Perturbation Methods II: General Case

(Lectures on Solution Methods for Economists VI)

Jesús Fernández-Villaverde1 and Pablo Guerrón2

November 21, 2021

1University of Pennsylvania

2Boston College
Most of arguments in the previous set of lecture notes are easy to generalize.

The set of equilibrium conditions of many DSGE models can be written using recursive notation as:

$$\mathbb{E}_t \mathcal{H}(y, y', x, x') = 0,$$

where y_t is a $n_y \times 1$ vector of controls and x_t is a $n_x \times 1$ vector of states.

$n = n_x + n_y$.

\mathcal{H} maps $R^{n_y} \times R^{n_y} \times R^{n_x} \times R^{n_x}$ into R^n.
The state vector x_t can be partitioned as $x = [x_1; x_2]^t$.

- x_1 is a $(n_x - n_\epsilon) \times 1$ vector of endogenous state variables.
- x_2 is a $n_\epsilon \times 1$ vector of exogenous state variables.

Why do we want to partition the state vector?
Exogenous stochastic process 1

\[x_2' = Ax_2 + \lambda \eta \epsilon' \]

- Process with 3 parts:
 1. The deterministic component \(Ax_2 \), where \(A \) is a \(n_e \times n_e \) matrix, with all eigenvalues with modulus less than one.
 2. The scaled innovation \(\eta \epsilon' \), where:
 2.1 \(\eta \) is a known \(n_e \times n_e \) matrix.
 2.2 \(\epsilon \) is a \(n_e \times 1 \) i.i.d. innovation with bounded support, zero mean, and variance/covariance matrix \(I \).
 3. The perturbation parameter \(\lambda \).
• We can accommodate very general structures of x_2 through changes in the definition of the state space: i.e., stochastic volatility.

• More general structure:

$$x'_2 = \Gamma(x_2) + \lambda \eta \epsilon'$$

where Γ is a non-linear function satisfying that all eigenvalues of its first derivative evaluated at the non-stochastic steady state lie within the unit circle.

• Note we do not impose Gaussianity.
The perturbation parameter

- The scalar $\lambda \geq 0$ is the perturbation parameter.
- If we set $\lambda = 0$, we have a deterministic model.
- Important: there is only ONE perturbation parameter. The matrix η_e takes account of relative sizes of different shocks.
Solution of the model

• The solution to the model is of the form:

\[y = g(x; \lambda) \]
\[x' = h(x; \lambda) + \lambda \eta \epsilon' \]

where \(g \) maps \(\mathbb{R}^{n_x} \times \mathbb{R}^+ \) into \(\mathbb{R}^{ny} \) and \(h \) maps \(\mathbb{R}^{n_x} \times \mathbb{R}^+ \) into \(\mathbb{R}^{nx} \).

• The matrix \(\eta \) is of order \(n_x \times n_{\epsilon} \) and is given by:

\[\eta = \begin{bmatrix} \emptyset \\ \eta_{\epsilon} \end{bmatrix} \]
• We wish to find a perturbation approximation of the functions g and h around the non-stochastic steady state, $x_t = \bar{x}$ and $\lambda = 0$.

• We define the non-stochastic steady state as vectors (\bar{x}, \bar{y}) such that:

$$\mathcal{H}(\bar{y}, \bar{y}, \bar{x}, \bar{x}) = 0.$$

• Note that $\bar{y} = g(\bar{x}; 0)$ and $\bar{x} = h(\bar{x}; 0)$.

• This is because, if $\lambda = 0$, $E_t \mathcal{H} = \mathcal{H}$.
Plugging-in the proposed solution

- Substituting the proposed solution, we define:

\[F(x; \lambda) \equiv \mathbb{E}_t \mathcal{H}(g(x; \lambda), g(h(x; \lambda) + \eta \lambda \epsilon', \lambda), x, h(x; \lambda) + \eta \lambda \epsilon') = 0 \]

- Since \(F(x; \lambda) = 0 \) for any values of \(x \) and \(\lambda \), the derivatives of any order of \(F \) must also be equal to zero.

- Formally:

\[F_{x^k \lambda^j}(x; \lambda) = 0 \quad \forall x, \lambda, j, k, \]

where \(F_{x^k \lambda^j}(x, \lambda) \) denotes the derivative of \(F \) with respect to \(x \) taken \(k \) times and with respect to \(\lambda \) taken \(j \) times.
First-order approximation

• We are looking for approximations to g and h around $(x, \lambda) = (\bar{x}, 0)$ of the form:

\[
\begin{align*}
g(x; \lambda) &= g(\bar{x}; 0) + g_x(\bar{x}; 0)(x - \bar{x}) + g_\lambda(\bar{x}; 0)\lambda \\
h(x; \lambda) &= h(\bar{x}; 0) + h_x(\bar{x}; 0)(x - \bar{x}) + h_\lambda(\bar{x}; 0)\lambda
\end{align*}
\]

• As explained earlier, $g(\bar{x}; 0) = \bar{y}$ and $h(\bar{x}; 0) = \bar{x}$.

• The remaining four unknown coefficients of the first-order approximation to g and h are found by using the fact that:

\[
F_x(\bar{x}; 0) = 0
\]

and

\[
F_\lambda(\bar{x}; 0) = 0
\]

• Before doing so, we need to introduce the tensor notation.
Tensors

- General trick from physics.

- An \(n^{th}\)-rank tensor in a \(m\)-dimensional space is an operator that has \(n\) indices and \(m^n\) components and obeys certain transformation rules.

- \([H_y]_i^\alpha\) is the \((i, \alpha)\) element of the derivative of \(H\) with respect to \(y\):
 1. The derivative of \(H\) with respect to \(y\) is an \(n \times n_y\) matrix.
 2. Thus, \([H_y]_i^\alpha\) is the element of this matrix located at the intersection of the \(i\)-th row and \(\alpha\)-th column.
 3. Thus, \([H_y]_i^\alpha[g_x]^\alpha_\beta[h_x]^\beta_j = \sum_{\alpha=1}^{n_y} \sum_{\beta=1}^{n_x} \frac{\partial H^i}{\partial y^\alpha} \frac{\partial g^\alpha}{\partial x^\beta} \frac{\partial h^\beta}{\partial x^j} \).

- \([H_{y'y'}]_i^\alpha_\gamma\):
 1. \(H_{y'y'}\) is a three dimensional array with \(n\) rows, \(n_y\) columns, and \(n_y\) pages.
 2. Then \([H_{y'y'}]_i^\alpha_\gamma\) denotes the element of \(H_{y'y'}\) located at the intersection of row \(i\), column \(\alpha\) and page \(\gamma\).
Solving the system I

- g_x and h_x can be found as the solution to the system:

\[
[F_x(\bar{x}; 0)]_j^i = [\mathcal{H}_y]_\alpha^i [g_x]_\beta^\alpha [h_x]_j^\beta + [\mathcal{H}_y]_\alpha^i [g_x]_j^\alpha + [\mathcal{H}_x']_\beta^i [h_x]_j^\beta + [\mathcal{H}_x]_j^i = 0;
\]

\[i = 1, \ldots, n; \quad j, \beta = 1, \ldots, n_x; \quad \alpha = 1, \ldots, n_y\]

- Note that the derivatives of \mathcal{H} evaluated at $(y, y', x, x') = (\bar{y}, \bar{y}, \bar{x}, \bar{x})$ are known.

- Then, we have a system of $n \times n_x$ quadratic equations in the $n \times n_x$ unknowns given by the elements of g_x and h_x.

- We can solve with a standard quadratic matrix equation solver.
Solving the system II

- \(g_\lambda \) and \(h_\lambda \) are the solution to the \(n \) equations:

\[
[F_\lambda(\bar{x}; 0)]^i = \mathbb{E}_t\{[\mathcal{H}_y]^i\alpha [g_x]^\alpha [h_\lambda]^\beta + [\mathcal{H}_y]^i\alpha [g_x]^\alpha [\eta]^\beta [\epsilon']^\phi + [\mathcal{H}_y]^i\alpha [g_\lambda]^\alpha + [\mathcal{H}_y]^i\alpha [g_\lambda]^\alpha + [\mathcal{H}_x]^i\beta [h_\lambda]^\beta + [\mathcal{H}_x]^i\beta [\eta]^\beta [\epsilon']^\phi\}
\]

\[i = 1, \ldots, n; \quad \alpha = 1, \ldots, n_y; \quad \beta = 1, \ldots, n_x; \quad \phi = 1, \ldots, n_\epsilon. \]

- Then:

\[
[F_\lambda(\bar{x}; 0)]^i = [\mathcal{H}_y]^i\alpha [g_x]^\alpha [h_\lambda]^\beta + [\mathcal{H}_y]^i\alpha [g_\lambda]^\alpha + [\mathcal{H}_y]^i\alpha [g_\lambda]^\alpha + [f_x]^i\beta [h_\lambda]^\beta = 0;
\]

\[i = 1, \ldots, n; \quad \alpha = 1, \ldots, n_y; \quad \beta = 1, \ldots, n_x; \quad \phi = 1, \ldots, n_\epsilon. \]

- Certainty equivalence: linear and homogeneous equation in \(g_\lambda \) and \(h_\lambda \). Thus, if a unique solution exists, it satisfies:

\[
\begin{align*}
h_\lambda &= 0 \\
g_\lambda &= 0
\end{align*}
\]
Second-order approximation I

The second-order approximations to g around $(x; \lambda) = (\bar{x}; 0)$ is

$$[g(x; \lambda)]^i = [g(\bar{x}; 0)]^i + [g_x(\bar{x}; 0)]^i_a[(x - \bar{x})]_a + [g_\lambda(\bar{x}; 0)]^i[\lambda]$$
$$+ \frac{1}{2} [g_{xx}(\bar{x}; 0)]^i_{ab}[(x - \bar{x})]_a[(x - \bar{x})]_b$$
$$+ \frac{1}{2} [g_{x\lambda}(\bar{x}; 0)]^i_a[(x - \bar{x})]_a[\lambda]$$
$$+ \frac{1}{2} [g_{\lambda x}(\bar{x}; 0)]^i_a[(x - \bar{x})]_a[\lambda]$$
$$+ \frac{1}{2} [g_{\lambda\lambda}(\bar{x}; 0)]^i[\lambda][\lambda]$$

where $i = 1, \ldots, n_y$, $a, b = 1, \ldots, n_x$, and $j = 1, \ldots, n_x$.
The second-order approximations to h around $(x; \lambda) = (\bar{x}; 0)$ is

$$[h(x; \lambda)]^i = [h(\bar{x}; 0)]^i + [h_x(\bar{x}; 0)]^i_a[(x - \bar{x})]_a + [h_\lambda(\bar{x}; 0)]^i[\lambda]$$

$$+ \frac{1}{2} [h_{xx}(\bar{x}; 0)]^i_{ab}[(x - \bar{x})]_a[(x - \bar{x})]_b$$

$$+ \frac{1}{2} [h_{x\lambda}(\bar{x}; 0)]^i_a[(x - \bar{x})]_a[\lambda]$$

$$+ \frac{1}{2} [h_{\lambda x}(\bar{x}; 0)]^i_a[(x - \bar{x})]_a[\lambda]$$

$$+ \frac{1}{2} [h_{\lambda\lambda}(\bar{x}; 0)]^i[\lambda][\lambda],$$

where $i = 1, \ldots, n_y$, $a, b = 1, \ldots, n_x$, and $j = 1, \ldots, n_x$.
The unknowns of these expansions are

\[
[g_{xx}]^i_{ab}, [g_{x\lambda}]^i_a, [g_{\lambda x}]^i_a, [g_{\lambda\lambda}]^i, [h_{xx}]^j_{ab}, [h_{x\lambda}]^j_a, [h_{\lambda x}]^j_a, [h_{\lambda\lambda}]^j.
\]

These coefficients can be identified by taking the derivative of \(F(x; \lambda) \) with respect to \(x \) and \(\lambda \) twice and evaluating them at \((x; \lambda) = (\bar{x}; 0) \).

By the arguments provided earlier, these derivatives must be zero.
We use $F_{xx}(\bar{x}; 0)$ to identify $g_{xx}(\bar{x}; 0)$ and $h_{xx}(\bar{x}; 0)$:

$$[F_{xx}(\bar{x}; 0)]^i_{jk} =$$

$$([H_{y'y'}]^i_{\alpha\gamma}[g_x]^\gamma_k[h_x]^\delta_k + [H_{y'y}]^i_{\alpha\gamma}[g_x]^\gamma_k + [H_{y'x}^i_{\alpha\delta}[h_x]^\delta_k + [H_{y'x}^i_{\alpha k}) [g_x]^\alpha_{\beta} [h_x]^\beta_j$$

$$+ [H_{y'}^i_{\alpha}[g_{xx}]^\alpha_{\beta\delta}[h_x]^\delta_k [h_x]^\beta_j + [H_{y'}^i_{\alpha}[g_x]^\alpha_{\beta} [h_{xx}]^\beta_{jk}$$

$$+ ([H_{yy'}^i_{\alpha\gamma}[g_x]^\gamma_k[h_x]^\delta_k + [H_{yy}^i_{\alpha\gamma}[g_x]^\gamma_k + [H_{yx}^i_{\alpha\delta}[h_x]^\delta_k + [H_{yx}^i_{\alpha k}) [g_x]^\alpha_{j}$$

$$+ [H_{y}^i_{\alpha}[g_{xx}]^\alpha_{jk}$$

$$+ ([H_{x'y'}^i_{\beta\gamma}[g_x]^\gamma_k[h_x]^\delta_k + [H_{x'y}^i_{\beta\gamma}[g_x]^\gamma_k + [H_{x'x}^i_{\beta\delta}[h_x]^\delta_k + [H_{x'x}^i_{\beta k}) [h_x]^\beta_j$$

$$+ [H_{x'}^i_{\beta}[h_{xx}]^\beta_{jk}$$

$$+ [H_{xy}^i_{j\gamma}[g_x]^\gamma_k[h_x]^\delta_k + [H_{xy}^i_{j\gamma}[g_x]^\gamma_k + [H_{xx}^i_{j\delta}[h_x]^\delta_k + [H_{xx}^i_{j k}] = 0;$$

$$i = 1, \ldots n, \quad j, k, \beta, \delta = 1, \ldots n_x; \quad \alpha, \gamma = 1, \ldots n_y.$$
Solving the system II

- We know the derivatives of \mathcal{H}.
- We also know the first derivatives of g and h evaluated at $(y, y', x, x') = (\bar{y}, \bar{y}, \bar{x}, \bar{x})$.
- Hence, the above expression represents a system of $n \times n_x \times n_x$ linear equations in then $n \times n_x \times n_x$ unknowns elements of g_{xx} and h_{xx}.

Similarly, $g_{\lambda\lambda}$ and $h_{\lambda\lambda}$ can be obtained by solving:

$$[F_{\lambda\lambda}(\bar{x}; 0)]^i = [H_y']^i_\alpha [g_{\lambda\lambda}]^\alpha_\beta [h_{\lambda\lambda}]^\beta + [H_y'y']^i_\alpha\gamma [g_{\lambda\lambda}]^\alpha_\delta [\eta]\delta_\xi [g_{\lambda\lambda}]^\beta_\phi [l]^\phi \xi$$

$$+[H_y'y']^i_\alpha\delta [\eta]\xi [g_{\lambda\lambda}]^\alpha_\beta [\eta]\phi [l]^\phi \xi$$

$$+[H_y'y']^i_\alpha [g_{\lambda\lambda}]^\alpha_\gamma [\eta]\delta_\xi [\eta]\phi [l]^\phi \xi + [H_y']^i_\alpha [g_{\lambda\lambda}]^\alpha$$

$$+[H_{y'y'}]_\alpha [g_{\lambda\lambda}]^\alpha + [H_{x'y'}]_\beta [h_{\lambda\lambda}]^\beta$$

$$+[H_{x'y'}]_\beta [g_{\lambda\lambda}]^\gamma [\eta]\delta_\xi [\eta]\phi [l]^\phi \xi$$

$$+[H_{x'y'}]_\beta [\eta]\delta_\xi [\eta]\phi [l]^\phi \xi = 0;$$

$$i = 1, \ldots, n; \alpha, \gamma = 1, \ldots, n_y; \beta, \delta = 1, \ldots, n_x; \phi, \xi = 1, \ldots, n_\epsilon$$

a system of n linear equations in the n unknowns given by the elements of $g_{\lambda\lambda}$ and $h_{\lambda\lambda}$.
Cross-derivatives

- The cross derivatives $g_{x\lambda}$ and $h_{x\lambda}$ are zero when evaluated at $(\bar{x}, 0)$.

- Why? Write the system $F_{\lambda x}(\bar{x}; 0) = 0$ taking into account that all terms containing either g_{λ} or h_{λ} are zero at $(\bar{x}, 0)$.

- Then:

$$[F_{\lambda x}(\bar{x}; 0)]^i_j = [H_y']^i_\alpha [g_x]^{\alpha}_\beta [h_{\lambda x}]^\beta_j + [H_y']^i_\alpha [g_{\lambda x}]^\alpha_\gamma [h_x]^{\gamma}_j + [H_y]^{i}_\alpha [g_{\lambda x}]^\alpha_j + [H_x']^{i}_\beta [h_{\lambda x}]^{\beta}_j = 0;$$

$$i = 1, \ldots, n; \quad \alpha = 1, \ldots, n_y; \quad \beta, \gamma, j = 1, \ldots, n_x.$$

- This is a system of $n \times n_x$ equations in the $n \times n_x$ unknowns given by the elements of $g_{\lambda x}$ and $h_{\lambda x}$.

- The system is homogeneous in the unknowns.

- Thus, if a unique solution exists, it is given by:

$$g_{\lambda x} = 0$$
$$h_{\lambda x} = 0$$
Structure of the solution

• The perturbation solution of the model satisfies:

\[g_{\lambda}(\bar{x}; 0) = 0 \]
\[h_{\lambda}(\bar{x}; 0) = 0 \]
\[g_{x\lambda}(\bar{x}; 0) = 0 \]
\[h_{x\lambda}(\bar{x}; 0) = 0 \]

• Standard deviation only appears in:

 1. A constant term given by \(\frac{1}{2} g_{\lambda\lambda} \lambda^2 \) for the control vector \(y_t \).

 2. The first \(n_x - n_\epsilon \) elements of \(\frac{1}{2} h_{\lambda\lambda} \lambda^2 \).

• Correction for risk.

• Quadratic terms in endogenous state vector \(x_1 \).

• Those terms capture non-linear behavior.
Higher-order approximations

• We can iterate this procedure as many times as we want.

• We can obtain n-th order approximations.

• Problems:
 1. Existence of higher order derivatives (Santos, 1992).
 3. Computational costs.