
Programming Languages: Concepts

(Lectures on High-performance Computing for Economists IV)

Jesús Fernández-Villaverde1 and Pablo Guerrón2

August 27, 2024

1University of Pennsylvania

2Boston College



Introduction



Motivation

• Since the invention of Fortran in 1954-1957 to substitute assembly language, hundreds of

programming languages have appeared.

• Some are more successful than others, some more useful than others.

• Moreover, languages evolve (different version of Fortran).

• Different languages are oriented toward certain goals and have different approaches.

• Our thinking about what is a good programming language has also changed as we accumulate more

experience with computers.

1



2



Some references

• Programming Language Pragmatics (4th Edition), by Michael L. Scott.

• Essentials of Programming Languages (3rd Edition), by Daniel P. Friedman and Mitchell Wand.

• Concepts of Programming Languages (11th Edition), by Robert W. Sebesta.

• http://hyperpolyglot.org/

3

http://hyperpolyglot.org/


The basic questions

• Which programming language to learn?

• Which programming language to use in this project?

• Do I need to learn a new language?

4



Which programming language? I

• Likely to be a large investment.

• Also, you will probably want to be familiar at least with a couple of them (good mental flexibility)

plus LATEX.

Alan Perlis

A language that doesn’t affect the way you think about programming is not worth knowing.

• You will likely need to recycle yourself over your career.

5



Which programming language? II

• Typical problems in economics can be:

1. CPU-intensive.

2. Memory-intensive.

• Imply different emphasis.

• Because of time constraints, we will not discuss memory-intensive tools such as Kubernetes and

Spark.

6



Classification



Classification

• There is no “best” solution.

• But there are some good tips.

• We can classify programming languages according to different criteria.

• We will pick several criteria that are relevant for economists:

1. Level.

2. Domain.

3. Execution.

4. Type.

5. Paradigm.

7



Level

• Levels:

1. machine code.

2. Low level: assembly language like NASM (http://www.nasm.us/), GAS, or HLA (The Art of 64-Bit

Assembly, by Randall Hyde).

3. High level: like C/C++, Julia, ...

• You can actually mix different levels (C).

• Portability.

• You are unlikely to see low-level programming unless you get into the absolute frontier of

performance (for instance, with extremely aggressive parallelization).

8



9



Fibonacci number

Machine code:

8B542408 83FA0077 06B80000 0000C383 FA027706 B8010000 00C353BB

01000000 B9010000 008D0419 83FA0376 078BD98B C84AEBF1 5BC3

Assembler:

ib: mov edx, [esp+8] cmp edx, 0 ja @f mov eax, 0 ret @@: cmp edx, 2 ja @f

mov eax, 1 ret @@: push ebx mov ebx, 1 mov ecx, 1 @@: lea eax, 3 jbe @f mov

ebx, ecx [ebx+ecx] cmp edx, mov ecx, eax dec edx jmp @b @@: pop ebx ret

C++:

int fibonacci(const int x) {

if (x==0) return(0);

if (x==1) return(1);

return (fibonacci(x-1))+fibonacci(x-2);}
10



Domain

• Domain:

1. General-purpose programming languages (GPL), such as Fortran, C/C++, Python, ...

2. Domain specific language (DSL) such as Julia, R, Matlab, Mathematica, ...

• Advantages/disadvantages:

1. GPLs are more powerful and usually faster to run.

2. DSLs are easier to learn, faster to code, built-in functions and procedures.

11



Execution I

• Three basic modes to run code:

1. Interpreted: Python, R, Mathematica.

2. Compiled: Fortran, C/C++.

3. JIT (Just-in-Time) compilation: Julia, Matlab.

• Interpreted languages can we used with:

1. A command line in a REPL (Read–eval–print loop).

2. A script file.

• Many DSLs are interpreted, but this is neither necessary nor sufficient.

• Advantages/disadvantages: similar to GPL versus DSL.

• Interpreted and JIT programs are easier to move across platforms.

12



Execution II

• In reality, things are somewhat messier.

• Some languages are explicitly designed with an interpreter and a compiler (Haskell, Scala, F#).

• Compiled programs can be extended with third-party interpreters (CINT and Cling for C/C++).

• Often, interpreted programs can be compiled with an auxiliary tool (Matlab, Mathematica,...).

• Interpreted programs can also be compiled into byte code (R, languages that run on the JVM -by

design or by a third-party compiler).

• We can mix interpretation/compilation with libraries.

13



Types I

• Type strength:

1. Strong: type enforced.

2. Weak: type is tried to be adapted.

• Type expression:

1. Manifest: explicit type.

2. Inferred: implicit.

• Type checking:

1. Static: type checking is performed during compile-time.

2. Dynamic: type checking is performed during run-time.

• Type safety:

1. Safe: error message.

2. Unsafe: no error.

14



Types II

• Advantages of strong/manifest/static/safe type:

1. Easier to find programming mistakes⇒ADA, for critical real-time applications, is strongly typed.

2. Easier to read.

3. Easier to optimize for compilers.

4. Faster runtime, not all values need to carry a dynamic type.

• Disadvantages:

1. Harder to code.

2. Harder to learn.

3. Harder to prototype.

15



Types III

• You implement strong/manifest/static/safe typing in dynamically typed languages.

• You can define variables explicitly. For example, in Julia

a = 10::Int

• It often improves performance speed and safety.

• You can introduce checks:

a = "This is a string"

if typeof(a) == String

println(a)

else

println("Error")

end

16



17



18



Language popularity I

• C family (a subset of the ALGOL family), also known as “curly-brackets languages”:

1. C, C++, C#: 25.60%: 3 out of top 5.

2. C, C++, Java, C#, JavaScript: 38.67%: 5 out of top 10.

• Python: position 1, 18.04%.

• Fortran: position 10, 1.79%.

• Matlab: position 11, 1.72%.

• R: position 19, 1.11%.

• Julia: position 32, 0.48%.

19



Language popularity II

• High-performance and scientific computing is a small area within the programming community.

• Thus, you need to read the previous numbers carefully.

• For example:

1. You will most likely never use JavaScript or PHP (at least while wearing with your “economist” hat) or

deal with an embedded system.

2. C# and Swift are cousins of C focused on industry applications not very relevant for you.

3. Java (usually) pays a speed penalty.

4. Fortran is still used in some circles in high-performance programming, but most programmers will never

bump into anyone who uses Fortran.

20



Multiprogramming

• Attractive approach in many situations.

• Best IDEs can easily link files from different languages.

• Easier examples:

1. ccall and PyCall in Julia.

2. Rcpp.

3. Mex files in Matlab.

21


	Introduction
	Classification

