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Business Cycle

U.S. economy fluctuates over time.

How can we build models to think about it?

Do we need different models than before to do so? Traditionally the
answer was yes. Nowadays the answer is no.

We will focus on equilibrium models of the cycle.



Business Cycles and Economic Growth

How different are long-run growth and the business cycle?

Changes in Output per Worker

Secular Growth

Business Cycle

Due to changes in capital 1/3 0
Due to changes in labor 0 2/3
Due to changes in productivity | 2/3 1/3

We want to use the same models with a slightly different focus.




Stochastic Neoclassical Growth Model

Cass (1965) and Koopmans (1965).

Brock and Mirman (1972).

Kydland and Prescott (1982).

Hansen (1985).

King, Plosser, and Rebelo (1988a,b).
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References

King, Plosser, and Rebelo (1988a,b).

Chapter by Cooley and Prescott in Cooley's Frontier of Business Cycle
Research (in fact, you want to read the whole book).

Chapter by King and Rebelo (Resurrection Real Business Cycle Mod-
els) in Handbook of Macroeconomics.

Chapter 12 in Ljungqvist and Sargent.



Preferences

Preferences:
Bo > 6 1+ ) (e (7). ()
t=0

for c; (st) >0, I (St) € (0,1)

where n is population growth.

Standard technical assumptions (continuity, differentiability, Inada con-
ditions, etc...).

However, those still leave many degrees of freedom.

Restrictions imposed by economic theory and empirical observation.
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Restrictions on Preferences

Three observations:

1. Risk premium relatively constant=CRRA utility function.

2. Consumption grows at a roughly constant rate.

3. Stationary hours after the SWW=-Marginal rate of substitution be-
tween labor and consumption must be linear in consumption.

Uce t
—:wt(s):>
uj

et (') £ (e (') =we (s') =
uleo f (lt (St)) = plw
Explanation: income and substitution effect cancel out.
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Parametric Family

e Only parametric that satisfy conditions (King, Plosser, and Rebelo,
1988a,b):

1—
(C'”(ll))_;_l if v > 0,7 #1

logc+ logv (l) ifyv = 1

e Restrictions on v (I) :
1. veC?

2. Depending on 7:
(a) If v =1, logwv (I) must be increasing and concave.

(b) If v < 1, v1™ must be increasing and concave.
(c) If v > 1, v177 must be decreasing and convex.

3. —yu (1)v" (1) > (1 — 27) [v' (1)]° to ensure overall concavity of w.
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Three Useful Examples

1. CRRA-Cobb Douglass:

o))

t=0 1 —

2. Log-log (limit as v — 1):

o350+ foge )+ viog (1 10 (+))

t=0

3. Log-CRRA

00 r 1+~
EOZﬁt(l-l-n)t{logct (375) _wlt< ) }

t=0 1+
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Household Problem

Let me pick log-log for simplicity:

Eq i Bt (1 + n)t {Iog ct (St) + ¢ log (1 — (St»}

t=0

Budget constraint:

Ct (8t> + x¢ (St) = Wy (st) l4 <st) + 74 (st) k¢ (st_1> , Vi>0
Complete markets and Arrow securities.

We can price any security.
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Problem of the Firm |

Neoclassical production function in per capita terms:

1\« 11—«
Yt (st) = etk (st 1) ((1 + )bl <St>)
Note: labor-augmenting technological change (Phelps, 1966).

We are setting up a model where the firm rents the capital from the
household.

However, we could also have a model where firms own the capital and
the households own shares of the firms.

Both environments are equivalent with complete markets.
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Problem of the Firm |l

e By profit maximization:
ae“tk; (St_l)a_l ((1 + )bl (st»l_a = 7y (st)

(1 — «)ethky (st_l)a ((1 + )iy (st))_a = wy <3t>

e Investment x; induces a law of motion for capital:

(14+n) ki (St) = (1 —9) k¢ (st_l) + x¢ (St)
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Evolution of the technology

St — 2t

z¢+ changes over time.

It follows the AR(1) process:

Interpretation of 1 and p.

2t = PZg—1 T Ot

€t NN(Oal)
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Arrow-Debreu Equilibrium

A Arrow-Debreu equilibrium are prices {p;(st), wi(s?), ﬂ(st)}fio stegt and
allocations {&/(s?), l;(s?), Et(St)}fio stegt such that:
1. Given {ﬁt(st)};ﬁo,stesta {ét(st),lAt(st),Et(st)}fiojstest solves
oo
_ max Eq Z Bt (1 + n)t {Iog Ct (st) + 1 log (1 — Iy (st))}
{5t(8t),lt(St),kt(St)}fioﬁtest t=0
o
st Y > pi(sh) (er(sh) + (1 +7n) kra ()
t=0 st St
- t
<3 Y el (Be(sNle(s") + (Fels") + 1= 6) keyr (s))
t=0 ste St

ct(st) > 0 for all ¢t
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2. Firms pick {l;(s?), Et(St)}fio stegt to minimize costs:

aethky (St_l)a_l ((1 + ,u)tlAt (st))l_a = 7y <3t>
(1 — ) e’k (st_l)a ((1 + )ty (st))_a = Wy (st)
3. Markets clear:
éy(s") + (1 + n) kyyq (St) =

etk (st_l)a ((1 + )ty (St))l_a +(1—6) ks (st_l)
for all ¢, all ste st
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Sequential Markets Equilibrium 1.

e We introduce Arrow securities. -

oo

e Household problem: {ct(st),lt(st),kt(st), {at+1(3t>5t+1)}

solve

8t+1€5}tzo,st65t

max [Eg i Bt (1+ n)t {Iog Ct <3t> + ¢ log (1 — (St)>}

t=0
st ci(s) + (1 +n) kg (s) + Y Quls’, ser1)arya(st, sepa)

St41|s!
< wy(s")g(s") + (?t(st) +1 - 5) Kit1 (8t> + ag(s")
ct(s?) > 0 for all ¢, s € S
t t+1 t t
ar+1(s", sp41) > —Apr1(s77) forall t,s" € S

e Role of A;1(s'1).
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Sequential Markets Equilibrium 11
A SM equilibrium is prices for Arrow securities {@t(st, St+1)}

allocations {é%(st), lAt(st), Et(st), {&t—f—l(sta 3t+1)}

put prices {@t(st),ﬂ(st)}fio stegtr such that:

00
t=0,st€St 5,11 €S"
00

} and in-
St4+1€5) 1=0,ste St

1. Given {Qt(st’St+1)}§io,stest,st+1es and {’lﬁt(st),?t(st)}fioﬁtegt
oo

{6t(3t)7lt(5t)akt(st)a{&t+1(3t73t—|—1)}8t+165}t ; t65t50|ve the prob-
) ,S

lem of the household.
2. Firms pick {l;(s?), Et(st)}fio stegt to minimize costs:

aethky (st_1>a_1 ((1 + ,u)tlAt (st))l_a = 7y <3t>

(1 — ) etk (st_1>a ((1 + )ty (st))_a — Wy (st)
3. Markets clear for all ¢, all st € St

er(s") (L + n) g (s7) = e (s71) " (L 4+ )P0 (7)) (2 = ) Ry (s1)
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Recursive Competitive Equilibrium

Often, it is convenient to use a third alternative competitive equilib-
rium concept: Recursive Competitive Equilibrium (RCE).

Developed by Mehra and Prescott (1980).

RCE emphasizes the idea of defining an equilibrium as a set of func-
tions that depend on the state of the model.

Two interpretation for states:
1. Pay-off relevant states: capital, productivity, .....

2. Other states: promised utility, reputation, ....

Recursive notation: = and z’.
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Value Function for the Household
e Individual state: k.
e Aggregate states: K and z.

e Recursive problem:
v(k,K,z)= ma>l<{|ogc +¢Ylog(l1—1)+ 6 (1+n)Ev (k’, K, z/) |z}
c,x,

st.c+rx=r(K,2)k+w(K,z)l
(1+n)E=1-0)k+=z
(1+n)K'=(1 -6 K+ X (K,?2)

/ /
zZ = pz + o¢€
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Definition of Recursive Competitive Equilibrium

A RCE for our economy is a value function v (k, K, z), households policy
functions, c(k, K, z),x(k, K, z), and [ (k, K, z), aggregate policy func-
tions C' (K,z),X (K, z), and L (K, z), and price functions r (K, z) and
w (K, z) such that those functions satisfy:

1. Recursive problem of the household.

2. Firms maximize:

ae” K (14 p) L(K,2)1™ = r(K,=2)
(1-a)e"K*((1+p) L(K,2) " = w(K,2)

3. Consistency of individual and aggregate policy functions, c(k, K, z) =
C(K,z), z(k,K,z) =X (K,2),l(k,K,z)=L(K,z2),V(K,z2).

4. Aggregate resource constraint:

C(K,z)+ X (K,z) = *K*((1 + p) L (K,2))179, V(K,2)
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Equilibrium Conditions

1 1
o) ey () (resa (1) +1-9)

o)

1 — 1 (st)
(o) = aethy (1) (@ 4w (1))
() = @ 0 (42 01 ()
( )+(1+n)kt+1< )—

e“tky (st_l)a ((1 + )bl (st>)1_a + (1 —9) k¢ (st_1>

2t = pzt—1 + O&¢
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Scaling the Economy |
e Economy has long-run growth rate equal to (n + ).
e Per capita terms, the economy grows at a rate L.
e Hence, the model is non-stationary and we need to rescale it.

e General condition: transform every non-stationary variable into a sta-
tionary one by dividing it by (1 + ,u)t

Tt (st) i (St)

~ 1+ p)
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Scaling the Economy ||

We can rewrite the preferences (and adding a suitable constant):

S it oy ()0 ()

t=0 1 —7

o0 b (st) v (1 (st =7 _
Eotzgﬁt(l_l_n)t«l—i_’u) t( 2-_(;( ))) 1

Eo 3 8 (1-+n)! (14 )1 (e (1) v (1 ()" —1

t=0 1 —n
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Scaling the Economy IlI

We can rewrite the preferences (and adding a suitable constant):and
oo
Eo Y A" (1+n) {logct (') + logv (I (s')) }
t=0

~ o - B (14 n) {log (14 )' @ () +1ogw (1 (+1))} =
t=0

Eq io: B (1 +n) {log (st) + logw (1t (')}

t=0
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Scaling the Economy IV

e The resource constraint, diving both sides by (1 + )

G (s1) + (L4 n) (14 ) pyr (s) =
eztEt (St—l)a I, (St>1—a n (1 B 5) Et (St—l)

e Input prices:
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A New Competitive Equilibrium
e We can define a competitive equilibrium in the rescaled economy.

e Equilibrium conditions (log case):

(14 p) 1
Ct (;) B 6Et5t+1 ( t+1> (rtﬂ (Stﬂ) +1- 5)

. 5’5( ) St)

1 — lt (St)
re (st) = ety (s 1)04 L (St)l—a
0 () = (0 e (1)1, (o)

G (s7) + (L4 n) (L4 ) R (s7) = e (1) 1 ()" + (1= 6) Ry (s
2t = Pzt—1 + O&t
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Existence and Welfare Theorems

e There is a unique equilibrium in this economy once we impose the

right transversality condition.

e Both welfare theorems hold.

e We can move back and forth between the market equilibrium and the

social planner’s problem.
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Behavior of the Model

e We want to characterize behavior of the model.

e Three type of dynamics:
1. Balanced growth path.
2. Transitional dynamics (Cass, 1965, and Koopmans, 1965).

3. Ergodic behavior.
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Stochastic Behavior

We have an initial shock: productivity changes.

We have a transmission mechanism: intertemporal substitution and
capital accumulation.

We can look at a simulation from this economy.

Why only a simulation?

To simulate the model we need:
1. To select parameter values.

2. To compute the solution of the model.
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Selecting Parameter Values

e How do we determine the parameter values?

e Two main approaches:
1. Calibration.

2. Statistical methods: Methods of Moments, ML, Bayesian.

e Advantages and disadvantages.
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Calibration as an Empirical Methodology
Emphasized by Lucas (1980) and Kydland and Prescott (1982).

Two sources of information:
1. Well accepted microeconomic estimates.

2. Matching long-run properties of the economy.
Problems of 1. and 2.

References:

1. Browning, Hansen and Heckman (1999) chapter in Handbook of
Macroeconomics.

2. Debate in Journal of Economic Perspectives, Winter 1996: Kyd-
land and Prescott, Hansen and Heckman, Sims.
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Calibration of the Standard Model

Parameters: 3, ¥, «a, 9, u, n, p, o.

n: population growth in the data.

w: per capita long run growth.

«: capital income. Proprietor’'s income?
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Balanced Growth Path

e Equilibrium conditions in the BGP:

14+ u
C

—B (r+1-9)

~

C -
YT
r — a%a—lll—a
w=(1—a)k*™®

C+(1+n)Q+p)k=k"1"+1 -6k

e A system of 5 equations on 5 unknowns.
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Three Conditions of the Balanced Growth Path

e First:
Y 1
re—ad = 1TE s
k B
e Also:
1+n)1+pk=1-0)k+z=
T
5:z—|—1—(1—|—n)(1—|—,u)
e Finally,
c Uy C 1 —al —1
PN SN
1—1 [ Y WY [
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Using the Three Conditions to Calibrate the Model

e First, we use data on hours of work to find

e Second, give data and

5:%+1—(1+n)(1—|—,u)

we determine 4.

e Finally, we get (3:
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Frisch Elasticity |

e Define the Frisch Elasticity as:

dlog
dlog w

c constant

e For our parametric family:

1—
(c9(1—l)1—9) 1
1_7 : l 0

1.

2. logc+ log (1 —1): 1T_l

14
3. Iogc—waTv: 1/7.
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Frisch Elasticity Il

e Empirical evidence is that [ =~ 1/3 (Ghez and Becker, 1975).

e Then, our Frisch Elasticity is 2.

e Empirical evidence:

1. Traditional view: MaCurdy (1981), Altonji (1986), Browning, Deaton
and Irish (1985) between 0 and 0.5.

2. Revisionist view: between 0.5 and 1.6 (Browning, Hansen, and
Heckman, 1999). Some estimates (Imai and Keane, 2004) even
higher (3.8).
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Equivalence between Utility Functions

e With logct + ¥ log (1 — I4), the static FOC is:
Ct

@Dl_lt:wt

1+’y
while with log ¢t — wﬁ, the static FOC is

wctlt — Wt

e Loglinearize both expressions:

cl
1 _ t+¢(1—l)2

I =~
_lt

38
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Yo (G +7lt) = wiy =
Gt + i

I
g

e If we calibrate the model to [ =~ 1/3:

1~
ct + —ly = wy
2
and hence, both utility functions are equivalent if we make v = 1L—l

In the case [ =~ 1/3, v =1/2.
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S

Last step is to calibrate

Obtain the Solow residual

Estimate p and o by OLS.

Problems of estimate.

olow Residual

2t = pzt—1 + OE¢

after a time trend has been removed.
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Solution Methods

e Value function iteration.

e Projection.

e Perturbation:
1. Generalization of linearization.

2. Dynare.
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General Structure of Linearized System
e There are many linear solvers. Fundamental equivalence.

e “A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily”
by Harald Uhlig.

e Given m states x¢+, n controls y;, and k exogenous stochastic processes
Zt+1, we have:

Axy+ Bxy_1+Cyr + Dz =0
By (Frii1+ Gry + Hry 1 + Jypp1 + Kyg + Lzg 1+ Mzg) =0
Eizir1 = Nz

where C is of size [ X n, [ > n and of rank n, that F' is of size
(m +n —1) X n, and that N has only stable eigenvalues.
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Policy Functions |

We guess policy functions of the form:

vt = Pry_1+ Qz
yt = Rxy 1+ Szt

where P, (), R, and S are matrices such that the computed equilibrium is
stable.
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Policy Functions |

For simplicity, suppose | = n. See Uhlig for general case (I have never be
in the situation where [ = n did not hold).

Then:

1. P satisfies the matrix quadratic equation:
(F—JCtA) PP~ (JCT'B-G+ KC'A)P—~KC !B+ H =0
The equilibrium is stable iff max (abs (eig (P))) < 1.

2. R is given by:
R=—-C (AP + B)
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3. ( satisfies:

N'® (F—JC'A) + I, ® (JR+ FP+ G — KC'A) vec(Q)
= vec ((JCT'D - L) N+ KC™'D — M)

4. S satisfies:

S=—-C"1(AQ + D)
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How to Solve Quadratic Equations

To solve
VP2 _TP_-O©=0

for the m X m matrix P:

1. Define the 2m X 2m matrices:

_ _[r e v oo
__[Im Om],andA_[Om Im]

2. Let s be the generalized eigenvector and A\ be the corresponding
generalized eigenvalue of = with respect to A. Then we can write
s’ = [\2/, x'] for some x € R™.
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3. If there are m generalized eigenvalues A\{, A\, ..., A, together with gen-

eralized eigenvectors s1,...,sm of = with respect to A, written as
s = [Aw;,aﬁﬂ for some z; € R™ and if (z1,..., zm) is linearly inde-
pendent, then:

P=qoAQ !
is a solution to the matrix quadratic equation where Q = [x1, ..., Tm]

and A = [M\{,...,A\m]. The solution of P is stable if max |\;| < 1.
Conversely, any diagonalizable solution P can be written in this way.
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Comparison with US economy

Simulated Economy output fluctuations are around 70% as big as

observed fluctuations.

Consumption is less volatile than output.

Investment is much more volatile.

Behavior of hours.
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Assessment of the Basic Real Business Model

It accounts for a substantial amount of the observed fluctuations.

It accounts for the covariances among a number of variables.

It has some problems accounting for the behavior of the hours worked.

More important question: where do productivity shocks come from?
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Negative Productivity Shocks

The model implies that half of the quarters we have negative technol-
ogy shocks.

Is this plausible? What is a negative productivity shocks?

Role of trend: negative shocks also include growth of technology below
the trend.

s.d. of shocks is 0.007. Mean quarter productivity growth is 0.0047
(to give us a 1.9% growth per year).

As a consequence, we would only observe negative technological shocks
when ¢4 < —0.0047.

This happens in the model around 25% of times. Comparison with
the data.
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Some Policy Implications

The basic model is Pareto-efficient.

Fluctuations are the optimal response to a changing environment.

Fluctuations are not a sufficient condition for inefficiencies or for gov-
ernment intervention.

In fact in this model the government can only worsen the allocation.

Recessions have a “cleansing” effect.

51



Asset Market Implications |

We will have the fundamental asset pricing equation:

o (Ct+1 (St+1> it (8t+1))

u (et (s7) 1t (s1))

If utility is separable and log in consumption:

Qi(s', sp41) = B (3t+1| St)

C St
Qt(stastﬂ):BW <St+1|st) tE )

Cri1 5t+1)

Now, ct (st) Is the equilibrium consumption.

t

Since ¢¢ (s ) is smooth in the model, Q(s?, s;1.1) will also be smooth.

Hence, we will have the standard equity premium puzzle.
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Asset Market Implications Il

Return to invest in an uncontingent bond sold at face value 1:

55— %) y (o

Cri1 (St+1

Return to invest in capital:

ms— 1)

By non-arbitrage:

o (1)

;S C(St) R (st) — 3

Cri1 (SH—l) Cir1 <8t+1)

Presence of capital ties down returns.

53
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Further Extensions

e \We can extend our model in sev_eral directions.

e Two objectives:

1.

Fix empirical problems.

2. Address additional questions.

e Examples:

1.

Indivisible labor supply.
Capacity utilization.
Investment Specific technological change.

Monopolistic Competition.
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Lotteries

Our first extension is to introduce lotteries: Rogerson (1988) and
Hansen (1985).

General procedure to deal with non-convexities.
For example, an agent can either work O hours or [* hours. Why?
Extensive versus intensive margin.

Then, expected utility:
pu(c1,1) + (1 — p)u(cz,0)
Resource constrain in the economy (law of large numbers):

pc1+(1—p)cap=c
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Aggregation
First order condition: wuc(c1,1*) = uc (e, 0).

For our log-log utility function logc + v log (1 — 1), we have

c=c] =¢C
Also, In the aggregate, we have that | = pl*.

Then, expected utility is
logc+ pylog (1 —1")+ (1 —p)logl = logc+ Al
where A = @DM.

14~
Note that this utility function belongs to the class logc — wl

~v = 0, i.e., with infinite Frisch elasticity.

56
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Capacity Utilization

In benchmark model, the short run elasticity of capital is zero while in
the long run is infinite.

Empirical evidence of use of machinery, number of shifts, or electricity
consumption.

Modified production function:

e () = € un (<9 b (5)) (0 00 ()"

where u; is the utilization rate.
Depreciation:

(s () = (1 (o () B (470) 20 4)
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Combining Both Extensions

e We can generate 70 percent of aggregate fluctuations with a s.d. of
0.003.

e How do we look at the Solow residual in this model?

e This implies negative technological growth in around 5 percent of quar-
ters, roughly observation in the data.
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Investment-Specific Technological Change
Greenwood, Herkowitz, and Krusell (1997 and 2000): importance of
technological change specific to new investment goods for understand-
ing postwar U.S. growth and aggregate fluctuations.
Observation: fall in the relative price of capital.

Implications for NIPA.

A simple way to model it:

(14+n) ki (st) = (1—9) k¢ (st_1> + vy (st>

where vy is the inverse of the relative price of capital.

Two different technological shocks with different implications.

59



Monopolistic Competition

Final good producer with competitive behavior.

Continuum of intermediate good producers with market power.

Alternative formulations: continuum of goods in the utility function.

Otherwise, the model is the same as the standard RBC model.
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The Final Good Producer

e Production function:

Yyt (st) = (/01 (Yit (St))% di) -

where £ controls the elasticity of substitution.

e Final good producer is perfectly competitive and maximize profits,
taking as given all intermediate goods prices py; (s¢) and the final

good price p¢ (st).
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Maximization Problem

e Thus, its maximization problem is:

1
max py (51) i (1) - /O pit (s¢) vit (s¢) di

e First order conditions are for Vi:
1S}

1 e-1 . =11 e—1 e=l 4
</O (it (st)) = dz) (yir (st)) = —pit (s1) =0

€

g
pts—l
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Working with the First Order Conditions

e Dividing the first order conditions for two intermediate goods ¢ and 7,
we get: '

pit (s1) _ <yz-t (St)>3:
pjt(st)  \yjt (st)
pjt (s¢) = (iji Ezg) pit (st)
e Hence:

e—1

pit (s8) yje (st) = pir (s2) vie (0)° (yje (1)) =

e Integrating out:
e—1

1 1ol 1
| it (50) st (s0) di = pie (se) e (s0)* | w5 i = pit (50)wie (0)° (we (s0)) =
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Input Demand Function

e By zero profits (ps (st) ye (s¢) = fol Dit (s¢) Yit (s) dj), we get:
pr sty (s1) = pit (s0) wit (50)° (90 (St))%

= i (1) = pat (5¢) it (56)F e (1) ¢

e Consequently, the input demand functions associated with this prob-
lem are:

yit (st) = (pit (St)>_ Yt (st) Vi

Pt (s5t)

e Interpretation.
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Price Level

e By the zero profit condition p; (s¢) yt (s¢) = fol pit (s¢) yit (s¢) di and
plug-in the input demand functions:

pe(s s = [ pie(s0) (W(S”)_ i (1) di

pt (s¢)

1—¢ 1 1—e ;-
= pt(s¢t) :/0 pit (s¢)” ~di

e Thus:

o) = ([ (ot 2ai)
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Intermediate Good Producers
Continuum of intermediate goods producers.
No entry/exit.

Each intermediate good producer 7 has a production function

yit (st) = Atkir (st)% it (s¢) 72

Ay follows the AR(1) process:

log Ay = plogA; 1+ 2
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Maximization Problem |
e Intermediate goods producers solve a two-stages problem.

e First, given wy and r¢, they rent [;; and k;; in perfectly competitive

factor markets in order to minimize real cost:

lz‘t(Str;]jfr;t(St) twe (s¢) Lt (s¢) + e () ke (s1) 3

subject to their supply curve:

yir = Atk (5¢)% Lig (s0)1 ™2

67



First Order Conditions

e The first order conditions for this problem are:

wi (s¢) = 0(1 — a) Agkir (s¢)™ L (s)™
re(st) = oAk (50)* 1l (s¢)1 7

where ¢ is the Lagrangian multiplier or:

kit (s¢) = fof:; ((;t))lit (st)

e Note that ratio capital-labor only is the same for all firms 3.
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Real Cost

e The real cost of optimally using [;; is:

«

(’wt (s¢) it (st) + W (s¢) lit (St))

e Simplifying:
(=) i (s0) b (50

1 — «
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Marginal Cost |
e T he firm has constant returns to scale.

e Then, we can find the real marginal cost mc; (s¢) by setting the level
of labor and capital equal to the requirements of producing one unit

of good Ak (s¢)* Lt (s¢)' ~* =1

e Thus:

Atkis (s£)* g (st)1 7 = At<1iéat:tt((j;))lit(3t)) Lit (st)

At( a  wi(st)

1 — are(st)

> Lit (st) = 1
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Marginal Cost Il

e Then:

1 — « At l—Oz’I“t(St)

( ! )l_a(l)a (50) 1% ry (50)°
— — —W S T S

1—a o) A VY TR

e Note that the marginal cost does not depend on .

mey (s1) = (L) wy (1) 1 < ! wt(St)>_a

e Also, from the optimality conditions of input demand, input prices
must satisfy:

a  we(st)

— a1y (st)

kt (st) = I It (st)
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Maximization Problem Il

e The second part of the problem is to choose price that maximizes
discounted real profits, i.e.,

yit (st) = (pit (St)>_ Yt (st)

pt (5¢)

subject to

e First order condition:

<pz-t (St)> Tulse) <pz-t () _ e (St)> <pz-t (St)> (s _

pt (s¢) pt (s¢) pt (s¢) pt (s¢) pt(st)
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Mark-Up Condition

e From the fist order condition:

-1
1o . (pz't (st) mes (St)> (pz't (St)> PN

pt (st) pt (st)
pit (5¢) = € (pit (5¢) — met (s¢) pe (s¢)) =
pit (st) = i [met (st) pt (s¢)

e Mark-up condition.

e Reasonable values for €.
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Aggregation |

e To derive an expression for aggregate output, remember that:

kit (st) o wi(st)
lit (st) 1 —ari(st)

e Since this ratio is equivalent for all intermediate firms, it must also be
the case that:

kit (st) _ ke(st) o wi(st)
Lig(st)  lL(st) 1—ari(s)

e |f we substitute this condition in the production function of the inter-
mediate good firm Ask;s (s¢) Lz (s¢)1 ™% we derive:

_ kit (st)\" _ ke (se)\©,
Vit = Ay (lz't (St)> Lit (s¢) = Ay (lt (St)> Lit (st)
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Aggregation ||

e [he demand function for the firm is:

Yt (5t) = (pit (St)>_ Yt (st) Vi,

pt (s5¢)

e Thus, we find the equality:

(pz't (St)>_ ut (s¢) = Ay (kt (St)> Lit (st)

pt (s¢) It (st)

e If we integrate in both sides of this equation:

vt (st) 01 (pit (St)> ! di = Ay (Zé:;;) /01 Uit (st) di = Agky (s¢)% Uy (s¢)t
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Aggregation Il

e [hen:
vt (51) = — 1k (50) 1 (s0)P
UVt (St)
where
Y pi(se)\ T Z._jt(St)_E
(s = <pt (St)) N ()

e But note that:

pe (5¢) = ( [ pi sy di) T e (s)

since all intermediate good producers charge the same price.

e Then: v (sy) = J3 (%) - di =1 and:

yr = Avky (s¢)® 1y (s¢)172
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Behavior of the Model

e Presence of monopolistic competition is, by itself, pretty irrelevant.

e Why? Constant mark-up.

e Similar to a tax.

e Solutions:
1. Shocks to mark-up (maybe endogenous changes).

2. Price rigidities.
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Further Extensions

e We can extend our model in many other directions.

e Examples we are not going to cover:
1. Fiscal Policy shocks (McGrattan, 1994).
2. Agents with Finite Lives (Rios-Rull, 1996).

3. Home Production (Benhabib, Rogerson, and Wright, 1991).
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