-order pruned state-space representation+

xrdt+1 = hxxrdt +Hxx
(
xft ⊗ xst

)
+
1
6
Hxxx

(
xft ⊗ xft ⊗ xf

)
+
3
6
hσσxσ

2xft +
1
6
hσσσσ3

yrdt = gx
(
xft + x

s
t + x

rd
t

)
+
1
2
Gxx

((
xft ⊗ xft

)
+ 2

(
xft ⊗ xst

))
+
1
6
Gxxx

(
xft ⊗ xft ⊗ xft

)
+
1
2
gσσσ2 +

3
6
gσσxσ

2xft +
1
6
gσσσσ3

All variables are third-order polynomials of the innovations.
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State-Space Representations

Higher-order approximations

We can generalize previous steps:

1 Decompose the state variables into first-, second-, ... , and kth-order
effects.

2 Set up laws of motions for the state variables capturing only first-,
second-, ... , and kth-order effects.

3 Construct the expression for control variables by preserving only
effects up to kth-order.
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State-Space Representations

Statistical properties: second-order approximation I

Theorem

If ∀ mod (eig (hx)) < 1 and εt+1 has finite fourth moments, the pruned
state-space system has finite first and second moments.

Theorem

If ∀ mod (eig (hx)) < 1 and εt+1 has finite sixth and eighth moments, the
pruned state-space system has finite third and fourth moments.
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State-Space Representations

Statistical properties: second-order approximation II

We introduce the vectors

z(2)t ≡
[ (
xft
)′

(xst )
′ (

xft ⊗ xft
)′ ]′

ξ
(2)
t+1 ≡


εt+1

εt+1 ⊗ εt+1 − vec (Ine )
εt+1 ⊗ xft
xft ⊗ εt+1


First moment:

E
[
x(2)t
]
= E

[
xft
]

︸ ︷︷ ︸
=0

+E [xst ]︸ ︷︷ ︸
6=0

E [xst ] = (I− hx)
−1
(
1
2
Hxx (I− hx ⊗ hx)−1 (ση⊗ ση) vec (Ine ) +

1
2
hσσσ2

)
E [yst ] = C

(2)E
[
z(2)t
]
+ d(2)
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State-Space Representations

Statistical properties: second-order approximation III

Second moment:

V
(
z(2)t
)
= A(2)V

(
z(2)t
) (
A(2)

)′
+B(2)V

(
ξ
(2)
t

) (
B(2)

)′
Cov

(
z(2)t+l , z

(2)
t

)
=
(
A(2)

)l
V
(
z(2)t
)
for l = 1, 2, 3, ...

V
[
x(2)t
]
= V

(
xft
)
+V (xst ) + Cov

(
xft , x

s
t

)
+ Cov

(
xst , x

f
t

)
V [yst ] = C

(2)V [zt ]
(
C(2)

)′
Cov (yst , y

s
t+l ) = C

(2)Cov
(
z(2)t+l , z

(2)
t

) (
C(2)

)′
for l = 1, 2, 3, ...

where we solve for V
(
z(2)t
)
by standard methods for discrete

Lyapunov equations.
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State-Space Representations

Statistical properties: second-order approximation IV

Generalized impulse response function (GIRF): Koop et al. (1996)

GIRFvar (l , ν,wt ) = E [vart+l |wt , εt+1 = ν]−E [vart+l |wt ]

Importance in models with volatility shocks.
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State-Space Representations

Statistical properties: third-order approximation

Theorem

If ∀ mod (eig (hx)) < 1 and εt+1 has finite sixth moments, the pruned
state-space system has finite first and second moments.

Theorem

If ∀ mod (eig (hx)) < 1 and εt+1 has finite ninth and twelfth moments,
the pruned state-space system has finite third and fourth moments.

Similar (but long!!!!!) formulae for first and second moments and
IRFs.
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