Make a drawing for each problem (2 pts)
Give the equation and show work (3 pts)

1. A gas sample is attached to an open arm manometer. The height in the open arm is 43 mm higher than the arm attached to the gas sample. What is $P_{g a s}$? The $P_{a t m}=800 \mathrm{~mm} \mathrm{Hg}$.
2. A barometer has a height of 600 mm hg. What is the $\mathrm{P}_{\mathrm{atm}}$?
3. A closed arm manometer has a height of 10 mm Hg . The $P_{\text {atm }}$ is 762 mm Hg . What is the $P_{\text {gas }}$?
4. An open arm manometer has a height in the arm attached to the gas sample that is 26 mm Hg higher than the open arm. The $P_{\mathrm{atm}}=600 \mathrm{~mm} \mathrm{Hg}$. What is $\mathrm{P}_{\mathrm{gas}}$?
5. (5 pts) What is the kinetic energy of 1 mole of CO_{2} gas at $300^{\circ} \mathrm{C}$? SHOW WORK.
6. (5 pts) By what factor is the speed of a CO_{2} molecule greater than the speed of an N_{2} molecule? SHOW WORK.
7. (10 pts=2 pts each) Convert the following to atm (SHOW WORK):

- 765 torr
-300 kPa
-450,000 N/m ${ }^{2}$
- 49 cm Hg
-20,000 Pa
$\mathrm{R}=0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$ or $8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$

8. (4 pts) What are two conditions that make a gas ideal?
a)
b)
9. (2 pts) Gases act most ideally at \qquad (lo/hi) pressure and
\qquad (lo/ hi) temperature.
10. (6 pts) What is the speed of an H_{2} molecule at $100^{\circ} \mathrm{C}$? SHOW WORK.
11. (6 pts) What is the partial pressure of each gas in a mixture of $2 \mathrm{~mol} \mathrm{He}, 4$ mole He , and 7 mole O_{2} if the total pressure is 23 atm ? SHOW WORK.
12. (3 pts) List the following from slowest to fastest: $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{O}_{2}, \mathrm{~F}_{2}, \mathrm{Cl}_{2}, \mathrm{Kr}$
13. (4 pts) What is the temperature of the gas, in ${ }^{\circ} \mathrm{C}$, if P is 4 atm, V is 650 mL and the \# of moles is 2.7 moles? SHOW WORK.
14. (3 pts) A piston at 10 atm and 1 L expands to 4 L , what is the new P ? (no gas is added or removed, the temperature is constant) SHOW WORK.
15. (3 pts) An air conditioning unit compresses 200 L of gas at $30^{\circ} \mathrm{C}$ to 50 L , what is the resulting temperature of the gas if the pressure is to remain the same? SHOW WORK.
16. (3 pts) 2.7 moles of gas occupy 16 L of space at a certain temperature and pressure. If the pressure and temperature are kept constant and I add 2 more moles of gas, what will the new volume be? SHOW WORK.

4 pts X.C. Give the names and formulas of all the formulas derived from the ideal gas law.
a)
b)
c)
d)

