Financial Frictions and the Wealth Distribution

Jesús Fernández-Villaverde1 Samuel Hurtado2 Galo Nuño2

July 7, 2019

1University of Pennsylvania

2Banco de España
Motivation

Our goal

We investigate how, in a HA-model with financial frictions, idiosyncratic individual shocks interact with exogenous aggregate shocks to generate:

1. highly nonlinear behavior,
2. endogenously time-varying volatility and levels of leverage, and
3. endogenous aggregate risk.

To do so, we postulate, compute, and estimate a continuous-time model à la Basak and Cuoco (1998) and Brunnermeier and Sannikov (2014) with a financial expert and a non-trivial distribution of wealth among households.
Four main results

• Multiple stochastic steady states or SSS(s):
 • Depending on the volatility of the idiosyncratic and aggregate shocks, we can have one high-leverage SSS, one low-leverage SSS, or both.
 • Why? Interaction of precautionary behavior by households with desire to issue debt by the financial expert.
 • Higher micro turbulence leads to higher macro volatility, more inequality, and more leverage.

• Strong state-dependence on the responses of endogenous variables (GIRFs and DIRFs) to aggregate shocks.

• Long spells at different basins of attraction.
 • Multimodal and skewed ergodic distributions of endogenous variables, with endogenous time-varying volatility and aggregate risk.

• Thus, key importance of heterogeneity and breakdown of “quasi-aggregation.”
Methodological contribution

• New approach to (globally) compute and estimate with the likelihood approach HA models:

 1. Computation: we use tools from machine learning.
 2. Estimation: we use tools from inference with diffusions.

• Strong theoretical foundations and many practical advantages.

 1. Deal with a large class of arbitrary operators efficiently.
 2. Algorithm that is easy to code, stable, and massively parallel.
The firm

- Representative firm with technology:
 \[Y_t = K_t^\alpha L_t^{1-\alpha} \]

- Competitive input markets:
 \[w_t = (1 - \alpha) K_t^\alpha L_t^{-\alpha} \]
 \[r c_t = \alpha K_t^{\alpha-1} L_t^{1-\alpha} \]

- Aggregate capital evolves:
 \[\frac{dK_t}{K_t} = (\iota_t - \delta) dt + \sigma dZ_t \]

- Instantaneous return rate on capital \(dr_t^k \):
 \[dr_t^k = (r c_t - \delta) dt + \sigma dZ_t \]
The expert I

- Representative expert holds capital \hat{K}_t and issues risk-free debt \hat{B}_t at rate r_t to households.

- Expert can be interpreted as a financial intermediary.

- Financial friction: expert cannot issue state-contingent claims (i.e., outside equity) and must absorb all risk from capital.

- Expert's net wealth (i.e., inside equity): $\hat{N}_t = \hat{K}_t - \hat{B}_t$.

- Together with market clearing, our assumptions imply that economy has a risky asset in positive net supply and a risk-free asset in zero net supply.
The expert II

• The law of motion for expert's net wealth \hat{N}_t:

$$d\hat{N}_t = \hat{K}_t dr_t^k - r_t \hat{B}_t dt - \hat{C}_t dt$$

$$= \left[(r_t + \hat{\omega}_t (rc_t - \delta - r_t)) \hat{N}_t - \hat{C}_t\right] dt + \sigma \hat{\omega}_t \hat{N}_t dZ_t$$

where $\hat{\omega}_t \equiv \frac{\hat{K}_t}{\hat{N}_t}$ is the leverage ratio.

• The law of motion for expert's capital \hat{K}_t:

$$d\hat{K}_t = d\hat{N}_t + d\hat{B}_t$$

• The expert decides her consumption levels and capital holdings to solve:

$$\max_{\{\hat{C}_t, \hat{\omega}_t\}_{t \geq 0}} E_0 \left[\int_0^{\infty} e^{-\hat{\rho}t} \log(\hat{C}_t) dt \right]$$

given initial conditions and a NPG condition.
- Continuum of infinitely-lived households with unit mass.
- Heterogeneous in wealth a_m and labor supply z_m for $m \in [0, 1]$.
- $G_t(a, z)$: distribution of households conditional on realization of aggregate variables.
- Preferences:

$$E_0 \left[\int_0^\infty e^{-\rho t} \frac{c_t^{1-\gamma} - 1}{1 - \gamma} dt \right]$$

- We could have more general Duffie and Epstein (1992) recursive preferences.
- $\rho > \hat{\rho}$. Intuition from Aiyagari (1994) (and different from BGG class of models!).
• z_t units of labor valued at wage w_t.

• Labor productivity evolves stochastically following a Markov chain:

1. $z_t \in \{z_1, z_2\}$, with $z_1 < z_2$.
2. Ergodic mean of z_t is 1.
3. Jump intensity from state 1 to state 2: λ_1 (reverse intensity is λ_2).

• Households save $a_t \geq 0$ in the riskless debt issued by experts with an interest rate r_t. Thus, their wealth follows:

$$da_t = (w_tz_t + r_ta_t - c_t) \, dt = s(a_t, z_t, K_t, G_t) \, dt$$

• Optimal choice: $c_t = c(a_t, z_t, K_t, G_t)$.

• Total consumption by households:

$$C_t \equiv \int c(a_t, z_t, K_t, G_t) \, dG_t (da, dz)$$
Market clearing

1. Total amount of labor rented by the firm is equal to labor supplied:

 \[L_t = \int zdG_t = 1 \]

 Then, total payments to labor are given by \(w_t \).

2. Total amount of debt of the expert equals the total households’ savings:

 \[B_t \equiv \int adG_t (da, dz) = \hat{B}_t \]

 with law of motion \(d\hat{B}_t = dB_t = (w_t + r_t B_t - C_t) \, dt \).

3. The total amount of capital in this economy is owned by the expert:

 \[K_t = \hat{K}_t \]

 Thus, \(d\hat{K}_t = dK_t = \left(Y_t - \delta K_t - C_t - \hat{C}_t \right) dt + \sigma K_t dZ_t \) and \(\hat{\omega}_t = \frac{K_t}{\hat{N}_t} \), where \(\hat{N}_t = N_t = K_t - B_t \).

4. Also, we get:

 \[\iota_t = \frac{Y_t - C_t - \hat{C}_t}{K_t} \]
• The households distribution \(G_t(a, z) \) has density (i.e., the Radon-Nikodym derivative) \(g_t(a, z) \).

• The dynamics of this density conditional on the realization of aggregate variables are given by the Kolmogorov forward (KF; aka Fokker–Planck) equation:

\[
\frac{\partial g_{it}}{\partial t} = -\frac{\partial}{\partial a} \left(s(a_t, z_t, K_t, G_t) g_{it}(a) \right) - \lambda_i g_{it}(a) + \lambda_j g_{jt}(a), \quad i \neq j = 1, 2
\]

where \(g_{it}(a) \equiv g_t(a, z_i), \quad i = 1, 2 \).

• The density satisfies the normalization:

\[
\sum_{i=1}^{2} \int_{0}^{\infty} g_{it}(a) da = 1
\]
An equilibrium in this economy is composed by a set of prices \(\{w_t, rc_t, r_t, r^k_t\}_{t \geq 0} \), quantities \(\{K_t, N_t, B_t, \hat{C}_t, c_{mt}\}_{t \geq 0} \), and a density \(\{g_t (\cdot)\}_{t \geq 0} \) such that:

1. Given \(w_t, r_t, \) and \(g_t \), the solution of the household \(m \)'s problem is \(c_t = c (a_t, z_t, K_t, G_t) \).

2. Given \(r^k_t, r_t, \) and \(N_t \), the solution of the expert's problem is \(\hat{C}_t, K_t, \) and \(B_t \).

3. Given \(K_t \), firms maximize their profits and input prices are given by \(w_t \) and \(rc_t \).

4. Given \(w_t, r_t, \) and \(c_t, g_t \) is the solution of the KF equation.

5. Given \(g_t \) and \(B_t \), the debt market clears.
• First, we proceed with the expert’s problem. Because of log-utility:

\[\hat{C}_t = \hat{\rho} N_t \]

\[\omega_t = \hat{\omega}_t = \frac{rc_t - \delta - r_t}{\sigma^2} \]

• We can use the equilibrium values of \(rc_t \), \(L_t \), and \(\omega_t \) to get the wage:

\[w_t = (1 - \alpha) K_t^\alpha \]

the rental rate of capital:

\[rc_t = \alpha K_t^{\alpha - 1} \]

and the risk-free interest rate:

\[r_t = \alpha K_t^{\alpha - 1} - \delta - \sigma^2 \frac{K_t}{N_t} \]
• Expert’s net wealth evolves as:

\[
dN_t = \left(\frac{\alpha K_t^{\alpha-1} - \delta - \hat{\rho} - \sigma^2 \left(1 - \frac{K_t}{N_t} \right) K_t}{N_t} \right) N_t dt + \sigma K_t \mu_t^N(B_t, N_t) dZ_t
\]

• And debt as:

\[
 dB_t = \left((1 - \alpha) K_t^\alpha + \left(\alpha K_t^{\alpha-1} - \delta - \sigma^2 \frac{K_t}{N_t} \right) B_t - C_t \right) dt
\]

• Nonlinear structure of law of motion for \(dN_t \) and \(dB_t \).

• We need to find:

\[
C_t = \int c(a_t, z_t, K_t, G_t) g_t(a, z) \, da \, dz
\]

\[
\frac{\partial g_{it}}{\partial t} = -\frac{\partial}{\partial a} \left(s(a_t, z_t, K_t, G_t) g_{it}(a) \right) - \lambda_i g_{it}(a) + \lambda_j g_{jt}(a), \ i \neq j = 1, 2
\]
The DSS

- No aggregate shocks ($\sigma = 0$), but we still have idiosyncratic household shocks.
- Then:

$$ r = r^k_t = r_c - \delta = \alpha K_t^{\alpha-1} - \delta $$

and

$$ dN_t = \left[(r_c - \delta) K_t - r_t B_t - \hat{\rho} N_t \right] dt $$

$$ = \left(\alpha K_t^{\alpha-1} - \delta - \hat{\rho} \right) N_t dt $$

- Since in a steady state the drift of expert’s wealth must be zero, we get the steady state capital

$$ K = \left(\frac{\hat{\rho} + \delta}{\alpha} \right) \frac{1}{\alpha-1} $$

and the risk-free rate

$$ r = \hat{\rho} < \rho $$

- The value of N is given by the dispersion of the idiosyncratic shocks (no analytic expression).
How do we find aggregate consumption?

- As in Krusell and Smith (1998), households only track a finite set of \(n \) moments of \(g_t(a, z) \) to form their expectations.

- No exogenous state variable (shocks to capital encoded in \(K \)). Instead, two endogenous states.

- For ease of exposition, we set \(n = 1 \). The solution can be trivially extended to the case with \(n > 1 \).

- More concretely, households consider a perceived law of motion (PLM) of aggregate debt:

\[
\frac{dB_t}{dt} = h(B_t, N_t)
\]

where

\[
h(B_t, N_t) = \frac{\mathbb{E}[dB_t|B_t, N_t]}{dt}
\]
A new HJB equation

- Given the PLM, the household’s Hamilton-Jacobi-Bellman (HJB) equation becomes:

\[
\rho V_i(a, B, N) = \max_c \frac{c^{1-\gamma} - 1}{1-\gamma} + s \frac{\partial V_i}{\partial a} + \lambda_i [V_j(a, B, N) - V_i(a, B, N)] \\
+ h(B, N) \frac{\partial V_i}{\partial B} + \mu^N(B, N) \frac{\partial V_i}{\partial N} + \frac{[\sigma^N(B, N)]^2}{2} \frac{\partial^2 V_i}{\partial N^2}
\]

\(i \neq j = 1, 2\), and where

\[s = s(a, z, N + B, G)\]

- We solve the HJB with a first-order, implicit upwind scheme in a finite difference stencil.

- Sparse system. Why?

- Alternatives for solving the HJB? Finite volumes, fem, meshfree methods,
An algorithm to find the PLM

1) Start with h_0, an initial guess for h.

2) Using current guess h_n, solve for the household consumption, c_m, in the HJB equation.

3) Construct a time series for B_t by simulating by J periods the cross-sectional distribution of households with a constant time step Δt (starting at DSS and with a burn-in).

4) Given B_t, find N_t, K_t, and:

$$\hat{h} = \left\{ \hat{h}_1, \hat{h}_2, ..., \hat{h}_j \right\} = \left\{ \frac{B_{t_j+\Delta t} - B_{t_j}}{\Delta t}, ..., \hat{h}_J \right\}$$

5) Define $S = \{ s_1, s_2, ..., s_J \}$, where $s_j = \{ s_j^1, s_j^2 \} = \{ B_{t_j}, N_{t_j} \}$.

6) Use $\left(\hat{h}, S \right)$ and a universal nonlinear approximator to obtain h_{n+1}, a new guess for h.

7) Iterate steps 2)-6) until h_{n+1} is sufficiently close to h_n.
A universal nonlinear approximator

• We approximate the PLM with a neural network (NN):

\[h(s; \theta) = \theta_0^1 + \sum_{q=1}^{Q} \theta_1^q \phi \left(\theta_0^{2,q} + \sum_{i=1}^{D} \theta_2^{i,q} s^i \right) \]

where \(Q = 16 \), \(D = 2 \), and \(\phi(x) = \log(1 + e^x) \).

• \(\theta \) is selected as:

\[\theta^* = \arg \min_{\theta} \frac{1}{2} \sum_{j=1}^{J} \left\| h(s_j; \theta) - \hat{h}_j \right\|^2 \]

• Easy to code, stable, and good extrapolation properties.

• You can flush the algorithm to a graphics processing unit (GPU) or a tensor processing unit (TPU) instead of a standard CPU.
Two classic (yet remarkable) results

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A neural network with at least one hidden layer can approximate any Borel</td>
</tr>
<tr>
<td>measurable function mapping finite-dimensional spaces to any desired degree of</td>
</tr>
<tr>
<td>accuracy.</td>
</tr>
</tbody>
</table>

- Assume, as well, that we are dealing with the class of functions for which the Fourier transform of their gradient is integrable.

<table>
<thead>
<tr>
<th>Breaking the curse of dimensionality: Barron (1993)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A one-layer NN achieves integrated square errors of order $O(1/Q)$, where Q is the number of nodes. In comparison, for series approximations, the integrated square error is of order $O(1/(Q^2/D))$ where D is the dimensions of the function to be approximated.</td>
</tr>
</tbody>
</table>

- We actually rely on more general theorems by Leshno et al. (1993) and Bach (2017).
Estimation with aggregate variables I

- **$D + 1$** observations of Y_t at fixed time intervals $[0, \Delta, 2\Delta, .., D\Delta]$:

 \[
 Y_0^D = \{ Y_0, Y_\Delta, Y_{2\Delta}, .., Y_D \}.
 \]

- More general case: sequential Monte Carlo approximation to the Kushner-Stratonovich equation (Fernández-Villaverde and Rubio Ramírez, 2007).

- We are interested in estimating a vector of structural parameters Ψ.

- Likelihood:

 \[
 \mathcal{L}_D (Y_0^D | \Psi) = \prod_{d=1}^{D} p_Y (Y_{d\Delta} | Y_{(d-1)\Delta}; \Psi),
 \]

 where

 \[
 p_Y (Y_{d\Delta} | Y_{(d-1)\Delta}; \Psi) = \int f_{d\Delta}(Y_{d\Delta}, B) dB,
 \]

 given a density, $f_{d\Delta}(Y_{d\Delta}, B)$, implied by the solution of the model.
• After finding the diffusion for Y_t, $f^d_t(Y, B)$ follows the Kolmogorov forward (KF) equation in the interval $[(d - 1)\Delta, d\Delta]$:

$$\frac{\partial f_t}{\partial t} = -\frac{\partial}{\partial Y} \left[\mu^Y(Y, B)f_t(Y, B) \right] - \frac{\partial}{\partial B} \left[h(B, Y^{\frac{1}{\alpha}} - B)f^d_t(Y, B) \right] + \frac{1}{2} \frac{\partial^2}{\partial Y^2} \left[(\sigma^Y(Y))^2 f_t(Y, B) \right]$$

• The operator in the KF equation is the adjoint of the infinitesimal generator of the HJB.

• Thus, the solution of the KF equation amounts to transposing and inverting a sparse matrix that has already been computed.

• Our approach provides a highly efficient way of evaluating the likelihood once the model is solved.

• Conveniently, retraining of the neural network is easy for new parameter values.
Parametrization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Source/Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.35</td>
<td>capital share</td>
<td>standard</td>
</tr>
<tr>
<td>δ</td>
<td>0.1</td>
<td>yearly capital depreciation</td>
<td>standard</td>
</tr>
<tr>
<td>γ</td>
<td>2</td>
<td>risk aversion</td>
<td>standard</td>
</tr>
<tr>
<td>ρ</td>
<td>0.05</td>
<td>households’ discount rate</td>
<td>standard</td>
</tr>
<tr>
<td>λ_1</td>
<td>0.986</td>
<td>transition rate u.-to-e.</td>
<td>monthly job finding rate of 0.3</td>
</tr>
<tr>
<td>λ_2</td>
<td>0.052</td>
<td>transition rate e.-to-u.</td>
<td>unemployment rate 5 percent</td>
</tr>
<tr>
<td>y_1</td>
<td>0.72</td>
<td>income in unemployment state</td>
<td>Hall and Milgrom (2008)</td>
</tr>
<tr>
<td>y_2</td>
<td>1.015</td>
<td>income in employment state</td>
<td>$\mathbb{E}(y) = 1$</td>
</tr>
<tr>
<td>$\hat{\rho}$</td>
<td>0.0497</td>
<td>experts’ discount rate</td>
<td>$K/N = 2$</td>
</tr>
</tbody>
</table>
Figure 1: Loglikelihood over σ.
(a) $h(B, N)$ for different values of B

(b) $h(B, N)$ for different values of N

(c) The perceived law of motion, $h(B, N)$
(a) $\mu^N(B, N)$ for different values of B

(b) $\mu^N(B, N)$ for different values of N

(c) Law of motion for N, $\mu^N(B, N)$
Basin of attraction, LL-SSS

Basin of attraction, HL-SSS
<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma) \text{basin } HL</td>
<td>1.5807</td>
<td>0.0193</td>
<td>-0.0831</td>
<td>2.8750</td>
</tr>
<tr>
<td>(\gamma) \text{basin } LL</td>
<td>1.5835</td>
<td>0.0166</td>
<td>0.16417</td>
<td>3.1228</td>
</tr>
<tr>
<td>(r) \text{basin } HL</td>
<td>4.92</td>
<td>0.3360</td>
<td>0.1725</td>
<td>2.8967</td>
</tr>
<tr>
<td>(r) \text{basin } LL</td>
<td>4.88</td>
<td>0.2896</td>
<td>-0.0730</td>
<td>3.0905</td>
</tr>
<tr>
<td>(w) \text{basin } HL</td>
<td>1.0274</td>
<td>0.0125</td>
<td>-0.0831</td>
<td>2.875</td>
</tr>
<tr>
<td>(w) \text{basin } LL</td>
<td>1.0293</td>
<td>0.0108</td>
<td>0.1642</td>
<td>3.1228</td>
</tr>
</tbody>
</table>

Table 1: Moments conditional on basin of attraction.
Average duration of spells on HL-SSS basin: 55.3962 years

Average duration of spells on LL-SSS basin: 9.5983 years
(a) Ergodic distribution \(f(B, N) \)

(b) Marginal distribution of debt \((B) \)

(c) Marginal distribution of equity \((N) \)
A graph showing the leverage (K/N) as a function of another variable (z1). The data points are plotted for different categories labeled as LL-SSS, Unstable SSS, HL-SSS, and DSS. The curve suggests a decreasing relationship between leverage and z1.
(a) $f(B, N)$ with $z_1 = 0.67$

(b) $f(B, N)$ with $z_1 = 0.7$

(c) $f(B, N)$ with $z_1 = 0.72$

(d) $f(B, N)$ with $z_1 = 0.77$

(e) $f(B, N)$ with $z_1 = 0.8$

(f) $f(B, N)$ with $z_1 = 0.82$

(g) $f(B, N)$ with $z_1 = 0.87$

(h) $f(B, N)$ with $z_1 = 0.9$

(i) $f(B, N)$ with $z_1 = 0.92$
(a) Debt (B) vs. Capital (K) for different values of z_1:
- $z_1 = 0.72$
- $z_1 = 0.77$
- $z_1 = 0.82$
- $z_1 = 0.87$
- $z_1 = 0.92$
- $z_1 = 0.97$

(b) Equity (N) vs. Capital (K) for different values of z_1:
- $z_1 = 0.72$
- $z_1 = 0.77$
- $z_1 = 0.82$
- $z_1 = 0.87$
- $z_1 = 0.92$
- $z_1 = 0.97$
$z_1 = 0.0067$

$z_1 = 0.0072$

$z_1 = 0.0077$

$z_1 = 0.0082$

$z_1 = 0.0087$

$z_1 = 0.0092$

- **LL-SSS**
- **Unstable SSS**
- **HL-SSS**
Concluding remarks

• We have shown how a continuous-time model with a non-trivial distribution of wealth among households and financial frictions can be built, computed, and estimated.

• Four important economic lessons:

 1. Multiplicity of SSS(s).

 2. State-dependence of GIRFs and DIRFs.

 3. Long spells at different basins of attraction.

 4. Importance of household heterogeneity.

• Many avenues for extension.