Exercise #1-4, 6-10

- The two main components of dry air are N₂ and O₂. Air does not absorb microwave radiation because N₂ and O₂ are symmetrical homonuclear molecules that do not have a permanent dipole moment, and therefore do not absorb microwaves to produce rotational spectra.
- 2) BF₃ (trigonal planar), S₂ (linear), CO₂ (linear), SO₃ (trigonal planar), and SiCl₄ (tetrahedral) will not produce rotational spectra because they are very symmetric molecules. [NH₃—trigonal bipyramidal; SO₂—bent are asymmetrical and will produce rotational spectra].
- 3) The selection rule is that $\Delta J = +1$ or -1. J=5 \rightarrow J=4 and J=4 \rightarrow J=5 are allowed.
- 4) $\omega = 3.842 \text{ cm}^{-1} = 384.2 \text{ m}^{-1}$; E=hc $\omega = (6.63 \times 10^{-34} \text{ J s}) (3.00 \times 10^8 \text{ m/s}) (384.2 \text{ m}^{-1}) = 7.64 \times 10^{-23} \text{ J}$ $\lambda = \text{hc/E} = (6.63 \times 10^{-34} \text{ J s}) (3.00 \times 10^8 \text{ m/s}) / (7.64 \times 10^{-23} \text{ J}) = 0.00260 \text{ m} = 2.6 \text{ mm}$

E (J=1 \rightarrow J=0) = 7.64 x 10⁻²³J (the energy for J=0 \rightarrow J=1)

I, moment of inertia for ${}^{12}C^{16}O$ molecule = μr^2 = (12 x 15.995)/ (12 + 15.995) = 6.8562 g/ mole x (1 mole/ 6.02 x 10^{23} molecules) r^2 =(1.1389 x 10^{-23} g/ molecule) r^2 = (1.1389 x 10^{-26} kg/ molecule) r^2

E (J=0 → J=1) = 2B_e = 2h²/(8 $\pi^{2}\mu$ r²) = 7.64 x 10⁻²³J r = $\sqrt{2h^{2}/(8\pi^{2}(1.1389 \times 10^{-26}kg)(7.64 \times 10^{-23}J)))}$ = $\sqrt{1.28 \times 10^{-20} m^{2}}$ = 1.13 x 10⁻¹⁰ m = 113 pm

- 6) E (J=1 \rightarrow J= 2) = 4B_e = 4h²/(8\pi²µr²) =10.19 x 10⁻²⁴J µ for ³⁹K³⁵Cl= (38.96 x 34.97)/ (38.96 +34.97) = 18.43 g/ mole x (1 mole/ 6.02 x 10²³ molecules) = 3.061 x10⁻²³ g/ molecule = 3.061 x 10⁻²⁶ kg/ molecule r=V(4h²/(8\pi²(3.061 x 10⁻²⁶kg)(10.19 x 10⁻²⁴J))) = V7.14 x 10⁻²⁰ m² = 2.67 x 10⁻¹⁰ m = 267 pm
- 7) $v = 6.350 \times 10^{5} \text{ MHz} = 6.350 \times 10^{11} \text{ Hz}$ $E = hv = (6.63 \times 10^{-34} \text{ J s})(6.350 \times 10^{11} \text{ Hz}) = 4.210 \times 10^{-22} \text{ J}$ $\mu \text{ for } {}^{1}\text{H}^{35}\text{Cl} = (1.008 \times 34.97)/(1.008 + 34.97) = 0.9798 \text{ g/mole x} (1 \text{ mole}/ 6.02 \times 10^{23} \text{ molecules})$ $= 1.628 \times 10^{-24} \text{ g/ molecule} = 1.628 \times 10^{-27} \text{ kg/ molecule}$

E spacing (J=0 → J=0) = $B_e = h^2/(8\pi^2\mu r^2) = 4.210 \times 10^{-22} \text{ J}$ r=V($h^2/(8\pi^2(1.628 \times 10^{-27}\text{kg})(4.210 \times 10^{-22}\text{J}))) = \sqrt{8.123 \times 10^{-21} m^2} = 9.013 \times 10^{-11} m = 90.13 \text{ pm}$

Yes, this bond length makes sense—it is smaller than for KCl and it should be K is in the fourth period and considerably bigger than H.

8) Dry air does not absorb IR radiation because the major components of dry air, N₂ and O₂, are homonuclear diatomic molecules. They cannot increase their vibrational energy by absorption of IR radiation because their dipole moments do not oscillate during vibration. Water, on the other hand, is a bent molecule with 2 H atoms and O atoms. It can absorb IR radiation because it has an oscillating dipole moment associated with its three vibrational modes—its antisymmetrical stretching mode, its symmetric stretching mode, and its bending mode (http://www.lsbu.ac.uk/water/vibrat.html or

http://www.atmos.albany.edu/deas/atmclasses/atm335/vib1.htm).

- The bending mode of CO₂ will be excited by IR radiation because its dipole moment oscillates during the bending motion.
- 10) The antisymmetrical stretch of CO₂ will also be excited by IR radiation because its dipole moment oscillates during the antisymmetric stretching motion.