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Van der Waals interaction is an elusive many-body effect arising from instantaneous
charge fluctuations. Fundamental understanding of this effect plays an important role in
computational chemistry, physics and materials science. In this article, recent advances
in the evaluation of van der Waals coefficients, in particular the higher-order ones, are
reviewed.
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1. Introduction

In computer-aided design of electronic materials, devices and chemical or phys-

ical processes, accurate prediction of electronic properties plays a decisive role.

Many correlated wavefunction-based ab initio methods, such as configuration inter-

action (CI),1,2 many-body perturbation theory (MBPT),3 coupled cluster,4 quan-

tum Monte Carlo,5 or their combinations (e.g., CI+MBPT), are highly accurate,

but computationally demanding. For large systems (e.g., systems that consist of

more than 102 atoms), less accurate but improvable Kohn–Sham density functional

theory (DFT),6,7 noted for its high computational efficiency and useful accuracy,

becomes a method of choice.

In Kohn–Sham DFT, everything is known, except for the exchange-correlation

energy component, which has to be approximated as a functional of the electron

density.8,9 Due to the advent of reliable density functional approximations,10–19 this

theory has become a standard practice in modern electronic structure calculations.

However, it is also known that these ordinary DFT methods often fail to describe
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weakly bound systems, such as closed-shell atom and molecule pairs. In many cases,

DFT predicts unbound or too-weak intermolecular pairs.20 This failure greatly lim-

its the applicability of DFT to a large class of weakly-bound systems such as atom

and intermolecular pairs, liquids and molecular crystals. DFT can produce unusu-

ally large errors even for many normally-bonded molecules and solids.21 A funda-

mental reason is that conventionally developed exchange-correlation functionals are

unable to account for the long-range part of the van der Waals (vdW) interaction,

while they may describe the short-range part well.20 To overcome or reduce this dif-

ficulty, a dispersion correction, which can be developed separately, is usually added

to DFT. This DFT+vdW approach can significantly improve the performance of

ordinary DFT and has been widely used in electronic structure calculations.22–27

The vdW interaction is an important many-body effect, which arises from charge

fluctuation of each density piece. It has the finite short-range or small-R expansion

and the long-range or large-R limit, where R is the separation between centers

of density pieces. Because many properties are related to the long-range part and

because the short-range part can be well treated with first-principles calculations,20

we will focus on the long-range part in this review article.

In the large separation (R → ∞) limit, the vdW interaction between any two

density pieces can be exactly expressed as an infinite power series of the inverse R,

EvdW = −
∑

k=1

C2k

R2k
−
∑

k=1

C2k+1

R2k+1
− · · · , (1)

where C2k, with k being an integer, are the vdW coefficients. For specific systems,

not all these terms appear in this expression simultaneously. For example, for a

surface–surface interaction, C2 is the leading-order coefficient,28–30 which can be

obtained from the dielectric response of each bulk solid, while C3 is the leading-order

coefficient for the particle-surface interaction. When the two interacting densities

take the shape of spherical symmetry, the above expression may be simplified as:

EvdW = −C6/R6 − C8/R8 − C10/R10 − · · · , (2)

where C6 describes the instantaneous dipole–dipole interaction, C8 the dipole–

quadrupole interaction and C10 the dipole–octupole and quadrupole–quadrupole

interactions. This series is obviously divergent as the internuclear distance of two

atoms tends to zero, where the true vdW (or dispersion) energy remains finite.

To fix this problem, we can multiply each term, C2kR
−2k, by a damping function

f(R), which suppresses the singularity at R = 0. Many damping functions have

been proposed.31–33 In the simulation of intermolecular potentials, the remaining

but also the most difficult task is to find an accurate way to evaluate these vdW

coefficients C2k. According to second-order perturbation theory, vdW coefficients

between two spherical densities can be calculated from the dynamic multipole po-

larizability αl(iu) of each density piece, namely34:

CAB
2k =

(2k − 2)!

2π

k−2
∑

l1=1

1

(2l1)!(2l2)!

∫

∞

0

du αA
l1(iu)α

B
l2(iu) , (3)

1330011-2

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
3.

27
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
O

R
E

G
O

N
 o

n 
05

/1
8/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



July 2, 2013 12:13 WSPC/Guidelines-IJMPB S0217979213300119

Long-Range van der Waals Interaction

where l2 = k − l1 − 1 and αl(iu) is the dynamic 2l-pole polarizability of each

density piece. iu is the imaginary frequency. Here l represents the vibrational mode

of plasmon : l = 1 (dipole), l = 2 (quadrupole), l = 3 (octupole), etc.

The dynamic multipole polarizability defines the linear response of a system to

a weak, time-dependent external electric field35 oscillating at frequency ω. It may

be calculated from perturbation theory with the sum-over-states expression,36

αl(iu) =

∞
∑

n=1

f l
n

(En − E0)2 + u2
, (4)

where En is the transition energy from the ground state Ψ0 to the excited state Ψn.

f l
n is the oscillator strength proportional to the transition magnitude |〈Ψ0|Ψn〉|2.
It may be also evaluated from the density response function37,38 defined by:

χnn(r, r
′; iu) = i

∫

∞

0

dτe−uτ 〈Ψ|[n̂(r, τ), n̂(r′)]|Ψ〉 . (5)

In general, the response function χnn(r, r
′; iu) is a highly nonlocal function in both

space and time. It can be conveniently computed from time-dependent density func-

tional theory (TDDFT)39 linear response.40 This theory, like the ground-state DFT,

is formally exact, but the dynamic exchange-correlation potential or exchange-

correlation kernel, defined as the functional derivative of the potential

fxc(r, r
′; t, t′) =

δvxc([n]; r, t)

δn(r′, t′)
, (6)

must be approximated. Here vxc([n]; r, t) is the time-dependent dynamic exchange-

correlation potential.41,42 The simplest construction is the adiabatic approxima-

tion,43,44 in which the time-dependent exchange-correlation potential is calculated

using the functional form of the ground-state potential, but with the ground-state

density replaced by the instantaneous electron density. Due to the simplicity in the-

ory and implementation, the adiabatic TDDFT has been most widely-used to study

the time-dependent processes or excited states, including the long-range vdW inter-

action.45,46 However, calculation of the response function for large systems becomes

difficult even with efficient TDDFT.

This computational challenge may be addressed in two ways. The first (and also

the easiest) is to use the intuitive “atom pairwise interaction picture”,47 which is

perhaps the most popular approach due to its simplicity and reasonable accuracy.

The atom pairwise interaction picture was originally proposed by Hamaker.48 This

picture works well for small or even some large molecules. However, we have recently

found that it breaks down for nanosize or larger clusters. The second but more

reliable way is to develop model dynamic polarizabilities.

Many models49–63 have been proposed for the calculation of the vDW coeffi-

cients. Rapcewicz and Ashcroft49 proposed a simple model for the dynamic dipole

polarizability for an inhomogeneous system. It is based on the dynamic dipole

polarizability of an extended uniform electron gas obtained from second-order per-

turbation theory, and generalization to inhomogeneous systems. Numerical tests
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on rare-gas dimers show that this model can generate the leading-order coefficient

C6 in fairly good agreement with accurate reference values. Andersson, Langreth

and Lundqvist50 proposed a modification of the Rapcewicz–Ashcroft model by ge-

ometrically averaging the effective density. This modification leads to a good im-

provement of C6 for rare-gas dimers, with a mean absolute relative error (MARE)

of about 12%. In 2007, Becke and Johnson55,56 proposed an exchange hole-based

model, which extends their earlier calculation for the leading-order coefficient C6 to

higher-order coefficients C8 and C10. Numerical tests show that the model yields C6

in excellent agreement (3%) with accurate reference values, without relying on any

empirical fitting. However, the error of this model is quite large for C8 and C10, sug-

gesting that the physics behind the model for C6 is not entirely transferred to that

for higher-order coefficients. This incorrect transfer may be related to the fact that

all the inputs for C6, C8 and C10 are the same — the static dipole polarizability.

Lima54 extended an empirical model53 for the dynamic dipole polarizability to the

dynamic multipole polarizability, from which higher-order coefficients can be gen-

erated accurately. The inputs of this model are the static multipole polarizabilities.

However, Lima’s model contains several additional empirical parameters beyond

those in the model dynamic dipole polarizability53 and the number of empirical

parameters increases with the order of vdW coefficients. The increase of empirical

parameters makes the model physically untransparent.

Vydrov and Van Voorhis59 proposed a model for the dynamic dipole polariz-

ability. An appealing feature of this model is that the cutoff of plasmon vibrational

contribution is smoothly carried out with a local band gap introduced by the au-

thors. This model contains a fit parameter and produces C6 with a MARE of about

10%. In recent years, Tkatchenko et al.
57,60 proposed several models to calculate

C6 for molecule pairs. Their starting point is the accurate reference values of C6

for atom pairs. The basic idea is the atom pairwise interaction picture. Numerical

tests on a considerable number of small molecules show that the method produces

C6 with an error of about 5%. The model has been used recently to study the

properties of solids.25,26

Tao et al.
58 have proposed a simple model for the dynamic dipole polarizability.

Numerical tests show that the model can accurately generate C6 in excellent agree-

ment (3%) with highly-accurate wavefunction-based many-body approach. Encour-

aged by the remarkable accuracy, the model was applied to study the dispersion

correction to DFT for lattice constants and cohesive energies. It was shown that

the unusually large error of DFT can be reduced to normal with the dispersion

correction. In that work, we showed that the higher-order vdW interaction can be

as large as 50% of the leading-order term. The significance of higher-order contribu-

tions may be reflected from a series of DFT dispersion corrections developed from

Grimme’s group,22–24 among which the latest version contains the C8 contribution.

Realizing the significance of the higher-order contribution, we extended our dy-

namic dipole polarizability to the higher-order dynamic multipole polarizability.61

Judging with the MARE for each order coefficient for atom pairs, this extension is
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nearly perfect, although it is not trivial. For convenience, we call these two models

the solid-sphere model. While the solid-sphere model can achieve excellent accu-

racy for usual quasispherical systems, it fails to describe cage molecules that have a

concentric cavity such as fullerenes. To address this issue, we developed a classical

shell model.62 This model allows us to calculate the vdW coefficients for all orders.

It was shown64 that, within the classical shell model, the all-order perturbative

contribution can be summed up analytically. The model has been applied to study

the asymptotic dependence of vdW coefficients upon cluster size.

2. Dynamic Dipole Polarizability and Leading-Order vdW Coefficient

In this section, we discuss several models for the dynamic dipole polarizability.

Then we compare their performance on the vdW coefficient C6 for rare-gas dimers,

the standard model systems for the vdW interaction.

2.1. Solid-sphere model

The starting point of the solid-sphere dynamic dipole model58 is a classical con-

ducting solid sphere of radius R, with the electron density uniform inside and zero

outside the sphere. The exact expression for the dynamic dipole polarizability of

this paradigm density is given by65,66:

α1(iu) =

[

ǫ− 1

ǫ+ 2

]

R3 , (7)

where ǫ is the dielectric function of the conducting sphere of uniform density. In

the short wave vector (or long wavelength) limit, ǫ = 1 + ω2
p/u

2. Substituting the

dielectric function into Eq. (7) leads to:

α1(iu) =

(

ω2
1

ω2
1 + u2

)

R3 . (8)

Here ω1 is the dipole resonance frequency of the sphere given by ω1 = ωp

√

1/3,

with ωp =
√
4πn being the plasmon frequency of the extended uniform electron

gas and n being the electronic density of the sphere under consideration. (hartree

atomic units e2 = ~ = m = 1 are used from now on unless otherwise explicitly

stated.)

In order to make our model accurate for both molecules and solids, we should

respect the paradigm densities in both condensed matter physics (slowly varying

densities) and quantum chemistry (compact one- or two-electron densities). We

should also respect the high-frequency (u→ ∞) limit, which is given by67:

α1(ω) →
∫

drn(r)/u2 . (9)

and the zero-frequency or static limit, α1(0), of the dynamic dipole polarizability.

All these conditions may be satisfied by assuming that the dynamic dipole polariz-
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ability for an inhomogeneous density takes the form of:

α1(iu) =
3

4πd1

∫

d3rΘ(R1 − r)
d41ω

2
1

d41ω
2
1 + u2

, (10)

where Θ(x) is a step function: Θ(x) = 1 for x > 0 and Θ(x) = 0 for x ≤ 0. To

ensure the satisfaction of the high-frequency as well as the static limit conditions,

two parameters were introduced. They are determined as follows. In the static limit,

we require that the correct dipole polarizability be reproduced. This yields

α1(0) =
3

4πd1

∫

drΘ(R1 − r) . (11)

For spherically-symmetric densities, we immediately obtain

R1 = [d1α1(0)]
1/3. (12)

In the high-frequency limit, we require that the exact dipole polarizability be re-

produced, leading to:

d1 =









∫

∞

0

dr4πr2n(r)

∫ R1

0

dr4πr2n(r)









1/3

≥ 1 . (13)

For the classical conducting sphere of uniform density, the radius of the sphere is

fixed to be R. For such a density, R1 = R. So we have d1 = 1.

For the dipole–dipole interaction, we set l1 = l2 = 1 in Eq. (3). Then we have

CAB
6 =

3

π

∫

∞

0

duαA
1 (iu)α

B
1 (iu) . (14)

Substituting Eq. (10) into Eq. (14) and performing the integration over u (the

magnitude of imaginary frequency iu) yield the leading-order vdW coefficient

C6 =
27d1Ad1B

32π2

∫

d3rAΘ
A
1

∫

d3rBΘ
B
1

ω1(rA)ω1(rB)

d21Aω1(rA) + d21Bω1(rB)
, (15)

where Θ = Θ(R1 − r) and R1 is the cutoff radius which can be calculated from the

static dipole polarizability [see Eq. (12)].

To see whether the dynamic dipole polarizability of Eq. (10) is accurate enough

for the one- or two-electron densities, the paradigm in quantum chemistry, the dy-

namic dipole polarizabilities of the H and He atoms were calculated with Eq. (10)

using the ground-state density of these two atoms. Figure 1 shows the comparison

of the dynamic dipole polarizability of the H atom obtained from the solid-sphere

model to the exact one.68 To further compare its accuracy with other approxima-

tions, we also plot the Andersson–Langreth–Lundqvist dynamic dipole polarizabil-

ity of the H atom in Fig. 1. From Fig. 1, we observe that the solid-sphere model

agrees very well with the exact one over the whole range of frequency and is much

more accurate than the Andersson–Langreth–Lundqvist model.50 The equally ex-

cellent agreement between the solid-sphere model and the highly-accurate wave
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Fig. 1. (Color online) Dynamic dipole polarizability αj(iu) (in atomic units) of the H atom:
Exact, solid-sphere model (Eq. (10) with d1 = 1.143 and R1 = 1.726) and ALL.50
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Fig. 2. (Color online) Dynamic dipole polarizability α1(iu) (in atomic units where e2 = ~ =
m = 1) of the He atom: reference value68 (red) and present model (green). ω = iu is the imaginary
frequency.

function-based dynamic dipole polarizability68 for the He atom is also observed in

Fig. 2. This suggests that the solid-sphere model is not only correct for the paradigm

density in condensed matter physics, but also accurate for paradigm densities in

quantum chemistry.

As a simple test, we calculated58 C6 for diverse atom pairs with Eq. (15). In

our calculations, spin-restricted Hartree–Fock densities69 are used. (The dynamic

dipole polarizability is not sensitive to the electron density. So, it should not make

much difference if DFT densities, which include the electron correlation, are used.)

The inputs for the true static dipole polarizabilities α(0) are listed in Table 1.
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Table 1. Static multipolar polarizabilities αl(0) and cutoff radii Rl (both in atomic units) and
parameters al of atoms. For the H atom, the Bohr radius is 1.00, a conventional vdW radius is
α1(0)1/3 = 1.65 and the classical turning radius is 2.00.

Atom α1(0) α2(0) α3(0) R1 R2 R3 d1 d2 d3

H 4.50a 15.0a 131.25a 1.726 1.856 2.194 1.143 1.469 1.863

He 1.38b 2.331d 9.932d 1.155 1.268 1.508 1.116 1.405 1.784

Ne 2.67b 7.33e 42.1e 1.409 1.545 1.794 1.047 1.200 1.422

Ar 11.1b 51.84f 534.85f 2.249 2.277 2.564 1.025 1.180 1.364

Kr 16.8b 98.43f 1269.6f 2.571 2.574 2.892 1.012 1.149 1.332

Xe 27.4b 223.3e 3640.6e 3.023 3.020 3.348 1.008 1.124 1.296

Li 164.1c 1424g 39688g 5.507 4.526 4.888 1.018 1.333 1.680

Na 162.6c 1878g 55518g 5.470 4.719 5.128 1.006 1.246 1.679

K 290.2c 5000g 176940g 6.629 5.682 6.033 1.004 1.184 1.645

Be 37.8b 299.9d 4765d 3.401 3.298 3.590 1.041 1.301 1.613

Mg 71.7b 845.4d 16772d 4.171 4.007 4.276 1.012 1.222 1.559

Ca 158.6b 3083e 65170e 5.425 5.143 5.190 1.007 1.168 1.557

aRef. 70, bRef. 71, cRef. 72, dRef. 73, eRef. 74, fRef. 75, gRef. 76.

The results are tabulated in Table 2. From Table 2 we can see that this model is

remarkably accurate with a MARE of only 3%.

This model can be applied to study the vdW coefficient C+
6 between ion cores

in alkali metals. The screening effect of valence electrons on ion core interaction can

be accounted for with a simple formula derived by Rehr et al.,84 who showed that,

to a good approximation, one could use the long-wavelength limit of the dynamic

dielectric function of the uniform valence-electron density (with plasma frequency

Ωp = (4πnvalence)
1/2). For any core–core pair interaction, we have58:

C+
6 =

27d1d2
32π2

∫

dr1Θ1

∫

dr2Θ2
ω̃p(r1)ω̃p(r2)S(r1, r2)

d21ω̃p(r1) + d22ω̃p(r2)
, (16)

S =
Ωpω̃p(r1)ω̃p(r2)[d

2
1ω̃p(r1) + d22ω̃p(r2)]/2 + [d1d2ω̃p(r1)ω̃p(r2)]

2

(d1d2)−2[Ωp + a21ω̃p(r1)]2[Ωp + a22ω̃p(r2)]2
,

where d1 is given by Eq. (13) and S accounts for the screening of valence electrons

on the core–core interaction. For like-pair ionic interactions,58 d1 = d2 = d. Eq. (16)

reduces to

C+
6 =

27

32π2

∫

dr1Θ1

∫

dr2Θ2
ω̃p(r1)ω̃p(r2)

ω̃p(r1) + ω̃p(r2)
S(r1, r2),

S =
d6ω̃p(r1)ω̃p(r2){Ωp[ω̃p(r1) + ω̃p(r2)]/2 + d2ω̃p(r1)ω̃p(r2)}

[Ωp + d2ω̃p(r1)]2[Ωp + d2ω̃p(r2)]2
.

The accuracy of our C+
6 was tested for free like-ion pairs, for which S = 1, using

the static polarizabilities85,86 of the free ions. It was found that C+
6 calculated

with the solid-sphere model are lower than those estimated86 with the adiabatic
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Table 2. The vdW coefficients C6 (in atomic units) calculated with Eq. (15) using
spin-restricted Hartree–Fock densities.69 The mean absolute relative error is 3.2%.

Reference Present Reference Present

He–He 1.46a 1.44 Ar–H 19.9b 19.8

Ne–Ne 6.55b 7.33 Ar–Li 174h 180

Ar–Ar 65.8a 67.7 Ar–Na 197h 200

Kr–Kr 133a 133 Ar–K 299h 315

Xe–Xe 302b 296 Kr–H 29.1b 28.1

He–Ne 3.07b 3.20 Kr–Li 260h 267

He–Ar 9.57b 9.78 Kr–Na 293h 294

He–Kr 13.7b 13.6 Kr–K 444h 463

He–Xe 19.9b 20.0 Xe–H 44.1b 42.5

Ne–Ar 19.8b 21.4 Xe–Li 411h 423

Ne–Kr 28.0b 29.6 Xe–Na 461h 462

Ne–Xe 40.5b 43.3 Xe–K 698h 727

Ar–Kr 93.2b 94.7 He–Be 13.0g 13.6

Ar–Xe 138b 141 He–Mg 21.1g 21.3

Kr–Xe 201b 198 He–Ca 36.6i 37.2

H–H 6.50c 6.28 Ne–Be 27.5a 27.8

Li–Li 1388d 1335 Ne–Mg 42.9a 43.6

Na–Na 1472d 1404 Ne–Ca 72.0i 75.7

K–K 3813d 3655 Ar–Be 102a 102

H–Li 66.5e 67.2 Ar–Mg 162a 159

H–Na 74.2e 72.5 Ar–Ca 274i 280

H–K 112e 114 Kr–Be 149a 147

Li–Na 1427d 1366 Kr–Mg 238a 232

Li–K 2293d 2184 Kr–Ca 404i 408

Na–K 2348d 2258 Xe–Be 228a 227

Be–Be 213f 215 Xe–Mg 367a 359

Mg–Mg 630f 583 Xe–Ca 630i 636

Ca–Ca 2188f 2057 H–Be 34.4b 34.9

Be–Mg 365f 352 H–Mg 57.8b 55.4

Be–Ca 661f 646 H–Ca 100i 98.6

Mg–Ca 1158f 1086 Li–Be 478f 476

He–H 2.81g 2.75 Li–Mg 857f 823

He–Li 22.5e 23.3 Li–Ca 1688f 1608

He–Na 25.8e 26.2 Na–Be 521.6f 500

He–K 39.5e 41.4 Na–Mg 930f 859

Ne–H 5.69b 5.78 Na–Ca 1814f 1668

Ne–Li 43.8h 46.30 K–Be 791f 787

Ne–Na 50.4h 52.8 K–Mg 1417f 1358

Ne–K 77.4h 83.7 K–Ca 2803f 2655

aRef. 75, bRef. 74, cRef. 77, dRef. 76, eRef. 78, fRef. 79, 80, gRef. 81, hRef. 82,
iRef. 83.

local density approximation (ALDA), as shown in Table 3. Since the static dipole

polarizability of the free ion cores evaluated with TDDFT-ALDA is systematically

higher than the experimental values,86 probably the TDDFT-ALDA values of C+
6

are also overestimated.
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Table 3. C6 for free core–core interac-

tion of alkali atoms. Atomic units are
used. The adiabatic TDDFT-LDA val-
ues are taken from Ref. 86.

Solid Eq. (15) TDDFT-ALDA

Li+ 0.072
Na+ 1.69 1.67
K+ 19.5 23.3
Rb+ 43.5 54.0
Cs+ 104

In summary, we used constraint satisfaction to construct a well-motivated non-

local density functional for the long-range vdW interaction, which correctly reduces

to the uniform-gas limit for slowly-varying densities.

2.2. Comparative study of the vdW coefficients

To further assess the performance of the solid-sphere dipole model, a compari-

son is made between the solid-sphere model and several density functional-type

methods, including the nonempirical Andersson–Langreth–Lundqvist50 and Becke–

Johnson55,56 methods as well as the empirical or semiempirical VV1059 and Lima–

Caldas53 models. A brief discussion of these methods is given below.

The Andersson–Langreth–Lundqvist method is based on the work of Rapcewicz

and Ashcroft,49 whose starting point is the interaction between two pieces of uni-

form density that belong to the extended uniform electron gas. Since the two in-

teracting objects may have different electron densities, Rapcewicz and Ashcroft

chose
√

n(r1)n(r2) as the effective uniform density for the system consisting of two

subsystems A and B, i.e., neff =
√

n(r1)n(r2), with n(r1) and n(r2) representing

uniform densities of two interacting subsystems, respectively. However, Andersson,

Langreth and Lundqvist found that a better choice of the effective density should

be:

neff =
[
√

n(r1)n(r2)
(
√

n(r1) +
√

n(r2)
)/

2
]2/3

. (17)

This leads to the dynamic dipole polarizability:

α1(iu) =
1

4π

∫

d3r
ω2
p

ω2
p + u2

(18)

and the vdW coefficient

C6 =
3

32π2

∫

d3rA

∫

d3rB
ωp(rA)ωp(rB)

ωp(rA) + ωp(rB)
. (19)

Numerical tests show that the Andersson–Langreth–Lundqvist model of Eq. (19) is

more accurate than that of Rapcewicz and Ashcroft. This model requires a sharp

cutoff of plasmon contribution which is implicitly implemented with the spatial
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integral of Eq. (19). This cutoff procedure is the same as that used in Rapcewicz-

Ashcroft model. The input of the model is the true electron density, which may be

accessible in every DFT calculation.

Becke and Johnson55,56 proposed a series of methods for the calculation of vdW

coefficients, on the basis of the exchange hole. The latest version provides a nonem-

pirical derivation of the method. The starting point of this method is the exchange

hole dipole moment, which is defined by

dXσ(r1) =

[

1

nσ(r1)
Σijψiσ(r1)ψjσ(r1)

∫

d3r2r2ψiσ(r2)ψjσ(r2)

]

− r1 , (20)

where r1 is the position of an electron of spin σ and r2 is the position where the

associated exchange hole is located. It deletes the probability of finding another

electron of spin σ at r2, given an electron of spin σ at r1, due to the Pauli exclusion

principle. ψiσ are the Kohn–Sham orbitals occupied with an electron of spin σ.

From the exchange hole dipole moment, the multipole moment due to the

negatively-charged electron e− and the corresponding positively-charged exchange

hole e+ can be calculated from

Mlσ = −{rl − [r − dXσ(r)]
l} , (21)

with l = 1 representing the dipole. Here r is the distance of the electron from

the nucleus of an atom. According to second-order perturbation theory, Becke and

Johnson finally expressed the vdW coefficient in terms of the expectation value of

the multipole moment of Eq. (21) and the average excitation energy. Then they

evaluated the average excitation energy from the static dipole polarizability. The

required input of this approach is the static dipole polarizability and the single-

particle orbitals, which are accessible from Hartree–Fock or DFT calculations.

Vydrov and van Voorhis59 proposed a dynamic dipole polarizability. The start-

ing point of this model is the Clausius–Mossotti formula:

α1 =
3

4π

ǫ− 1

ǫ+ 2
, (22)

where α1 is the dipole polarizability of a solid sphere of uniform density and ǫ

is the dielectric function. Then the formula is generalized to an inhomogeneous

electron gas. For a semiconductor with a band gap ωg, to a good approximation, the

dielectric function in the long wavelength (i.e., zero wave vector) limit is assumed

to be87:

ǫ(iu) = 1 +
ω2
p

ω2
g + u2

. (23)

This expression is exact for a nearly-free electron gas. Substituting Eq. (23) into

Eq. (22) leads to:

α1(r, iu) =

(

3

4π

)

ω2
p(r)/3

ω2
p(r)/3 + ω2

g(r) + u2
. (24)
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Here the position-dependent α1(r, iu) is called the local dynamic dipole polarizabil-

ity. Then the (global) dynamic dipole polarizability can be obtained from

α1(iu) =

∫

d3r α1(r, iu) . (25)

This formula recovers the exact expression of Eq. (7) for the dynamic dipole po-

larizability of a classical conducting solid sphere of uniform density, for which the

local band gap ωg(r) vanishes. Now the spatial integration is finite unless ωg(r) is

zero. Therefore, the VV10 model does not require any imposed cutoff condition,

because the local band gap ωg(r) can provide a smooth cutoff. The local band gap

can be constructed as follows.

In the density tail, the density has an exponential decay,

n(r) ∼ exp(−α|r|) , (26)

where α = 2
√
2I, with I being the ionization potential. For a two-electron expo-

nential density, the ionization potential can be expressed as:

I =
1

8

∣

∣

∣

∣

∇n(r)
n(r)

∣

∣

∣

∣

2

. (27)

Generalization of Eq. (27) to a system of many electrons leads to the assumption:

I(r) =
1

8

∣

∣

∣

∣

∇n(r)
n(r)

∣

∣

∣

∣

2

. (28)

VV called I(r) the local ionization potential. Assuming that the local band gap is

proportional to the local ionization potential, i.e., ωg(r) ∝ I(r), VV suggested that:

ω2
g(r) = C

∣

∣

∣

∣

∇n(r)
n(r)

∣

∣

∣

∣

4

, (29)

where C = 0.0089 = (0.0943)2 is the proportionality coefficient, which was fixed

by a fit to the reference values of a small set of vdW coefficients. This coefficient

is very close to the value 9/1024 that reproduces the exact ionization potential of

the H atom.

VV10 dynamic dipole polarizability is a smooth function of r, due to the smooth

cutoff. It does not recover the correct static limit, although it is exact in the high-

frequency limit. This violation has been partly fixed by introducing the empirical

parameter C.

Lima and Caldas53 proposed a dynamic dipole polarizability for an atom. The

accuracy of this model relies on empirical adjustment of several parameters. It

respects both the static and high-frequency limits. The starting point of the Lima–

Caldas model is the assumption

α1(iu) =

∫

d3r χ(n(r), iu) , (30)

where χ(n, iu) is the angle average of the electric susceptibility and n(r) is the

spherical average of the electron density. Clearly this assumption is equivalent to
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that of VV10 [see Eq. (25)]. In order to satisfy the high-frequency limit, Lima and

Caldas proposed:

χ(n(r), iu) =
χ(n(r), 0)

[1 + [χ(n(r), 0)/n(r)]u2]
, (31)

where χ(n(r), 0) is the static electric susceptibility. For the uniform electron gas, it

is given by:

χ(n, 0) =
3

4π
. (32)

However, for an inhomogeneous electron gas, this quantity is in general unknown

and an approximation has to be made. Lima and Caldas proposed a density

functional-like approximation:

χ(n(r), 0) =
α1(0)n(r)/[nα + n(r)]
∫

d3r n(r)/[nα + n(r)]

. (33)

Table 4. Comparison of different models for the vdW coefficients C6 (in atomic units). SSM
= solid-sphere model, BJ = Becke–Johnson, LC = Lima–Caldas and ALL = Andersson–
Langreth–Lundqvist. MARE = mean absolute relative error.

Atom pair Referencea SSMa BJb ALLc LCd VV09e vdW-DFf vdW-DF2g

He–He 1.46 1.44 1.64 2.0 1.46 1.45 2.93 0.76
Ne–Ne 6.55 7.35 5.83 6.0 6.33 8.44 9.45 3.07
Ar–Ar 65.8 67.8 62.7 63.0 66.3 70.1 62.7 25.3
Kr–Kr 133 132 132 123 127 131 114 47.7

Xe–Xe 302 295 305 260 278
He–Ne 3.07 3.22 3.09 3.5 3.03
He–Ar 9.57 9.81 9.81 11.0 9.72
He–Kr 13.7 13.6 14.1 15.5 13.3
He–Xe 19.9 20.0 20.9 22.0 19.2
Ne–Ar 19.8 21.5 18.6 18.5 20.0
Ne–Kr 28.0 29.6 26.7 25.0 27.1
Ne–Xe 40.5 43.3 39.7 35.5 39.2
Ar–Kr 93.2 94.4 90.9 87.5 91.5
Ar–Xe 138 140 137 127 134
Kr–Xe 201 197 200 178 187
H–H 6.50 6.28 6.76 6.0 6.50 6.75
H–He 2.81 2.75 2.99 3.0
H–Ne 5.69 5.79 5.69 5.0
H–Ar 19.9 19.8 20.1 18.5
H–Kr 29.1 28.0 29.4 26.0
H–Xe 44.1 42.4 45.1 38.0

MARE 3% 3% 12%

aFrom Table 2. bFrom Ref. 55. cFrom Ref. 50. dFrom Ref. 53. eFrom Ref. 59. In the large-
separation limit, it was found59 that VV09 [O. A. Vydrov and T. Van Voorhis, Phys. Rev.

Lett. 103, 063004 (2009).] reduces to VV10. fFrom Ref. 59. For vdW-DF, see M. Dion, H.
Rydberg, E. Schroeder, D. C. Langreth and B. I. Lundqvist, Phys. Rev. Lett. 92, 246401

(2004). gFrom Ref. 59. For vdW-DF2, see K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist
and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).

1330011-13

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
3.

27
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
O

R
E

G
O

N
 o

n 
05

/1
8/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



July 2, 2013 12:13 WSPC/Guidelines-IJMPB S0217979213300119

J. Tao, J. P. Perdew & A. Ruzsinszky

Here α1(0) is the static dipole polarizability and nα is the electron density at the

vdW radius of an atom, which is conventionally defined by R = [α1(0)]
1/3. To

improve the accuracy of C6 for atom pairs, Lima and Caldas further introduced a

density-dependent function fS(n) into χ(n, 0). The final form of χ(n, 0) is written

as:

χ(n, 0) =
α1(0)n(r)f

S(n)/[nα + n(r)]
∫

d3r n(r)fS(n)/[nα + n(r)]

. (34)

While good improvement can be achieved with this approximation, the physics

behind the construction of fS(n) is not so clear. As a result, when the formula for

the dynamic dipole polarizability is generalized to higher-order dynamic multipole

polarizability,54 more empirical parameters have to be introduced to retain the

accuracy of the dynamic dipole polarizability.

Table 4 shows the comparison of several models to the accurate reference values.

From Table 4 we see that both Becke–Johnson and our solid-sphere models can

achieve the accuracy of the empirical model of Lima and Caldas.

3. Dynamic Multipole Polarizability and Higher-Order Coefficients

The original motivation for developing a model for higher-order dynamic multipole

polarizability is the calculation of higher-order vdW coefficients such as C8 and

C10. The model is a simple extension of the solid-sphere dynamic dipole polariz-

ability.58 The only needed input are the static multipole polarizabilities and the

electron density. The extension does not need empirical fitting. The nonlocal den-

sity functional for the dynamic multipole polarizability was modeled in a way that

it is exact in the zero- and high-frequency limits, exact in the uniform-gas limit and

accurate for the one- and two-electron densities. So, the model may be regarded as

an interpolation between those limits in a way that is exact for a paradigm density

from textbooks on classical electromagnetism: the metal sphere of uniform density.

Because the frequency-dependence of the model dynamic multipole polarizability

is simple, our formula transfers with little error from the paradigm density to the

density of a real spherical system such as an atom.

Let us consider a classical conducting solid sphere of uniform density of radius

R (which is small enough so that retardation effect can be neglected), in empty

space. The dynamic multipole polarizability of the metallic solid sphere is given

by88:

αl(iu) =

[

ǫ− 1

ǫ+ (l + 1)/l

]

R2l+1 , (35)

where ǫ is the dielectric function of the sphere. By setting ǫ = 1+ ω2
p/u

2 (the long

wavelength limit of an isotropic media), we find

αl(iu) =

(

ω2
l

ω2
l + u2

)

R2l+1 . (36)
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Here ωl is the multipole resonance frequency of the sphere given by ωl =

ωp

√

l/(2l+ 1). A familiar limit of Eq. (36) is the static dipole polarizability R3.

Now we make a nonempirical model for αl(iu) in terms of the electron density,

by imposing exact constraints on a simple expression. First, we demand recovery of

the correct zero-frequency limit αl(0). Second, we demand recovery of the correct

high-frequency (u→ ∞) limit,54,79,80

αl(iu) → l

∫

∞

0

dr 4πr2n(r)r2l−2

/

u2 . (37)

Third, we make our expression exact88–90 for a classical conducting solid sphere of

uniform density inside and zero density outside a radius R [see Eq. (36)]. Taking

all three conditions into consideration, our model dynamic multipole polarizability

of any spherical density was assumed to be

αl(iu) =
1

4πdl

(

2l+ 1

l

)
∫

d3rΘ(Rl − r)
lr2l−2 d4l ω

2
l

d4l ω
2
l + u2

. (38)

The classical conducting solid sphere has a natural sharp cutoff of all integrals

over r, which we extend even to the diffuse density of an atom. Unbiased sharp

cutoffs are also used in the construction of nonempirical density functionals for

the exchange-correlation energy91–93 and a model dynamic dipole polarizability.50

The parameter dl and the cutoff radius Rl are determined by the two imposed

constraints. According to the static limit condition, we have

αl(0) =
2l+ 1

4πdl

∫

d3r r2l−2 Θ(Rl − r) . (39)

Without the cutoff, the right-hand side of Eq. (39) would diverge. For spherically-

symmetric systems, the radial cutoff is

Rl = [dlαl(0)]
1/(2l+1) . (40)

Imposing the high-frequency limit of Eq. (37) leads to

dl =









∫

∞

0

dr 4πr2 r2l−2 n(r)

∫ Rl

0

dr 4πr2 r2l−2 n(r)









1/3

≥ 1 . (41)

For a metallic sphere of uniform density with radius R, we find dl = 1 and

Rl = R. Then Eq. (38) correctly reduces to Eq. (36). Since Eqs. (40) and (41)

are coupled together, in general they must be solved self-consistently. The two

parameters obtained for atoms are displayed in Table 1. From Table 1 we see that

there is a relationship among the parameters dl: d1 < d2 < d3. This is because, if we

keep the same cutoff radius for different order l, the denominator will get smaller

relative to the numerator as l increases, due to the cutoff. One desired feature of

the present model is that, for l = 1, our expressions reduce to those of the model

dynamic dipole polarizability discussed above.58
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The central idea in developing the dynamic multipole polarizability is parallel

to the one that has been used before to construct nonemprical density functionals

for the exchange-correlation energy16,17,94 : Make the functional exact for paradigm

densities and satisfy other exact constraints for a broader class of densities of inter-

est. We believe that our use of a paradigm density (the classical conducting solid

sphere or “local density approximation” in the vdW DFT) is what leads to accurate

higher-order vdW coefficients without empiricism.

4. Application to Atom Atom Pair Interaction

We apply the present model to calculate the dynamic multipole polarizabilities of

the H atom and compare them to the corresponding exact values.70 Similar to the

case for the dynamic dipole polarizability, we observe from Figs. 3 and 4 that our

model dynamic multipole polarizabilities are in excellent agreement with the exact

values within the whole range of frequencies. We also apply it to the He atom. As

shown in Figs. 5 and 6, the deviation of the solid-sphere model from the accurate

reference values obtained from the highly-accurate many-body calculations68,77 is

nearly indistinguishable.

4.1. vdW coefficients

The higher-order vdW coefficients C8 and C10 may be obtained by substituting

the model dynamic multipole polarizabilities [Eqs. (38), (40) and (41)] into the

exact expression given by Eq. (3). Performing the frequency integration of Eq. (3)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.5  1  1.5  2  2.5  3D
y
n
a
m

ic
a
l 
q
u
a
d
ru

p
o
le

 p
o
la

ri
z
a
b
ili

ty
 α

2
(i
u
)

u

H atom

"Exact"
"Present"

Fig. 3. (Color online) Dynamical quadrupole polarizability α1(iu) (in atomic units) of the H
atom: reference value68 (red) and present model (green). ω = iu is the imaginary frequency.
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Fig. 4. (Color online) The same as Fig. 3, but for octupole polarizability.
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Fig. 5. (Color online) Dynamical quadrupole polarizability α1(iu) (in atomic units where e2 =
~ = m = 1) of the He atom: reference value68 (red) and present model (green). ω = iu is the
imaginary frequency.

analytically yields the final expressions for C8 and C10. The results are:

C8 =
225d1Ad2B

64π2

∫

d3rA ΘA
1

∫

d3rB ΘB
2

r2Bω1(rA)ω2(rB)

d21Aω1(rA) + d22Bω2(rB)

+
225d2Ad1B

64π2

∫

d3rA ΘA
2

∫

d3rB ΘB
1

r2Aω2(rA)ω1(rB)

d22Aω2(rA) + d21Bω1(rB)
, (42)
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Fig. 6. (Color online) The same as Fig. 5, but for octupole polarizability.

C10 =
441d1Ad3B

48π2

∫

d3rA ΘA
1

∫

d3rB ΘB
3

r4Bω1(rA)ω3(rB)

d21Aω1(rA) + d23Bω3(rB)

+
441a3Ad1B

48π2

∫

d3rA ΘA
3

∫

d3rB ΘB
1

r4Aω3(rA)ω1(rB)

d23Aω3(rA) + d21Bω1(rB)

+
875d2Ad2B

32π2

∫

d3rA ΘA
2

∫

d3rB ΘB
2

r2Ar
2
Bω2(rA)ω2(rB)

d22Aω2(rA) + d22Bω2(rB)
, (43)

where ΘA
l = Θ(RA

l − rA) and the same for ΘB
l . Similar to the evaluation of C6 [see

Eq. (15)], the numerical integrations required to evaluate Eqs. (42) and (43) are

double integrations of the form:
∫

∞

0

drA

∫

∞

0

drBf(rA, rB) . (44)

As a further test, we applied the above formulas to calculate C8 and C10 for a

large set of atom pairs, consisting of rare-gas atoms (He, Ne, Ar, Kr, Xe), hydrogen

and alkali-metal atoms (H, Li, Na, K) and alkaline-earth atoms (Be, Mg, Ca). These

atom pairs have been used to study C6 (see Table 2). Here we choose them, because

their static multipole polarizabilities are accurately known. They are tabulated in

Table 1. The calculated higher-order coefficients are displayed in Tables 5 and 6.

The MARE was calculated using the reference values obtained from highly-accurate

many-body methods. The results show that the MARE for C8 and C10 is nearly

the same as that for C6. In order to better understand the physics for higher-order

coefficients, a comparison of the cutoff radii on the dipole, quadrupole and octupole

polarizabilities has been made and displayed in Table 1. From Table 1 we observe

that the cutoff radii are also close to each other for all three coefficients, and to

conventionally-defined vdW radii α1(0)
1/3. This is expected, because all cutoff radii
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Table 5. The vdW coefficients C8 (in atomic units) calculated with spin-
restricted Hartree–Fock densities.69 The MARE is 3.0%.

Reference Present Reference Present

He–He 14.14a 13.57 Ar–H 442.1b 445.6

Ne–Ne 90.34b 98.73 Ar–Li 9493h 9394.4

Ar–Ar 1634a 1695 Ar–Na 11530h 10837

Kr–Kr 4187b 4112 Ar–K 22280h 21369

Xe–Xe 12807b 12443 Kr–H 732.3b 717.19

He–Ne 36.18b 37.06 Kr–Li 14760h 14603

He–Ar 167.5b 168.8 Kr–Na 17870h 16806

He–Kr 280.0b 274.1 Kr–K 34310h 32886

He–Xe 525.0b 511.0 Xe–H 1357b 1322

Ne–Ar 390.1b 416.6 Xe–Li 25210h 25373

Ne–Kr 638.1b 660.1 Xe–Na 30330h 29046

Ne–Xe 1162b 1193 Xe–K 57510h 56014

Ar–Kr 2617b 2650 He–Be 450.2g 428.3

Ar–Xe 4669b 4698 He–Mg 883.5g 873.8

Kr–Xe 7389b 7214 He–Ca 2139i 2213

H–H 124.4c 122.6 Ne–Be 899.5g 950.6

Li–Li 81830d 81315 Ne–Mg 1805g 1885

Na–Na 109000d 104546 Ne–Ca 4368i 4641

K–K 389200d 388071 Ar–Be 3850g 3932

H–Li 3280e 3195 Ar–Mg 7675g 7753

H–Na 3856d 3709 Ar–Ca 18150i 18932

H–K 7396d 7497 Kr–Be 5985g 6112

Li–Na 94850d 92739 Kr–Mg 11850g 11952

Li–K 185200d 183769 Kr–Ca 27910i 28922

Na–K 208200d 204322 Xe–Be 10380g 10689

Be–Be 10220f 10397 Xe–Mg 20250g 20560

Mg–Mg 41640f 40302 Xe–Ca 46750i 48823

Ca–Ca 226000f 226159 H–Be 1251g 1218

Be–Mg 20820f 20689 H–Mg 2575g 2517

Be–Ca 50070f 51238 H–Ca 6301i 6456

Mg–Ca 98070f 97279 Li–Be 27880f 27582

He–H 41.73g 41.02 Li–Mg 56830f 55417

He–Li 1084f 1052 Li–Ca 141300f 139856

He–Na 1328f 1219 Na–Be 33490f 31649

He–K 2623f 2467 Na–Mg 67360f 62733

Ne–H 97.82b 100.6 Na–Ca 163300f 154955

Ne–Li 2229h 2226 K–Be 65140f 62285

Ne–Na 2721h 2573 K–Mg 128300f 120908

Ne–K 5309h 5132 K–Ca 302400f 289105

aRef. 75, bRef. 74, cRef. 77, dRef. 34, eRef. 95, fRef. 79, 80, gRef. 73, hRef. 82,
iRef. 83.
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Table 6. The vdW coefficients C10 (in atomic units) calculated with spin-restricted
Hartree–Fock densities.69 The MARE is 3.1%.

Reference Present Reference Present

He–He 185.8a 172.9 Ar–H 12617b 12805

Ne–Ne 1535.6b 1621.5 Ar–Li 678100h 678888

Ar–Ar 49380a 51302 Ar–Na 876900h 876616

Kr–Kr 152800a 154925 Ar–K 2132000h 2176341

Xe–Xe 619840b 612026 Kr–H 23441b 23328

He–Ne 545.08b 543.53 Kr–Li 1087000h 1085461

He–Ar 3701.1b 3726.1 Kr–Na 1398000h 1388046

He–Kr 7256.6b 7208.0 Kr–K 3352000h 3397544

He–Xe 16674b 16594 Xe–H 51088b 50783

Ne–Ar 9335.2b 9904.4 Xe–Li 1957000h 1985390

Ne–Kr 17658b 18402 Xe–Na 2490000h 2498750

Ne–Xe 38978b 40577 Xe–K 5836000h 5961000

Ar–Kr 88260b 90207 He–Be 14585g 16339

Ar–Xe 184250b 187801 He–Mg 39360g 43665

Kr–Xe 316030b 313588 He–Ca 131900i 137782

H–H 3285c 3262 Ne–Be 34800g 38397

Li–Li 7289000d 7240684 Ne–Mg 90500g 98501

Na–Na 11340000e 10540429 Ne–Ca 279800i 302361

K–K 53740000e 51032647 Ar–Be 176000g 177602

H–Li 223200f 219959 Ar–Mg 431000g 437099

H–Na 291600f 287570 Ar–Ca 1238000i 1305655

H–K 734400f 738040 Kr–Be 295000g 295752

Li–Na 8859000d 8784051 Kr–Mg 706000g 709140

Li–K 19490000d 20327353 Kr–Ca 1981000i 2078601

Na–K 23030000d 23791361 Xe–Be 584000g 576090

Be–Be 516500e 578184 Xe–Mg 1340000g 1328483

Mg–Mg 2817000e 3022005 Xe–Ca 3559000i 3776913

Ca–Ca 22000000e 22755416 H–Be 47400g 51228

Be–Mg 1232000e 1352866 H–Mg 122000g 133168

Be–Ca 3713000e 3917828 H–Ca 402400i 414861

Mg–Ca 8088000e 8426903 Li–Be 2066000e 2109778

He–H 865.85g 852.87 Li–Mg 4541000e 4610879

He–Li 72602e 71730 Li–Ca 12610000e 12651840

He–Na 95140e 95083 Na–Be 2651000e 2651037

He–K 239800e 245028 Na–Mg 5743000e 5665753

Ne–H 2220.5b 2283 Na–Ca 15610000e 15210198

Ne–Li 153100h 155631 K–Be 6382000e 6431770

Ne–Na 199300h 204268 K–Mg 13350000e 13212637

Ne–K 493600h 516208 K–Ca 34620000e 33995651

aRef. 75, bRef. 74, cRef. 77, dRef. 34, eRef. 79, 80, fRef. 95, gRef. 73, hRef. 82,
iRef. 83.
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Table 7. Comparison of different models for the vdW coefficients C8 and C10 (in atomic units)
for atom pairs. SSM = solid-sphere model and BJ = Becke–Johnson and MARE = mean absolute
relative error. The reference values are taken from Tables 5 and 6, and the solid-sphere values are
taken from Ref. 61 (see Tables 5 and 6).

Atom pair Cref
8 SSM BJa Limab Cref

10 SSM BJa Limab

He–He 14.14 13.57 16.15 14.17 185.8 172.9 214.2 189.7

Ne–Ne 90.34 98.73 97.40 90.98 1536 1622 1625 1556

Ar–Ar 1634 1695 2082 1642 49380 51302 64960 50096

Kr–Kr 4187 4112 5287 3985 152800 154925 198379 151869

Xe–Xe 12807 12443 15922 11928 619840 612026 766727 594677

He–Ne 36.18 37.06 41.05 36.82 545.1 543.5 598.8 557.2

He–Ar 167.5 168.8 211.2 168.8 3701 3726 4475 3797

He–Kr 280.0 274.1 351.0 274.7 7257 7208 8499 7349

He–Xe 525.0 511.0 649.2 508.8 16674 16594 18896 16823

Ne–Ar 390.1 416.6 464.2 392.8 9335 9904 11050 9529

Ne–Kr 638.1 660.1 757.8 624.3 17658 18402 20399 17772

Ne–Xe 1162 1193 1370 1126 38978 40577 43819 39138

Ar–Kr 2617 2650 3329 2570 88260 90207 114390 88334

Ar–Xe 4669 4698 5869 4540 184250 187801 232344 183535

Kr–Xe 7389 7214 9234 6957 316030 313588 395106 306308

H–H 124.4 122.6 152.1 124.4 3285 3262 4438 3286

H–He 41.73 41.02 48.37 865.9 852.9 1065

H–Ne 97.82 100.6 111.7 72602 71730 2619

H–Ar 442.1 445.6 560.5 12617 12805 16496

H–Kr 732.3 717.19 920.6 23441 23328 29671

H–Xe 1357 1322 1688 51088 50783 62297

MARE 3% 22% 3% 22%

aRef. 55, bRef. 54.

equal the sphere radius R for a classical metallic sphere. The inhomogeneity and

diffuse nature of the electron density slightly modifies the cutoff, but this modifi-

cation is quite important. Nearly the same MARE and cutoff radius indicate that

the physics behind the model dynamic dipole polarizability has been successfully

transferred to the model dynamic multipole polarizabilities. It seems that the solid-

sphere model may generate dynamic multipole polarizabilities and vdW coefficients

to any desired order without losing accuracy, because the generalization does not

rely on empirical fitting, but just the correct transfer of the physics from one order

to another. Thus the solid-sphere model provides a nearly-correct account of the

vdW interaction. For application of C6, C8 and C10, see Refs. 22, 33 and 96.

Finally, we compare the higher-order coefficients C8 and C10 with those

obtained from the Becke–Johnson and Lima’s models. From Table 7 we see that

our nonempirical solid-sphere model can achieve comparable accuracy of Lima’s

empirical model, but it is much more accurate than Becke–Johnson.

In summary, we have formulated a unified theory for the dynamic multipole po-

larizabilities and vdW coefficients. Numerical tests on diverse atom pairs show that

1330011-21

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
3.

27
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
O

R
E

G
O

N
 o

n 
05

/1
8/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.



July 2, 2013 12:13 WSPC/Guidelines-IJMPB S0217979213300119

J. Tao, J. P. Perdew & A. Ruzsinszky

the extension is very successful, because the accuracy for both the leading-order

and higher-order coefficients is nearly the same. This remarkable feature allows us

to treat the leading-order as well as higher-order coefficients on the same footing.

Consistent accuracy is significantly important, because it guarantees that our model

should also be able to describe other many-body vdW interactions (such as Axilrod–

Teller–Muto three-body terms) as well. The required inputs are the true static

multipole polarizability and the electron density. Since the static polarizability

contains nearly all of the many-body effects and the geometry effect, the model

dynamic multipole polarizability should be able to capture the nonsphericity of the

electron density and can achieve remarkable accuracy. Since the input, the elec-

tronic density and the static polarizabilities, are accessible from the ground-state

DFT,97,98 we have in principle a true DFT approach for the dynamic multipole

polarizabilities and vdW coefficients and therefore may save a significant amount

of computer time.

5. Classical Model for the vdW Coefficients Between Nanostructures

The solid-sphere model can achieve remarkable accuracy for atoms and quasispher-

ical systems, but it may be unsuitable to cage molecules with a concentric cavity

such as fullerenes. Fullerenes can be modeled with a quasispherical shell of the

electron density, within which the density is nearly uniform, due to the π-electron

delocalization over the whole skeleton of fullerene molecules. Outside the shell,

the density radially decays exponentially. Natural questions that one would like to

ask are whether the solid-sphere model is able to describe cage molecules such as

fullerenes and why. In this section, we will discuss a recent work, which successfully

addressed these issues from the view of classical physics. While the classical model

may not be accurate for atoms, small molecules and clusters, due to the rapid vari-

ation of the electron density, it can provide useful insights into the van der Waals

interaction involving cage molecules in a simpler and easily understandable way.

These insights are of particular value, considering the computational challenges

with first-principles calculations for the vdW interactions between large systems.

Let us consider a classical conducting spherical shell of density with the outer

radius R and shell thickness t. The electron density is uniform within the shell and

zero outside the shell. For such a density, the exact expression for the dynamic

multipole polarizability is given by62,66,99:

αl(iu, t) =

[

R2l+1 ǫ− 1

ǫ + (l + 1)/l

]

1− ρl
1− βlρl

, (45)

βl =
(ǫ − 1)2

[ǫ + l/(l+ 1)][ǫ+ (l + 1)/l]
, (46)

ρl =

(

R − t

R

)2l+1

. (47)
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In the long wavelength limit, the dielectric function of the isotropic media is

ǫ(iu) = 1 + ω2
p/u

2 . (48)

Substituting Eq. (48) into Eqs. (45) and (46) leads to a simple expression62,99

αl(iu) =

(

R2l+1 ω2
l

ω2
l + u2

)

1− ρl
1− βlρl

, (49)

βl =
ω2
l ω̃

2
l

(ω2
l + u2)(ω̃2

l + u2)
, (50)

where ωl = ωp

√

l/(2l+ 1) is the mode vibrational frequency of the spherical shell

and ω̃l = ωp

√

(l + 1)/(2l+ 1) is the mode vibrational frequency of cavity. The

quantity in parentheses of Eq. (49) is the dynamic multipole polarizability of a

classical metallic solid sphere, while the remaining part, which is also frequency-

dependent, is due to the cavity. When the cavity vanishes (i.e., t = R), the dynamic

multipole polarizability of the classical conducting spherical shell reduces to that of

a classical conducting solid sphere. From the classical model, we see that the cavity

may affect the dynamical multipole polarizability via two ways: Electron density

distribution and frequency dependence. The second effect of the cavity described

with βl arises from a coupling between the sphere and cavity plasmon vibrations.

The second effect can be significantly important. We may attribute the failure of the

solid-sphere model and other previous methods for cage molecules to the omission

of this effect.

In the static limit, we immediately have

αl(0) = R2l+1 . (51)

Since the outer radius of the shell is fixed for a classical conducting spherical shell,

this relationship may provide a useful estimate of static higher-order multipole

polarizability from the static dipole polarizability. This estimate may be crude for

small systems, but it should be reasonable for large systems, in particular when

the size of a system approaches the bulk limit, where the electron density is slowly

varying. Another input is t, the thickness of the shell, which is defined by100:

R = Rn + t/2 , (52)

where Rn is the average radius of the nuclear framework which can be calculated

accurately100,101 from molecular dynamics and DFT methods. The plasmon fre-

quency of the extended uniform electron gas ωp =
√
4πn̄ is calculated from the

average electron density n̄ of the shell. It is defined by

n = N/V, V = (4π/3)R3 − (4π/3)(R− t)3 , (53)

where N is the number of valence electrons and V is the volume of the shell.
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The vdW coefficients within the classical model can be obtained by substituting

Eq. (49) into Eq. (3). The result is:

CAB
2k =

(2k − 2)!

32π3

k−2
∑

l1=1

(2l1 + 1)(2l2 + 1)

(2l1)!(2l2)!

1

dAl1d
B
l2

∫ RA

l1

RA

l1
−tA

l1

d3rA r2l1−2
A [(dAl1)

2ωA
l1 ]

2

×
∫ RB

l2

RB

l2
−tB

l2

d3rB r2l2−2
B [(dBl2)

2ωB
l2 ]

2IAB
l1l2 , (54)

IAB
l1,l2 =

π

2QAB
l1l2

3
∑

i=1

[

fi(a
A
l1 , a

B
l2 ; b

A
l1 , b

B
l2)/D(aAl1 , a

B
l2) + fi(b

A
l1 , b

B
l2 ; a

A
l1 , a

B
l2)/D(bAl1 , b

B
l2)

]

,

(55)

where

QAB
l1l2 = [(aAl1)

2 − (bAl1)
2][(aAl1)

2 − (bBl2)
2][(aBl2)

2 − (bAl1)
2][(aBl2)

2 − (bBl2)
2], (56)

D(x, y) = xy(x+ y) , (57)

al =
d2l
√
2

2

[

(ω2
l + ω̃2

l )−
√

(ω2
l − ω̃2

l )
2 + 4ρlω2

l ω̃
2
l

]1/2

, (58)

bl =
d2l
√
2

2

[

(ω2
l + ω̃2

l ) +
√

(ω2
l − ω̃2

l )
2 + 4ρlω2

l ω̃
2
l

]1/2

, (59)

f1(p, q; s, t) = (pq)4 + (pq)3(s2 + t2)− pq(st)2(p2 + pq + q2), (60)

f2(p, q; s, t) = −{[(dAl1)
2ω̃A

l1 ]
2 + [(dBl2)

2ω̃B
l2 ]

2}

× [(pq)2(p2 + pq + q2 − s2 − t2)− pq(st)2] , (61)

f3(p, q; s, t) = [(dAl1)
2ω̃A

l1 ]
2[(dBl2)

2ω̃B
l2 ]

2[p4 + p3q + p2q2 + pq3 + q4

− (p2 + pq + q2)(s2 + t2) + (st)2] . (62)

Note that the vdW coefficients are symmetric with respect to the exchange of A

and B.

The classical model is valid for any value of t. Thus it is applicable not only to

fullerenes, but also to clusters with no cavity. This advantage allows us to study

the vdW interaction for any molecular pair of quasispherical symmetry on the same

footing, regardless whether a system has a cavity or not. Our recent work shows that

the model is quite accurate for sodium–sodium and sodium–fullerene clusters, with

a mean absolute relative deviation of about 7% from TDDFT or TD Hartree–Fock

methods.

The classical model is suitable to nanosize or larger systems, in particular when

the size of systems approaches their bulk limit, because in that limit, the typical

electron density is slowly-varying. This model has been employed to study the
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asymptotic size dependence of the coefficients for a few families of cluster pairs,

including fullerene pairs. For convenience, we denote the number of atoms in the

cluster as n (a symbol we used earlier for the density). Since the electron density

approaches a constant in the bulk limit, we have in the asymptotic region

n ∼ Rδ , (63)

where δ is the dimensionality of a cluster. δ = 3 for solid clusters, in which the

atoms are distributed over the three-dimensional space and 2 for fullerenes, where

the atoms are distributed over the two-dimensional surface. For a solid sphere,

t = R. Then from Eqs. (3) and (45), we obtain the size dependence of the vdW

coefficients for identical cluster pairs,

CAA
2k ∼ R2k ∼ n2k/δ, (δ = 3) . (64)

According to the atom pairwise interaction picture, the number of ways to pair an

atom in a piece of density with one in another piece is n2. This size dependence

is consistent with the above analysis for CAA
6 . For CAA

8 and CAA
10 , the classical

theory predicts CAA
8 ∼ n8/3 and CAA

10 ∼ n10/3. The size dependence of CAA
8 in the

atom pairwise interaction picture has a correction term arising from C6, due to the

distance adjustment of each atom pair, while the size dependence of CAA
10 in this

picture has two correction terms, one of which arises from C6 and the other from

C8, due to the distance adjustment of each atom pair.

For cage molecules with a cavity such as fullerenes, it was shown62 that in the

asymptotic region (i.e., n→ ∞),

CAA
2k ∼ R2k(t/R)2/(t/R)3/2 ∼ R2k−1/2 ∼ n(2k−1/2)/δ , (65)

where δ = 2. Thus for a pair of identical fullerenes, CAA
6 ∼ n2.75, which clearly

exhibits a stronger size dependence than that for a solid clusters such as sodium

and silicon clusters.

We calculated the asymptotic behavior of the vdW coefficients for fullerene,

sodium and silicon clusters. The inputted static dipole polarizabilities of sodium

and silicon clusters are given in Table 8. While the static dipole polarizabilities of

fullerenes calculated with the tight binding method are available in the literature,100

we find that these literature values were overestimated, because the thickness t eval-

uated from Eq. (52) increases too rapidly with fullerene size. Because the average

radius of the nuclear framework for fullerenes is much more easily calculated100,101

with molecular dynamics and DFT and because the thickness t has a very weak

dependence upon the size of fullerenes, we estimated the static dipole polarizability

of fullerenes from the relationship of Eq. (52) using a fixed thickness value t = 2.77

for C60. In Table 8, only the average radius of the nuclear framework is listed. All

the higher-order static polarizabilities of these clusters were estimated from the

classical relationship (51).

From Tables 9–12, we can observe that the vdW coefficients for cluster pairs

display an asymptotic tendency, as predicted by Eqs. (64) and (65).
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Table 8. Static dipole polarizabilities (in Hartree atomic
units) of sodium and silicon clusters, and the average radii
of the nuclear framework of fullerenes.

Nan α1(0) Fullerene Rn Sin α1(0)

Na2 259.5a C20 3.93c Si9 266e

Na4 511.5a C60 6.73c Si10 291e

Na6 743.9a C240 13.08c Si11 317e

Na8 883.9a C540 19.50c Si12 359e

Na10 1053a C960 25.53c Si13 393e

Na12 1342a C2160 38.74c Si20 619f

Na14 1652a C3840 50.57c Si21 663f

Na18 1725a ———— ———— Si22 674f

Na20 1988a Sin α1(0) Si23 700f

Na40 3498b Si3 108d Si24 737f

Na58 4899b Si4 138d Si25 776f

Na92 7481b Si5 164d Si26 825f

Si6 179d Si27 845f

Si7 214d Si28 863f

Si8 250e

aRef. 102, bRef. 103 cRef. 104, dRef. 105, eRef. 106,
fRef. 107.

Table 9. Model radius R = α1(0)1/3 and
van der Waals coefficients (in hartree atomic
units) for Nan-Nan , demonstrating the pre-
dicted asymptotic behavior of Eq. (64). One
valence electron per atom. The reference value
for α1(0) and the coefficients C6, C8, and C10

are taken from Refs. 62 and 15, respectively.

n R
C6

103n2

C8

105n8/3

C10

107n10/3

2 6.38 1.11 1.49 1.65

4 8.00 1.08 1.44 1.59

6 9.06 1.04 1.34 1.45

8 9.60 0.87 1.05 1.05

10 10.17 0.81 0.95 0.91

12 11.03 0.89 1.08 1.08

14 11.82 0.96 1.21 1.26

18 11.99 0.70 0.77 0.70

20 12.57 0.74 0.83 0.78

40 15.18 0.61 0.63 0.54

58 16.98 0.58 0.59 0.49

92 19.56 0.55 0.54 0.44
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Table 10. Model outer radius R = α1(0)1/3, shell thickness t = 2(R−Rn)
and vdW coefficients for fullerene pairs Cn-Cn, in hartree atomic units,
demonstrating the predicted asymptotic behavior of Eq. (64). Four valence
electrons per atom. From n = 20–3840, C6 increases by a factor of more
than 394,000 and C10 by more than 5.5 × 109. Note that the asymptotic
limit (n → ∞) is reached slowly when t/R differs from 1. Note that the
larger fullerences may be nonspherical (e.g., icosahedral in C540), but this
should not affect our conclusion.

n R t C6/n11/4 C8/(10n15/4) C10/(100n19/4)

20 5.13 2.40 2.75 1.98 1.14
60 8.11 2.76 1.75 1.07 0.53

240 14.46 2.76 1.00 0.37 0.20
540 20.88 2.76 0.82 0.23 0.14
960 26.91 2.76 0.70 0.16 0.11

2160 40.12 2.76 0.67 0.11 0.10
3840 51.95 2.76 0.57 0.08 0.09

Table 11. Model radius R = α1(0)1/3 and vdW coeffi-
cients for Sin-Sin, in hartree atomic units, demonstrating
the predicted asymptotic behavior of Eq. (64). Four valence
electrons per atom.

n R C6/103n2 C8/105n8/3 C10/107n10/3

3 4.76 0.324 0.185 0.087
4 5.17 0.304 0.168 0.078
5 5.47 0.282 0.151 0.067
6 5.63 0.244 0.123 0.051
7 5.98 0.254 0.130 0.055
8 6.30 0.262 0.136 0.059
9 6.43 0.241 0.120 0.050

10 6.63 0.235 0.117 0.048
11 6.82 0.232 0.114 0.047
12 7.11 0.245 0.124 0.052
13 7.32 0.249 0.126 0.053
20 8.52 0.258 0.133 0.057
21 8.72 0.266 0.139 0.060
22 8.77 0.254 0.130 0.055
23 8.88 0.252 0.128 0.054
24 9.03 0.255 0.131 0.056
25 9.19 0.259 0.134 0.057

6. Conclusion and Outlook

Many-electron wavefunction methods can predict accurate dynamic multipole po-

larizabilities and vdW coefficients C2k for small objects, but are impractical for

large nanostructures, where density-functional-like methods are more feasible. Even

TDDFT and TD Hartree–Fock methods are too computationally costly for large

systems. Explicit density functional approximations or models for the polarizabili-

ties and vdW coefficients are thus needed.
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Table 12. Calculated vdW coefficients for

Nan–C60, in hartree atomic units. Note that
the asymptotic (n → ∞) limit is reached more
slowly when B 6= A.

n C6/103n2 C8/105n8/3 C10/n10/3

2 8.04 14.06 20.43

4 7.92 10.79 12.11

6 7.80 9.25 9.04

8 7.32 7.65 6.58

10 7.14 6.89 5.46

12 7.20 7.01 5.42

14 7.62 7.16 5.45

18 6.78 5.49 3.60

20 6.90 5.58 3.63

40 6.42 4.34 2.31

58 6.30 3.98 1.96

92 6.12 3.63 1.64

Efficient and accurate calculation of vdW energy is a hot topic and plays an

important role in electronic structure calculations. Considerable progress toward

understanding of this quantity at a fundamental level has been made. Some meth-

ods55,56,58,61 have achieved excellent accuracy for free atom pairs, without relying

on the adjustment of empirical parameters. In this review, we limit our discussion

to atom pairs. Some interesting works by Scheffler’s group57,60 and by Dobson and

his collaborators63 have not been discussed in detail in this paper, although these

methods have shown their promise in practical applications.25,26
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